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Maps: definition

A planar map is a connected (multi)graph
embedded in the sphere, considered up to
continuous deformation. It is made of
vertices, edges and faces.

When all faces have degree 4, the map is a
quadrangulation. We similarly define
triangulations, etc.
We may also consider maps on more general
surfaces but we will not do so here.
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Where maps arise

Combinatorics (starting with W.T. Tutte)
The number of rooted planar maps with n edges is

mn =
2 · 3n

(n + 1)(n + 2)

(
2n

n

)
∼ 2√

π

12n

n5/2
.

Also 4-color theorem, algorithmics (graph drawing)...

Physics: large N expansion of gauge theories, matrix models, 2D
quantum gravity... (5/2 is characteristic of “pure gravity”)

Algebraic geometry (ramified coverings, dessins d’enfants),
representation theory (factorizations in symmetric group)...

Probability theory: random geometry
(5/2: maps whose scaling limit is the “Brownian map”)
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Random geometry

Picture of a large random triangulations by N. Curien
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Towards the Brownian map

Ambjørn-Watabiki (1995): predict that the “Hausdorff dimension” of
pure gravity is 4, and compute the “two-point function”.

Chassaing-Schaeffer (2002): the radius of a random rooted
quadrangulation with n faces, rescaled by n−1/4, converges in law.

B., Guitter, Di Francesco (2002-2010): similar results for other
observables or families of maps: two-point and three-point functions,
number of geodesics, loops, maps with boundaries...

Marckert-Mokkadem (2006): definition of the Brownian map, proof
of convergence of rescaled quadrangulations in a weak sense.

Le Gall, Miermont and others (2007-2013): proof of the convergence
of rescaled p-angulations (p = 3, 4, 6, . . .) to the Brownian map in the
Gromov-Hausdorff sense.

Miller-Sheffield (2013-2016): connection with Liouville quantum
gravity at γ =

√
8/3 via Quantum Loewner evolution.
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What else?

It is widely believed that other scaling limits are obtained for maps
decorated with a critical statistical physics system (“matter”).

The first evidence is Kazakov’s exact solution of the Ising model on
triangulations or quadrangulation, for which a different counting exponent
(7/3 rather than 5/2) is obtained.

But the geometry is much less understood, for instance it is not known
what the Hausdorff dimension should be: 4? 4.212 (Watabiki)?
Ding-Gwynne bounds (2018): between 4.189 and 4.243?

There should be a one-parameter family of scaling limits: γ-LQG surfaces
with γ ∈ (0, 2) (pure gravity: γ =

√
8/3, Ising: γ =

√
3...). It should be

obtained as limits of maps decorated with a critical q-state Potts model or
q-FK percolation, q ∈ (0, 4), or with a O(n) loop model, n ∈ (0, 2).
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What else?

Picture of a critical FK-weighted triangulation by J. Bettinelli
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The O(n) loop model on random maps

Given a map, a loop configuration is a collection of disjoint simple cycles
(loops) on the dual map.

A configuration of the O(n) loop model is a map endowed with a loop
configuration. We assign it a weight n#loops × (face weights).
For instance for triangulations the weight is n#loopsg#4h#—4.
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Phase diagram for n ∈ (0, 2)

g

h

subcritical

dense

dilute

generic

non well-defined

We find three types of critical points:

generic (pure gravity, counting exponent 5/2),

dilute (counting exponent 2 + b),

dense (counting exponent 2 + b/(1− b)),

where b := 1
π arccos

(
n
2

)
∈ (0, 1/2).
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Some works on the O(n) loop model on random maps

1990’s: studied in physics via matrix models (Kostov, Eynard...)

Le Gall-Miermont (2009): conjectured a connection with “stable
maps”

Borot-B.-Guitter (2011-2012): proved the connection using the
“gasket decomposition”

Borot-B.-Duplantier and Curien-Chen-Maillard (2016): study of
nesting statistics and the perimeter cascade

Budd (2018): peeling process and application to perimeters and
FPP-type distance.
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The gasket decomposition

Start with a configuration of the O(n) loop model.
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The gasket decomposition

contour

outer

contour

inner

external 

face

The faces visited by a loop forms a necklace.
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The gasket decomposition

Cut along the outer and inner contours of each outermost loop.
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The gasket decomposition

The outer component forms the gasket. It is a map without loops, with the
same outer degree as the original map.
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The gasket decomposition

Each outermost loop forms a necklace (cyclic sequence of polygons glued
side-by-side).
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The gasket decomposition

Each outermost loop contains an internal configuration (of the same nature
as our original object).
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The gasket decomposition

The decomposition is bijective: given the gasket, necklaces and internal
configurations, we may reconstruct the initial configuration.
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The gasket decomposition: consequences
A corollary is that the gasket is a Boltzmann random map: the probability
to observe a given map m is proportional to

w(m) =
∏

f face of m

gdegree(f )

where (gk)k≥1 is a sequence of parameters solution of a consistency (fixed
point) equation, fixing it in terms of the parameters n, g , h of the model.

Boltzmann random maps were investigated by Le Gall and Miermont (and
more recently by Marzouk), who showed that for some fine-tuned
sequences (gk)k≥1 we obtain a nongeneric scaling limit different from the
Brownian map.

With Borot and Guitter we showed that such nongeneric scaling limits are
precisely obtained at the nongeneric critical points of the O(n) loop
model, and we deduced the gasket dimension

dgasket
H =

{
3 + 2b (dilute),

3− 2b (dense).
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Nesting tree

Rather than considering distances (which are hard to understand), we may
study the structure of nestings between loops. In the planar case they are
coded by the nesting tree.

Each node of the nesting tree corresponds to a map without loops but
arbitrarily large faces. In particular the root of the tree corresponds to the
gasket. What is the structure of the nesting tree at a critical point?

Jérémie Bouttier (CEA/ENS de Lyon) Random maps coupled with matter 3 October 2018 15 / 20



Nesting tree

A simpler question: given an O(n) configuration on a map with a
boundary, what is the distribution of the depth of a uniformly chosen
vertex ? (i.e. the number of loops separating it from the outer face, or the
height of the corresponding node in the nesting tree)
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Nesting statistics

At a non generic critical point, the depth grows logarithmically with the
“size”, and more precisely:

Theorem 1 (central limit theorem) [Borot-B.-Duplantier 2016]

Let P` be the depth of a uniformly chosen vertex in a random
configuration of perimeter `. Then, at a non generic critical point, we have

P` − popt
π ln `

√
ln `

(d)−−−→
`→∞

N (0, σ2)

where

popt =
n√

4− n2
, σ2 =

4n

π(4− n2)3/2
.
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Nesting statistics

Theorem 2 (large deviation principle) [Borot-B.-Duplantier 2016]

Let P` be the depth of a uniformly chosen vertex in a random
configuration of perimeter `. Then, at a non generic critical point, we have

P
(
P` =

ln `

π
p

)
∼ cst · (ln `)−1/2`−

1
π
J(p), `→∞

where

J(p) = p ln

(
2

n

p√
1 + p2

)
+ arccot(p)− arccos(n/2).
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Nesting statistics
Remarks:

We have similar statements when the perimeter ` is replaced by the
volume (number of vertices).

Instead of marking a vertex, we may mark an inner face and obtain
similar results.

The large deviation function J(p) is nonnegative, vanishes at
p = popt, satisfies J ′′(p) = 1

p(p2+1)
, J(p) ∼ p ln(2/n) for p →∞ and

J(0) = arcsin(n/2) = π(1/2− b) (consistently with the value of ν
given before).

1 2 3 4
p

0.5

1.0

1.5

J(p)
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Nesting statistics
Our results can be compared to the so-called multifractal spectrum of
extreme nesting of CLEκ obtained by Miller, Watson and Wilson (2016).

Colloquially speaking it amounts to a large deviation principle for the
number of loops surrounding a small ball of Euclidean radius ε, as ε→ 0.
Our comparison then consists in replacing the constraint on the Euclidean
radius by one on the Liouville quantum area δ.

Theorem 3 [MWW+BBD’16]

Let Nδ be the number of loops surrounding a small ball of quantum area δ
in a CLEκ coupled to Liouville quantum gravity (for suitable γ) on the
Riemann sphere. Then we have

P
(
Nδ =

cp

π
ln(1/δ)

)
∼ Cδ

c
π
J(p), δ → 0

with c , J(p) as in Theorem 2.

This supports the conjecture that the scaling limit of the critical O(n)
model on random maps is described by a CLE coupled to LQG.
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