The Directed Spanning Forest converges to the Brownian Web

D. Coupier (Valenciennes), C. Tran (Lille), K. Saha (Bangalore, India) & A. Sarkar (New Delhi, India)

Figure: Kumarjit Saha, Anish Sarkar & Chi Tran.

The Directed Spanning Forest and its conjectures

2 The Brownian Web as a universal scaling limit

The Directed Spanning Forest and its conjectures

2 The Brownian Web as a universal scaling limit

3 Some words about the proof

- Approximation (local and in distribution) of the Radial Spanning Tree studied by Baccelli & Bordenave ('08) to modelize communication networks
- The DSF admits beautiful conjectures: Coalescence? Scaling limit ?
- But long-range dependence...

- Approximation (local and in distribution) of the Radial Spanning Tree studied by Baccelli & Bordenave ('08) to modelize communication networks.
- The DSF admits beautiful conjectures: Coalescence? Scaling limit ?
- But long-range dependence...

Vertex set: a homogeneous PPP N in \mathbb{R}^2 . $e_2 = (0, 1)$: a deterministic direction. Local rule: each $\mathbf{x} \in N$ is linked to the closest vertex in $\{z \in \mathbb{R}^2 : \langle z, X + e_2 \rangle \ge 0\}$.

- Approximation (local and in distribution) of the Radial Spanning Tree studied by Baccelli & Bordenave ('08) to modelize communication networks.
- The DSF admits beautiful conjectures: Coalescence? Scaling limit ?
- But long-range dependence...

Vertex set: a homogeneous PPP N in \mathbb{R}^2 . $e_2 = (0, 1)$: a deterministic direction. Local rule: each $\mathbf{x} \in N$ is linked to the closest vertex in $\{z \in \mathbb{R}^2 : \langle z, X + e_2 \rangle \ge 0\}$.

- Approximation (local and in distribution) of the Radial Spanning Tree studied by Baccelli & Bordenave ('08) to modelize communication networks.
- The DSF admits beautiful conjectures: Coalescence? Scaling limit ?
- But long-range dependence...

Vertex set: a homogeneous PPP N in \mathbb{R}^2 . $e_2 = (0, 1)$: a deterministic direction. Local rule: each $\mathbf{x} \in N$ is linked to the closest vertex in $\{z \in \mathbb{R}^2 : \langle z, X + e_2 \rangle \ge 0\}$.

- Approximation (local and in distribution) of the Radial Spanning Tree studied by Baccelli & Bordenave ('08) to modelize communication networks.
- The DSF admits beautiful conjectures: Coalescence? Scaling limit ?
- But long-range dependence...

Vertex set: a homogeneous PPP N in \mathbb{R}^2 . $e_2 = (0, 1)$: a deterministic direction. Local rule: each $\mathbf{x} \in N$ is linked to the closest vertex in $\{z \in \mathbb{R}^2 : \langle z, X + e_2 \rangle \ge 0\}$.

- Approximation (local and in distribution) of the Radial Spanning Tree studied by Baccelli & Bordenave ('08) to modelize communication networks.
- The DSF admits beautiful conjectures: Coalescence? Scaling limit ?
- But long-range dependence...

Vertex set: a homogeneous PPP N in \mathbb{R}^2 . $e_2 = (0, 1)$: a deterministic direction. Local rule: each $\mathbf{x} \in N$ is linked to the closest vertex in $\{z \in \mathbb{R}^2 : \langle z, X + e_2 \rangle \ge 0\}$.

- Approximation (local and in distribution) of the Radial Spanning Tree studied by Baccelli & Bordenave ('08) to modelize communication networks.
- The DSF admits beautiful conjectures: Coalescence? Scaling limit ?
- But long-range dependence...

- Approximation (local and in distribution) of the Radial Spanning Tree studied by Baccelli & Bordenave ('08) to modelize communication networks.
- The DSF admits beautiful conjectures: Coalescence? Scaling limit ?
- But long-range dependence...

- \Rightarrow The Directed Spanning Forest \mathcal{F} .
- Approximation (local and in distribution) of the Radial Spanning Tree studied by Baccelli & Bordenave ('08) to modelize communication networks.
- The DSF admits beautiful conjectures: Coalescence? Scaling limit ?
- But long-range dependence...

- \Rightarrow The Directed Spanning Forest \mathcal{F} .
- Approximation (local and in distribution) of the Radial Spanning Tree studied by Baccelli & Bordenave ('08) to modelize communication networks.
- The DSF admits beautiful conjectures: Coalescence? Scaling limit ?
- But long-range dependence...

- \Rightarrow The Directed Spanning Forest \mathcal{F} .
- Approximation (local and in distribution) of the Radial Spanning Tree studied by Baccelli & Bordenave ('08) to modelize communication networks.
- The DSF admits beautiful conjectures: Coalescence? Scaling limit ?
- But long-range dependence...

A simulation of the DSF

문 🕨 🗶 문

Image: A matrix and a matrix

æ

Dependence phenomenons

Figure: (a) Dependence phenomenon within a single path: how the past trajectory may influence its next steps. (b) Dependence phenomenon between two DSF trajectories: the overlap locally acts as a repulsive effect.

Coalescence

Theorem (C. & Tran '12)

- (1) A.s. all the DSF paths eventually coalesce.
- (2) A.s. there is no bi-infinite path in the DSF \mathcal{F} .

Scaling limit: our main result

- For X := (X(1), X(2)) ∈ N, let π^X : [X(2), ∞) → ℝ be the linear interpolation of the DSF trajectory starting at X.
- Diffusive scaling: For $n \ge 1$, $\sigma, \gamma > 0$ and $X \in N$, let

$$\pi_n^X(\sigma,\gamma)(\cdot) := \frac{1}{n\sigma} \pi^X(n^2\gamma \cdot)$$

and

$$X_n(\sigma,\gamma) := \left\{ \pi_n^X(\sigma,\gamma); X \in \mathcal{N} \right\}.$$

Theorem (C., Saha, Sarkar & Tran '18)

There exist $\sigma, \gamma > 0$ such that the sequence $\{X_n(\sigma, \gamma), n \ge 1\}$ converges in distribution to the (standard) Brownian Web W as $n \to \infty$.

	~	
David	(:011	nier
Dunu	000	pici

Scaling limit: our main result

- For X := (X(1), X(2)) ∈ N, let π^X : [X(2), ∞) → ℝ be the linear interpolation of the DSF trajectory starting at X.
- Diffusive scaling: For $n \ge 1$, $\sigma, \gamma > 0$ and $X \in N$, let

$$\pi_n^X(\sigma,\gamma)(\cdot) := \frac{1}{n\sigma} \pi^X(n^2\gamma \cdot)$$

and

$$X_n(\sigma,\gamma) := \left\{ \pi_n^X(\sigma,\gamma); X \in \mathcal{N} \right\}.$$

Theorem (C., Saha, Sarkar & Tran '18)

There exist $\sigma, \gamma > 0$ such that the sequence $\{X_n(\sigma, \gamma), n \ge 1\}$ converges in distribution to the (standard) Brownian Web W as $n \to \infty$.

	~	
David	(:011	nier
Duna	000	pici

The Directed Spanning Forest and its conjectures

2 The Brownian Web as a universal scaling limit

3 Some words about the proof

Existence of the BW ${}^{\mathcal{W}}$

Let $\Pi := \bigcup_{t_0 \in \mathbb{R}} C[t_0] \times \{t_0\}$ equipped with the distance:

$$d((f_1, t_1), (f_2, t_2)) := \left(\sup_t \left| \Phi(\widehat{f_1}(t), t) - \Phi(\widehat{f_2}(t), t) \right| \right) \vee |\Psi(t_1) - \Psi(t_2)|$$

with
$$\Phi(x,t) := \frac{\tanh(x)}{1+|t|}$$
 and $\Psi(t) := \tanh(t)$.

Let \mathcal{H} be the space of compact subsets of (Π, d) , equipped with the Hausdorff metric.

Theorem (Fontes, Isopi, Newman & Ravishankar '04)

 \exists a \mathcal{H} -valued r.v. \mathcal{W} whose distribution is uniquely determined by:

(i) for any $\mathbf{x} \in \mathbb{R}^2$, there is a.s. a unique path $\pi^{\mathbf{x}} \in \mathcal{W}$ starting from \mathbf{x} ,

(ii) for any finite set { $\mathbf{x}_1, \ldots, \mathbf{x}_k$ } of points, the collection ($\pi^{\mathbf{x}_1}, \ldots, \pi^{\mathbf{x}_k}$) is distributed as coalescing BMs starting from ($\mathbf{x}_1, \ldots, \mathbf{x}_k$),

(iii) for any countable deterministic dense subset $D \subset \mathbb{R}^2$, W a.s. is the closure of { $\pi^{\mathbf{x}} : \mathbf{x} \in D$ } in (Π , d).

Existence of the BW ${}^{\mathcal{W}}$

Let $\Pi := \bigcup_{t_0 \in \mathbb{R}} C[t_0] \times \{t_0\}$ equipped with the distance:

$$d((f_1, t_1), (f_2, t_2)) := \left(\sup_{t} \left| \Phi(\widehat{f_1}(t), t) - \Phi(\widehat{f_2}(t), t) \right| \right) \vee |\Psi(t_1) - \Psi(t_2)|$$

with
$$\Phi(x,t) := \frac{\tanh(x)}{1+|t|}$$
 and $\Psi(t) := \tanh(t)$.

Let \mathcal{H} be the space of compact subsets of (Π, d) , equipped with the Hausdorff metric.

Theorem (Fontes, Isopi, Newman & Ravishankar '04)

 \exists a \mathcal{H} -valued r.v. \mathcal{W} whose distribution is uniquely determined by:

(i) for any $\mathbf{x} \in \mathbb{R}^2$, there is a.s. a unique path $\pi^{\mathbf{x}} \in \mathcal{W}$ starting from \mathbf{x} ,

(ii) for any finite set { $\mathbf{x}_1, \ldots, \mathbf{x}_k$ } of points, the collection ($\pi^{\mathbf{x}_1}, \ldots, \pi^{\mathbf{x}_k}$) is distributed as coalescing BMs starting from ($\mathbf{x}_1, \ldots, \mathbf{x}_k$),

(iii) for any countable deterministic dense subset $D \subset \mathbb{R}^2$, W a.s. is the closure of { $\pi^{\mathbf{x}} : \mathbf{x} \in D$ } in (Π , d).

Existence of the BW ${}^{\mathcal{W}}$

Let $\Pi := \bigcup_{t_0 \in \mathbb{R}} C[t_0] \times \{t_0\}$ equipped with the distance:

$$d((f_1, t_1), (f_2, t_2)) := \left(\sup_{t} \left| \Phi(\widehat{f_1}(t), t) - \Phi(\widehat{f_2}(t), t) \right| \right) \vee |\Psi(t_1) - \Psi(t_2)|$$

with
$$\Phi(x,t) := \frac{\tanh(x)}{1+|t|}$$
 and $\Psi(t) := \tanh(t)$.

Let \mathcal{H} be the space of compact subsets of (Π, d) , equipped with the Hausdorff metric.

Theorem (Fontes, Isopi, Newman & Ravishankar '04)

 \exists a \mathcal{H} -valued r.v. \mathcal{W} whose distribution is uniquely determined by:

(i) for any $\mathbf{x} \in \mathbb{R}^2$, there is a.s. a unique path $\pi^{\mathbf{x}} \in \mathcal{W}$ starting from \mathbf{x} ,

(ii) for any finite set { $\mathbf{x}_1, \ldots, \mathbf{x}_k$ } of points, the collection ($\pi^{\mathbf{x}_1}, \ldots, \pi^{\mathbf{x}_k}$) is distributed as coalescing BMs starting from ($\mathbf{x}_1, \ldots, \mathbf{x}_k$),

(iii) for any countable deterministic dense subset $D \subset \mathbb{R}^2$, \mathcal{W} a.s. is the closure of { $\pi^{\mathbf{x}} : \mathbf{x} \in D$ } in (Π, d) .

Theorem (Fontes, Isopi, Newman & Ravishankar '04)

A sequence $\{X_n : n \ge 1\}$ of \mathcal{H} -valued r.v.'s with noncrossing paths converges to the BW if:

(1) For any countable dense set $D \subset \mathbb{R}^2$: for any $\mathbf{x} \in D$, there exists $\pi_n^{\mathbf{x}} \in X_n$ s.t. for any finite subset $\{\mathbf{x}^1, \ldots, \mathbf{x}^k\} \subset D$, $(\pi_n^{\mathbf{x}^1}, \ldots, \pi_n^{\mathbf{x}^k})$ converges in distribution to coalescing BMs started from $\mathbf{x}_1, \ldots, \mathbf{x}_k$.

 $(B1) \forall t > 0, \overline{\lim}_{n \to \infty} \sup_{(a,t_0) \in \mathbb{R}^2} \mathbb{P}(\eta_{X_n}(t_0, t; a, a + \epsilon) \ge 2) \to 0 \text{ as } \epsilon \downarrow 0.$

(B2) $\forall t > 0, \frac{1}{\epsilon} \overline{\lim}_{n \to \infty} \sup_{(a, t_0) \in \mathbb{R}^2} \mathbb{P}(\eta_{X_n}(t_0, t; a, a + \epsilon) \ge 3) \to 0 \text{ as } \epsilon \downarrow 0.$

Theorem (Fontes, Isopi, Newman & Ravishankar '04)

A sequence $\{X_n : n \ge 1\}$ of \mathcal{H} -valued r.v.'s with noncrossing paths converges to the BW if:

(1) For any countable dense set $D \subset \mathbb{R}^2$: for any $\mathbf{x} \in D$, there exists $\pi_n^{\mathbf{x}} \in X_n$ s.t. for any finite subset $\{\mathbf{x}^1, \ldots, \mathbf{x}^k\} \subset D$, $(\pi_n^{\mathbf{x}^1}, \ldots, \pi_n^{\mathbf{x}^k})$ converges in distribution to coalescing BMs started from $\mathbf{x}_1, \ldots, \mathbf{x}_k$.

(B1) $\forall t > 0$, $\overline{\lim}_{n \to \infty} \sup_{(a,t_0) \in \mathbb{R}^2} \mathbb{P}(\eta_{X_n}(t_0,t;a,a+\epsilon) \ge 2) \to 0 \text{ as } \epsilon \downarrow 0.$

B2)
$$\forall t > 0, \frac{1}{\epsilon} \overline{\lim}_{n \to \infty} \sup_{(a,t_0) \in \mathbb{R}^2} \mathbb{P}(\eta_{\chi_n}(t_0, t; a, a + \epsilon) \ge 3) \to 0 \text{ as } \epsilon \downarrow 0.$$

h

 $t_0 + t_1$

t₀

The coalescing random walks model

$$\mathbb{Z}^2_{\mathsf{even}} := \{(x, t) \in \mathbb{Z}^2; x + t \text{ is even}\}.$$

Each vertex of \mathbb{Z}^2_{even} goes to NE or NW, each with probability $\frac{1}{2}$ and independently.

Theorem (Fontes, Isopi, Newman & Ravishankar '04)

$$\mathbb{Z}^2_{\mathsf{even}} := \{(x,t) \in \mathbb{Z}^2; x+t \text{ is even}\}.$$

Theorem (Fontes, Isopi, Newman & Ravishankar '04)

$$\mathbb{Z}^2_{\mathsf{even}} := \{(x,t) \in \mathbb{Z}^2; x+t \text{ is even}\}.$$

Theorem (Fontes, Isopi, Newman & Ravishankar '04)

$$\mathbb{Z}^2_{\mathsf{even}} := \{(x,t) \in \mathbb{Z}^2; x+t \text{ is even}\}.$$

Theorem (Fontes, Isopi, Newman & Ravishankar '04)

$$\mathbb{Z}^2_{\mathsf{even}} := \{(x,t) \in \mathbb{Z}^2; x+t \text{ is even}\}.$$

Theorem (Fontes, Isopi, Newman & Ravishankar '04)

$$\mathbb{Z}^2_{\mathsf{even}} := \{(x,t) \in \mathbb{Z}^2; x+t \text{ is even}\}.$$

Theorem (Fontes, Isopi, Newman & Ravishankar '04)

Vertex set: a homogeneous PPP N.

 $e_2 = (0, 1)$: a deterministic direction.

r > 0: a deterministic parameter.

Local rule: each $\mathbf{u} \in \mathcal{N}$ is linked to the vertex inside the rectangle $\{(\mathbf{x}(1), \mathbf{x}(2)) \in \mathbb{R}^2 : |\mathbf{x}(1) - \mathbf{u}(1)| < r, \mathbf{x}(2) > \mathbf{u}(2)\}$ having the smallest ordinate.

Theorem (Ferrari, Fontes & Wu '05)

David Coupler	- · ·	~	
	David	('011	niai
	Daviu	oou	piei

Vertex set: a homogeneous PPP N.

 $e_2 = (0, 1)$: a deterministic direction.

r > 0: a deterministic parameter.

Local rule: each $\mathbf{u} \in \mathcal{N}$ is linked to the vertex inside the rectangle $\{(\mathbf{x}(1), \mathbf{x}(2)) \in \mathbb{R}^2 : |\mathbf{x}(1) - \mathbf{u}(1)| < r, \mathbf{x}(2) > \mathbf{u}(2)\}$ having the smallest ordinate.

Theorem (Ferrari, Fontes & Wu '05)

David Coupler	- · ·	~	
	David	('011	niai
	Daviu	oou	piei

Vertex set: a homogeneous PPP N. $e_2 = (0, 1)$: a deterministic direction. r > 0: a deterministic parameter. Local rule: each $\mathbf{u} \in N$ is linked to the vertex inside the rectangle $\{(\mathbf{x}(1), \mathbf{x}(2)) \in \mathbb{R}^2 : |\mathbf{x}(1) - \mathbf{u}(1)| < r, \mathbf{x}(2) > \mathbf{u}(2)\}$ having the smallest ordinate.

Theorem (Ferrari, Fontes & Wu '05)

Vertex set: a homogeneous PPP N. $e_2 = (0, 1)$: a deterministic direction. r > 0: a deterministic parameter. Local rule: each $\mathbf{u} \in N$ is linked to the vertex inside the rectangle { $(\mathbf{x}(1), \mathbf{x}(2)) \in \mathbb{R}^2 : |\mathbf{x}(1) - \mathbf{u}(1)| < r, \mathbf{x}(2) > \mathbf{u}(2)$ } having the smallest ordinate.

Theorem (Ferrari, Fontes & Wu '05)

Vertex set: a homogeneous PPP N. $e_2 = (0, 1)$: a deterministic direction. r > 0: a deterministic parameter. Local rule: each $\mathbf{u} \in N$ is linked to the vertex inside the rectangle $\{(\mathbf{x}(1), \mathbf{x}(2)) \in \mathbb{R}^2 : |\mathbf{x}(1) - \mathbf{u}(1)| < r, \mathbf{x}(2) > \mathbf{u}(2)\}$ having the smallest ordinate.

Theorem (Ferrari, Fontes & Wu '05)

Vertex set: a homogeneous PPP *N*. $e_2 = (0, 1)$: a deterministic direction. r > 0: a deterministic parameter. Local rule: each $\mathbf{u} \in N$ is linked to the vertex inside the rectangle $\{(\mathbf{x}(1), \mathbf{x}(2)) \in \mathbb{R}^2 : |\mathbf{x}(1) - \mathbf{u}(1)| < r, \mathbf{x}(2) > \mathbf{u}(2)\}$ having the smallest ordinate.

Theorem (Ferrari, Fontes & Wu '05)

Vertex set: a homogeneous PPP N. $e_2 = (0, 1)$: a deterministic direction.

r > 0: a deterministic parameter.

Local rule: each $\mathbf{u} \in \mathcal{N}$ is linked to the vertex inside the rectangle $\{(\mathbf{x}(1), \mathbf{x}(2)) \in \mathbb{R}^2 : |\mathbf{x}(1) - \mathbf{u}(1)| < r, \mathbf{x}(2) > \mathbf{u}(2)\}$ having the smallest ordinate.

Theorem (Ferrari, Fontes & Wu '05)

Vertex set: a homogeneous PPP N.

 $e_2 = (0, 1)$: a deterministic direction.

r > 0: a deterministic parameter.

Local rule: each $\mathbf{u} \in \mathcal{N}$ is linked to the vertex inside the rectangle $\{(\mathbf{x}(1), \mathbf{x}(2)) \in \mathbb{R}^2 : |\mathbf{x}(1) - \mathbf{u}(1)| < r, \mathbf{x}(2) > \mathbf{u}(2)\}$ having the smallest ordinate.

Theorem (Ferrari, Fontes & Wu '05)

A discrete and L¹ DSF

Theorem (Roy, Saha & Sarkar '14)

Theorem (Roy, Saha & Sarkar '14)

The Directed Spanning Forest and its conjectures

2) The Brownian Web as a universal scaling limit

Some words about the proof

3 N

• Schertzer et al '15: simplification of the convergence criteria for non-crossing paths.

(B2) and FKG inequality \implies wedge condition.

A coalescence time estimate based on a new Laplace type argument.
 If τ_ℓ is the coalescence time of DSF trajectories from (0, 0) and (0, ℓ),

$$\exists C > 0, \ \forall t \geq 0, \ \mathbb{P}(\tau_{\ell} > t) \leq \frac{C\ell}{\sqrt{t}}.$$

• Accurate study of the evolution of DSF paths: breaking points.

- · ·	~	
David	('011	niar
Daviu	oou	piei

 Schertzer et al '15: simplification of the convergence criteria for non-crossing paths.

(B2) and FKG inequality \implies wedge condition.

A coalescence time estimate based on a new Laplace type argument.
 If τ_ℓ is the coalescence time of DSF trajectories from (0, 0) and (0, ℓ),

$$\exists C > 0, \ \forall t \ge 0, \ \mathbb{P}(\tau_{\ell} > t) \le \frac{C\ell}{\sqrt{t}}.$$

• Accurate study of the evolution of DSF paths: breaking points.

- · ·	~	
David	(:011	nıer
Dana	000	p.o.

 Schertzer et al '15: simplification of the convergence criteria for non-crossing paths.

(B2) and FKG inequality \implies wedge condition.

A coalescence time estimate based on a new Laplace type argument.
 If τ_ℓ is the coalescence time of DSF trajectories from (0, 0) and (0, ℓ),

$$\exists C > 0, \ \forall t \geq 0, \ \mathbb{P}(\tau_{\ell} > t) \leq \frac{C\ell}{\sqrt{t}}.$$

Accurate study of the evolution of DSF paths: breaking points.

	~	
1 Jawrd	('011	nior
Daviu	oou	piei

<u> </u>	· •	
1)3///0		nior
Davic	i Oou	piei

$$(g_0(\mathbf{x}), g_0(\mathbf{y}), g_0(\mathbf{z})) = (\mathbf{x}, \mathbf{y}, \mathbf{z})$$
 and $H_0 = \emptyset$.

 H_n : History set and $L(H_n)$: height of H_n .

David Coupier

$$(g_0(\mathbf{x}), g_0(\mathbf{y}), g_0(\mathbf{z})) = (\mathbf{x}, \mathbf{y}, \mathbf{z})$$
 and $H_0 = \emptyset$.

 H_n : History set and $L(H_n)$: height of H_n .

David Coupier

DSF to BW

3 DSF paths starting from x, y, z.

$$(g_0(\mathbf{x}), g_0(\mathbf{y}), g_0(\mathbf{z})) = (\mathbf{x}, \mathbf{y}, \mathbf{z})$$
 and $H_0 = \emptyset$.

 H_n : History set and $L(H_n)$: height of H_n .

David Coupier

 H_n : History set and $L(H_n)$: height of H_n .

 H_n : History set and $L(H_n)$: height of H_n .

David Coupier

 H_n : History set and $L(H_n)$: height of H_n .

David Coupier

DSF to BW

David Coupier

DSF to BW

Let $\kappa \ge 6$. The sequence of good steps $(\tau_j)_{j\ge 0}$ is defined by

$$\begin{cases} \tau_0 = 0, \\ \tau_{j+1} = \min \left\{ kn > \tau_j : n \ge 1, \ L(H_{kn}) \le \kappa \text{ and } \dots \right\}, \text{ for } j \ge 0. \end{cases}$$

Lemma

There exist c, C > 0 s.t. for any integers $j, n \ge 0$

$$\mathbb{P}\left(\tau_{j+1}-\tau_{j}\geq n\,|\,\mathcal{F}_{\tau_{j}}\right)\leq Ce^{-cn}\;,$$

where \mathcal{F}_n : σ -algebra generated by the first n steps.

- · ·	~	
David	(:011	nier
Dunu	000	pici

Let $\kappa \ge 6$. The sequence of good steps $(\tau_j)_{j\ge 0}$ is defined by

$$\begin{cases} \tau_0 = 0, \\ \tau_{j+1} = \min \left\{ kn > \tau_j : n \ge 1, \ L(H_{kn}) \le \kappa \text{ and } \dots \right\}, \text{ for } j \ge 0. \end{cases}$$

Lemma

There exist c, C > 0 s.t. for any integers $j, n \ge 0$

$$\mathbb{P}\left(\tau_{j+1}-\tau_{j}\geq n\,|\,\mathcal{F}_{\tau_{j}}\right)\leq Ce^{-cn}\;,$$

where \mathcal{F}_n : σ -algebra generated by the first n steps.

	~	
David	(:00	nier
Duila	000	pici

The good step τ_j

$(g_{\tau_j}(\mathbf{x}), g_{\tau_j}(\mathbf{y}))$ and H_{τ_j}

 $(\mathbf{x}^{(\ell)}, \mathbf{y}^{(\ell)})$: restarting points of the ℓ -th perfect step.

Lemma The sequence $\{(\mathbf{x}^{(\ell)}, \mathbf{y}^{(\ell)})\}_{\ell \ge 0}$ is a Markov chain. David Coupier DSF to BW Bandom Graphs 2018 20 / 20

The good step τ_j is a perfect step if

 $(g_{\tau_j}(\mathbf{x}), g_{\tau_j}(\mathbf{y}))$ and H_{τ_j}

 $(\mathbf{x}^{(\ell)}, \mathbf{y}^{(\ell)})$: restarting points of the ℓ -th perfect step.

Lemma The sequence $\{(\mathbf{x}^{(\ell)}, \mathbf{y}^{(\ell)})\}_{\ell \geq 0}$ is a Markov chain. David Coupler DSF to BW Bandom Graphs 2018 20 / 20

The good step τ_j is a perfect step if

 $(g_{\tau_j}(\mathbf{x}), g_{\tau_j}(\mathbf{y}))$ and H_{τ_j}

 $(\mathbf{x}^{(\ell)}, \mathbf{y}^{(\ell)})$: restarting points of the ℓ -th perfect step.

Lemma The sequence $\{(\mathbf{x}^{(\ell)}, \mathbf{y}^{(\ell)})\}_{\ell \geq 0}$ is a Markov chain. David Coupler DSF to BW Random Graphs 2018 20 / 20

The good step τ_j is a perfect step if

 $(g_{\tau_j}(\mathbf{x}), g_{\tau_j}(\mathbf{y}))$ and H_{τ_j}

 $(\mathbf{x}^{(\ell)}, \mathbf{y}^{(\ell)})$: restarting points of the ℓ -th perfect step.

Lemma The sequence $\{(\mathbf{x}^{(\ell)}, \mathbf{y}^{(\ell)})\}_{\ell \ge 0}$ is a Markov chain. David Coupier DSF to BW Random Graphs 2018 20 / 20

The good step τ_j is a perfect step if

 $(g_{\tau_j}(\mathbf{x}), g_{\tau_j}(\mathbf{y}))$ and H_{τ_j}

 $(\mathbf{x}^{(\ell)}, \mathbf{y}^{(\ell)})$: restarting points of the ℓ -th perfect step.

Lemma The sequence $\{(\mathbf{x}^{(\ell)}, \mathbf{y}^{(\ell)})\}_{\ell \ge 0}$ is a Markov chain. David Coupier DSF to BW Bandom Graphs 2018 20 / 20

The good step τ_j is a perfect step if

 $(g_{\tau_j}(\mathbf{x}), g_{\tau_j}(\mathbf{y}))$ and H_{τ_j}

 $(\mathbf{x}^{(\ell)}, \mathbf{y}^{(\ell)})$: restarting points of the ℓ -th perfect step.

Lemma The sequence $\{(\mathbf{x}^{(\ell)}, \mathbf{y}^{(\ell)})\}_{\ell \ge 0}$ is a Markov chain. David Coupler DSF to BW Bandom Graphs 2018 20 / 20