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Rigidity

• Consider bars, which have a fixed length, linked together by
”joints”. Is the system rigid or floppy ?
Example in 2 dimensions; bar lengths are fixed, not the angles:

Floppy

Rigid, not overconstrained

Rigid, overconstrained



Rigidity

• When there are only a few joints and bars, it is easy...
What about this network, with 11 sites?
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• Is it floppy? Rigid? How many floppy modes? Where?



Related problems

• Bond bending constraints: angles between two adjacent bonds
have to be kept fixed (D = 3)

 Ndeform
=1



Related problems

• Bond bending constraints: angles between two adjacent bonds
have to be kept fixed (D = 3)
• Rigidity with ”sliders”: some joints constrained to move on a line



Related problems

• Bond bending constraints: angles between two adjacent bonds
have to be kept fixed (D = 3)
• Rigidity with ”sliders”: some joints constrained to move on a line

• Rigidity with ”pinned” joints, which cannot move at all



An application : ”covalent glasses”

• Example: a disordered network with Germanium and Selenium
atoms. Ge = 4 bonds; Se = 2 bonds.
• Bond lengths and angles between two adjacent bonds can be
considered as constraints (∼ the energy needed to modify them is
larger than the temperature).
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Each bond: 1 length constraint; each Se atom: 1 angular
constraint; each Ge atom: 5 angular constraints.
→ Go from ”floppy” to ”rigid” by increasing the Ge fraction.



Another application: protein rigidity (MF Thorpe and
coworkers)
• Proteins are large biological molecules. An example (hexokinase):

Let’s simplify:
Atoms → balls; chemical (or other strong) bonds → bonds; weak
interactions → forgotten!

→ is the simplified structure floppy or rigid?
→ if floppy, what are the possible deformations?



Constraint counting

Maxwell’s idea: constraint counting
• each joint starts with 2 degrees of freedom
• each bar removes one degree of freedom
→ First try: formula for the number of remaining degrees of
freedom, Nd .o.f .; N joints, M bars:

Nd .o.f . = 2N −M if M < 2N − 3 ; Nd .o.f . = 3 if M ≥ 2N − 3

• Cannot be correct. . . Need to count redundant constraints:

Nd .o.f . = 2N −M + Nredundant

N=5; M=7

Nredundant
= 1

d.o.f.
= 4



From geometry to graph theory: Laman theorem

• Power of constraint counting: replace a geometrical problem by a
discrete, graph theoretical one.

Question: is it possible to keep this desirable feature, correcting
the approximations of constraint counting?

• Generic rigidity in 2D can be characterized in a purely graph
theoretical way (Laman 1970):

G has a redundant constraint ⇐⇒ there is a subgraph with n
vertices, m edges and m > 2n − 3.

→ ∼ constraint counting on each subgraph to detect redundant
constraints



Generic rigidity
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Top: a non generic realization; Laman theorem does not apply.
Bottom: a generic realization of the same graph.



Second ingredient: probabilities

In many cases, the structure is too large to be known exactly
(think of covalent glasses for instance) → one would like to use a
probabilistic description

Each link between a pair of
neighboring vertices is
present with proba. p<1

Links put "randomly",
no geometry.

It is a percolation problem.



”Standard” percolation

• ”connectivity” percolation = well studied since the 60’s

- Each link is present with 
proba. p, and absent with 
proba. 1-p

- Question: is there a path 
from top to bottom?

NB1: standard percolation is analog to ”rigidity” percolation with
one ”degree of freedom” per vertex
NB2: standard percolation on a random graph = appearance of a
”giant connected component”



Erdos-Renyi random graphs

Definition of G(n, c/n): n vertices; any pair of vertices connected
with proba. c/n. There is no notion of space.

Some properties: approximately nc/2 edges; Poisson P(c) degree
distribution; few small loops· · ·



Questions for rigidity percolation

• Is there a well defined threshold pc for the appearance of a
”macroscopic rigid cluster”?

p < pc ⇒ percolation probability = 0

p > pc ⇒ percolation probability = 1

Answer: yes for random graphs and lattices (Numerics in the 90’s;
Holroyd ∼2000); threshold computed by Kasiwisvanathan, Moore
and Theran (KMT 2011) for G(n, c/n) random graphs, unknown
for lattices.



Questions for rigidity percolation

• Size of the largest rigid component? Continuous/discontinuous
at pc?

continuous discontinuous

Size of the largest rigid component

p pp
c

|p- |



Questions for rigidity percolation

• Size of the largest rigid component? Continuous/discontinuous
at pc?

continuous discontinuous

Size of the largest rigid component

p pp
c

|p- |

Answer:
-Discontinuous for G(n, c/n) random graphs (Theran)
-seems to be continuous for lattices (Jacobs-Thorpe,
Duxbury-Moukarzel 90’s, numerics).



Questions for rigidity percolation

• Size of the largest rigid component? Continuous/discontinuous
at pc?
Example: Erdös-Rényi random graph G(n, c/n). Vary c

3  3.5 4

0.2

0.4

0.6

0.8

1 

connec

n
fl
o
p

trans

Size of the biggest rigid and stressed clusters, and number

of ”floppy modes” vs mean connectivity



Questions for rigidity percolation

• For lattices, what happens close to threshold? = ”Critical”
behavior? β =? (critical exponent, exciting for statistical
physicists); fractal dimension?

Overconstrained regions (Simulation by P. Duxbury et al.)

Answer: unknown. Critical exponents seem to be different from
standard percolation.



Goals

Fully understand the 2D lattice case: difficult... More modest
goals:

1. Find models that can be solved;

2. Explore similarities/differences standard percolation/rigidity
percolation: study models that interpolate between both.

→ Study rigidity percolation with sliders on random graphs

→ Study other kind of ”simple” lattices (eg. hierarchical).



Rigidity with sliders

• Consider a structure with n1 sites with sliders, n2 free sites and
m bars. One slider = one constraint
→ modify constraint counting

Difficulty: sliders ”pin” the rigid components to the plane
→ Distinguish between free, partly pinned, and pinned rigid
clusters

A Laman-type theorem (I. Streinu, L. Theran, 2010).
Redundant constraint ⇐⇒ subgraph with

n′1 + 2n′2 −m′ −max(3− n′1, 0) < 0

→ A graph theoretical approach possible (under a genericity
condition, as usual)



Rigidity percolation with sliders

• Erdös-Renyi random graph G(n, c/n), with n = n1 + n2

n1 = (1− q)n, n2 = qn.
1− q = proportion of sites with sliders

• q = 0: ordinary percolation = well known; continuous

• q = 1: rigidity percolation, discontinuous; threshold c = 3.588 . . .

• What happens in between?



Threshold
• percolation threshold vs proportion of sliders

0 0.5 1

q

T
h
re
sh
o
ld 1/(1-q)

1

2

3.588...

• c∗ = 1/(1− q) for q ≤ 1/2
• For q > 1/2, implicit expression for c∗(q):

c∗ =
ξ∗

1− e−ξ∗ − qξ∗e−ξ∗
,

ξ∗(1− e−ξ∗ − qξ∗e−ξ∗)

(1 + q)(1− e−ξ∗ − qξ∗e−ξ∗)− q(ξ∗)2e−ξ∗
= 2 .



Rigidity percolation with sliders, 2

Theorem: (JB, M. Lelarge, D. Mitsche)
Let G ∼ G(n, c/n) an Erdos-Renyi random graph, with a fraction
1− q of sliders. Then, we can compute c∗(q), such that with high
probability (proba → 1 when n→∞):

I If c < c∗(q), there is no giant rigid component

I If c > c∗(q), there is a giant rigid component

Furthermore, for q < 1/2 the transition is continuous, and for
q > 1/2 it is discontinuous.

NB: c∗(q = 0) = 1 and c∗(q = 1) = 3.588 . . .



Size of the largest rigid component

• Size of the largest component at threshold: jump for q > 1/2 :
∼ rigidity without sliders.
• Continuous transition for q < 1/2: ∼ connectivity percolation.
• Discontinuous transition for q > 1/2.

→ tricritical point at q = 1/2 (statistical mechanics jargon)



Strategy of proof
• Step 1: Link with orientability (generalizes the case without
sliders)

-Intuition: one bond removes one degree of freedom to one of the
two vertices it links
-Vertices with or without slider: 1 or 2 degree of freedom
→ Link with ”orientability”

: with slider : free vertex

 orientable not orientable

Orientable ⇐⇒ red (blue) sites have at most two (one) incoming edges.



Strategy of proof, 2

• Step 2: Thresholds for orientability and percolation are equal
”Rigid” ⇒ ”Non orientable” = easy
”Non orientable” ⇒ ”Rigid” = more laborious

• Step 3: Compute the threshold for orientability → method
introduced by M. Lelarge
∼ rigorous ”cavity method”, a heuristic introduced by physicists.



Step 4: type of transition
• For q > 1/2 (”rigidity-like” transition), a density argument
applies: rigid components must be dense enough, and dense
subgraphs must have a minimal size of order n (uses again the
generalization of L. Theran’s lemma).
→ discontinuous transition

• For q < 1/2 (”connectivity-like” transition), we need ”cores”

2.5 core

2.5+1.5 core

Blue= with slider
Red = free site

Remove recursively blue sites with less than 2 links and red sites
with less than 3. What remains is the ”2.5-core”. Then add
recursively blue sites with one link to the core, and red sites with 2.
One gets the ”2.5 + 1.5-core”.



Step 4: type of transition

• For q > 1/2 (”rigidity-like” transition), a density argument
applies: rigid components must be dense enough, and dense
subgraphs must have a minimal size of order n (uses again the
generalization of L. Theran’s lemma).
→ discontinuous transition

• For q < 1/2 (”connectivity-like” transition), we need ”cores”

2.5 core

2.5+1.5 core

Blue= with slider
Red = free site

Then show: largest rigid component ⊂ 2.5 + 1.5-core

• Compute the size of the 2.5 + 1.5-core and show it is small.



Step 5: Size of cores

• Size of the 3 + 2 core = conjecture in
Kasivisvanathan-Moore-Theran 2011.

• Strategy: use Janson-Luczak technique

Bins = vertices, with sliders (blue) or
without (red)
Balls = half edges

heavy light

→ good knowledge of degree distributions after the core
construction
→ possible to control the process growing the 3+2 core.



Conclusions on random graphs

I Complete phase diagram with a tricritical point

I Proof combines many ”old” ideas: strategy Theran et al.
relating to orientability; M. Lelarge’s technique to compute
orientability threshold; Janson-Luczak technique to compute
the size of cores

I What about rigidity with some pinned sites? Conjecture by
physicists (Moukarzel ’03): the discontinuous transition may
disappear, but there is no continuous transition. . . A proof
seems accessible -joint work with Dieter Mitsche and Louis
Theran

I Physics literature: tree-like heuristics give access to much
more detailed results (Large Deviation Cavity Method); could
these be transformed into theorems? A general question,
beyond rigidity.



Beyond random graphs?

I Random graphs: much easier than percolation problems on
lattices . . .

I whereas problems on lattices, or at least on graphs with some
geometric content, are a priori more interesting for physics.

I Understand the phase transition on regular lattices (beyond
existence proof by Holroyd)? Precise numerical simulations
would be useful; I don’t even have heuristic theoretical ideas...
→ a lot to do here!


