Ising Models with Latent Continuous Variables

Joachim Giesen (joint work with Frank Nussbaum)

Friedrich-Schiller-Universität Jena

Ising models

Ising models are probability distributions on the sample space

 $\mathcal{X} = \{0,1\}^n$

of the form

$$p(x) \propto \exp\left(x^{\top}Sx\right), \quad S \in \operatorname{Sym}(n).$$

Ising models

Ising models are probability distributions on the sample space

 $\mathcal{X} = \{0,1\}^n$

of the form

$$p(x) \propto \exp\left(x^{\top}Sx\right), \quad S \in \operatorname{Sym}(n).$$

Typically only a few of the variables interact with each other, thus S is sparse.

Ising models

Ising models are probability distributions on the sample space

 $\mathcal{X} = \{0,1\}^n$

of the form

$$p(x) \propto \exp\left(x^{\top}Sx\right), \quad S \in \operatorname{Sym}(n).$$

Typically only a few of the variables interact with each other, thus S is sparse.

Ising models are also known in machine learning as Boltzmann machines.

Multivariate Gaussians

Multivariate Gaussians are probability distributions on the sample space

$$\mathcal{Y} = \mathbb{R}^m$$

of the form

$$p(y) \propto \exp\left(-\frac{1}{2}(y-\mu)^{\top}\Sigma^{-1}(y-\mu)\right), \quad \Sigma \in \mathsf{PD}(m).$$

Multivariate Gaussians

Multivariate Gaussians are probability distributions on the sample space

$$\mathcal{Y} = \mathbb{R}^m$$

of the form

$$p(y) \propto \exp\left(-rac{1}{2}(y-\mu)^{ op}\Sigma^{-1}(y-\mu)
ight), \quad \Sigma \in \mathsf{PD}(m).$$

Typically only a few of the variables interact with each other, and thus $\Lambda = \Sigma^{-1}$ is sparse (Gaussian graphical model).

Restricted CG distributions that are defined on the sample space

$$\mathcal{X} imes \mathcal{Y} = \{0,1\}^n imes \mathbb{R}^m$$

are of the form

$$p(x,y) \propto \exp\left(x^{\top}Sx + y^{\top}Rx - \frac{1}{2}y^{\top}\Lambda y\right), \quad R \in \mathbb{R}^{m \times n}.$$

Ising models with latent continuous variables

Marginalizing out the continuous variables from a CG distribution gives the marginal distribution on

$$\mathcal{X} = \{0,1\}^n$$

of the form

$$p(x) \propto \exp\left(x^{\top}\left(S + \frac{1}{2}R^{\top}\Lambda R\right)x\right).$$

Ising models with latent continuous variables

Marginalizing out the continuous variables from a CG distribution gives the marginal distribution on

$$\mathcal{X} = \{0,1\}^n$$

of the form

$$p(x) \propto \exp\left(x^{\top}\left(S + \frac{1}{2}R^{\top}\Lambda R\right)x\right).$$

If $m \ll n$ (number of continuous variables is much smaller than the number Bernoulli variables), then the PSD matrix $L = \frac{1}{2}R^{\top}\Lambda R$ is of small rank.

Likelihood function for latent variable Ising model

Given data points

$$x^{(1)},\ldots,x^{(k)}\in\mathcal{X}=\{0,1\}^n,$$

we want to estimate the model parameters $S \in Sym(n)$ (sparse) and $L \in Sym(n)$ (PSD and low rank).

Likelihood function for latent variable Ising model

Given data points

$$x^{(1)},\ldots,x^{(k)}\in\mathcal{X}=\{0,1\}^n,$$

we want to estimate the model parameters $S \in Sym(n)$ (sparse) and $L \in Sym(n)$ (PSD and low rank).

The log-likelihood function for the latent variable Ising model is

$$\ell(S+L) = \sum_{i=1}^{n} x^{(i)^{\top}} (S+L) x^{(i)} - a(S+L),$$

where a is a normalization function.

Promoting sparse + low rank solutions

Regularized log-likelihood problem

$$\max_{S,L} \ \ell(S+L) - c \|S\|_1 - \lambda \mathsf{Tr}(L) \quad \text{s.t. } L \succeq 0,$$

where $c, \lambda > 0$ are regularization parameters.

Promoting sparse + low rank solutions

Regularized log-likelihood problem

$$\max_{S,L} \ \ell(S+L) - c \|S\|_1 - \lambda \mathrm{Tr}(L) \quad \text{s.t. } L \succeq 0,$$

where $c, \lambda > 0$ are regularization parameters.

Question, under which conditions can we recover S and L individually from a solution of the regularized log-likelihood problem?

Alternative derivation of the problem

Maximum Entropy Principle [Jaynes 1955]

From the probability distributions that represent the current state of knowledge choose the one with largest entropy. Current state of knowledge:

- 1. Sample points $x^{(1)}, \ldots, x^{(k)}$ drawn from the sample space $\mathcal{X} = \{0, 1\}^n$.
- 2. Functions on \mathcal{X} (sufficient statistics). Here we consider

$$\varphi_{ij}: x = (x_1, \ldots, x_n) \mapsto x_i x_j, \quad i, j \in [n].$$

Entropy maximization problem

$$\max_{p \in \mathcal{P}} H(p) \quad \text{s.t.} \ E[\varphi_{ij}] = \frac{1}{n} \sum_{l=1}^{k} \varphi_{ij}(x^{(l)})$$

Entropy maximization problem

$$\max_{p \in \mathcal{P}} H(p) \quad \text{s.t. } E[\varphi_{ij}] = \frac{1}{n} \sum_{l=1}^{k} \varphi_{ij}(x^{(l)})$$

Or more compactly

$$\max_{p\in\mathcal{P}} H(p) \quad \text{s.t.} \ E[\Phi] = \Phi^k,$$

if we collect the functions φ_{ij} in the $n \times n$ matrix Φ and set $\Phi^k = \sum_{l=1}^k x^{(l)} x^{(l)^\top}$.

Relaxed entropy maximization and its dual

The problem with relaxed constraint reads as

$$\max_{p\in\mathcal{P}} H(p) \quad \text{s.t.} \ \|E[\Phi] - \Phi^k\|_{\infty} \leq c,$$

Relaxed entropy maximization and its dual

The problem with relaxed constraint reads as

$$\max_{p\in\mathcal{P}} \ H(p) \quad \text{s.t.} \ \|E[\Phi]-\Phi^k\|_{\infty} \leq c,$$

whose Lagrangian dual is given as

$$\max_{S} \ \ell(S) - c \|S\|_1$$

with $S \in \text{Sym}(n)$.

Relaxed entropy maximization and its dual

The problem with relaxed constraint reads as

$$\max_{p\in\mathcal{P}} \ H(p) \quad \text{s.t.} \ \|E[\Phi]-\Phi^k\|_{\infty} \leq c,$$

whose Lagrangian dual is given as

$$\max_{S} \ \ell(S) - c \|S\|_1$$

with $S \in \text{Sym}(n)$.

Maximum entropy - maximum likelihood duality

Spectral norm relaxation

Alternatively/additionally we can impose the constraint

$$\|E[\Phi] - \Phi^k\|_2 \le \lambda,$$

Spectral norm relaxation

Alternatively/additionally we can impose the constraint

$$\|E[\Phi] - \Phi^k\|_2 \le \lambda,$$

which gives

$$\begin{array}{l} \max_{p \in \mathcal{P}} \ H(p) \\ \text{s.t.} \ \|E[\Phi] - \Phi^k\|_{\infty} \leq c, \\ \|E[\Phi] - \Phi^k\|_2 \leq \lambda. \end{array}$$

Dual of spectral norm relaxed problem ...

... is the regularized maximum likelihood problem

$$\max_{S,L_1,L_2} \ell(S - L_1 + L_2) - c \|S\|_1 - \lambda \operatorname{Tr}(L_1 + L_2)$$

s.t. $L_1, L_2 \succeq 0$,

where $S, L_1, L_2 \in \text{Sym}(n)$.

Dual of spectral norm relaxed problem ...

... is the regularized maximum likelihood problem

$$\begin{array}{l} \max_{S,L_1,L_2} \ \ell(S-L_1+L_2) - c \|S\|_1 - \lambda {\rm Tr}(L_1+L_2) \\ {\rm s.t.} \ \ L_1,L_2 \succeq 0, \end{array}$$

where $S, L_1, L_2 \in \text{Sym}(n)$.

The regularization term $Tr(L_1 + L_2)$ promotes a low rank of $L_1 + L_2$, and thus also of $L_2 - L_1$.

Dual of spectral norm relaxed problem ...

... is the regularized maximum likelihood problem

$$\begin{array}{l} \max_{S,L_1,L_2} \ \ell(S-L_1+L_2) - c \|S\|_1 - \lambda {\rm Tr}(L_1+L_2) \\ {\rm s.t.} \ \ L_1,L_2 \succeq 0, \end{array}$$

where $S, L_1, L_2 \in \text{Sym}(n)$.

The regularization term $Tr(L_1 + L_2)$ promotes a low rank of $L_1 + L_2$, and thus also of $L_2 - L_1$.

Hence, the interaction matrix $S - L_1 + L_2$ has a sparse (S) + low rank $(L_2 - L_1)$ decomposition.

Weakening of the spectral norm constraint

The spectral norm constraint

$$\|E[\Phi] - \Phi^k\|_2 \le \lambda,$$

can also be written as

$$E[\Phi] - \Phi^k \preceq \lambda$$
 and $\Phi^k - E[\Phi] \preceq \lambda$

Weakening of the spectral norm constraint

The spectral norm constraint

$$\|E[\Phi] - \Phi^k\|_2 \le \lambda,$$

can also be written as

$$E[\Phi] - \Phi^k \preceq \lambda$$
 and $\Phi^k - E[\Phi] \preceq \lambda$

Skipping the first constraint gives

$$\begin{array}{l} \max_{p \in \mathcal{P}} H(p) \\ \text{s.t.} \quad \|E[\Phi] - \Phi^k\|_{\infty} \leq c, \\ \Phi^k - E[\Phi] \preceq \lambda. \end{array}$$

Weakening of the spectral norm constraint

The spectral norm constraint

$$\|E[\Phi] - \Phi^k\|_2 \le \lambda,$$

can also be written as

$$E[\Phi] - \Phi^k \preceq \lambda$$
 and $\Phi^k - E[\Phi] \preceq \lambda$

Skipping the first constraint gives

$$\max_{p \in \mathcal{P}} H(p)$$

s.t. $\|E[\Phi] - \Phi^k\|_{\infty} \le c,$
 $\Phi^k - E[\Phi] \preceq \lambda.$

Whose dual is given as our marginal model

$$\max_{S,L} \ell(S+L) - c \|S\|_1 - \lambda \operatorname{Tr}(L) \quad \text{s.t. } L \succeq 0.$$

We consider the slightly reformulated problem

$$\max_{S,L} \ell(S+L) - \lambda_k \big(\gamma \|S\|_1 + \operatorname{Tr}(L) \big) \quad \text{s.t. } L \succeq 0,$$

where the likelihood function ℓ depends on the sample points $x^{(1)}, \ldots, x^{(k)}$ through the covariance matrix Φ^k , and λ_k goes to zero with growing k.

We consider the slightly reformulated problem

$$\max_{S,L} \ \ell(S+L) - \lambda_k \big(\gamma \|S\|_1 + \mathsf{Tr}(L) \big) \quad \text{s.t. } L \succeq 0,$$

where the likelihood function ℓ depends on the sample points $x^{(1)}, \ldots, x^{(k)}$ through the covariance matrix Φ^k , and λ_k goes to zero with growing k.

Assume that the sample points are drawn from distribution with interaction parameter $S^*, L^* \in \text{Sym}(n)$, where S^* is sparse and L^* is of low rank.

We consider the slightly reformulated problem

$$\max_{S,L} \ \ell(S+L) - \lambda_k \big(\gamma \|S\|_1 + \mathsf{Tr}(L) \big) \quad \text{s.t. } L \succeq 0,$$

where the likelihood function ℓ depends on the sample points $x^{(1)}, \ldots, x^{(k)}$ through the covariance matrix Φ^k , and λ_k goes to zero with growing k.

Assume that the sample points are drawn from distribution with interaction parameter $S^*, L^* \in \text{Sym}(n)$, where S^* is sparse and L^* is of low rank.

1. Can we approximate S^* and L^* from a solution to the regularized likelihood problem?

We consider the slightly reformulated problem

$$\max_{S,L} \ \ell(S+L) - \lambda_k \big(\gamma \|S\|_1 + \mathsf{Tr}(L) \big) \quad \text{s.t. } L \succeq 0,$$

where the likelihood function ℓ depends on the sample points $x^{(1)}, \ldots, x^{(k)}$ through the covariance matrix Φ^k , and λ_k goes to zero with growing k.

Assume that the sample points are drawn from distribution with interaction parameter $S^*, L^* \in \text{Sym}(n)$, where S^* is sparse and L^* is of low rank.

1. Can we approximate S^* and L^* from a solution to the regularized likelihood problem?

2. Does the solution recover the sparsity of S^* and the rank of L^* ?

Problem: non-identifiability

The matrix

$$M = \left(\begin{array}{rrrr} 1 & 0 & \dots \\ 0 & 0 & \dots \\ \vdots & \vdots & \ddots \end{array}\right)$$

is sparse and of low rank.

Problem: non-identifiability

The matrix

$$\mathcal{M} = \left(\begin{array}{ccc} 1 & 0 & \dots \\ 0 & 0 & \dots \\ \vdots & \vdots & \ddots \end{array}\right)$$

is sparse and of low rank.

In general, we cannot distinguish (S^*, L^*) from $(S^* + M, L^* - M)$, because both have the same compound matrix $S^* + L^*$.

Transversality assumption

Idea: Uniqueness of the solution of

$$\max_{S,L} \ell(S+L) - \lambda_k (\gamma \|S\|_1 + \operatorname{Tr}(L))$$

is necessary for individual recovery.

Transversality assumption

Idea: Uniqueness of the solution of

$$\max_{S,L} \ell(S+L) - \lambda_k (\gamma \|S\|_1 + \operatorname{Tr}(L))$$

is necessary for individual recovery.

Optimality can be geometrically characterized as:

The gradient $\nabla \ell(S, L)$ needs to be normal to the tangent space of the variety of sparse matrices at S and also normal to the tangent space of the variety of low rank matrices at L.

Transversality assumption

Idea: Uniqueness of the solution of

$$\max_{S,L} \ \ell(S+L) - \lambda_k \big(\gamma \|S\|_1 + \mathsf{Tr}(L) \big)$$

is necessary for individual recovery.

Optimality can be geometrically characterized as:

The gradient $\nabla \ell(S, L)$ needs to be normal to the tangent space of the variety of sparse matrices at S and also normal to the tangent space of the variety of low rank matrices at L.

For uniqueness we need that the two tangent spaces are *transversal*, i.e., only share the origin.

We also need to require that

$$s_{\min} \ge c_S \lambda_k$$
 and $\sigma_{\min} \ge c_L \lambda_k$,

where s_{\min} is the smallest magnitude of any non-zero entry in S^* and σ_{\min} is the smallest non-zero eigenvalue of L^* . Furthermore, c_S and c_L are positive constants.

Consistency theorem

Theorem Let (S^*, L^*) be the true model parameters and (S_k, L_k) be the solution to the regularized likelihood problem. Let

$$k > c_1 \cdot t \cdot n \log n$$
 and $\lambda_k = c_2 \sqrt{\frac{t \cdot n \log n}{k}}$

for constants $c_1, c_2, c_3, t > 0$. Then with probability at least $1 - k^{-t}$

- 1. $\max \left\{ \|S_k S^{\star}\|_{\infty}, \|L_k L^{\star}\|_2 \right\} \le c_3 \lambda_k$, and
- 2. S_k and S^* have the same support, and L_k and L^* have the same rank.

Consistency theorem

Theorem Let (S^*, L^*) be the true model parameters and (S_k, L_k) be the solution to the regularized likelihood problem. Let

$$k > c_1 \cdot t \cdot n \log n$$
 and $\lambda_k = c_2 \sqrt{\frac{t \cdot n \log n}{k}}$

for constants $c_1, c_2, c_3, t > 0$. Then with probability at least $1 - k^{-t}$

- 1. $\max \left\{ \|S_k S^{\star}\|_{\infty}, \|L_k L^{\star}\|_2 \right\} \le c_3 \lambda_k$, and
- 2. S_k and S^* have the same support, and L_k and L^* have the same rank.

Proof Similar to the consistency proof for Gaussian latent variable graphical models by Chandrasekaran, Parrilo and Willsky.