Rigidity percolation

J. Barré ${ }^{1}$, M. Lelarge ${ }^{2}$ and D. Mitsche ${ }^{3}+$ several other people 2
${ }^{1}$ Université d'Orléans and Institut Universitaire de France
${ }^{2}$ Ecole Normale Supérieure de Paris and INRIA
${ }^{3}$ Université de Saint-Etienne
Octobre 2018

Rigidity

- Consider bars, which have a fixed length, linked together by "joints". Is the system rigid or floppy ?
Example in 2 dimensions; bar lengths are fixed, not the angles:

Rigid, not overconstrained

Rigid, overconstrained

Rigidity

- When there are only a few joints and bars, it is easy... What about this network, with 11 sites?

- Is it floppy? Rigid? How many floppy modes? Where?

Related problems

- Bond bending constraints: angles between two adjacent bonds have to be kept fixed $(D=3)$

Related problems

- Bond bending constraints: angles between two adjacent bonds have to be kept fixed ($D=3$)
- Rigidity with "sliders": some joints constrained to move on a line

Related problems

- Bond bending constraints: angles between two adjacent bonds have to be kept fixed ($D=3$)
- Rigidity with "sliders" : some joints constrained to move on a line
- Rigidity with "pinned" joints, which cannot move at all

An application: "covalent glasses"

- Example: a disordered network with Germanium and Selenium atoms. $\mathrm{Ge}=4$ bonds; $\mathrm{Se}=2$ bonds.
- Bond lengths and angles between two adjacent bonds can be considered as constraints (\sim the energy needed to modify them is larger than the temperature).

Each bond: 1 length constraint; each Se atom: 1 angular constraint; each Ge atom: 5 angular constraints. \rightarrow Go from "floppy" to "rigid" by increasing the Ge fraction.

Another application: protein rigidity (MF Thorpe and coworkers)

- Proteins are large biological molecules. An example (hexokinase):

Let's simplify:
Atoms \rightarrow balls; chemical (or other strong) bonds \rightarrow bonds; weak interactions \rightarrow forgotten!
\rightarrow is the simplified structure floppy or rigid?
\rightarrow if floppy, what are the possible deformations?

Constraint counting

Maxwell's idea: constraint counting

- each joint starts with 2 degrees of freedom
- each bar removes one degree of freedom
\rightarrow First try: formula for the number of remaining degrees of freedom, $N_{\text {d.o.f. }} ; N$ joints, M bars:

$$
N_{\text {d.o.f. }}=2 N-M \text { if } M<2 N-3 ; N_{\text {d.o.f. }}=3 \text { if } M \geq 2 N-3
$$

- Cannot be correct. . . Need to count redundant constraints:

$$
N_{\text {d.o.f. }}=2 N-M+N_{\text {redundant }}
$$

$$
\begin{aligned}
& N=5 ; M=7 \\
& N_{\text {redundant }}=1 \\
& N_{\text {d.o.f. }}=4
\end{aligned}
$$

From geometry to graph theory: Laman theorem

- Power of constraint counting: replace a geometrical problem by a discrete, graph theoretical one.

Question: is it possible to keep this desirable feature, correcting the approximations of constraint counting?

- Generic rigidity in 2D can be characterized in a purely graph theoretical way (Laman 1970):
G has a redundant constraint \Longleftrightarrow there is a subgraph with n vertices, m edges and $m>2 n-3$.
$\rightarrow \sim$ constraint counting on each subgraph to detect redundant constraints

Generic rigidity

Top: a non generic realization; Laman theorem does not apply. Bottom: a generic realization of the same graph.

Second ingredient: probabilities

In many cases, the structure is too large to be known exactly (think of covalent glasses for instance) \rightarrow one would like to use a probabilistic description

Each link between a pair of neighboring vertices is present with proba. $\mathrm{p}<1$

Links put "randomly", no geometry.

It is a percolation problem.

"Standard" percolation

- "connectivity" percolation $=$ well studied since the 60's

NB1: standard percolation is analog to "rigidity" percolation with one "degree of freedom" per vertex
NB2: standard percolation on a random graph $=$ appearance of a "giant connected component"

Erdos-Renyi random graphs

Definition of $\mathcal{G}(n, c / n)$: n vertices; any pair of vertices connected with proba. c / n. There is no notion of space.

Some properties: approximately $n c / 2$ edges; Poisson $\mathcal{P}(c)$ degree distribution; few small loops...

Questions for rigidity percolation

- Is there a well defined threshold p_{c} for the appearance of a " macroscopic rigid cluster"?

$$
\begin{aligned}
& p<p_{c} \Rightarrow \text { percolation probability }=0 \\
& p>p_{c} \Rightarrow \text { percolation probability }=1
\end{aligned}
$$

Answer: yes for random graphs and lattices (Numerics in the 90's; Holroyd ~2000); threshold computed by Kasiwisvanathan, Moore and Theran (KMT 2011) for $\mathcal{G}(n, c / n)$ random graphs, unknown for lattices.

Questions for rigidity percolation

- Size of the largest rigid component? Continuous/discontinuous at p_{c} ?

Size of the largest rigid component

Questions for rigidity percolation

- Size of the largest rigid component? Continuous/discontinuous at p_{c} ?

Size of the largest rigid component

Answer:
-Discontinuous for $\mathcal{G}(n, c / n)$ random graphs (Theran)
-seems to be continuous for lattices (Jacobs-Thorpe,
Duxbury-Moukarzel 90's, numerics).

Questions for rigidity percolation

- Size of the largest rigid component? Continuous/discontinuous at p_{c} ?
Example: Erdös-Rényi random graph $\mathcal{G}(n, c / n)$. Vary c

Size of the biggest rigid and stressed clusters, and number of "floppy modes" vs mean connectivity

Questions for rigidity percolation

- For lattices, what happens close to threshold? = "Critical" behavior? $\beta=$? (critical exponent, exciting for statistical physicists); fractal dimension?

Overconstrained regions (Simulation by P. Duxbury et al.)
Answer: unknown. Critical exponents seem to be different from standard percolation.

Goals

Fully understand the 2D lattice case: difficult... More modest goals:

1. Find models that can be solved;
2. Explore similarities/differences standard percolation/rigidity percolation: study models that interpolate between both.
\rightarrow Study rigidity percolation with sliders on random graphs

\rightarrow Study other kind of "simple" lattices (eg. hierarchical).

Rigidity with sliders

- Consider a structure with n_{1} sites with sliders, n_{2} free sites and m bars. One slider $=$ one constraint
\rightarrow modify constraint counting
Difficulty: sliders "pin" the rigid components to the plane \rightarrow Distinguish between free, partly pinned, and pinned rigid clusters

A Laman-type theorem (I. Streinu, L. Theran, 2010). Redundant constraint \Longleftrightarrow subgraph with

$$
n_{1}^{\prime}+2 n_{2}^{\prime}-m^{\prime}-\max \left(3-n_{1}^{\prime}, 0\right)<0
$$

\rightarrow A graph theoretical approach possible (under a genericity condition, as usual)

Rigidity percolation with sliders

- Erdös-Renyi random graph $\mathcal{G}(n, c / n)$, with $n=n_{1}+n_{2}$ $n_{1}=(1-q) n, n_{2}=q n$.
$1-q=$ proportion of sites with sliders
- $q=0$: ordinary percolation $=$ well known; continuous
- $q=1$: rigidity percolation, discontinuous; threshold $c=3.588 \ldots$
- What happens in between?

Threshold

- percolation threshold vs proportion of sliders

- $c^{*}=1 /(1-q)$ for $q \leq 1 / 2$
- For $q>1 / 2$, implicit expression for $c^{*}(q)$:

$$
c^{*}=\frac{\xi^{*}}{1-e^{-\xi^{*}}-q \xi^{*} e^{-\xi^{*}}}, \frac{\xi^{*}\left(1-e^{-\xi^{*}}-q \xi^{*} e^{-\xi^{*}}\right)}{(1+q)\left(1-e^{-\xi^{*}}-q \xi^{*} e^{-\xi^{*}}\right)-q\left(\xi^{*}\right)^{2} e^{-\xi^{*}}}=2 .
$$

Rigidity percolation with sliders, 2

Theorem: (JB, M. Lelarge, D. Mitsche)
Let $G \sim \mathcal{G}(n, c / n)$ an Erdos-Renyi random graph, with a fraction $1-q$ of sliders. Then, we can compute $c^{*}(q)$, such that with high probability (proba $\rightarrow 1$ when $n \rightarrow \infty$):

- If $c<c^{*}(q)$, there is no giant rigid component
- If $c>c^{*}(q)$, there is a giant rigid component

Furthermore, for $q<1 / 2$ the transition is continuous, and for $q>1 / 2$ it is discontinuous.

NB: $c^{*}(q=0)=1$ and $c^{*}(q=1)=3.588 \ldots$

Size of the largest rigid component

- Size of the largest component at threshold: jump for $q>1 / 2$: \sim rigidity without sliders.
- Continuous transition for $q<1 / 2$: \sim connectivity percolation.
- Discontinuous transition for $q>1 / 2$.
\rightarrow tricritical point at $q=1 / 2$ (statistical mechanics jargon)

Strategy of proof

- Step 1: Link with orientability (generalizes the case without sliders)
-Intuition: one bond removes one degree of freedom to one of the two vertices it links
-Vertices with or without slider: 1 or 2 degree of freedom
\rightarrow Link with "orientability"
: with slider

orientable
: free vertex

not orientable

Strategy of proof, 2

- Step 2: Thresholds for orientability and percolation are equal
"Rigid" \Rightarrow "Non orientable" = easy
"Non orientable" \Rightarrow "Rigid" $=$ more laborious
- Step 3: Compute the threshold for orientability \rightarrow method introduced by M. Lelarge
\sim rigorous "cavity method", a heuristic introduced by physicists.

Step 4: type of transition

- For $q>1 / 2$ ("rigidity-like" transition), a density argument applies: rigid components must be dense enough, and dense subgraphs must have a minimal size of order n (uses again the generalization of L. Theran's lemma).
\rightarrow discontinuous transition
- For $q<1 / 2$ ("connectivity-like" transition), we need "cores"

Remove recursively blue sites with less than 2 links and red sites with less than 3 . What remains is the " 2.5 -core". Then add recursively blue sites with one link to the core, and red sites with 2 .
One gets the " $2.5+1.5$-core".

Step 4: type of transition

- For $q>1 / 2$ (" rigidity-like" transition), a density argument applies: rigid components must be dense enough, and dense subgraphs must have a minimal size of order n (uses again the generalization of L . Theran's lemma).
\rightarrow discontinuous transition
- For $q<1 / 2$ ("connectivity-like" transition), we need "cores"

Then show: largest rigid component $\subset 2.5+1.5$-core

- Compute the size of the $2.5+1.5$-core and show it is small.

Step 5: Size of cores

- Size of the $3+2$ core $=$ conjecture in

Kasivisvanathan-Moore-Theran 2011.

- Strategy: use Janson-Luczak technique

Bins $=$ vertices, with sliders (blue) or without (red)
Balls = half edges

heavy

light

heavy

light

heavy
\rightarrow good knowledge of degree distributions after the core construction
\rightarrow possible to control the process growing the $3+2$ core.

Conclusions on random graphs

- Complete phase diagram with a tricritical point
- Proof combines many "old" ideas: strategy Theran et al. relating to orientability; M. Lelarge's technique to compute orientability threshold; Janson-Luczak technique to compute the size of cores
- What about rigidity with some pinned sites? Conjecture by physicists (Moukarzel '03): the discontinuous transition may disappear, but there is no continuous transition... A proof seems accessible -joint work with Dieter Mitsche and Louis Theran
- Physics literature: tree-like heuristics give access to much more detailed results (Large Deviation Cavity Method); could these be transformed into theorems? A general question, beyond rigidity.

Beyond random graphs?

- Random graphs: much easier than percolation problems on lattices...
- whereas problems on lattices, or at least on graphs with some geometric content, are a priori more interesting for physics.
- Understand the phase transition on regular lattices (beyond existence proof by Holroyd)? Precise numerical simulations would be useful; I don't even have heuristic theoretical ideas... \rightarrow a lot to do here!

