Analytical Approach of Sparse Random Graphs Phase Transitions

Vlady Ravelomanana
IRIF - University of Paris 7.
vlad@irif.fr

Saint-Etienne

Outline of the talk

- Introduction \& motivations.
- Some tractable graph phase transitions.
- Shifting the critical threshold.
- Open problems.
- Conclusion and perspectives.

Introduction

Main motivations

In Computer Science, two core problems (cf. [Garey, Johnson' 79]).

- Decision problems: write an algorithm such that
$\{$ INPUT : an instance \mathcal{I} and a property \mathcal{P}
OUTPUT : YES (resp. NO) if \mathcal{I} satisfies (resp. does not satisfy) \mathcal{P}
- Optimization problems: find the best solution from all feasible solutions.

Other communities: Probability/Combinatorics/Physics

C:configuration of the system, E:energy function, T:temperature, Z:normalization of. [Baldassi, Braunstein, Ramezanpour, Zecchina'09]

$$
\mathbb{P}(C)=\frac{1}{Z} e^{-E(C) / T}
$$

- if $T=\infty$ then all configurations C are equiprobable, the system is "disordered"
- if $T=0 \mathbb{P}(C)$ is "concentrated on the minimum energy function" (the ground state). Optimizing \rightarrow finding a zero energy ground state of E.

Translating CS-langage to Physics-langage: the k-SAT example

Computer Science	Statistical Physics
Boolean variable $x \in\{$ True, False $\}$	Ising spin $s \in\{$ spin up $(+1)$, Spin down $(-1)\}$ Clauses Couplings and fields acting on spins
Number of clauses violated	Energy E of spins configuration
2-SAT : $(x$ or $\bar{y})$ and $(\bar{x}$ or $z)$	$E=\frac{1}{4}\left(1-s_{x}\right)\left(1+s_{y}\right)+\frac{1}{4}\left(1+s_{x}\right)\left(1-s_{z}\right)$
3-SAT : $(x$ or \bar{y} or $z)$	$E=\frac{1}{8}\left(1-s_{x}\right)\left(1+s_{y}\right)\left(1-s_{z}\right)$
The problem is SAT	Ground state energy $=0$
The problem is UNSAT	Ground state energy >0

From [Monasson' 02] in ALEA lectures (CIRM).

The connectivity phase transition: a typical theorem

From "On Random Graphs l" [Erdős, Rényı 59]
Theorem. As $M=\frac{1}{2} n(\log n+c(n))$

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \text { Proba }[G(n, M) \text { is connected }]=\left\{\begin{array}{l}
0 \text { as } c(n) \rightarrow-\infty \\
e^{-e^{-c}} \text { as } c(n) \rightarrow c \text { (constant) } \\
1 \text { as } c(n) \rightarrow+\infty .
\end{array}\right. \\
& \text { Proba. } \begin{array}{r|r|l|l}
1 & \text { linear scale }
\end{array} \\
& \hdashline
\end{aligned}
$$

Main research directions

- Random k-SAT formulas $(k>2)$ are subject to phase transition phenomena [Friedgut, Bourgain' 99]
- Main research tasks include:
(1) Localization of the threshold (ex: 3-SAT 4.2..??? 3-XORSAT $0.91 \cdots$ proved in [Dubois, Mandler' 03]).
(2) Nature of the transition: sharp/coarse. [CReignou, Daudé 09]
(3) Scaling window (e.g. 2-SAT [BOLLOBÀS, BORGS, Kim, WILson' 01]) and/or (if possible) details inside the window of transition.
(4) Algorithmic complexity of the decision problem (e.g. "2-SAT is in $P^{\prime \prime}$ [TARJAN ' 79]). Only tractable problems today!

Outline of the talk

- Introduction \& motivations.
- Some tractable graph phase transitions.
- Shifting the critical threshold.
- Open problems.
- Conclusion and perspectives.
- 2-COL (bipartiteness): is a graph 2-COLORABLE?
- 2-XORSAT : is the formula

$$
\left\{\begin{array}{l}
x_{1} \oplus x_{2}=1 \\
x_{2} \oplus x_{3}=0 \\
\cdots \\
x_{i} \oplus x_{j}=\varepsilon \in\{0,1\} \\
\cdots
\end{array} \quad\right. \text { SAT? }
$$

- 2-SAT: is the formula

$$
\left\{\begin{array}{l}
\cdots \\
r \vee s \quad \text { SAT? } \\
\cdots
\end{array}\right.
$$

(where r and $s \in\left\{x_{1}, \cdots, x_{n}\right\} \bigcup\left\{\bar{x}_{1}, \cdots, \bar{x}_{n}\right\}$)

- Planarity : is a graph planar?

Random 2-XORSAT [Daudé, R. '11]

- General form :

$$
A \cdot X=\varepsilon
$$

where A has m rows and ε a m-dimensional $0 / 1$ vector.

- Distribution : uniform. Pick m clauses of the form $x_{i} \oplus x_{j} \in\{0,1\}$ from the set of $n(n-1)$ clauses.
- Underlying structures: graphs with weighted edges.

SAT characterization

SAT iff no elementary cycle of odd weight.

SAT iff no elementary cycle of odd weight

$$
\left\{\begin{array}{l}
x_{1} \oplus x_{2}=1 \\
x_{2} \oplus x_{3}=0 \\
x_{1} \oplus x_{3}=0 \\
x_{3} \oplus x_{4}=1
\end{array}\right.
$$

Proof.

- UNSAT \Longleftarrow Fix a cycle of odd weight, ...
- SAT \Longleftarrow No cycles of odd weight, a DFS affectation based proof.

Combinatorics

A basic scheme

- Enumeration of "SAT"-graphs (graphs without cycles of odd weight by means of generating functions.
- Use the results to compute

$$
\text { PROBA SAT }=\frac{\sharp C O N F I G . \quad \text { WITHOUT CYCLES OF ODD WEIGHT }}{\sharp T O T A L ~ C O N F I G U R A T I O N S ~} .
$$

Works on 2-XORSAT

- Using statistical physics methods, [Monasson '07] inferred that

$$
\lim _{n \rightarrow+\infty} n^{\text {critical exponent }} \times \mathbb{P}\left[2-\text { XORSAT }\left(n, \frac{n}{2}\right)\right]=\mathbf{O}(1)
$$

where "critical exponent" must be $\frac{1}{12}$.

- In [Daudé, R. '11], it is shown that YES critical exponent is $1 / 12$ and the " O(1)"are explicitly computed.

Taste of our results : the whole window

$\mathbf{p}(\mathbf{n}, \mathbf{c n}) \stackrel{\text { def }}{=}$ Proba [2 - XOR with \mathbf{n} variables, $\mathbf{c n}$ clauses] is SAT for $n=1000, n=2000$ and the theoretical function : $\left.\mathbf{e}^{\mathrm{c} / \mathbf{2}(1-2 c}\right)^{\mathbf{1 / 4}}$.

Taste of our results: rescaling the critical window

Rescaling at the point "zero", i.e $c=1 / 2: n=1000, n=2000$ and $\lim _{n \rightarrow \infty} n^{1 / 12} \times p\left(n, n / 2+\mu n^{2 / 3}\right)$ as a function of μ.

Basic refresher of Symbolic Method on EGFs

The exponential generating function (EGF) associated to a labelled class \mathcal{A} of combinatorial objects is

$$
A(z)=\sum_{a \in \mathcal{A}} \frac{z^{|a|}}{|a|!}=\sum_{n \geq 0} a_{n} \frac{z^{n}}{n!} .
$$

cf [Flajolet - Sedgewick'09]

Construction	Notation	Comments	EGFs
Disjoint union	$\mathcal{A}+\mathcal{B}$	disjoint copies of objects from \mathcal{A} and \mathcal{B}	$A(z)+B(z)$
Labeled product	$\mathcal{A} \star \mathcal{B}$	ordered pairs of copies one from \mathcal{A} and one from \mathcal{B}	$A(z) B(z)$
Sequence	$\operatorname{Seq}(\mathcal{A})$	sequences of objects from \mathcal{A}	$\frac{1}{1-A(z)}$
Set	$\operatorname{Set}(\mathcal{A})$	set of objects from \mathcal{A}	$e^{\mathcal{A}(z)}$
Cycle	$\operatorname{Cyc}(\mathcal{A})$	cycles of k objects from \mathcal{A}	$\log \frac{1}{1-A(z)}$

Trees

We apply the previous grammar to count rooted trees

$$
\mathcal{T}=\bullet \times \operatorname{Set}(\mathcal{T}) \rightarrow T(x)=x e^{T(x)}
$$

To forget the root, we just integrate: $\left(x U^{\prime}(x)=T(x)\right)$
$\int_{0}^{x} \frac{T(s)}{s} d s=\begin{gathered}T(s)=u \\ T^{\prime}(s) d s=d u\end{gathered}=\int_{T(0)}^{T(x)} 1-u d u=T(x)-\frac{1}{2} T(x)^{2}$
and the general version

Unicyclic graphs

$$
\mathcal{V}=\bigcirc \geq 3(\mathcal{T}) \rightarrow V(x)=\sum_{n=3}^{\infty} \frac{1}{2} \frac{(n-1)!}{n!}(T(x))^{n}
$$

We can write $V(x)$ in a compact way:

$$
\frac{1}{2} \quad-\log (1-T(x))-T(x)-\frac{T(x)^{2}}{2} \quad \rightarrow e^{V(x)}=\frac{e^{-T(x) / 2-T(x)^{2} / 4}}{\sqrt{1-T(x)}}
$$

Generating functions (ctd)

Connected graphs without cycles of odd weight

We want to enumerate

- labelled connected graphs (nodes labelled in $[1, n]$) with edges of weight in $\{0,1\}$ (cf. [Harary, Palmer '73])
- according to two parameters
(1) number of vertices n
(2) number of edges $n+k$ (k is the excess of the component, $k \geq-1$).
- SAT $=$ those without cycles of odd weight.

Let

$$
C_{k}(z)=\sum_{n, n} c_{n, n+k} \frac{z^{n}}{n!} .
$$

Th. [Daudé, R. 11]
Let $\operatorname{Wright}(z)$ be the number of unweighted connected graphs of excess k ([Wright '77]). Then

$$
C_{k}(z)=\frac{1}{2} \text { Connectedgraphs }_{k}(2 z) .
$$

Proof.

- Recall SAT iff no cycles of odd weight
- Consider a "SAT" connected component g
- Pick a spanning tree of g with n nodes:

- The edges of the spanning tree can be weighted in 2^{n-1} ways. By [Diestel'00], the weights of the other edges are determined:

$$
C_{k}(z)=\sum_{k^{0}} 2^{n-1} \underbrace{\text { COTED GRAPHS }(n, n+k)}_{[\text {WRIGHT } \quad \text { CONN] }]} \frac{z^{n}}{n!}
$$

Combinatorics of random 2-XORSAT

Main ideas: n variables, m clauses

$$
\operatorname{ProbA} \operatorname{SAT}=n!\times \frac{\left[z^{n}\right] \operatorname{SAT}-\operatorname{GF}(z)}{\left(\begin{array}{c}
n\binom{n-1)}{m}
\end{array} ~\right.}
$$

As the number of clauses m increases, random formulas behave as random graphs with gazeous, liquid and hardening phases.

- Sub-critical phase (gaz) : forest of trees and set of unicyclic components.
- Critical phase (liquid) : forest of trees, set of unicyclic components and few multicyclic components.
- Super-critical phase (hardening) : forest of trees, set of unicyclic components and a single (baby) giant component.

The Random 2-XORSAT Transition

Th. [Daudé, R. '11]

The probability that a random formula with n variables and m clauses is SAT satisfies the following :
(i) Sub-critical phase. As $0<n-2 m \ll n^{2 / 3}$

$$
\mathbb{P}(n, m)=e^{m / 2 n}\left(1-2 \frac{m}{n}\right)^{1 / 4}+O\left(\frac{n^{2}}{(n-2 m)^{3}}\right) .
$$

(ii) Critical phase. As $m=\frac{n}{2}+\mu n^{2 / 3}, \mu$ fixed real

$$
\lim _{n \rightarrow+\infty} n^{1 / 12} \mathbb{P}\left(n, \frac{n}{2}\left(1+\mu n^{-1 / 3}\right)\right)=\Psi(\mu)
$$

where ψ can be explicitly expressed (in terms of the Airy function).
(iii) Super-critical phase. As $m=\frac{n}{2}+\mu n^{2 / 3}$ with $\mu=o\left(n^{1 / 12}\right)$

$$
\mathbb{P}\left(n, \frac{n}{2}\left(1+\mu n^{-1 / 3}\right)\right)=\operatorname{Poly}(n, \mu) e^{-\frac{\mu^{3}}{6}} .
$$

The classical saddle-point method

The real case looks like (Laplace's method):

$$
R(n)=\int_{x_{1}}^{x_{2}} g(x) e^{n h(x)} d x .
$$

$$
\begin{aligned}
& \int_{0}^{\pi} x e^{20 \sin x} d x=4.29 \times 10^{8} . \\
& \int_{0}^{\pi} x e^{20\left(1-\frac{1}{2}(x-\pi / 2)^{2}\right)} d x=4.27 \times 10^{8} .
\end{aligned}
$$

What if $h^{\prime \prime}\left(x_{0}\right)=0$?

Normal saddle point x_{0} s.t $h^{\prime}\left(x_{0}\right)=0$ and $h^{\prime \prime}\left(x_{0}\right) \neq 0$.

The classical saddle-point method

The real case looks like (Laplace's method):

$$
R(n)=\int g(x) e^{n h(x)} d x g\left(x_{0}\right) \quad \sim \quad \sqrt{\frac{2 \pi}{-h^{\prime \prime}\left(x_{0}\right) n}} e^{n h\left(x_{0}\right)}
$$

$\int_{0}^{\pi} x e^{20 \sin x} d x=4.29 \times 10^{8}$
$\int_{0}^{\pi} x e^{20\left(1-\frac{1}{2}(x-\pi / 2)^{2}\right)} d x=4.27 \times 10^{8}$.
Normal saddle point x_{0} s.t $h^{\prime}\left(x_{0}\right)=0$ and $\underline{h^{\prime \prime}\left(x_{0}\right) \neq 0}$.

The case with $h^{\prime \prime}\left(z_{0}\right)=0$

Consider

$$
\left.\Psi^{\prime \prime}(z)-z \Psi(z)=0 \quad \text { (Airy equation }\right)
$$

Look for a solution of the form

$$
\Psi(z)=\int_{\Gamma} e^{t z} \Phi(t) d t \text { with } \Gamma \text { in the complex } t-\text { plane }
$$

(Φ with no singularities on Γ.)

$$
\Psi^{\prime \prime}(z)=\int_{\Gamma} t^{2} e^{t z} \Phi(t) d t \quad \text { and } \quad z \Psi(z)=\left[e^{t z} \Phi(t)\right]_{\delta \Gamma}-\int_{\Gamma} e^{t z} \Phi^{\prime}(t) d t
$$

We have then

$$
t^{2} \Phi(t)+\Phi^{\prime}(t)=0 \text { leading to solution of the form } \Psi(z)=c \int_{\Gamma} \exp \left(t z-\frac{t^{3}}{3}\right) d t
$$

(plus the condition $e^{t z} \Phi(t)=0$ on the boundary of the contour Γ).

Proof of the Theorem : the sub-critical phase

(1) As $0<n-2 m \ll n^{2 / 3}$, the probability that the underlying graph has no multicyclic component is

$$
1-O\left(\frac{n^{2}}{(n-2 m)^{3}}\right)
$$

(2) Then, the probability that the random formula is SAT is close to

$$
\frac{n!}{\binom{n(n-1)}{m}}\left[z^{n}\right] \frac{(\text { unrooted trees }(z))^{n-m}}{(n-m)!} \times \text { set of even weighted unicycles }(z)
$$

That is $\operatorname{Stirling}(n, m) \times \operatorname{Cauchy}(z)$ with

$$
\operatorname{Cauchy}(z)=\frac{1}{2 \pi i} \oint\left(\frac{T(2 z)}{2}-\frac{T(2 z)^{2}}{4}\right)^{n-m} \frac{e^{-T(2 z) / 4-T(2 z)^{2} / 8}}{(1-T(2 z))^{1 / 4}} \frac{d z}{z^{n+1}}
$$

and $T=-\operatorname{LambertW}(-z)=\sum_{n>0} n^{n-1} \frac{z^{n}}{n!}$.
(3) Lagrangian subs. $u=T(2 z)$ leads to integral of the form $\oint g(u) \exp (n h(u)) d u$ with $h(u)=u-\frac{m}{n} \log u+(1-m / n) \log (2-u)$ so that $h^{\prime}(2 m / n)=0$ and $h^{\prime \prime}(2 m / n)>0 \rightarrow$ classical saddle point method applies on circular path $|z|=2 m / n$.

Proof of the Theorem : the critical phase

Some multicyclic components can appear and the general formula looks like
(1)

$$
\operatorname{coeff}(\mathrm{n}, \mathrm{~m}, \mathrm{r}) \times \frac{1}{2 \pi i} \oint\left(\frac{T(2 z)}{2}-\frac{T(2 z)^{2}}{4}\right)^{n-m+r} \frac{e^{-T(2 z) / 4-T(2 z)^{2} / 8}}{(1-T(2 z))^{1 / 4+3 r}} \frac{d z}{z^{n+1}}
$$

(2) Again

$$
\text { Stirling }(\mathrm{n}, \mathrm{~m}, \mathrm{r}) \times \frac{1}{2 \pi i} \oint g_{r}(u) e^{n h(u)} d u
$$

(3) $h(u)=u-\frac{m}{n} \log u+(1-m / n) \log (2-u)$ but this time there are 2 saddle-points:

$$
u_{0}=2 m / n=1+2 \mu n^{-1 / 3} \text { and } u_{1}=1 .
$$

(observe $u_{0} \sim u_{1}$ as $n \gg 1$.)
(4) Moreover, $h(1)=h^{\prime}(1)=h^{\prime \prime}(1)=0$ so that the usual "Gaussian" approximation does not hold.

The critical phase via Airy function

Integral representation on the complex plane

The Airy function is given by

$$
\operatorname{Ai}(z)=\frac{1}{2 \pi i} \int_{\mathcal{C}} \exp \left(\frac{t^{3}}{3}-z t\right) d t=\frac{\sqrt{3}}{2 \pi} \int_{0}^{\infty} \exp \left(-\frac{t^{3}}{3}-\frac{z^{3}}{3 t^{3}}\right) d t
$$

where the integral is over a path \mathcal{C} starting at the point at infinity with argument $-\frac{\pi}{3}$ and ending at the point at infinity with argument $+\frac{\pi}{3}$

References

- Books: [Wong' 89], [Olver' 97].
- Random graphs (analytic combinatorics approaches): [Flajolet, Knuth, Pittel'89], [Janson, Knuth, छuczak, Pittel'93].

Proof of the critical phase of the Th.

Let $p_{r}(n, m)=$ Proba. to have SAT-graph of excess r.
Thus, $p(n, m)=\sum_{r \geq 0} p_{r}(n, m)$ is the probability of a random formula being SAT.
The proof of part (ii) of the Theorem (and confirmation of [MONASSON '07]) is completed as
(1) For fixed r, we compute (by means of the Airy stuff)

$$
n^{1 / 12} \times p_{r}(n, m) \sim c_{r} A(3 r+1 / 4, \mu)
$$

(2) and there exist R, C and ε such that for $r \geq R$ and all n :

$$
n^{1 / 12} p_{r}(n, m) \leq C e^{-\varepsilon r}
$$

The proof is completed using dominated convergence theorem.

Generalization

The Random 2-XORSAT Problem has been generalized in [de Panafieu '14]'s PhD thesis.

Recap. of some tractable phase transitions

- 2-XORSAT : is a random formula SAT? Done.
- 2-COL (bipartiteness): is a random graph 2-COLORABLE? Done by [Pittel, Yeum '10].
- 2-SAT: is a random formula like

$$
\left\{\begin{array}{l}
x_{1} \vee \bar{x}_{19} \\
\cdots \\
\bar{x}_{27} \vee \bar{x}_{36} \\
\cdots
\end{array} \quad\right. \text { SAT? Open problem!. }
$$

- Planarity : is a random graph PLANAR?
- ...

Graph planarity phase transition

Paul Erdôs (1913-1996)
Alfréd Rényi (1921-1970)

ON THE EVOLUTION OF RANDOM GRAPHS

by
P. ERDÖS and A. RÉNYI

> Dedicated to Professor P. Turán at his 50th birthday.

We can show that for $N(n)=\frac{n}{2}+\lambda \sqrt{n}$ with any real λ the probability of $\Gamma_{n, N(n)}$ not being planar has a positive lower limit, but we cannot calculate ts value. It may even be I, though this seems unlikely.

Prior works and contribution

- [モuczak, Pittel and Wierman ' 93] proved the 1960's conjecture

$$
p(\mu)=\lim _{n \rightarrow+\infty} \mathbb{P}\left(G\left(n, \frac{n}{2}\left(1+\mu n^{-1 / 3}\right)\right) \text { is planar }\right)
$$

exists and $0<p(\mu)<1$.

- [JANSon, モuczak, Knuth, Pittel ' 93] gave bounds

$$
0.9870 \cdots<p(0)<0.997 \cdots
$$

- Our contribution : the whole description of $p(\mu)$ [Noy, R., Rué '15].

Our strategy

- At the critical phase transition, the kernels(3-core) that matter are the cubic ones (same for random graphs, random 2-XORSAT formulas, \cdots).
- Decomposition of [bodirsky, Kang, Löffier, McDiarmid '07]

The decomposition in EGFs

$G^{(k)}(x)=\sum_{n \geq 0} \frac{1}{n!} g_{n}^{(k)} x^{n}$ the EGF of k-connected cubic planar graphs with n vertices. In particular, observe that $g_{n}^{(k)}=0$ when n is odd. By convention we write $g_{0}^{(0)}=1$. $G^{(1)}(x)$ is defined in terms of the following equations:

$$
\begin{aligned}
G^{(0)}(z) & =\exp G^{(1)}(z) \\
3 x \frac{d G^{(1)}(z)}{d x} & =D(z)+C(z) \\
B(z) & =\frac{z^{2}}{2}(D(z)+C(z))+\frac{z^{2}}{2} \\
C(z) & =S(z)+P(z)+H(z)+B(z) \\
D(z) & =\frac{B(x)^{2}}{z^{2}} \\
S(z) & =C(z)^{2}-C(z) S(z) \\
P(x) & =z^{2} C(z)+\frac{1}{2} z^{2} C(z)^{2}+\frac{z^{2}}{2} \\
2(1+C(x)) H(x) & =\left(v(1-2 v)-v(1-v)^{3}\right) \\
x^{2}(C(x)+1)^{3} & =v(1-v)^{3} .
\end{aligned}
$$

A little check!

We find for the cubic planar multigraphs

$$
G^{(0)}(z)=\sum_{r \geq 0} G_{r} \frac{z^{2 r}}{(2 r)!}=1+\frac{5}{24} z^{2}+\frac{385}{1152} z^{4}+\frac{83933}{82944} z^{6}+\cdots
$$

All cubic $(z)=\sum_{r \geq 0} \frac{(6 r)!}{(3 r)!2^{3 r} 6^{2 r}} \frac{z^{2 r}}{(2 r)!}=1+\frac{5}{24} z^{2}+\frac{385}{1152} z^{4}+\frac{85085}{82944} z^{6}+\cdots$
First discrepancy is at z^{6} with $\frac{85085}{82944}-\frac{83933}{82944}=\frac{1}{72}$. But $\frac{1}{72}=\frac{10}{6!}$ and there are 10 possible manners to label $K_{3,3}$!

How to get the window?

Main terms at the phase transition

- Only trees (planar), unicyclic (planar) and connected components with cubic planar kernels matter.
- From this observation: use complex integration.

Concretely

A picture of the whole window

- Using the decomposition, we get the generating functions (of planar connected components whose kernels are cubic).

Outline of the talk

- Introduction \& motivations.
- Some tractable graph phase transitions.
- Shifting the critical threshold.
- Open problems.
- Conclusion and perspectives.

A) Structural point of view	B) Analytical point of view
At the beginning, very simple graphs:	Simple saddle point approach
- set of trees	
- set of unicycles	Airy-like saddle point
and then at the threshold: - appearance of more complex connected components	

Question:

what about graphs with restricted degrees (degrees in set \mathcal{D})?

Dovgal, R'18

New set of thresholds as long as $1 \in \mathcal{D}$
The idea: until how many edges we have

$$
\lim _{n \rightarrow+\infty} \frac{\sharp \text { Set of } \text { Trees }_{\mathcal{D}} \times \text { Set of Unicycles }_{\mathcal{D}}}{\sharp \text { All configurations }} \stackrel{?}{=} 1
$$

(remark: [de Panafieu, Ramos' 16] obtained the asymptotics of " $\#$ all configurations ${ }_{D}$ " with n vertices and $O(n)$ edges.)

Random 2-SAT: what is inside the window?

- A long and rich problem: the only of the K-SAT family with proven threshold [Goerdt '92], [Chvítal, Reed '92], [de la Vega'92].
- Best result up to date [bollobàs, Borgs, Chayes, Kim, Wilson '01]: the window of transition is of size $O\left(n^{2 / 3}\right)$ i.e. let

$$
p(n, m)=\mathbb{P}(\text { Formula }(n \text { clauses, } m \text { variables }) \text { is SAT })
$$

$$
p(n, m)=\left\{\begin{array}{l}
\bullet 1-O\left(\frac{n^{2}}{(n-m)^{3}}\right) \text { as } n-m \gg n^{2 / 3} \\
\bullet O(1) \text { as }|n-m|=O\left(n^{2 / 3}\right) \\
\bullet \exp \left(-\frac{(m-n)^{3}}{n^{2}}\right) \text { as } m-n \gg n^{2 / 3}
\end{array}\right.
$$

Random 2-SAT: what is known and what is next?

- Concretely [Bollobàs et al. '01]

- A question of [Flajolet '08]. Note that physicists [Deroulers, Monasson '06] computed numerically $\mathbb{P}\left[\right.$ formula $\left(10^{6}\right.$ variables, 10^{6} clauses is SAT $\left.)\right] \sim 0.913 \ldots$

The characterization of 2-SAT

$$
\mathcal{F}:\left\{\begin{array}{l}
x_{1} \vee \bar{x}_{2} \\
\cdots \\
\bar{x}_{3} \vee \bar{x}_{2} \\
\cdots
\end{array}\right.
$$

- $r \vee t$ is equivalent to $\bar{r} \Longrightarrow t$ AND $\bar{t} \Longrightarrow r$
- Generate a directed graph D

> with 2 correlated arcs $\bar{r} \mapsto t$ AND $\bar{t} \mapsto r$ for each clause $r \vee t$.

- Formula \mathcal{F} is SAT iff there is no directed path from s to \bar{s} and vice-versa for all variables s.

An easier problem : random digraphs

- Consider random directed graphs $\vec{D}(n, n)$ with n nodes and $n \operatorname{arcs}$ OR $\vec{D}(n, p=1 / n)$.
- What is known:
(1) [Karp ' 90] $p=c / n$ with $c<1$ or $c>1$. OUTSIDE the scaling window!
(2) [モUCzAK '90] $p=c / n c<1$ or $c>1$ small or giant strongly connected components

See also [Pittel, Poole '14] for asymptotic normality). OUTSIDE the scaling window!

Stacked on to-do list

Go INSIDE that scaling window.
Characterize typical strongly connected components of $\vec{D}\left(n, n+O\left(n^{2 / 3}\right)\right)$.

The figure inside the scaling window of random digraphs?

Outline of the talk

- Introduction \& motivations.
- Some tractable graph phase transitions.
- Open problems.
- Conclusion and perspectives.

Conclusion

Enumerative approaches for SAT-like problems

- From typical anatomy of the graphs, count only the main components (3-regular or cubic planar components)
- If we have some decompositions : enumerative/analytic combinatorics work well.
- [de Panafieu, Ramos'16]: new approaches on connected graphs with large excess.
- [Collet, de Panafieu, Gardy, Gittenberger, R. ' 18]: analytic combinatorics of models of graphs with forbidden subgraphs.

Perspectives

Stack of what to do?

- Mixtures of formula:
(1) (2-XOR, $2-S A T)$ is difficult.

Interpolation between coarse and sharp phases transitions.
(2) $(2+p)$-XORSAT is less difficult. (Same kind of interpolation.)
(3) $(2+p)-S A T$ is extremely difficult. Interpolation between tractable/intractable problems.

- From complexity theory: QBF (Quantified Boolean Formulas).

