Ising Models with Latent Continuous Variables

Joachim Giesen (joint work with Frank Nussbaum)

Friedrich-Schiller-Universität Jena

Ising models

Ising models are probability distributions on the sample space

$$
\mathcal{X}=\{0,1\}^{n}
$$

of the form

$$
p(x) \propto \exp \left(x^{\top} S x\right), \quad S \in \operatorname{Sym}(n)
$$

Ising models

Ising models are probability distributions on the sample space

$$
\mathcal{X}=\{0,1\}^{n}
$$

of the form

$$
p(x) \propto \exp \left(x^{\top} S x\right), \quad S \in \operatorname{Sym}(n)
$$

Typically only a few of the variables interact with each other, thus S is sparse.

Ising models

Ising models are probability distributions on the sample space

$$
\mathcal{X}=\{0,1\}^{n}
$$

of the form

$$
p(x) \propto \exp \left(x^{\top} S x\right), \quad S \in \operatorname{Sym}(n)
$$

Typically only a few of the variables interact with each other, thus S is sparse.

Ising models are also known in machine learning as Boltzmann machines.

Multivariate Gaussians

Multivariate Gaussians are probability distributions on the sample space

$$
\mathcal{Y}=\mathbb{R}^{m}
$$

of the form

$$
p(y) \propto \exp \left(-\frac{1}{2}(y-\mu)^{\top} \Sigma^{-1}(y-\mu)\right), \quad \Sigma \in \operatorname{PD}(m)
$$

Multivariate Gaussians

Multivariate Gaussians are probability distributions on the sample space

$$
\mathcal{Y}=\mathbb{R}^{m}
$$

of the form

$$
p(y) \propto \exp \left(-\frac{1}{2}(y-\mu)^{\top} \Sigma^{-1}(y-\mu)\right), \quad \Sigma \in \operatorname{PD}(m)
$$

Typically only a few of the variables interact with each other, and thus $\Lambda=\Sigma^{-1}$ is sparse (Gaussian graphical model).

CG distributions

Restricted CG distributions that are defined on the sample space

$$
\mathcal{X} \times \mathcal{Y}=\{0,1\}^{n} \times \mathbb{R}^{m}
$$

are of the form

$$
p(x, y) \propto \exp \left(x^{\top} S x+y^{\top} R x-\frac{1}{2} y^{\top} \Lambda y\right), \quad R \in \mathbb{R}^{m \times n}
$$

Ising models with latent continuous variables

Marginalizing out the continuous variables from a CG distribution gives the marginal distribution on

$$
\mathcal{X}=\{0,1\}^{n}
$$

of the form

$$
p(x) \propto \exp \left(x^{\top}\left(S+\frac{1}{2} R^{\top} \wedge R\right) x\right)
$$

Ising models with latent continuous variables

Marginalizing out the continuous variables from a CG distribution gives the marginal distribution on

$$
\mathcal{X}=\{0,1\}^{n}
$$

of the form

$$
p(x) \propto \exp \left(x^{\top}\left(S+\frac{1}{2} R^{\top} \wedge R\right) x\right)
$$

If $m \ll n$ (number of continuous variables is much smaller than the number Bernoulli variables), then the PSD matrix $L=\frac{1}{2} R^{\top} \wedge R$ is of small rank.

Likelihood function for latent variable Ising model

Given data points

$$
x^{(1)}, \ldots, x^{(k)} \in \mathcal{X}=\{0,1\}^{n}
$$

we want to estimate the model parameters $S \in \operatorname{Sym}(n)$ (sparse) and $L \in \operatorname{Sym}(n)$ (PSD and low rank).

Likelihood function for latent variable Ising model

Given data points

$$
x^{(1)}, \ldots, x^{(k)} \in \mathcal{X}=\{0,1\}^{n}
$$

we want to estimate the model parameters $S \in \operatorname{Sym}(n)$ (sparse) and $L \in \operatorname{Sym}(n)$ (PSD and low rank).

The log-likelihood function for the latent variable Ising model is

$$
\ell(S+L)=\sum_{i=1}^{n} x^{(i)^{\top}}(S+L) x^{(i)}-a(S+L)
$$

where a is a normalization function.

Promoting sparse + low rank solutions

Regularized log-likelihood problem

$$
\max _{S, L} \ell(S+L)-c\|S\|_{1}-\lambda \operatorname{Tr}(L) \quad \text { s.t. } L \succeq 0
$$

where $c, \lambda>0$ are regularization parameters.

Promoting sparse + low rank solutions

Regularized log-likelihood problem

$$
\max _{S, L} \ell(S+L)-c\|S\|_{1}-\lambda \operatorname{Tr}(L) \quad \text { s.t. } L \succeq 0
$$

where $c, \lambda>0$ are regularization parameters.
Question, under which conditions can we recover S and L individually from a solution of the regularized log-likelihood problem?

Alternative derivation of the problem

Maximum Entropy Principle [Jaynes 1955]

From the probability distributions that represent the current state of knowledge choose the one with largest entropy.

Maximum entropy principle

Current state of knowledge:

1. Sample points $x^{(1)}, \ldots, x^{(k)}$ drawn from the sample space $\mathcal{X}=\{0,1\}^{n}$.
2. Functions on \mathcal{X} (sufficient statistics). Here we consider

$$
\varphi_{i j}: x=\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{i} x_{j}, \quad i, j \in[n] .
$$

Entropy maximization problem

$$
\max _{p \in \mathcal{P}} H(p) \quad \text { s.t. } E\left[\varphi_{i j}\right]=\frac{1}{n} \sum_{l=1}^{k} \varphi_{i j}\left(x^{(l)}\right)
$$

Entropy maximization problem

$$
\max _{p \in \mathcal{P}} H(p) \quad \text { s.t. } E\left[\varphi_{i j}\right]=\frac{1}{n} \sum_{l=1}^{k} \varphi_{i j}\left(x^{(l)}\right)
$$

Or more compactly

$$
\max _{p \in \mathcal{P}} H(p) \quad \text { s.t. } E[\Phi]=\Phi^{k}
$$

if we collect the functions $\varphi_{i j}$ in the $n \times n$ matrix Φ and set $\Phi^{k}=\sum_{l=1}^{k} x^{(I)} x^{(I)}{ }^{\top}$.

Relaxed entropy maximization and its dual

The problem with relaxed constraint reads as

$$
\max _{p \in \mathcal{P}} H(p) \quad \text { s.t. }\left\|E[\Phi]-\Phi^{k}\right\|_{\infty} \leq c
$$

Relaxed entropy maximization and its dual

The problem with relaxed constraint reads as

$$
\max _{p \in \mathcal{P}} H(p) \quad \text { s.t. }\left\|E[\Phi]-\Phi^{k}\right\|_{\infty} \leq c
$$

whose Lagrangian dual is given as

$$
\max _{S} \ell(S)-c\|S\|_{1}
$$

with $S \in \operatorname{Sym}(n)$.

Relaxed entropy maximization and its dual

The problem with relaxed constraint reads as

$$
\max _{p \in \mathcal{P}} H(p) \quad \text { s.t. }\left\|E[\Phi]-\Phi^{k}\right\|_{\infty} \leq c
$$

whose Lagrangian dual is given as

$$
\max _{S} \ell(S)-c\|S\|_{1}
$$

with $S \in \operatorname{Sym}(n)$.
Maximum entropy - maximum likelihood duality

Spectral norm relaxation

Alternatively/additionally we can impose the constraint

$$
\left\|E[\Phi]-\Phi^{k}\right\|_{2} \leq \lambda
$$

Spectral norm relaxation

Alternatively/additionally we can impose the constraint

$$
\left\|E[\Phi]-\Phi^{k}\right\|_{2} \leq \lambda
$$

which gives

$$
\begin{array}{ll}
\max _{p \in \mathcal{P}} & H(p) \\
\text { s.t. } & \left\|E[\Phi]-\Phi^{k}\right\|_{\infty} \leq c, \\
& \left\|E[\Phi]-\Phi^{k}\right\|_{2} \leq \lambda .
\end{array}
$$

Dual of spectral norm relaxed problem ...

... is the regularized maximum likelihood problem

$$
\begin{aligned}
& \max _{S, L_{1}, L_{2}} \ell\left(S-L_{1}+L_{2}\right)-c\|S\|_{1}-\lambda \operatorname{Tr}\left(L_{1}+L_{2}\right) \\
& \text { s.t. } L_{1}, L_{2} \succeq 0 \\
& \text { where } S, L_{1}, L_{2} \in \operatorname{Sym}(n)
\end{aligned}
$$

Dual of spectral norm relaxed problem ...

... is the regularized maximum likelihood problem

$$
\begin{aligned}
& \max _{S, L_{1}, L_{2}} \ell\left(S-L_{1}+L_{2}\right)-c\|S\|_{1}-\lambda \operatorname{Tr}\left(L_{1}+L_{2}\right) \\
& \text { s.t. } L_{1}, L_{2} \succeq 0 \\
& \text { where } S, L_{1}, L_{2} \in \operatorname{Sym}(n)
\end{aligned}
$$

The regularization term $\operatorname{Tr}\left(L_{1}+L_{2}\right)$ promotes a low rank of $L_{1}+L_{2}$, and thus also of $L_{2}-L_{1}$.

Dual of spectral norm relaxed problem ...

... is the regularized maximum likelihood problem

$$
\begin{aligned}
& \max _{S, L_{1}, L_{2}} \ell\left(S-L_{1}+L_{2}\right)-c\|S\|_{1}-\lambda \operatorname{Tr}\left(L_{1}+L_{2}\right) \\
& \text { s.t. } L_{1}, L_{2} \succeq 0
\end{aligned}
$$

where $S, L_{1}, L_{2} \in \operatorname{Sym}(n)$.
The regularization term $\operatorname{Tr}\left(L_{1}+L_{2}\right)$ promotes a low rank of $L_{1}+L_{2}$, and thus also of $L_{2}-L_{1}$.

Hence, the interaction matrix $S-L_{1}+L_{2}$ has a

$$
\text { sparse }(S)+\text { low rank }\left(L_{2}-L_{1}\right) \text { decomposition. }
$$

Weakening of the spectral norm constraint

The spectral norm constraint

$$
\left\|E[\Phi]-\Phi^{k}\right\|_{2} \leq \lambda,
$$

can also be written as

$$
E[\Phi]-\Phi^{k} \preceq \lambda \quad \text { and } \quad \Phi^{k}-E[\Phi] \preceq \lambda
$$

Weakening of the spectral norm constraint

The spectral norm constraint

$$
\left\|E[\Phi]-\Phi^{k}\right\|_{2} \leq \lambda,
$$

can also be written as

$$
E[\Phi]-\Phi^{k} \preceq \lambda \quad \text { and } \quad \Phi^{k}-E[\Phi] \preceq \lambda
$$

Skipping the first constraint gives

$$
\begin{array}{ll}
\max _{p \in \mathcal{P}} & H(p) \\
\text { s.t. } & \left\|E[\Phi]-\Phi^{k}\right\|_{\infty} \leq c, \\
& \Phi^{k}-E[\Phi] \preceq \lambda .
\end{array}
$$

Weakening of the spectral norm constraint

The spectral norm constraint

$$
\left\|E[\Phi]-\Phi^{k}\right\|_{2} \leq \lambda,
$$

can also be written as

$$
E[\Phi]-\Phi^{k} \preceq \lambda \quad \text { and } \quad \Phi^{k}-E[\Phi] \preceq \lambda
$$

Skipping the first constraint gives

$$
\begin{array}{ll}
\max _{p \in \mathcal{P}} & H(p) \\
\text { s.t. } & \left\|E[\Phi]-\Phi^{k}\right\|_{\infty} \leq c, \\
& \Phi^{k}-E[\Phi] \preceq \lambda .
\end{array}
$$

Whose dual is given as our marginal model

$$
\max _{S, L} \ell(S+L)-c\|S\|_{1}-\lambda \operatorname{Tr}(L) \quad \text { s.t. } L \succeq 0 .
$$

Consistency guarantees

We consider the slightly reformulated problem

$$
\max _{S, L} \ell(S+L)-\lambda_{k}\left(\gamma\|S\|_{1}+\operatorname{Tr}(L)\right) \quad \text { s.t. } L \succeq 0
$$

where the likelihood function ℓ depends on the sample points $x^{(1)}, \ldots, x^{(k)}$ through the covariance matrix Φ^{k}, and λ_{k} goes to zero with growing k.

Consistency guarantees

We consider the slightly reformulated problem

$$
\max _{S, L} \ell(S+L)-\lambda_{k}\left(\gamma\|S\|_{1}+\operatorname{Tr}(L)\right) \quad \text { s.t. } L \succeq 0
$$

where the likelihood function ℓ depends on the sample points $x^{(1)}, \ldots, x^{(k)}$ through the covariance matrix Φ^{k}, and λ_{k} goes to zero with growing k.

Assume that the sample points are drawn from distribution with interaction parameter $S^{\star}, L^{\star} \in \operatorname{Sym}(n)$, where S^{\star} is sparse and L^{\star} is of low rank.

Consistency guarantees

We consider the slightly reformulated problem

$$
\max _{S, L} \ell(S+L)-\lambda_{k}\left(\gamma\|S\|_{1}+\operatorname{Tr}(L)\right) \quad \text { s.t. } L \succeq 0
$$

where the likelihood function ℓ depends on the sample points $x^{(1)}, \ldots, x^{(k)}$ through the covariance matrix Φ^{k}, and λ_{k} goes to zero with growing k.

Assume that the sample points are drawn from distribution with interaction parameter $S^{\star}, L^{\star} \in \operatorname{Sym}(n)$, where S^{\star} is sparse and L^{\star} is of low rank.

1. Can we approximate S^{\star} and L^{\star} from a solution to the regularized likelihood problem?

Consistency guarantees

We consider the slightly reformulated problem

$$
\max _{S, L} \ell(S+L)-\lambda_{k}\left(\gamma\|S\|_{1}+\operatorname{Tr}(L)\right) \quad \text { s.t. } L \succeq 0
$$

where the likelihood function ℓ depends on the sample points $x^{(1)}, \ldots, x^{(k)}$ through the covariance matrix Φ^{k}, and λ_{k} goes to zero with growing k.

Assume that the sample points are drawn from distribution with interaction parameter $S^{\star}, L^{\star} \in \operatorname{Sym}(n)$, where S^{\star} is sparse and L^{\star} is of low rank.

1. Can we approximate S^{\star} and L^{\star} from a solution to the regularized likelihood problem?
2. Does the solution recover the sparsity of S^{\star} and the rank of L^{\star} ?

Problem: non-identifiability

The matrix

$$
M=\left(\begin{array}{ccc}
1 & 0 & \ldots \\
0 & 0 & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

is sparse and of low rank.

Problem: non-identifiability

The matrix

$$
M=\left(\begin{array}{ccc}
1 & 0 & \ldots \\
0 & 0 & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

is sparse and of low rank.
In general, we cannot distinguish $\left(S^{\star}, L^{\star}\right)$ from $\left(S^{\star}+M, L^{\star}-M\right)$, because both have the same compound matrix $S^{\star}+L^{\star}$.

Transversality assumption

Idea: Uniqueness of the solution of

$$
\max _{S, L} \ell(S+L)-\lambda_{k}\left(\gamma\|S\|_{1}+\operatorname{Tr}(L)\right)
$$

is necessary for individual recovery.

Transversality assumption

Idea: Uniqueness of the solution of

$$
\max _{S, L} \ell(S+L)-\lambda_{k}\left(\gamma\|S\|_{1}+\operatorname{Tr}(L)\right)
$$

is necessary for individual recovery.
Optimality can be geometrically characterized as:
The gradient $\nabla \ell(S, L)$ needs to be normal to the tangent space of the variety of sparse matrices at S and also normal to the tangent space of the variety of low rank matrices at L.

Transversality assumption

Idea: Uniqueness of the solution of

$$
\max _{S, L} \ell(S+L)-\lambda_{k}\left(\gamma\|S\|_{1}+\operatorname{Tr}(L)\right)
$$

is necessary for individual recovery.
Optimality can be geometrically characterized as:
The gradient $\nabla \ell(S, L)$ needs to be normal to the tangent space of the variety of sparse matrices at S and also normal to the tangent space of the variety of low rank matrices at L.

For uniqueness we need that the two tangent spaces are transversal, i.e., only share the origin.

Gap assumption

We also need to require that

$$
s_{\min } \geq c_{S} \lambda_{k} \quad \text { and } \quad \sigma_{\min } \geq c_{L} \lambda_{k}
$$

where $s_{\text {min }}$ is the smallest magnitude of any non-zero entry in S^{\star} and $\sigma_{\text {min }}$ is the smallest non-zero eigenvalue of L^{\star}. Furthermore, C_{S} and C_{L} are positive constants.

Consistency theorem

Theorem Let $\left(S^{\star}, L^{\star}\right)$ be the true model parameters and $\left(S_{k}, L_{k}\right)$ be the solution to the regularized likelihood problem. Let

$$
k>c_{1} \cdot t \cdot n \log n \quad \text { and } \quad \lambda_{k}=c_{2} \sqrt{\frac{t \cdot n \log n}{k}}
$$

for constants $c_{1}, c_{2}, c_{3}, t>0$. Then with probability at least $1-k^{-t}$

1. $\max \left\{\left\|S_{k}-S^{\star}\right\|_{\infty},\left\|L_{k}-L^{\star}\right\|_{2}\right\} \leq c_{3} \lambda_{k}$, and
2. S_{k} and S^{\star} have the same support, and L_{k} and L^{\star} have the same rank.

Consistency theorem

Theorem Let $\left(S^{\star}, L^{\star}\right)$ be the true model parameters and $\left(S_{k}, L_{k}\right)$ be the solution to the regularized likelihood problem. Let

$$
k>c_{1} \cdot t \cdot n \log n \quad \text { and } \quad \lambda_{k}=c_{2} \sqrt{\frac{t \cdot n \log n}{k}}
$$

for constants $c_{1}, c_{2}, c_{3}, t>0$. Then with probability at least $1-k^{-t}$

1. $\max \left\{\left\|S_{k}-S^{\star}\right\|_{\infty},\left\|L_{k}-L^{\star}\right\|_{2}\right\} \leq c_{3} \lambda_{k}$, and
2. S_{k} and S^{\star} have the same support, and L_{k} and L^{\star} have the same rank.

Proof Similar to the consistency proof for Gaussian latent variable graphical models by Chandrasekaran, Parrilo and Willsky.

