
Secure Update Mechanism for Remote Update of

FPGA-Based System
Benoît Badrignans

1,2
, Reouven Elbaz

3
 and Lionel Torres

1

1
LIRMM UMR University of Montpellier 2- CNRS C5506, Montpellier, FRANCE, name@lirmm.fr

2
SAS NETHEOS, Montpellier, FRANCE, b.badrignans@netheos.net

3
Dept of Electrical Engineering, Princeton University, USA, relbaz@princeton.edu

Abstract— Remote update of hardware systems is a convenient

service enabled by Field Programmable Gate Arrays (FPGA)

based systems. This service turns out to be essential in

applications like Space-based FPGA systems or Set-top Boxes.

However, the remote characteristic allows for a set of attacks that

may challenge the confidentiality and the integrity of the FPGA

configuration, the bitstream. Existing schemes propose to

encrypt and to authenticate the bitstream to thwart those attacks.

However we show in this paper that they do not prevent the

replay of old bitstream versions, and thus give the opportunity to

an adversary to downgrade the system. We propose a new

technique that ensures bitstream confidentiality and integrity and

detects replay of old bitstreams.

Keywords- FPGA security; bistream; integrity; confidentiality;

replay attack;

I. INTRODUCTION

FPGA-based systems are widely spread in embedded
systems. The capability of remotely configuring their hardware
configuration (i.e. the bitstream) is an attractive property for
applications requiring regular update/upgrade of the hardware
(e.g. FPGA-based cryptographic co-processors, Space-based
FPGA [1]). For instance such property allows for repairing
eventual security vulnerabilities while the device is already
deployed on the field. However, while being extremely
convenient, remote update generates security issues: an
adversary spying on this communication channel can retrieve
the hardware IP. In addition, an adversary can tamper with the
bitstream on its way to the FPGA. Those attacks challenge
respectively the confidentiality and the integrity of the
bitstream.

Our FPGA usage model is inspired from [2]. FPGA vendor
is the entity that designs and produces FPGA chips. IP
designers provide hardware description of components that a
System Designer (SD) assembles to produce an FPGA-based
system. Finally the system owner is the end user that exploits
the system, the SDs and IP designers do not necessarily trust
him.

IP designers are mainly interested in the protection of the
confidentiality of their know-how and IPs while a SD wants his
design to behave as he specified. Therefore, the SD needs to
ensure that the running system configuration is genuine.
Research efforts [3,4] as well as FPGA vendors [5,6,7,8] have
proposed solutions to provide the bitstream protection at power
up or upon update of the FPGA configuration. However we
show in this paper that they fail in detecting system downgrade

in which an adversary prevents a system upgrade / update by
replaying an old FPGA configuration. This attack highlights
the need of a secure management of the FPGA configuration
version.

In this paper, we introduce a new technique to provide
bitstream encryption and authentication upon a system update
performed remotely by the SD. We describe the corresponding
protocol the SD has to follow to perform this task and the
required hardware support, the Secure Update Mechanism
(SUM) architecture, which FPGA vendors need to provide for
SDs to implement our solution.

The outline of this paper is as follows. Section 2 presents
our security model. Section 3 gives an overview of past work.
Section 4 presents our solution to ensure bitstream
confidentiality and integrity on a remote update of a FPGA-
based system. Finally section 5 evaluates the cost of our
solution and section 6 concludes the paper.

II. SECURITY MODEL

The FPGA-based system is supposed resistant to physical
attacks. We assume that the SD is trusted and that the FPGA
platform is initialized in a trusted area.

In this work we focus on man-in-the-middle attacks
performed over the network while the FPGA-based system is
reconfigured. In such an attack, the adversary retrieves the
bitstream by snooping on the communication channel (passive
attack). Then, the second stage of this attack consists of an
active attack where the adversary replaces a configuration
update by one of his choice. The first stage of a man-in-the-

Network

(e.g. Internet or LAN)

Network

(e.g. Internet or LAN)

F

P

G

A

SD

Encryption

Plaintext Bitstream

Bi

KENC

User Logic

Decry

-ption

KDEC

Bi

HACKER

Encrypted Bitstream

Ci

Version i

Version i + n

Ci

Ci

F

P

G

A

User Logic

Decry

-ption

KDEC

Bi

Ci

Ci

SD

Encryption

Plaintext Bitstream

Bi+n

KENC

Ci+n

Figure.1. Replay Attack

Figure 1.

978-1-4244-1995-1/08/$25.00 ©2008 IEEE. 221

Authorized licensed use limited to: CNUDST. Downloaded on February 12, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

middle attack challenges confidentiality of the bitstream while
the second stage challenges its integrity. The objective of the
adversary can be to make illegal copy of the underlying
hardware IP or to downgrade the system. In case of active
attacks, we call spoofing, the replacement of a genuine
bitstream by a fake one chosen by the adversary and replay
(Figure 1) its replacement by a FPGA configuration previously
recorded over the network by the adversary. A replay is
particularly dangerous for the system security because, even if
bitstream encryption is enabled by the FPGA static logic, it
allows for system downgrading.

III. PAST WORK

Nowadays high-performance [5][6] and some low-cost
[7][8][11] FPGAs include hardwired mechanisms that ensure
the bitstream confidentiality (called here the Secure
Configuration Module : SCM). The configuration stream is
encrypted with a symmetric key shared between the FPGA
circuit and the system designer. Key set up is performed in a
secure area by the system designer before the system is
shipped.

Most of FPGA vendors propose solutions based on Cyclic
Redundancy Checks (CRC) [5] to ensure the integrity of the
bitstream. However the purpose of CRC is to detect
transmission errors and not to check the integrity of data in the
cryptographic sense. CRC codes can be easily broken with a
brute force attack since they are only 16 or 32-bit long
depending on the FPGA model. That is why [3] and [4] suggest
using respectively an authenticated encryption mode or a
Message Authentication Code (MAC) function to ensure the
integrity of the bitstream. Some Actel FPGAs [8] include an
AES-based Message Authentication Code engine that allows
the SD to append a keyed-hash to the configuration stream.
Integrity checking is done by the FPGA configuration logic
that verifies this keyed-hash before embedded configuration
flash loading.

Existing bitstream integrity solutions prevent spoofing of
the bitstream but are powerless to prevent a replay attack and
thus system downgrade threats. In [3,4,8] the keyed-hash is
computed only over the received bitstream. Therefore the
FPGA configuration logic is not able to make the difference
between different keyed-hash/configuration pairs legitimately
generated by the SD in the past. An adversary that replays a
bitstream with its keyed-hash will succeed in his attacks.

Recent works on reconfigurable trusted computing propose
FPGA-based implementation of the Trust Plateform Module
(TPM) [9]. They address the issue of the secure update of
FPGA bitstream through the TPM functionality. Moreover [10]
proposes an implementation of TPM on current FPGA that
does not provide bitstream encryption. [10] assumes that
bitstream reverse engineering is too difficult to achieve.

Saar Drimer brings on the issue of replay attacks in [2]. He
suggests two different avenues of research to solve the
problem. The first suggestion requires the SD to implement
additional security features in the user logic to send
authenticated message to a trusted authority who then attests to
the running FPGA configuration version. The second one is the
use of nonces in the authentication process to ensure the
freshness of the bitstream.

In this paper we propose a solution that leverages existing
hardware (the SCM) to ensure the integrity and the
confidentiality of the bitstream while communicated over a
network with a particular focus on the secure management of
FPGA configuration versions. Our goal is to provide a solution
that can be implemented by FPGA vendors in static logic and
that can be used for all applications. As touched on in [2], this
solution enrolls a nonce in the authentication computations

IV. SECURE MECHANISM FOR REMOTE UPDATE

A. Overview

Our objective is to provide bitstream confidentiality and
integrity upon system updates performed remotely by the SD.
To reach this objective, we propose that the SD encrypts his
bitstreams and computes a MAC over them; however to ensure
the freshness of those bitstreams the underlying MAC function
must take as an extra input a tag called the Bitstream Version
Tag (BVT). As we show in the following subsection, for the
scheme to be secure this tag must be a NONCE (Number used
ONCE). Our mechanism – called Secure Update Mechanism –
located in the FPGA chip (Figure 2), securely stores a copy of
this tag (BVTSUM) – trusted since stored on the tamper-evident
area, the FPGA chip – and handles the integrity verification
and the decryption of the bitstream and implicitly authenticates
of the SD upon system update. To do so, it computes a MAC
over the received encrypted bitstream and over the trusted
BVTSUM and compares it with the MAC received from the SD.

F

P

G

A

SUM

Network

(e.g. Internet or LAN)

SD

Non Volatile Memory

(Bit Stream Storage)

KENC

User Logic

BVTSUM
Tag Update Logic

and Counter

KMAC

Decryption and

MAC Engine

MREFi

CB

MX

Encryption and

MAC Engine

Counter

OK?

KENC KMAC

BVTSD

Non Volatile RegisterTrusted Area

BVT : Bitstream Version Tag

KENC : Secret Key for Encryption

KMAC : Secret Key for MAC function

CB : Encrypted Bit Stream

Mx : Message Authentication Code sent by the SD

MREFi : Message Authentication Code computed by the SUM FPGA-Based

System

Adversary

Figure 2. System overview – Secure Update Mechanism (SUM) architecture

222

Authorized licensed use limited to: CNUDST. Downloaded on February 12, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

B. Secure Update Mechanism of FPGA Configuration

Figure 2 depicts the architectural support, the Secure
Update Mechanism (SUM) unit, required in an FPGA to
implement our scheme. In the following EKENC, DKENC, and
MACKMAC denote respectively the encryption and decryption
functions enrolling the secret key KENC and the MAC function
enrolling the secret key KMAC, implemented in the SUM and by
the SD. Moreover, in this paper we use || to refer to the
concatenation operator.

Platform Initialisation. We assume that, before selling or
deploying the FPGA platform on the field, the SD initializes it
by storing both the secret key KENC used for bitstream
encryption/decryption and the secret key KMAC used for MAC
computations in a Non-Volatile Memory (NVM) inside the
FPGA device. The SD also initializes the non volatile register
used to stored the Bitstream Version Tag in the SUM
(BVTSUM) at a given value that does not need to be secret (e.g.
zero). The SD keeps a copy of KENC, KMAC, and his copy
(BVTSD) of the initial value of the BVT in a trusted database.

As mentioned above, the BVT value must be a nonce
shared by the two parties, the SD and the FPGA-SUM, in order
to ensure the freshness of the bitstream. In the following we
consider that it will be generated using a monotonic counter
and we will show how the SD securely maintains the copy of
BVT of the two parties (the FPGA-based system and himself)
during the secure update process.

Secure FPGA Configuration Update. The protocol that the
SD and the FPGA-SUM must follow during the update of a
FPGA configuration is depicted in Figure 3. The SD is the only
entity that should be able to update the FPGA configuration
and the BVTSUM. Therefore the SD must be authenticated by
the SUM upon an update process. To do so a dedicated
command (ComUpdate) is used by the SD that grants him
access to the BVTSUM register. Thus, to update a bitstream, the
SD (Figure 3):

i) encrypts the new bitstream B (CB = EKENC (B))

ii) increments the BVTSD value with a monotonic
counter, the new BVT uniquely identify the new bitstream,
hence it is used in the subsequent MAC computations

iii) generates an update command (ComUpdate) and
computes a MAC, MUPD, over the concatenation of this
command with the 1-bit value “0” and with the new BVT value

(MUPD= MACKMAC(ComUpdate || 0 || BVTSD)

iv) computes a MAC, MEB, over CB concatenated with the
1-bit value “1” and to the new BVT value (MEB=
MACKMAC(CB || 1 || BVTSD)

v) sends ComUpdate, MUPD CB and MEB to the FPGA
system.

Upon reception of those messages, the FPGA-SUM
performs the following operations:

i) detects the update request by decoding ComUpdate

ii) checks that the request is valid i.e. it authenticated SD
– by computing a reference MAC MREF1 over the concatenation
of the ComUpdate, with the 1-bit value “0” and with BVTSUM +
1 (MREF1=MACKMAC(ComUpdate || 0 || BVTSUM + 1)) and by
comparing it to MUPD.

iii) if the command is valid – MREF1 and MUPD matched –
it checks that the encrypted bitstream is genuine – by
computing a reference MAC MREF2 over CB || 1 || BVTSUM + 1
(MREF2=MACKMAC(CB || 1 || BVTSUM + 1)) and by comparing it
to MEB

iv) if the bitstream is genuine – MREF2 and MEB matched –
it updates BVTSUM (BVTSUM  BVTSUM + 1) to lock the
platform with the new FPGA configuration bitstream and to
synchronize the BVTSUM value with the one kept by SD
(BVTSD).

The 1-bit value used as input in the MAC computations
allows for the use of a single BVT value for a given bitstream
update (i.e. 2 nonce values are generated from the same BVT).
Note that if one of the MAC comparison processes fails, an
integrity checking flag is raised and a response policy designed
by the SD is applied.

BVT size. The tag size is a crucial parameter because it
determines the number of FPGA configuration update the SD
can perform using a given KMAC. Indeed, once the counter
reaches its limit a new KMAC must be generated for a BVT
value not to be used twice in a MAC computation enrolling this
same secret key. This situation is not convenient because it
might require the physical presence of the SD to change KMAC.
An easy way to avoid this situation is to choose a large tag, for
instance 64-bit. With a 64-bit tag, the counter that generates it
will never have the time to roll over during the FPGA lifetime.

Trusted SD FPGA-SUM

ComUpdate || MUPD
CB EKENC (BUPD)

BVTSD  BVTSD +1

MUPD MACKMAC (ComUpdate || 0 || BVTSD)

MEB MACKMAC (CB || 1 || BVTSD)

Verify MUPD (ócompute MREF1  MACKMAC (ComUpdate || 0 || BVTSUM + 1)

and compare to MUPD)

If MREF1 == MUPD

 Verify MEB (ó compute MREF2  MACKMAC (CB || 1 || BVTSUM + 1) and

compare to MEB)

 If MREF2 == MEB

 BVTSUM  BVTSUM + 1

 Bit Stream decrypted (Bi DKENC(CB)) and FPGA-system updated

 (bitstream stored in the External NVM)

 Else -- INTEGRITY FAILURE

 FPGA-system not updated / Response Policy defined by SD is applied

Else -- INTEGRITY FAILURE

 FPGA-system not updated / Response Policy defined by SD is applied

CB || MEB

Figure 3. Secure Communication Protocol between the SD and the FPGA-SUM upon the Secure Update of the FPGA Configuration, and Pseudo Code of the

cryptographic operations to be performed by the two parties.

223

Authorized licensed use limited to: CNUDST. Downloaded on February 12, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

C. Security Analysis

Our scheme assumes that the underlying block cipher
encryption mode and MAC function are secure. Our analysis
focuses on the security of the proposed communication
protocol between the two parties, the SD and the FPGA-SUM,
and on the prevention of the replay of bitstream configurations.

The integrity and the freshness of each transaction between
the SD and the FPGA-SUM are ensured by the computation of
MACs taking a nonce as input. The uniqueness property of
nonces used in MAC computations for different bitstreams is
ensured by BVT that is produced by a monotonic counter. For
a given bitstream, the uniqueness of nonce is ensured for each
MAC computation by a dedicated 1-bit value concatenated to
the BVT. Two MAC computations are required for the
management of a given bitstream: MUPD and MEB. Therefore, as
mentioned above an extra 1-bit input (respectively “0” and “1”)
to each of these MAC computations allows for the use of
nonces generated from the same BVT value. The BVT as well
as this 1-bit value does not need to be secret but tamper-
evident. This is enforced by design since the BVT is stored in
trusted areas (the SD database and the FPGA-SUM) and
therefore is tamper-proof. One may argue that the
incrementation of the BVT in the FPGA-SUM may be
triggered from outside. However, the tag update logic in the
SUM is controlled by the ComUpdate which is authenticated
by MAC enrolling a nonce and a secret key. Thus this
command can neither be replayed nor spoofed.

V. IMPLEMENTATION ASPECTS

The objective of this paper is to propose a new security
scheme to ensure the confidentiality and the integrity of the
bitstream with a mechanism for secure management of FPGA
configuration versions. Hence, ideally the hardware support
required by our solution would be implemented in the static
logic of the FPGA by FPGA vendors to allow SDs to
implement it at lower cost. In this section we evaluate the cost
of the proposed solution in this latter case.

FPGA vendors tools. FPGA vendors must slightly modify
their bitstream generation tools to add MAC computation as
well as the necessary support to generate the update command.

FPGA device impact. Current FPGAs already include an
AES engine for decryption of the bitstream. This engine can be
reused to implement the MAC function as suggested in [3,4].
Moreover, existing FPGA device already contains a non
volatile register to store the encryption key (KENC), thus our
solution would only require two extra non-volatile registers for
KMAC and BVTSUM, typically of 128-bit and 64-bit. The logic
that controls the configuration of the FPGA must also be
modified to manage the tag update command. Therefore the
hardware overhead implied by our solution is quite negligible
since the main component (e.g. AES) are already implemented.

VI. CONCLUSION

Remote update of FPGA-based systems is a challenging
issue from a security point of view. We showed that existing
mechanisms to ensure bitstream confidentiality and integrity
via encryption and authentication fail to prevent bitstream
replay and thus system downgrade.

In this paper we proposed a new communication protocol
between the System Designer (SD) and an FPGA platform to
update the FPGA configuration while preserving its
confidentiality and integrity. Moreover, we described the
hardware support the FPGA vendors need to provide for the
SD to implement the solution and we showed that the
corresponding overhead is negligible when considering current
FPGA technology.

On-going work considers the extension of the threat model
to attack on buses and memory with as objective to only trust
the FPGA device – indeed replay attacks may be conducted on
the bus or in memory at power up of the system when the
FPGA is configured from flash.. In addition, a convenient
feature to add to the system is to provide the SD with an alert
system to inform him if the device has been correctly updated
or if it is under attack.

REFERENCES

[1] Surratt, M.; Loomis, H.H.; Ross, A.A.; Duren, R. “Challenges of

Remote FPGA Configuration for Space Applications” Aerospace
Conference, 2005 IEEE

[2] Saar Drimer, 'Volatile FPGA design security – a survey, Computer
Laboratory, University of Cambridge, available at:
www.cl.cam.ac.uk/~sd410/papers/fpga_security.pdf

[3] M.Parelkar, K.Gaj (2005), Implementation of EAX mode of operation
for FPGA bitstream encryption and authentication, Field-Programmable
Technology, 2005. Proceedings. 2005 IEEE Intl Conference 11-14 Dec.
2005 Page(s): 335 – 336

[4] Saar Drimer Computer Laboratory, University of Cambridge,
Cambridge, “Authentication of FPGA Bitstreams: Why and How”,
available at www.cl.cam.ac.uk/~sd410/papers/bsauth.pdf

[5] Xilinx datasheet, Virtex-4 configuration guide available at: ,
www.xilinx.com/support/documentation/user_guides/ug071.pdf

[6] Altera whitepaper, Design Security in Stratix III Devices, available at:
www.altera.com/literature/wp/wp-01010.pdf

[7] LatticeXP2 Family Handbook available at:
www.latticesemi.com/dynamic/view_document.cfm?document_id=2431
5

[8] Actel handbook, Actel ProASIC®3 Handbook, available at:
http://www.actel.com/documents/PA3_HB.pdf

[9] Eisenbarth T., G neysu, T. Paar, C. Sadeghi, A.R. Schellekens, D. Wolf,
M.: Reconfigurable Trusted Computing in Hardware. In: STC ’07:
Proceedings of the 2007 ACM workshop on Scalable trusted computing,
New York, NY, USA, ACM (2007) 15–20

[10] D. Schellekens, P. Tuyls, and B. Preneel, "Embedded Trusted
Computing with Authenticated Non-Volatile Memory," In TRUST 2008,
Lecture Notes in Computer Science, Springer-Verlag, 12 pages, 2008.

[11] L. Bossuet, G. Gogniat, W. Burleson, Dynamically configurable security
for SRAM FPGA bitstreams, in: Proceedings of 11th IEEE
Reconfigurable Architectures Workshop, RAW, Santa Fé, USA, 2004

224

Authorized licensed use limited to: CNUDST. Downloaded on February 12, 2009 at 10:53 from IEEE Xplore. Restrictions apply.

