
SECURE FPGA CONFIGURATION ARCHITECTURE PREVENTING SYSTEM
DOWNGRADE

Benoît Badrignans1,2, Reouven Elbaz3 and Lionel Torres1
1LIRMM UMR University of Montpellier 2- CNRS C5506, Montpellier, FRANCE, name@lirmm.fr

2SAS NETHEOS, Montpellier, FRANCE, b.badrignans@netheos.net
3Dept of Electrical Engineering, Princeton University, USA, relbaz@princeton.edu

ABSTRACT

In the context of FPGAs, system downgrade consists in
preventing the update of the hardware configuration or in
replaying an old bitstream. The objective can be to preclude
a system designer from fixing security vulnerabilities in a
design. Such an attack can be performed over a network
when the FPGA-based system is remotely updated or on the
bus between the configuration memory and the FPGA chip
at power-up. Several security schemes providing encryption
and integrity checking of the bitstream have been proposed
in the literature. However, as we show in this paper, they do
not detect the replay of old FPGA configurations; hence
they provide adversaries with the opportunity to downgrade
the system. We thus propose a new architecture that, in
addition to ensuring bitstream confidentiality and integrity,
precludes replay of old bitstreams. We show that the
hardware cost of this architecture is negligible.

1. INTRODUCTION

FPGA is nowadays commonly used in applications
requiring regular upgrade of the hardware (e.g. Set-top
Boxes, FPGA-based cryptographic co-processors, Space-
based applications [1]). Remote update/upgrade is attractive
in such systems to offer new multimedia features or to
repair eventual security vulnerabilities. However, remote
update requires transmitting the hardware Intellectual
Property (IP) over insecure communication channels and
thus introduces new security issues. First, an adversary
spying on this communication channel can retrieve the
hardware IP to sell illegal copies or leak it to the public
domain. Then, an adversary can tamper with the bitstream
on its way to the FPGA with a man-in-the-middle attack.
Those attacks challenge respectively the confidentiality
and, the integrity of the bitstream.

Our FPGA usage model is inspired from [2]. The
FPGA vendor is the entity that designs and produces
FPGA chips. IP designers provide hardware descriptions
of components that a System Designer (SD) assembles to
produce an FPGA-based system. Finally, the system owner
is the end user who exploits the system, the SDs and IP
designers do not necessarily trust him.

IP designers are mainly interested in the protection of
the confidentiality of their know-how and IPs. FPGA

vendors provide bitstream encryption for this need
[3,6,7.8]. For the SD, the main security objective is to have
his design behave as he specified it. Therefore, the SD
wants to ensure that the running system configuration is
genuine. Research efforts [4,5] have proposed solutions to
provide bitstream authentication at power-up or upon
update of the FPGA configuration. However, these schemes
do not detect nor prevent the replay of an old version of the
FPGA configuration. The opportunity an adversary has to
replay a bitstream is a considerable security issue since this
way, he can easily preclude a system update intended, for
instance, to fix security vulnerabilities. When such a replay
attack is performed, we say that the adversary has
downgraded the system. This attack highlights the need for
a secure management of the FPGA configuration version.

In this paper, we propose a new architecture to encrypt
and authenticate a bitstream at power-up, when the
configuration is loaded from an external memory, and upon
a remote system update performed by the SD, in order to
prevent any tampering with the FPGA configuration
(including a replay). In the latter case, we provide a
communication protocol that allows the SD to remotely
manage and check the bitstream configuration running in
the FPGA system. We also describe the required hardware
support, the Secure Update Mechanism (SUM), which
FPGA vendors need to provide for SDs to implement our
solution.

The outline of this paper is as follows. Section 2
presents our trust and threat model. Section 3 presents
existing schemes to encrypt and authenticate a bitstream
and highlights their security flaws. Section 4 presents our
solution to ensure bitstream confidentiality and integrity
and describes the communication protocol the SD must
follow to remotely update the FPGA bitstream. This section
also provides a security analysis of our scheme. Finally
section 5 evaluates the cost of our solution and section 6
concludes the paper.

2. SECURITY MODEL

We assume that the FPGA system is exposed to hostile
environment where physical but non-invasive attacks are
feasible. The FPGA chip is supposed resistant to physical
attacks and is trusted. All other components like memories
are untrusted. Side channel attacks on the FPGA device are
not considered in this paper.

978-1-4244-1961-6/08/$25.00 ©2008 IEEE.
317

In this work, we focus on man-in-the-middle attacks
where the adversary retrieves the bitstream before the
FPGA is configured and possibly modifies it. This attack
can be performed at the board level, by tampering with the
memory or buses if an external memory stores the
bitstream, or remotely over the network when the SD sends
the bitstream to the FPGA system. This first stage of a man-
in-the-middle attack challenges confidentiality of the
bitstream while the second stage challenges its integrity.
The objective of the adversary can be to make illegal copy
of the underlying hardware IP or to prevent hardware
configuration update.

In case of active attacks, we distinguish two kinds of
attacks: spoofing, the adversary replaces the genuine
bitstream by one of his choice, and replay (Figure 1) where
the adversary replaces the genuine bitstream by a FPGA
configuration previously recorded on a bus or over the
network. A replay is particularly dangerous for system
security because, even if bitstream encryption is enabled
by the FPGA’s static logic, it allows for system
downgrading. Indeed, the objective of an update triggered
by the SD can be to remove system vulnerabilities and
with a replay, an attacker can prevent such a repair by
configuring the FPGA with an old bitstream.

In this work, we assume that the SD is trusted and that
the FPGA platform is initialized in a trusted area.

3. EXISTING MECHANISMS FOR BITSTREAM
CONFIDENTIALITY AND INTEGRITY

Bitstream Confidentiality. Nowadays, high-
performance [3,6,13,14] and some low-cost [7,8] FPGAs
include hardwired mechanisms that ensure bitstream
confidentiality (called here the Secure Configuration
Module : SCM). The configuration stream is encrypted with
a symmetric key (KENC) shared between the FPGA circuit
and the system designer. Key setup is performed in a secure
area by the system designer before the system is shipped.
This mechanism allows for protection of the system
designer’s IP against cloning. It also precludes reverse

engineering of the configuration stream that might lead to
IP disclosure [9].

Bitstream Integrity. Some FPGA vendors implements
Cyclic Redundancy Checks (CRC) [3,6,7]. However, the
purpose of CRC is to detect transmission errors, not to
check the integrity of data in the cryptographic sense. CRC
codes are not collision-resistant; therefore, even with
encryption, the probability of having a collision for two
different bitstreams is non-negligible. This is why [4] and
[5] suggest using respectively an authenticated encryption
mode or a Message Authentication Code (MAC) function
to ensure the integrity of the bitstream.

Some Actel FPGAs [8] include an AES-based Message
Authentication Code engine that allows the SD to append a
keyed hash to the configuration stream. Integrity checking
is done by the FPGA configuration logic that verifies this
keyed hash before design activation.

Replay Attack and Bitstream Version Management.
Existing bitstream integrity solutions prevent spoofing of
the bitstream but are powerless against a replay attack and
thus system downgrade threats. In [4,5,8], the keyed hash is
computed only over the received bitstream. Therefore, the
FPGA configuration logic is not able to distinguish between
different (keyed hash, configuration) pairs legitimately
generated by the SD in the past. An adversary that replays a
bitstream with its keyed hash will succeed in his attack.

Recent work on reconfigurable trusted computing
proposes FPGA-based implementations of the Trusted
Platform Module (TPM) [10,11]. They address the issue of
secure FPGA bitstream update through TPM
functionalities. Moreover, [11] proposes an implementation
of TPM on current FPGAs that do not provide bitstream
encryption. [11] assumes that bitstream reverse engineering
is too difficult to achieve and relies on a trusted external
non-volatile memory.

Saar Drimer brings on the issue of replay attacks in [2].
He suggests two different avenues of research to solve the
problem. The first suggestion requires the SD to implement
additional security features in the user logic to send
authenticated message to a trusted authority who then
attests to the running FPGA configuration version. The
second one is the use of nonces in the authentication
process to ensure the freshness of the bitstream.

In this paper, we propose a solution to ensure the
integrity and confidentiality of the bitstream with a
particular focus on the secure management of FPGA
configuration versions. To do so, we do not rely on an
external trusted memory technology or on a TPM
implemented in the user logic. Our goal is to provide a
solution that can be implemented by FPGA vendors in
static logic and that can be used for all applications. As
touched on in [2], this solution enrolls a nonce in the
authentication computations but also provides the SD with
an alert system for detecting attacks and to check the
running FPGA configuration version.

Fig.1. Replay Attack

318

4. SECURE UPDATE MECHANISM

As described above, current secure FPGAs include a
Secure Configuration Module (SCM) that allows
encrypting the bitstream and in some cases (Actel [8]),
computing MACs. However, we showed that existing
mechanisms fail to ensure the freshness of those bitstreams.
Therefore, we propose a new solution that leverages
existing hardware to prevent replay attacks in addition to
ensuring bitstream confidentiality and integrity.

4.1. Overview

Our objective is to provide bitstream confidentiality and
integrity in the two following situations: i) at system
power-up when the FPGA configuration is transferred
from external memory to the reconfigurable logic, ii) upon
system updates performed remotely by the SD.
To reach this objective, we propose that the SD encrypt his
bitstreams and computes a MAC over them; however, to
ensure the freshness of those bitstreams, the underlying
MAC function must take as an extra input a tag called the
Bitstream Version Tag (BVT). As we show in the
following subsection, for the scheme to be secure, this tag
must be a NONCE (Number used ONCE). Our SUM,
located in the FPGA chip (Figure 2), securely stores a copy
of this tag (BVTSUM) – trusted since within the tamper-
resistant area, the FPGA chip – and handles integrity
verification of the bitstream and authentication of the SD at
power-up and upon system update. To do so, it computes a
MAC over the received encrypted bitstream and over the
trusted BVTSUM and compares it with the MAC received
from the SD. Moreover, we provide the SD with an alert
system to detect when the system is attacked and to check
that the FPGA configuration is up-to-date; this feature is
ensured by the SUM that sends to the SD a signature of its
BVT copy (BVTSUM) to attest of the bitstream version it
has installed.

The rest of this section describes our proposition in
details. We first detail the initialization process of the

FPGA system. Then, we describe the communication
protocol between the FPGA system and the SD that allows
for the secure update of the FPGA configuration. We also
explain how the SD securely updates the tag, called the
Bitstream Version Tag (BVT), that locks a platform with a
given version of the FPGA configuration. Finally, we
provide a security analysis of our solution.

4.2. Secure Update Mechanism of FPGA Configuration

Figure 2 depicts the architectural support, the Secure
Update Mechanism (SUM) unit, required in an FPGA to
implement our scheme. In the following EKENC, DKENC, and
MACKMAC denote respectively the encryption and
decryption functions enrolling the secret key KENC and the
MAC function enrolling the secret key KMAC, implemented
in the SUM and by the SD. Moreover, in this paper we use
|| as the concatenation operator.
Platform Initialization. We assume that before selling or
deploying the FPGA platform on the field, the SD
initializes it by storing the secret key KENC used for
bitstream encryption/decryption and the secret key KMAC
used for MAC computations in a Non-Volatile Memory
(NVM) inside the FPGA device. The SD also initializes
the non-volatile register used to stored the Bitstream
Version Tag in the SUM (BVTSUM) to a given value,
BVT0, that does not need to be secret (e.g. zero). The SD
keeps a copy of KENC, KMAC, the initial value of the BVT
and the FPGA chip’s unique identifier, the platformID in a
trusted database. In addition, the SD encrypts the initial
bitstream B0 under KENC and stores the resulting ciphertext
C0 (C0=EKENC(B0)) in the configuration memory of the
FPGA system. He also has to compute a MAC M0 using
KMAC over the concatenation of the ciphered1 bitstream

1 Note that we are using the Encrypt-Then-MAC scheme

since it has been proved by Bellare and al. [12] as the
most secure way of combining encryption and
authentication mechanisms.

Fig.2. System overview – Secure Update Mechanism (SUM) architecture

319

with a 2-bit value “01” and with the initial value of BVT
(M0=MACKMAC(C0||01||BVT0)). M0 is appended to C0 in
the external non-volatile memory. The purpose of the 2-bit
value is explained next. Note that the SD and the SUM
both store the same value of the BVT in dedicated
registers, respectively BVTSD and BVTSUM.

As mentioned above, the BVT value must be a nonce
shared by the two parties, the SD and the FPGA-SUM, in
order to ensure the freshness of the bitstream. Therefore, it
will be generated using a monotonic counter and we will
show how the two parties securely maintain their copy of
the BVT during the secure update process. However, as we
will describe later, several MAC computations are
performed during this process, each requiring a nonce; we
thus use a 2-bit value in MAC computations related to a
given bitstream update process to generate nonces from the
same counter value, the BVT.
Secure FPGA Configuration Update. The protocol that
the SD and the FPGA-SUM must follow during the update
of an FPGA configuration is depicted in Figure 3. The SD
is the only entity that should be able to update the FPGA
configuration and the BVTSUM. Therefore, the SD must be
authenticated by the SUM upon an update process. This
way the SUM is able to distinguish a bitstream update
from a configuration from the external NVM and grant
access to the BVTSUM register to the SD. Thus, to update a
bitstream, the SD (Figure 3):
i) encrypts the new bitstream B (CB = EKENC (B))
ii) increments the BVTSD value with a monotonic

counter, the new BVT uniquely identifies the new
bitstream, hence it is used in the subsequent MAC
computations

iii) generates an update command (ComUpdate) and
computes a MAC, MUPD, over the concatenation of
this command with the 2-bit value “00” and with the
new BVT value (MUPD= MACKMAC(ComUpdate ||

00 || BVTSD)
iv) computes a MAC, MEB, over CB concatenated with the

2-bit value “01” and to the new BVT value (MEB=
MACKMAC(CB || 01 || BVTSD))

v) sends ComUpdate, MUPD and CB, MEB to the FPGA
system.

Upon reception of those messages, the FPGA-SUM
performs the following operations:
i) detects the update request by decoding ComUpdate
ii) checks that the request is valid – by computing a

reference MAC MREF1 over the concatenation of the
ComUpdate, with the 2-bit value “00” and with
BVTSUM + 1 (MREF1=MACKMAC(ComUpdate || 00 ||
BVTSUM + 1)) and by comparing it to MUPD.

iii) if the command is valid – MREF1 and MUPD matched –
it checks that the encrypted bitstream is genuine by
computing a reference MAC MREF2 over CB || 01 ||
BVTSUM + 1 (MREF2=MACKMAC(CB || 01 || BVTSUM +
1)) and by comparing it to MACEB

iv) if the bitstream is genuine – MREF2 and MACEB
matched –, it updates BVTSUM (BVTSUM � BVTSUM + 1)
to lock the platform with the new FPGA configuration
bitstream and to synchronize the BVTSUM value with
the one kept by SD. The external memory is updated
with the encrypted bitstream CB and its MAC, MEB.

v) it prepares an acknowledgment message for the SD to
attest to the completion of the platform update with a
genuine bitstream (see Alert System)

Note that if one of the MAC comparisons fails, an integrity
checking flag is raised and a response policy designed by
the SD is applied.

Fig.3. Secure Communication Protocol between the SD and the FPGA-SUM upon the Secure Update of the FPGA
Configuration, and Pseudo Code of the cryptographic operations to be performed by the two parties.

320

Alert System. After sending a new FPGA configuration,
the SD wants to know if the update has been carried out
successfully or if an adversary precluded the update – e.g.
by tampering with the update command message or the
new bitstream. Therefore the protocol for secure update of
an FPGA system depicted in Figure 3 terminates by the
alert system process. To perform such a process, the SUM
must send an acknowledgment message to the SD
including i) a header ComAck identifying the message as
an update acknowledgment message and stating the result
of the integrity checking processes performed by the SUM,
ii) the platform ID and iii) a MAC MACK computed using
KMAC over this message concatenated with the 2-bit value
“10” and BVTSUM (MACK=MACKMAC(ComAck||
PlatformID||10||BVTSUM). ComAck can take three
different values: “ComUpdate Integrity Failure”,
“Bitstream Integrity Failure” or “OK”. Those values
respectively denote a corruption of the update command, a
corruption of the bitstream or a successful termination of
the update process. Upon reception of the acknowledgment
message, the SD retrieves KMAC and the current BVT value
of the corresponding platform in his trusted database by
using the platform ID. Then he computes a MAC MACREF3
over the concatenation of ComAck with the platform ID,
the 2-bit value “10” and his version of BVT
(MREF3=MACKMAC(ComAck||PlatformID||10||BVTSD)). If
MACREF3 matches MACK, the acknowledgment message is
genuine; hence the SD deduces from ComAck whether his
update has been correctly installed or not. If the SD does
not receive any acknowledgement message, he can deduce
that his update has been intercepted. Note that at the end of
the bitstream update process, both the SD and the FPGA-
SUM have the same value of BVT that locks the platform
to the current FPGA configuration version.

4.3. Secure FPGA Configuration at power-up.

Once deployed, the FPGA device loads at power-up its
configuration from the external NVM. At that time, the
bitstream is decrypted and authenticated as described in
Figure 4, the SUM:
i) reads the encrypted bitstream CB and the

corresponding MAC, MEB, from the external NVM
ii) verifies MEB by computing MREF4 over the

concatenation of the loaded CB, of the 2-bit value “01”
and of the current value of BVTSUM

(MREF4=MACKMAC(CB||01||BVTSUM) and by comparing it
to MEB

iii) if MREF4 matches MEB, CB is decrypted and the
resulting bitstream B (B=DKENC(CB)) is used to
configure the FPGA; if MREF4 does not match MEB, it
means that CB is not genuine (i.e. it has been spoofed
or replayed) an integrity checking flag is hence raised
and a response policy designed by the SD is applied.

5. SECURITY ANALYSIS

Our scheme assumes that the underlying block cipher,
encryption mode and MAC function are secure. Our
analysis focuses on the security of the proposed
communication protocol between the two parties, the SD
and the FPGA-SUM, and on the prevention of the replay of
bitstream configurations.

The integrity and the freshness of each transaction
between the SD and the FPGA-SUM are ensured by the
computation of MACs taking a nonce as input. The
uniqueness property of nonces used in MAC computations
for different bitstreams is ensured by the BVT, generated
with a monotonic counter. For a given bitstream, the
uniqueness of the nonce is ensured for each MAC
computation by a dedicated 2-bit value concatenated to the
BVT. Three MAC computations are required for the
management of a given bitstream: MUPD, MEB, and MACK.
Therefore, as mentioned above, we use three different 2-bit
values (respectively “00”, “01” and “10”) to derive from
the BVT a nonce for each of those computations. The BVT
as well as those 2-bit values do not need to be secret, but
only tamper-evident. This is enforced by design since the
BVT is stored in trusted areas (the SD database and the
FPGA-SUM). One may argue that the incrementation of
the BVT in the FPGA-SUM may be triggered from
outside. However, the tag update logic in the SUM is
controlled by the ComUpdate which is authenticated by
MAC enrolling a nonce and a secret key. Thus this
command can neither be replayed nor spoofed.
BVT size. The tag size is a crucial parameter because it
determines the number of FPGA configuration updates the
SD can perform using a given KMAC. Indeed, once the
counter reaches its limit, a new KMAC must be generated to
ensure a given BVT value is not used twice in two MAC
computations enrolling the same secret key. An easy way
to avoid this situation is to choose a large tag, for instance

Fig.4 Pseudo Code of the Decryption and Integrity checking of the Bitstream when loaded from the External NVM.

321

64-bit. With such a tag, the counter that generates the BVT
will never have the time to roll over during the FPGA
lifetime.

6. IMPLEMENTATION ASPECTS

The hardware support required by our solution should be
implemented in the static logic of the FPGA by FPGA
vendors to allow SDs to implement it. In this section, we
evaluate the cost of the proposed solution assuming a SUM
in the static logic.

FPGA Vendor Tools. FPGA vendors must slightly
modify their bitstream generation tools to add MAC
computation as well as the necessary support to generate
the update command.

FPGA Device Impact. Current FPGAs already include
an AES engine for decryption of the bitstream. This engine
can be reused to implement the MAC function as suggested
in [4,5]. Moreover, existing FPGA devices already contain
a non-volatile register to store the encryption key (KENC),
hence our solution would only require two extra non-
volatile registers for KMAC and BVTSUM, typically of 128-bit
each. Finally, a unique platformID must be set in the
FPGA; this feature is for instance available on Spartan3-AN
FPGA from Xilinx. The logic that controls the
configuration of the FPGA must also be modified to
manage the tag update command and the acknowledgement
command generation. Therefore, the hardware overhead
implied by our solution is quite negligible since the main
component (e.g. AES) are already implemented.

As mentioned in [5], the configuration engine of an
FPGA chip does not have enough temporary storage to hold
the bitstream until the end of the authentication process. As
a result, configuration bits must be loaded into the
reconfigurable logic as they are decrypted and detection of
corrupted bitstreams only occurs at the end of this process.
Therefore a spoofed or replayed bitstream will overwrite, in
the reconfigurable logic, the bits of the previous
configuration. Even though the SUM immediately disables
the FPGA when an attack is detected, it can only roll back
to a known good state if a copy of the previous good
configuration is stored in external memory.

7. CONCLUSION

Remote update of FPGA-based systems is a challenging
issue from a security point of view. We showed that
existing mechanisms to ensure bitstream confidentiality
and integrity via encryption and authentication fail to
prevent bitstream replay and thus system downgrade.

In this paper, we proposed a new communication
protocol between the System Designer (SD) and an FPGA
platform to update the FPGA configuration while
preserving its confidentiality and integrity. This protocol
also provides the SD with an alert system that informs him
when the FPGA system is under attack. Moreover, we

described the hardware support the FPGA vendors need to
provide for the SD to implement the solution and we show
that the corresponding overhead is negligible when
considering current FPGA technology.

ACKNOWLEDGMENTS. The authors wish to thank
David Champagne for his valuable technical comments
and his help in reviewing this paper.

REFERENCES
[1] M. Surratt, H.H. Loomis, A.A. Ross, R. Duren, “Challenges

of Remote FPGA Configuration for Space Applications”
Aerospace Conference, 2005 IEEE.

[2] S. Drimer, “Volatile FPGA design security – a survey”,
Computer Laboratory, University of Cambridge, available
at: www.cl.cam.ac.uk/~sd410/papers/fpga_security.pdf.

[3] Xilinx commercial brochure, Lock Your Designs with the
Virtex-4 Security Solution, available at:',
www.xilinx.com/publications/xcellonline/xcell_52/xc_pdf/x
c_v4security52.pdf.

[4] M.Parelkar, K.Gaj, “Implementation of EAX mode of
operation for FPGA bitstream encryption and
authentication”, Field-Programmable Technology, 2005.
Proceedings. 2005 IEEE Intl Conference 11-14 Dec. 2005
Page(s): 335 – 336.

[5] S. Drimer, “Authentication of FPGA bitstreams: Why and
how”, In Proc. Of the International Workshop on Applied
Reconfigurable Computing (ARC07), March 2007

[6] Altera whitepaper, Design Security in Stratix III Devices,
available at: www.altera.com/literature/wp/wp-01010.pdf

[7] LatticeXP2 Family Handbook available at:
http://www.latticesemi.com/documents/HB1004.pdf.

[8] Actel handbook, Actel ProASIC®3 Handbook, available at:
http://www.actel.com/documents/PA3_HB.pdf

[9] J. B. Note, E. Rannaud, ENS, “From the bitstream to the
netlist”, International Symposium on Field Programmable
Gate Arrays, FPGA’08, 2008.

[10] Eisenbarth T., Guneysu, T. Paar, C. Sadeghi, A.R.
Schellekens, D. Wolf, M.: Reconfigurable Trusted
Computing in Hardware. In: STC ’07: Proceedings of the
2007 ACM workshop on Scalable trusted computing, New
York, NY, USA, ACM (2007) 15–20.

[11] D. Schellekens, P. Tuyls, and B. Preneel, "Embedded
Trusted Computing with Authenticated Non-Volatile
Memory," In TRUST 2008, Lecture Notes in Computer
Science, Springer-Verlag, 12 pages, 2008.

[12] M. Bellare and C. Namprempre. Authenticated encryption:
Relations among notions and analysis of the generic
construction paradigm. In T. Okamoto, editor, Asiacrypt
2000, volume 1976 of LNCS, p. 531-545. Springer-Verlag,
Berlin Germany, Dec. 2000.

[13] L. Bossuet, G. Gogniat, W. Burleson, Dynamically
configurable security for SRAM FPGA bitstreams, in:
Proceedings of 11th IEEE Reconfigurable Architectures
Workshop, RAW, Santa Fé, USA, 2004.

[14] A. Lesea, IP security in FPGA, white paper Virtex-4 and
Virtex-5 Devices, February 2007 available at:
http://www.xilinx.com/support/documentation/white_papers
/wp261.pdf.

322

