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Abstract— Remote update of hardware systems is a convenient 

service enabled by Field Programmable Gate Arrays (FPGA) 

based systems. This service turns out to be essential in 

applications like Space-based FPGA systems or Set-top Boxes. 

However, the remote characteristic allows for a set of attacks that 

may challenge the confidentiality and the integrity of the FPGA 

configuration, the bitstream.  Existing schemes propose to 

encrypt and to authenticate the bitstream to thwart those attacks. 

However we show in this paper that they do not prevent the 

replay of old bitstream versions, and thus give the opportunity to 

an adversary to downgrade the system. We propose a new 

technique that ensures bitstream confidentiality and integrity and 

detects replay of old bitstreams. 

Keywords- FPGA security; bistream; integrity; confidentiality; 

replay attack; 

I.  INTRODUCTION 

FPGA-based systems are widely spread in embedded 
systems. The capability of remotely configuring their hardware 
configuration (i.e. the bitstream) is an attractive property for 
applications requiring regular update/upgrade of the hardware 
(e.g. FPGA-based cryptographic co-processors, Space-based 
FPGA [1]). For instance such property allows for repairing 
eventual security vulnerabilities while the device is already 
deployed on the field. However, while being extremely 
convenient, remote update generates security issues: an 
adversary spying on this communication channel can retrieve 
the hardware IP. In addition, an adversary can tamper with the 
bitstream on its way to the FPGA. Those attacks challenge 
respectively the confidentiality and the integrity of the 
bitstream. 

Our FPGA usage model is inspired from [2]. FPGA vendor 
is the entity that designs and produces FPGA chips. IP 
designers provide hardware description of components that a 
System Designer (SD) assembles to produce an FPGA-based 
system. Finally the system owner is the end user that exploits 
the system, the SDs and IP designers do not necessarily trust 
him. 

IP designers are mainly interested in the protection of the 
confidentiality of their know-how and IPs while a SD wants his 
design to behave as he specified. Therefore, the SD needs to 
ensure that the running system configuration is genuine.  
Research efforts [3,4] as well as FPGA vendors [5,6,7,8] have 
proposed solutions to provide the bitstream protection at power 
up or upon update of the FPGA configuration. However we 
show in this paper that they fail in detecting system downgrade 

in which an adversary prevents a system upgrade / update by 
replaying an old FPGA configuration. This attack highlights 
the need of a secure management of the FPGA configuration 
version.  

In this paper, we introduce a new technique to provide 
bitstream encryption and authentication upon a system update 
performed remotely by the SD. We describe the corresponding 
protocol the SD has to follow to perform this task and the 
required hardware support, the Secure Update Mechanism 
(SUM) architecture, which FPGA vendors need to provide for 
SDs to implement our solution.  

The outline of this paper is as follows. Section 2 presents 
our security model. Section 3 gives an overview of past work. 
Section 4 presents our solution to ensure bitstream 
confidentiality and integrity on a remote update of a FPGA-
based system. Finally section 5 evaluates the cost of our 
solution and section 6 concludes the paper.  

II. SECURITY MODEL 

The FPGA-based system is supposed resistant to physical 
attacks. We assume that the SD is trusted and that the FPGA 
platform is initialized in a trusted area.  

In this work we focus on man-in-the-middle attacks 
performed over the network while the FPGA-based system is 
reconfigured. In such an attack, the adversary retrieves the 
bitstream by snooping on the communication channel (passive 
attack). Then, the second stage of this attack consists of an 
active attack where the adversary replaces a configuration 
update by one of his choice. The first stage of a man-in-the-
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Figure.1. Replay Attack 

Figure 1.   

978-1-4244-1995-1/08/$25.00 ©2008 IEEE. 221

Authorized licensed use limited to: CNUDST. Downloaded on February 12, 2009 at 10:53 from IEEE Xplore.  Restrictions apply.



middle attack challenges confidentiality of the bitstream while 
the second stage challenges its integrity. The objective of the 
adversary can be to make illegal copy of the underlying 
hardware IP or to downgrade the system. In case of active 
attacks, we call spoofing, the replacement of a genuine 
bitstream by a fake one chosen by the adversary and replay 
(Figure 1) its replacement by a FPGA configuration previously 
recorded over the network by the adversary. A replay is 
particularly dangerous for the system security because, even if 
bitstream encryption is enabled by the FPGA static logic, it 
allows for system downgrading.  

III. PAST WORK  

Nowadays high-performance [5][6] and some low-cost 
[7][8][11] FPGAs include hardwired mechanisms that ensure 
the bitstream confidentiality (called here the Secure 
Configuration Module : SCM). The configuration stream is 
encrypted with a symmetric key shared between the FPGA 
circuit and the system designer. Key set up is performed in a 
secure area by the system designer before the system is 
shipped.  

Most of FPGA vendors propose solutions based on Cyclic 
Redundancy Checks (CRC) [5] to ensure the integrity of the 
bitstream. However the purpose of CRC is to detect 
transmission errors and not to check the integrity of data in the 
cryptographic sense. CRC codes can be easily broken with a 
brute force attack since they are only 16 or 32-bit long 
depending on the FPGA model. That is why [3] and [4] suggest 
using respectively an authenticated encryption mode or a 
Message Authentication Code (MAC) function to ensure the 
integrity of the bitstream. Some Actel FPGAs [8] include an 
AES-based Message Authentication Code engine that allows 
the SD to append a keyed-hash to the configuration stream. 
Integrity checking is done by the FPGA configuration logic 
that verifies this keyed-hash before embedded configuration 
flash loading. 

Existing bitstream integrity solutions prevent spoofing of 
the bitstream but are powerless to prevent a replay attack and 
thus system downgrade threats. In [3,4,8] the keyed-hash is 
computed only over the received bitstream. Therefore the 
FPGA configuration logic is not able to make the difference 
between different keyed-hash/configuration pairs legitimately 
generated by the SD in the past. An adversary that replays a 
bitstream with its keyed-hash will succeed in his attacks.  

Recent works on reconfigurable trusted computing propose 
FPGA-based implementation of the Trust Plateform Module 
(TPM) [9]. They address the issue of the secure update of 
FPGA bitstream through the TPM functionality. Moreover [10] 
proposes an implementation of TPM on current FPGA that 
does not provide bitstream encryption. [10] assumes that 
bitstream reverse engineering is too difficult to achieve. 

Saar Drimer brings on the issue of replay attacks in [2]. He 
suggests two different avenues of research to solve the 
problem. The first suggestion requires the SD to implement 
additional security features in the user logic to send 
authenticated message to a trusted authority who then attests to 
the running FPGA configuration version. The second one is the 
use of nonces in the authentication process to ensure the 
freshness of the bitstream. 

In this paper we propose a solution that leverages existing 
hardware (the SCM) to ensure the integrity and the 
confidentiality of the bitstream while communicated over a 
network with a particular focus on the secure management of 
FPGA configuration versions. Our goal is to provide a solution 
that can be implemented by FPGA vendors in static logic and 
that can be used for all applications. As touched on in [2], this 
solution enrolls a nonce in the authentication computations  

IV. SECURE MECHANISM FOR REMOTE UPDATE  

A. Overview  

Our objective is to provide bitstream confidentiality and 
integrity upon system updates performed remotely by the SD. 
To reach this objective, we propose that the SD encrypts his 
bitstreams and computes a MAC over them; however to ensure 
the freshness of those bitstreams the underlying MAC function 
must take as an extra input a tag called the Bitstream Version 
Tag (BVT). As we show in the following subsection, for the 
scheme to be secure this tag must be a NONCE (Number used 
ONCE). Our mechanism – called Secure Update Mechanism – 
located in the FPGA chip (Figure 2), securely stores a copy of 
this tag (BVTSUM) – trusted since stored on the tamper-evident 
area, the FPGA chip – and handles the integrity verification 
and the decryption of the bitstream and implicitly authenticates 
of the SD upon system update. To do so, it computes a MAC 
over the received encrypted bitstream and over the trusted 
BVTSUM and compares it with the MAC received from the SD. 
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Figure 2.  System overview – Secure Update Mechanism (SUM) architecture 
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B. Secure Update Mechanism of FPGA Configuration 

Figure 2 depicts the architectural support, the Secure 
Update Mechanism (SUM) unit, required in an FPGA to 
implement our scheme. In the following EKENC, DKENC, and 
MACKMAC denote respectively the encryption and decryption 
functions enrolling the secret key KENC and the MAC function 
enrolling the secret key KMAC, implemented in the SUM and by 
the SD. Moreover, in this paper we use || to refer to the 
concatenation operator. 

Platform Initialisation. We assume that, before selling or 
deploying the FPGA platform on the field, the SD initializes it 
by storing both the secret key KENC used for bitstream 
encryption/decryption and the secret key KMAC used for MAC 
computations in a Non-Volatile Memory (NVM) inside the 
FPGA device. The SD also initializes the non volatile register 
used to stored the Bitstream Version Tag in the SUM 
(BVTSUM) at a given value that does not need to be secret (e.g. 
zero). The SD keeps a copy of KENC, KMAC, and his copy 
(BVTSD) of the initial value of the BVT in a trusted database.  

As mentioned above, the BVT value must be a nonce 
shared by the two parties, the SD and the FPGA-SUM, in order 
to ensure the freshness of the bitstream. In the following we 
consider that it will be generated using a monotonic counter 
and we will show how the SD securely maintains the copy of 
BVT of the two parties (the FPGA-based system and himself) 
during the secure update process. 

Secure FPGA Configuration Update. The protocol that the 
SD and the FPGA-SUM must follow during the update of a 
FPGA configuration is depicted in Figure 3. The SD is the only 
entity that should be able to update the FPGA configuration 
and the BVTSUM. Therefore the SD must be authenticated by 
the SUM upon an update process. To do so a dedicated 
command (ComUpdate) is used by the SD that grants him 
access to the BVTSUM register. Thus, to update a bitstream, the 
SD (Figure 3): 

i) encrypts the new bitstream B (CB = EKENC (B))  

ii) increments the BVTSD value with a monotonic 
counter, the new BVT uniquely identify the new bitstream, 
hence it is used in the subsequent MAC computations  

iii) generates an update command (ComUpdate) and 
computes a MAC, MUPD, over the concatenation of this 
command with the 1-bit value “0” and with the new BVT value 

(MUPD= MACKMAC(ComUpdate || 0 || BVTSD)  

iv) computes a MAC, MEB, over CB concatenated with the 
1-bit value “1” and to the new BVT value (MEB= 
MACKMAC(CB || 1 || BVTSD) 

v) sends ComUpdate, MUPD CB and MEB to the FPGA 
system.  

Upon reception of those messages, the FPGA-SUM 
performs the following operations:  

i) detects the update request by decoding ComUpdate  

ii) checks that the request is valid i.e. it authenticated SD  
– by computing a reference MAC MREF1 over the concatenation 
of the ComUpdate, with the 1-bit value “0” and with BVTSUM + 
1 (MREF1=MACKMAC(ComUpdate || 0 || BVTSUM + 1)) and by 
comparing it to MUPD. 

iii) if the command is valid – MREF1 and MUPD matched – 
it checks that the encrypted bitstream is genuine – by 
computing a reference MAC MREF2 over CB || 1 || BVTSUM + 1 
(MREF2=MACKMAC(CB || 1 || BVTSUM + 1)) and by comparing it 
to MEB  

iv) if the bitstream is genuine – MREF2 and MEB matched – 
it updates BVTSUM (BVTSUM  BVTSUM + 1) to lock the 
platform with the new FPGA configuration bitstream and to 
synchronize the BVTSUM value with the one kept by SD 
(BVTSD).  

The 1-bit value used as input in the MAC computations 
allows for the use of a single BVT value for a given bitstream 
update (i.e. 2 nonce values are generated from the same BVT). 
Note that if one of the MAC comparison processes fails, an 
integrity checking flag is raised and a response policy designed 
by the SD is applied. 

BVT size. The tag size is a crucial parameter because it 
determines the number of FPGA configuration update the SD 
can perform using a given KMAC. Indeed, once the counter 
reaches its limit a new KMAC must be generated for a BVT 
value not to be used twice in a MAC computation enrolling this 
same secret key. This situation is not convenient because it 
might require the physical presence of the SD to change KMAC. 
An easy way to avoid this situation is to choose a large tag, for 
instance 64-bit. With a 64-bit tag, the counter that generates it 
will never have the time to roll over during the FPGA lifetime. 

Trusted SD FPGA-SUM

ComUpdate || MUPD
CB EKENC (BUPD) 

BVTSD   BVTSD +1 

MUPD MACKMAC (ComUpdate || 0 || BVTSD)

MEB MACKMAC (CB || 1 || BVTSD)

 

 

Verify MUPD (ócompute MREF1   MACKMAC (ComUpdate || 0 || BVTSUM + 1) 

and compare to MUPD)

If MREF1 ==  MUPD

    Verify MEB ( ó compute MREF2   MACKMAC (CB || 1 || BVTSUM + 1) and 

compare to MEB)

    If MREF2 ==  MEB

        BVTSUM  BVTSUM + 1

        Bit Stream decrypted (Bi DKENC(CB)) and FPGA-system updated  

        (bitstream stored in the External NVM)

    Else  -- INTEGRITY FAILURE

        FPGA-system not updated / Response Policy defined by SD is applied 

Else  -- INTEGRITY FAILURE

        FPGA-system not updated / Response Policy defined by SD is applied

CB || MEB

 

 

Figure 3.  Secure Communication Protocol between the SD and the FPGA-SUM upon the Secure Update of the FPGA Configuration, and Pseudo Code of the 

cryptographic operations to be performed by the two parties. 
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C. Security Analysis 

Our scheme assumes that the underlying block cipher 
encryption mode and MAC function are secure. Our analysis 
focuses on the security of the proposed communication 
protocol between the two parties, the SD and the FPGA-SUM, 
and on the prevention of the replay of bitstream configurations.  

The integrity and the freshness of each transaction between 
the SD and the FPGA-SUM are ensured by the computation of 
MACs taking a nonce as input. The uniqueness property of 
nonces used in MAC computations for different bitstreams is 
ensured by BVT that is produced by a monotonic counter. For 
a given bitstream, the uniqueness of nonce is ensured for each 
MAC computation by a dedicated 1-bit value concatenated to 
the BVT. Two MAC computations are required for the 
management of a given bitstream: MUPD and MEB. Therefore, as 
mentioned above an extra 1-bit input (respectively “0” and “1”) 
to each of these MAC computations allows for the use of 
nonces generated from the same BVT value. The BVT as well 
as this 1-bit value does not need to be secret but tamper-
evident. This is enforced by design since the BVT is stored in 
trusted areas (the SD database and the FPGA-SUM) and 
therefore is tamper-proof. One may argue that the 
incrementation of the BVT in the FPGA-SUM may be 
triggered from outside. However, the tag update logic in the 
SUM is controlled by the ComUpdate which is authenticated 
by MAC enrolling a nonce and a secret key. Thus this 
command can neither be replayed nor spoofed. 

V. IMPLEMENTATION ASPECTS 

The objective of this paper is to propose a new security 
scheme to ensure the confidentiality and the integrity of the 
bitstream with a mechanism for secure management of FPGA 
configuration versions. Hence, ideally the hardware support 
required by our solution would be implemented in the static 
logic of the FPGA by FPGA vendors to allow SDs to 
implement it at lower cost. In this section we evaluate the cost 
of the proposed solution in this latter case. 

FPGA vendors tools. FPGA vendors must slightly modify 
their bitstream generation tools to add MAC computation as 
well as the necessary support to generate the update command.  

FPGA device impact. Current FPGAs already include an 
AES engine for decryption of the bitstream. This engine can be 
reused to implement the MAC function as suggested in [3,4]. 
Moreover, existing FPGA device already contains a non 
volatile register to store the encryption key (KENC), thus our 
solution would only require two extra non-volatile registers for 
KMAC and BVTSUM, typically of 128-bit and 64-bit. The logic 
that controls the configuration of the FPGA must also be 
modified to manage the tag update command. Therefore the 
hardware overhead implied by our solution is quite negligible 
since the main component (e.g. AES) are already implemented. 

VI. CONCLUSION 

Remote update of FPGA-based systems is a challenging 
issue from a security point of view. We showed that existing 
mechanisms to ensure bitstream confidentiality and integrity 
via encryption and authentication fail to prevent bitstream 
replay and thus system downgrade.  

In this paper we proposed a new communication protocol 
between the System Designer (SD) and an FPGA platform to 
update the FPGA configuration while preserving its 
confidentiality and integrity. Moreover, we described the 
hardware support the FPGA vendors need to provide for the 
SD to implement the solution and we showed that the 
corresponding overhead is negligible when considering current 
FPGA technology. 

On-going work considers the extension of the threat model 
to attack on buses and memory with as objective to only trust 
the FPGA device – indeed replay attacks may be conducted on 
the bus or in memory at power up of the system when the 
FPGA is configured from flash.. In addition, a convenient 
feature to add to the system is to provide the SD with an alert 
system to inform him if the device has been correctly updated 
or if it is under attack.  
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