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ABSTRACT 

In the context of FPGAs, system downgrade consists in 
preventing the update of the hardware configuration or in 
replaying an old bitstream. The objective can be to preclude 
a system designer from fixing security vulnerabilities in a 
design. Such an attack can be performed over a network 
when the FPGA-based system is remotely updated or on the 
bus between the configuration memory and the FPGA chip 
at power-up. Several security schemes providing encryption 
and integrity checking of the bitstream have been proposed 
in the literature. However, as we show in this paper, they do 
not detect the replay of old FPGA configurations; hence 
they provide adversaries with the opportunity to downgrade 
the system. We thus propose a new architecture that, in 
addition to ensuring bitstream confidentiality and integrity, 
precludes replay of old bitstreams. We show that the 
hardware cost of this architecture is negligible.  

1. INTRODUCTION 

FPGA is nowadays commonly used in applications 
requiring regular upgrade of the hardware (e.g. Set-top 
Boxes, FPGA-based cryptographic co-processors, Space-
based applications [1]). Remote update/upgrade is attractive 
in such systems to offer new multimedia features or to 
repair eventual security vulnerabilities. However, remote 
update requires transmitting the hardware Intellectual 
Property (IP) over insecure communication channels and 
thus introduces new security issues. First, an adversary 
spying on this communication channel can retrieve the 
hardware IP to sell illegal copies or leak it to the public 
domain. Then, an adversary can tamper with the bitstream 
on its way to the FPGA with a man-in-the-middle attack. 
Those attacks challenge respectively the confidentiality 
and, the integrity of the bitstream. 

Our FPGA usage model is inspired from [2]. The 
FPGA vendor is the entity that designs and produces 
FPGA chips. IP designers provide hardware descriptions 
of components that a System Designer (SD) assembles to 
produce an FPGA-based system. Finally, the system owner 
is the end user who exploits the system, the SDs and IP 
designers do not necessarily trust him. 

IP designers are mainly interested in the protection of 
the confidentiality of their know-how and IPs. FPGA 

vendors provide bitstream encryption for this need 
[3,6,7.8]. For the SD, the main security objective is to have 
his design behave as he specified it. Therefore, the SD 
wants to ensure that the running system configuration is 
genuine. Research efforts [4,5] have proposed solutions to 
provide bitstream authentication at power-up or upon 
update of the FPGA configuration. However, these schemes 
do not detect nor prevent the replay of an old version of the 
FPGA configuration. The opportunity an adversary has to 
replay a bitstream is a considerable security issue since this 
way, he can easily preclude a system update intended, for 
instance, to fix security vulnerabilities. When such a replay 
attack is performed, we say that the adversary has 
downgraded the system. This attack highlights the need for 
a secure management of the FPGA configuration version.  

In this paper, we propose a new architecture to encrypt 
and authenticate a bitstream at power-up, when the 
configuration is loaded from an external memory, and upon 
a remote system update performed by the SD, in order to 
prevent any tampering with the FPGA configuration 
(including a replay). In the latter case, we provide a 
communication protocol that allows the SD to remotely 
manage and check the bitstream configuration running in 
the FPGA system. We also describe the required hardware 
support, the Secure Update Mechanism (SUM), which 
FPGA vendors need to provide for SDs to implement our 
solution.  

The outline of this paper is as follows. Section 2 
presents our trust and threat model. Section 3 presents 
existing schemes to encrypt and authenticate a bitstream 
and highlights their security flaws. Section 4 presents our 
solution to ensure bitstream confidentiality and integrity 
and describes the communication protocol the SD must 
follow to remotely update the FPGA bitstream. This section 
also provides a security analysis of our scheme. Finally 
section 5 evaluates the cost of our solution and section 6 
concludes the paper. 

2. SECURITY MODEL 

We assume that the FPGA system is exposed to hostile 
environment where physical but non-invasive attacks are 
feasible. The FPGA chip is supposed resistant to physical 
attacks and is trusted. All other components like memories 
are untrusted. Side channel attacks on the FPGA device are 
not considered in this paper. 
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In this work, we focus on man-in-the-middle attacks 
where the adversary retrieves the bitstream before the 
FPGA is configured and possibly modifies it. This attack 
can be performed at the board level, by tampering with the 
memory or buses if an external memory stores the 
bitstream, or remotely over the network when the SD sends 
the bitstream to the FPGA system. This first stage of a man-
in-the-middle attack challenges confidentiality of the 
bitstream while the second stage challenges its integrity. 
The objective of the adversary can be to make illegal copy 
of the underlying hardware IP or to prevent hardware 
configuration update. 

In case of active attacks, we distinguish two kinds of 
attacks: spoofing, the adversary replaces the genuine 
bitstream by one of his choice, and replay (Figure 1) where 
the adversary replaces the genuine bitstream by a FPGA 
configuration previously recorded on a bus or over the 
network. A replay is particularly dangerous for system 
security because, even if bitstream encryption is enabled 
by the FPGA’s static logic, it allows for system 
downgrading. Indeed, the objective of an update triggered 
by the SD can be to remove system vulnerabilities and 
with a replay, an attacker can prevent such a repair by 
configuring the FPGA with an old bitstream.  

In this work, we assume that the SD is trusted and that 
the FPGA platform is initialized in a trusted area. 

3. EXISTING MECHANISMS FOR BITSTREAM 
CONFIDENTIALITY AND INTEGRITY 

Bitstream Confidentiality. Nowadays, high-
performance [3,6,13,14] and some low-cost [7,8] FPGAs 
include hardwired mechanisms that ensure bitstream 
confidentiality (called here the Secure Configuration 
Module : SCM). The configuration stream is encrypted with 
a symmetric key (KENC) shared between the FPGA circuit 
and the system designer. Key setup is performed in a secure 
area by the system designer before the system is shipped. 
This mechanism allows for protection of the system 
designer’s IP against cloning. It also precludes reverse 

engineering of the configuration stream that might lead to 
IP disclosure [9]. 

Bitstream Integrity. Some FPGA vendors implements 
Cyclic Redundancy Checks (CRC) [3,6,7]. However, the 
purpose of CRC is to detect transmission errors, not to 
check the integrity of data in the cryptographic sense. CRC 
codes are not collision-resistant; therefore, even with 
encryption, the probability of having a collision for two 
different bitstreams is non-negligible. This is why [4] and 
[5] suggest using respectively an authenticated encryption 
mode or a Message Authentication Code (MAC) function 
to ensure the integrity of the bitstream.  

Some Actel FPGAs [8] include an AES-based Message 
Authentication Code engine that allows the SD to append a 
keyed hash to the configuration stream. Integrity checking 
is done by the FPGA configuration logic that verifies this 
keyed hash before design activation. 

Replay Attack and Bitstream Version Management. 
Existing bitstream integrity solutions prevent spoofing of 
the bitstream but are powerless against a replay attack and 
thus system downgrade threats. In [4,5,8], the keyed hash is 
computed only over the received bitstream. Therefore, the 
FPGA configuration logic is not able to distinguish between 
different (keyed hash, configuration) pairs legitimately 
generated by the SD in the past. An adversary that replays a 
bitstream with its keyed hash will succeed in his attack.  

Recent work on reconfigurable trusted computing 
proposes FPGA-based implementations of the Trusted 
Platform Module (TPM) [10,11]. They address the issue of 
secure FPGA bitstream update through TPM 
functionalities. Moreover, [11] proposes an implementation 
of TPM on current FPGAs that do not provide bitstream 
encryption. [11] assumes that bitstream reverse engineering 
is too difficult to achieve and relies on a trusted external 
non-volatile memory. 

Saar Drimer brings on the issue of replay attacks in [2]. 
He suggests two different avenues of research to solve the 
problem. The first suggestion requires the SD to implement 
additional security features in the user logic to send 
authenticated message to a trusted authority who then 
attests to the running FPGA configuration version. The 
second one is the use of nonces in the authentication 
process to ensure the freshness of the bitstream. 

In this paper, we propose a solution to ensure the 
integrity and confidentiality of the bitstream with a 
particular focus on the secure management of FPGA 
configuration versions. To do so, we do not rely on an 
external trusted memory technology or on a TPM 
implemented in the user logic. Our goal is to provide a 
solution that can be implemented by FPGA vendors in 
static logic and that can be used for all applications. As 
touched on in [2], this solution enrolls a nonce in the 
authentication computations but also provides the SD with 
an alert system for detecting attacks and to check the 
running FPGA configuration version.  

    

 
Fig.1.  Replay Attack 
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4. SECURE UPDATE MECHANISM 

As described above, current secure FPGAs include a 
Secure Configuration Module (SCM) that allows 
encrypting the bitstream and in some cases (Actel [8]), 
computing MACs. However, we showed that existing 
mechanisms fail to ensure the freshness of those bitstreams. 
Therefore, we propose a new solution that leverages 
existing hardware to prevent replay attacks in addition to 
ensuring bitstream confidentiality and integrity.   

4.1. Overview 

Our objective is to provide bitstream confidentiality and 
integrity in the two following situations: i) at system 
power-up when the FPGA configuration is transferred 
from external memory to the reconfigurable logic, ii) upon 
system updates performed remotely by the SD.  
To reach this objective, we propose that the SD encrypt his 
bitstreams and computes a MAC over them; however, to 
ensure the freshness of those bitstreams, the underlying 
MAC function must take as an extra input a tag called the 
Bitstream Version Tag (BVT). As we show in the 
following subsection, for the scheme to be secure, this tag 
must be a NONCE (Number used ONCE). Our SUM, 
located in the FPGA chip (Figure 2), securely stores a copy 
of this tag (BVTSUM) – trusted since within the tamper-
resistant area, the FPGA chip – and handles integrity 
verification of the bitstream and authentication of the SD at 
power-up and upon system update. To do so, it computes a 
MAC over the received encrypted bitstream and over the 
trusted BVTSUM and compares it with the MAC received 
from the SD. Moreover, we provide the SD with an alert 
system to detect when the system is attacked and to check 
that the FPGA configuration is up-to-date; this feature is 
ensured by the SUM that sends to the SD a signature of its 
BVT copy (BVTSUM) to attest of the bitstream version it 
has installed. 

The rest of this section describes our proposition in 
details. We first detail the initialization process of the 

FPGA system. Then, we describe the communication 
protocol between the FPGA system and the SD that allows 
for the secure update of the FPGA configuration. We also 
explain how the SD securely updates the tag, called the 
Bitstream Version Tag (BVT), that locks a platform with a 
given version of the FPGA configuration. Finally, we 
provide a security analysis of our solution. 

4.2. Secure Update Mechanism of FPGA Configuration  

Figure 2 depicts the architectural support, the Secure 
Update Mechanism (SUM) unit, required in an FPGA to 
implement our scheme. In the following EKENC, DKENC, and 
MACKMAC denote respectively the encryption and 
decryption functions enrolling the secret key KENC and the 
MAC function enrolling the secret key KMAC, implemented 
in the SUM and by the SD. Moreover, in this paper we use 
|| as the concatenation operator. 
Platform Initialization. We assume that before selling or 
deploying the FPGA platform on the field, the SD 
initializes it by storing the secret key KENC used for 
bitstream encryption/decryption and the secret key KMAC 
used for MAC computations in a Non-Volatile Memory 
(NVM) inside the FPGA device. The SD also initializes 
the non-volatile register used to stored the Bitstream 
Version Tag in the SUM (BVTSUM) to a given value, 
BVT0, that does not need to be secret (e.g. zero). The SD 
keeps a copy of KENC, KMAC, the initial value of the BVT 
and the FPGA chip’s unique identifier, the platformID in a 
trusted database. In addition, the SD encrypts the initial 
bitstream B0 under KENC and stores the resulting ciphertext 
C0 (C0=EKENC(B0)) in the configuration memory of the 
FPGA system. He also has to compute a MAC M0 using 
KMAC over the concatenation of the ciphered1 bitstream 

                                                        
1  Note that we are using the Encrypt-Then-MAC scheme 

since it has been proved by Bellare and al. [12] as the 
most secure way of combining encryption and 
authentication mechanisms.  

Fig.2.  System overview – Secure Update Mechanism (SUM) architecture 
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with a 2-bit value “01” and with the initial value of BVT 
(M0=MACKMAC(C0||01||BVT0)). M0 is appended to C0 in 
the external non-volatile memory. The purpose of the 2-bit 
value is explained next. Note that the SD and the SUM 
both store the same value of the BVT in dedicated 
registers, respectively BVTSD and BVTSUM. 

As mentioned above, the BVT value must be a nonce 
shared by the two parties, the SD and the FPGA-SUM, in 
order to ensure the freshness of the bitstream. Therefore, it 
will be generated using a monotonic counter and we will 
show how the two parties securely maintain their copy of 
the BVT during the secure update process. However, as we 
will describe later, several MAC computations are 
performed during this process, each requiring a nonce; we 
thus use a 2-bit value in MAC computations related to a 
given bitstream update process to generate nonces from the 
same counter value, the BVT. 
Secure FPGA Configuration Update. The protocol that 
the SD and the FPGA-SUM must follow during the update 
of an FPGA configuration is depicted in Figure 3. The SD 
is the only entity that should be able to update the FPGA 
configuration and the BVTSUM. Therefore, the SD must be 
authenticated by the SUM upon an update process. This 
way the SUM is able to distinguish a bitstream update 
from a configuration from the external NVM and grant 
access to the BVTSUM register to the SD. Thus, to update a 
bitstream, the SD (Figure 3): 
i) encrypts the new bitstream B (CB = EKENC (B))  
ii) increments the BVTSD value with a monotonic 

counter, the new BVT uniquely identifies the new 
bitstream, hence it is used in the subsequent MAC 
computations  

iii) generates an update command (ComUpdate) and 
computes a MAC, MUPD, over the concatenation of 
this command with the 2-bit value “00” and with the 
new BVT value (MUPD= MACKMAC(ComUpdate || 

00 || BVTSD)  
iv) computes a MAC, MEB, over CB concatenated with the 

2-bit value “01” and to the new BVT value (MEB= 
MACKMAC(CB || 01 || BVTSD)) 

v) sends ComUpdate, MUPD and CB, MEB to the FPGA 
system.  

Upon reception of those messages, the FPGA-SUM 
performs the following operations:  
i) detects the update request by decoding ComUpdate  
ii) checks that the request is valid – by computing a 

reference MAC MREF1 over the concatenation of the 
ComUpdate, with the 2-bit value “00” and with 
BVTSUM + 1 (MREF1=MACKMAC(ComUpdate || 00 || 
BVTSUM + 1)) and by comparing it to MUPD. 

iii) if the command is valid – MREF1 and MUPD matched – 
it checks that the encrypted bitstream is genuine by 
computing a reference MAC MREF2 over CB || 01 || 
BVTSUM + 1 (MREF2=MACKMAC(CB || 01 || BVTSUM + 
1)) and by comparing it to MACEB  

iv) if the bitstream is genuine – MREF2 and MACEB 
matched –, it updates BVTSUM (BVTSUM � BVTSUM + 1) 
to lock the platform with the new FPGA configuration 
bitstream and to synchronize the BVTSUM value with 
the one kept by SD. The external memory is updated 
with the encrypted bitstream CB and its MAC, MEB. 

v) it prepares an acknowledgment message for the SD to 
attest to the completion of the platform update with a 
genuine bitstream (see Alert System) 

 
Note that if one of the MAC comparisons fails, an integrity 
checking flag is raised and a response policy designed by 
the SD is applied. 
 

Fig.3.  Secure Communication Protocol between the SD and the FPGA-SUM upon the Secure Update of the FPGA 
Configuration, and Pseudo Code of the cryptographic operations to be performed by the two parties. 
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Alert System. After sending a new FPGA configuration, 
the SD wants to know if the update has been carried out 
successfully or if an adversary precluded the update – e.g. 
by tampering with the update command message or the 
new bitstream. Therefore the protocol for secure update of 
an FPGA system depicted in Figure 3 terminates by the 
alert system process. To perform such a process, the SUM 
must send an acknowledgment message to the SD 
including i) a header ComAck identifying the message as 
an update acknowledgment message and stating the result 
of the integrity checking processes performed by the SUM, 
ii) the platform ID and iii) a MAC MACK computed using 
KMAC over this message concatenated with the 2-bit value 
“10” and BVTSUM (MACK=MACKMAC(ComAck|| 
PlatformID||10||BVTSUM). ComAck can take three 
different values: “ComUpdate Integrity Failure”, 
“Bitstream Integrity Failure” or “OK”. Those values 
respectively denote a corruption of the update command, a 
corruption of the bitstream or a successful termination of 
the update process. Upon reception of the acknowledgment 
message, the SD retrieves KMAC and the current BVT value 
of the corresponding platform in his trusted database by 
using the platform ID. Then he computes a MAC MACREF3 
over the concatenation of ComAck with the platform ID, 
the 2-bit value “10” and his version of BVT 
(MREF3=MACKMAC(ComAck||PlatformID||10||BVTSD)). If 
MACREF3 matches MACK, the acknowledgment message is 
genuine; hence the SD deduces from ComAck whether his 
update has been correctly installed or not. If the SD does 
not receive any acknowledgement message, he can deduce 
that his update has been intercepted. Note that at the end of 
the bitstream update process, both the SD and the FPGA-
SUM have the same value of BVT that locks the platform 
to the current FPGA configuration version. 

4.3. Secure FPGA Configuration at power-up.  

Once deployed, the FPGA device loads at power-up its 
configuration from the external NVM. At that time, the 
bitstream is decrypted and authenticated as described in 
Figure 4, the SUM:  
i) reads the encrypted bitstream CB and the 

corresponding MAC, MEB, from the external NVM 
ii) verifies MEB by computing MREF4 over the 

concatenation of the loaded CB, of the 2-bit value “01” 
and of the current value of BVTSUM 

(MREF4=MACKMAC(CB||01||BVTSUM) and by comparing it 
to MEB 

iii) if MREF4 matches MEB, CB is decrypted and the 
resulting bitstream B (B=DKENC(CB)) is used to 
configure the FPGA; if MREF4 does not match MEB, it 
means that CB is not genuine (i.e. it has been spoofed 
or replayed) an integrity checking flag is hence raised 
and a response policy designed by the SD is applied.  

5. SECURITY ANALYSIS  

Our scheme assumes that the underlying block cipher, 
encryption mode and MAC function are secure. Our 
analysis focuses on the security of the proposed 
communication protocol between the two parties, the SD 
and the FPGA-SUM, and on the prevention of the replay of 
bitstream configurations.  

The integrity and the freshness of each transaction 
between the SD and the FPGA-SUM are ensured by the 
computation of MACs taking a nonce as input. The 
uniqueness property of nonces used in MAC computations 
for different bitstreams is ensured by the BVT, generated 
with a monotonic counter. For a given bitstream, the 
uniqueness of the nonce is ensured for each MAC 
computation by a dedicated 2-bit value concatenated to the 
BVT. Three MAC computations are required for the 
management of a given bitstream: MUPD, MEB, and MACK. 
Therefore, as mentioned above, we use three different 2-bit 
values (respectively “00”, “01” and “10”) to derive from 
the BVT a nonce for each of those computations. The BVT 
as well as those 2-bit values do not need to be secret, but 
only tamper-evident. This is enforced by design since the 
BVT is stored in trusted areas (the SD database and the 
FPGA-SUM). One may argue that the incrementation of 
the BVT in the FPGA-SUM may be triggered from 
outside. However, the tag update logic in the SUM is 
controlled by the ComUpdate which is authenticated by 
MAC enrolling a nonce and a secret key. Thus this 
command can neither be replayed nor spoofed.  
BVT size. The tag size is a crucial parameter because it 
determines the number of FPGA configuration updates the 
SD can perform using a given KMAC. Indeed, once the 
counter reaches its limit, a new KMAC must be generated to 
ensure a given BVT value is not used twice in two MAC 
computations enrolling the same secret key. An easy way 
to avoid this situation is to choose a large tag, for instance 

Fig.4  Pseudo Code of the Decryption and Integrity checking of the Bitstream when loaded from the External NVM. 
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64-bit. With such a tag, the counter that generates the BVT 
will never have the time to roll over during the FPGA 
lifetime. 

6. IMPLEMENTATION ASPECTS 

The hardware support required by our solution should be 
implemented in the static logic of the FPGA by FPGA 
vendors to allow SDs to implement it. In this section, we 
evaluate the cost of the proposed solution assuming a SUM 
in the static logic. 

FPGA Vendor Tools. FPGA vendors must slightly 
modify their bitstream generation tools to add MAC 
computation as well as the necessary support to generate 
the update command.  

FPGA Device Impact. Current FPGAs already include 
an AES engine for decryption of the bitstream. This engine 
can be reused to implement the MAC function as suggested 
in [4,5]. Moreover, existing FPGA devices already contain 
a non-volatile register to store the encryption key (KENC), 
hence our solution would only require two extra non-
volatile registers for KMAC and BVTSUM, typically of 128-bit 
each. Finally, a unique platformID must be set in the 
FPGA; this feature is for instance available on Spartan3-AN 
FPGA from Xilinx. The logic that controls the 
configuration of the FPGA must also be modified to 
manage the tag update command and the acknowledgement 
command generation. Therefore, the hardware overhead 
implied by our solution is quite negligible since the main 
component (e.g. AES) are already implemented. 

As mentioned in [5], the configuration engine of an 
FPGA chip does not have enough temporary storage to hold 
the bitstream until the end of the authentication process. As 
a result, configuration bits must be loaded into the 
reconfigurable logic as they are decrypted and detection of 
corrupted bitstreams only occurs at the end of this process. 
Therefore a spoofed or replayed bitstream will overwrite, in 
the reconfigurable logic, the bits of the previous 
configuration. Even though the SUM immediately disables 
the FPGA when an attack is detected, it can only roll back 
to a known good state if a copy of the previous good 
configuration is stored in external memory.  

7. CONCLUSION 

Remote update of FPGA-based systems is a challenging 
issue from a security point of view. We showed that 
existing mechanisms to ensure bitstream confidentiality 
and integrity via encryption and authentication fail to 
prevent bitstream replay and thus system downgrade.  

In this paper, we proposed a new communication 
protocol between the System Designer (SD) and an FPGA 
platform to update the FPGA configuration while 
preserving its confidentiality and integrity. This protocol 
also provides the SD with an alert system that informs him 
when the FPGA system is under attack. Moreover, we 

described the hardware support the FPGA vendors need to 
provide for the SD to implement the solution and we show 
that the corresponding overhead is negligible when 
considering current FPGA technology.  
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