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Ising models

Ising models are probability distributions on the sample space

X = {0, 1}n

of the form

p(x) ∝ exp
(
x>Sx

)
, S ∈ Sym(n).

Typically only a few of the variables interact with each other, thus
S is sparse.

Ising models are also known in machine learning as Boltzmann
machines.
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Multivariate Gaussians

Multivariate Gaussians are probability distributions on the sample
space

Y = Rm

of the form

p(y) ∝ exp

(
−1

2
(y − µ)>Σ−1(y − µ)

)
, Σ ∈ PD(m).

Typically only a few of the variables interact with each other, and
thus Λ = Σ−1 is sparse (Gaussian graphical model).
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CG distributions

Restricted CG distributions that are defined on the sample space

X × Y = {0, 1}n × Rm

are of the form

p(x , y) ∝ exp

(
x>Sx + y>Rx − 1

2
y>Λy

)
, R ∈ Rm×n.



Ising models with latent continuous variables

Marginalizing out the continuous variables from a CG distribution
gives the marginal distribution on

X = {0, 1}n

of the form

p(x) ∝ exp

(
x>
(
S +

1

2
R>ΛR

)
x

)
.

If m� n (number of continuous variables is much smaller than the
number Bernoulli variables), then the PSD matrix L = 1

2R
>ΛR is

of small rank.
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Likelihood function for latent variable Ising model

Given data points

x (1), . . . , x (k) ∈ X = {0, 1}n,

we want to estimate the model parameters S ∈ Sym(n) (sparse)
and L ∈ Sym(n) (PSD and low rank).

The log-likelihood function for the latent variable Ising model is

`(S + L) =
n∑

i=1

x (i)
>

(S + L)x (i) − a(S + L),

where a is a normalization function.
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Promoting sparse + low rank solutions

Regularized log-likelihood problem

max
S ,L

`(S + L)− c‖S‖1 − λTr(L) s.t. L � 0,

where c , λ > 0 are regularization parameters.

Question, under which conditions can we recover S and L
individually from a solution of the regularized log-likelihood
problem?
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Alternative derivation of the problem

Maximum Entropy Principle [Jaynes 1955]

From the probability distributions that represent the current state
of knowledge choose the one with largest entropy.



Maximum entropy principle

Current state of knowledge:

1. Sample points x (1), . . . , x (k) drawn from the sample space
X = {0, 1}n.

2. Functions on X (sufficient statistics). Here we consider

ϕij : x = (x1, . . . , xn) 7→ xixj , i , j ∈ [n].



Entropy maximization problem

max
p∈P

H(p) s.t. E [ϕij ] =
1

n

k∑
l=1

ϕij(x
(l))

Or more compactly

max
p∈P

H(p) s.t. E [Φ] = Φk ,

if we collect the functions ϕij in the n × n matrix Φ and set

Φk =
∑k

l=1 x
(l)x (l)

>
.
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Relaxed entropy maximization and its dual

The problem with relaxed constraint reads as

max
p∈P

H(p) s.t. ‖E [Φ]− Φk‖∞ ≤ c ,

whose Lagrangian dual is given as

max
S

`(S)− c‖S‖1

with S ∈ Sym(n).

Maximum entropy – maximum likelihood duality
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Spectral norm relaxation

Alternatively/additionally we can impose the constraint

‖E [Φ]− Φk‖2 ≤ λ,

which gives

max
p∈P

H(p)

s.t. ‖E [Φ]− Φk‖∞ ≤ c ,

‖E [Φ]− Φk‖2 ≤ λ.
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Dual of spectral norm relaxed problem ...

... is the regularized maximum likelihood problem

max
S,L1,L2

`(S − L1 + L2)− c‖S‖1 − λTr(L1 + L2)

s.t. L1, L2 � 0,

where S , L1, L2 ∈ Sym(n).

The regularization term Tr(L1 + L2) promotes a low rank of
L1 + L2, and thus also of L2 − L1.

Hence, the interaction matrix S − L1 + L2 has a

sparse (S) + low rank (L2 − L1) decomposition.
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Weakening of the spectral norm constraint
The spectral norm constraint

‖E [Φ]− Φk‖2 ≤ λ,

can also be written as

E [Φ]− Φk � λ and Φk − E [Φ] � λ

Skipping the first constraint gives

max
p∈P

H(p)

s.t. ‖E [Φ]− Φk‖∞ ≤ c ,

Φk − E [Φ] � λ.

Whose dual is given as our marginal model

max
S ,L

`(S + L)− c‖S‖1 − λTr(L) s.t. L � 0.
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Consistency guarantees

We consider the slightly reformulated problem

max
S ,L

`(S + L)− λk
(
γ‖S‖1 + Tr(L)

)
s.t. L � 0,

where the likelihood function ` depends on the sample points
x (1), . . . , x (k) through the covariance matrix Φk , and λk goes to
zero with growing k.

Assume that the sample points are drawn from distribution with
interaction parameter S?, L? ∈ Sym(n), where S? is sparse and L?

is of low rank.

1. Can we approximate S? and L? from a solution to the
regularized likelihood problem?
2. Does the solution recover the sparsity of S? and the rank of L??
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Problem: non-identifiability

The matrix

M =

 1 0 . . .
0 0 . . .
...

...
. . .


is sparse and of low rank.

In general, we cannot distinguish (S?, L?) from (S? + M, L? −M),
because both have the same compound matrix S? + L?.
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Transversality assumption

Idea: Uniqueness of the solution of

max
S ,L

`(S + L)− λk
(
γ‖S‖1 + Tr(L)

)
is necessary for individual recovery.

Optimality can be geometrically characterized as:

The gradient ∇`(S , L) needs to be normal to the tangent
space of the variety of sparse matrices at S and also
normal to the tangent space of the variety of low rank
matrices at L.

For uniqueness we need that the two tangent spaces are
transversal, i.e., only share the origin.
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Gap assumption

We also need to require that

smin ≥ cSλk and σmin ≥ cLλk ,

where smin is the smallest magnitude of any non-zero entry in S?

and σmin is the smallest non-zero eigenvalue of L?. Furthermore,
cS and cL are positive constants.



Consistency theorem

Theorem Let (S?, L?) be the true model parameters and (Sk , Lk)
be the solution to the regularized likelihood problem. Let

k > c1 · t · n log n and λk = c2

√
t · n log n

k

for constants c1, c2, c3, t > 0. Then with probability at least
1− k−t

1. max
{
‖Sk − S?‖∞, ‖Lk − L?‖2

}
≤ c3λk , and

2. Sk and S? have the same support, and Lk and L? have the
same rank.

Proof Similar to the consistency proof for Gaussian latent variable
graphical models by Chandrasekaran, Parrilo and Willsky.
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