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Abstract: FPGAs are becoming increasingly attractive – thanks to the improvement of their 
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numerous systems. Moreover, since FPGAs are important for the electronics industry, it becomes 
necessary to improve their security, particularly for SRAM FPGAs, since they are more 
vulnerable than other FPGA technologies. This paper proposes a solution to improve the  
security of SRAM FPGAs through flexible bitstream encryption. This proposition is distinct from 
other works because it uses the latest capabilities of SRAM FPGAs like partial dynamic 
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key. It opens a new way of application partitioning oriented by the security policy. 
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1 Introduction 

The FPGA (Field Programmable Gate Array) concept was 
born during the 1980s, when the configuration point size 
(transistors or fuses) was too large in comparison with the 
chip size to have an interesting FPGA density. Therefore, 
these devices were just used to do prototyping or glue logic. 
For a long time, the FPGAs have not taken benefit from the 
best deep-submicronic technology, today the more advanced 
FPGAs use 90 nanometre technology with copper 
metallisation (best actual accessible technology). With the 
improvement of technological processes and since the 
FPGAs structure is very regular, it is possible to build some 
FPGAs with more than one million transistors. Thanks to 
these evolutions, FPGAs are increasingly attractive for 
numerous systems and to build efficient SoC (System on a 
Chip). The FPGAs market continues to increase and FPGAs 
are capturing the classical market share of ASIC 
(Application Specific Integrated Circuit) market. The cost 
crossover point, which permits to know the necessary 
number of systems built to choose an efficient ASIC 
solution, is increasingly far (Tredennick and Shimamoto, 
2003). It is possible even for a large number of systems built 
to choose an economically efficient FPGA solution. 

Since FPGAs are becoming so important for the 
electronic industry, it is necessary to think about the security 
of FPGA-based systems. It is possible to consider the 
FPGA-based systems’ security problem in three ways. 

1.1 Security system using FPGA 

In this case, FPGA is used as a part of the security system. 
The FPGA dynamic reconfiguration improves the security 
system’s flexibility. Therefore, it is possible to change the 
classical software update by hardware update in order to 
prevent attacks evolutions. 

For example, internet-connected hosts are now 
frequently attacked by malicious machines located around 
the world. Hosts can be protected from remote machines  
by filtering the traffic through a firewall. Use of an  
FPGA can be very efficient for such application in  
order to build less static system. In Lockwood et al. (2003) a 
System-On-Programmable-Chip (SOPC), internet firewall 
has been implemented that protects high-speed networks 
from present and future threats. The high level of flexibility 
and extensibility required by such systems is guaranteed by 
the use of an FPGA (in Lockwood et al. (2003) authors use 
a Xilinx Virtex FPGA). 

In the same way, in Dandalis and Prasanna (2000), the 
authors use Xilinx FPGA to develop an Adaptive 
Cryptographic Engine (ACE) for Internet Protocol Security 
(IPSec) architectures. Several FPGA configurations of 
cryptographic algorithms are stored in a memory in  
the form of cryptographic library. The FPGA is configured 
on-demand based on the cryptographic library and then 
performs the required encryption/decryption tasks. 
 
 

We think that it is also possible to use the FPGA 
concept (e.g., reconfiguration, hardware update) for smart 
cards system or PAY-TV, for example. However, today, 
there is no published work on these applications. 

1.2 Protecting FPGA data 

In this case, it is necessary to protect the application that 
runs on FPGA. The data inside the circuit and the data 
transferred to/from the peripheral circuits during the 
communication must be protected. The main solution is to 
integrate data encryption scheme inside the FPGA. These 
circuits are attractive for executing the actual cryptographic 
algorithms and are of particular importance from security 
point of view. There has been a large amount of work  
done dealing with the algorithmic and computer  
architecture aspects of cryptographic schemes implemented 
on FPGA over the last five years. According to  
Wollinger et al. (2004) and Wollinger and Paar (2003), we 
can list the potential advantages of FPGA in cryptographic 
applications. 

• Algorithm agility. This term refers to the cryptographic 
algorithms switching during operation of the targeted 
application. While algorithm agility is costly with 
traditional hardware, FPGA can be reprogrammed on 
the fly. 

• Algorithm upload. It is perceivable that fielded  
devices are upgraded with a new encryption algorithm. 
FPGA-equipped encryption devices can upload the new 
configuration code. 

• Architecture efficiency. In certain cases hardware 
architecture can be much more efficient if it is designed 
for a specific set of parameters. An example for the 
parameters for cryptographic algorithms can be the key. 
FPGA allows this type of devices and optimisations 
with a specific parameter set. Owing to the nature of 
FPGA, the application can be changed totally or 
partially. 

• Resource efficiency. The majority of security protocols 
are hybrid protocols that need several algorithms.  
As they are not used simultaneously, the same FPGA 
device can be used for both through run-time 
reconfiguration. 

• Algorithm modification. There are applications that 
require modification of standardised cryptographic 
algorithms. 

• Throughput. General-purpose microprocessors are not 
optimised for fast execution. Although, typically  
slower than ASIC implementations, FPGA 
implementations have the potential of running 
substantially faster than software implementations  
(as with a processor). 
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• Cost efficiency. There are two cost factors, which have 
to be taken into consideration when analysing the cost 
efficiency of FPGAs: cost of development and unit 
price. The costs to develop an FPGA implementation of 
a given algorithm are much lower than that for an ASIC 
implementation. The unit prices are not significant 
when compared with the developmental costs. 
However, for high-volume applications (more than one 
million of circuit build) ASIC solution usually becomes 
the more cost-efficient choice. 

1.3 FPGA design security 

In this last case, the protection concerns the design against 
cloning and reverse engineering. It is custom intellectual 
property protection. Concerning the SRAM FPGAs, the 
design security corresponds to the way to protect the 
bitstream or the FPGA configuration. 

This paper focuses on the latter case dealing with FPGA 
design security. If the FPGA design itself is not secure, the 
other security problems cannot be efficiently treated. Using 
an unsecured device embedded in a security system is not 
security-efficient. Many works already proposed solutions 
to protect the bitstream. However, the contribution of this 
paper relies on the utilisation of the latest improvements of 
SRAM FPGAs configuration techniques to answer the 
security problem. 

This paper is organised as follows. Section 2 describes 
some aspects of the design security problem such as the 
classical hardware devices security level. Section 3 presents 
several works dealing with the protection of SRAM FPGA 
configuration. Section 4 describes the new capability of 
SRAM FPGA self-reconfiguration. In Section 5 a new 
SRAM FPGA bitstream protection solution is proposed.  
The drawbacks and advantages of the proposed solutions are 
given in Section 6. Section 7 compares the different 
solutions of design security for FPGA. Finally, Section 5 
concludes this paper and exposes several future  
directions. 

2 Design security 

It is interesting, before investigating the different solutions 
to secure the configuration of SRAM FPGAs, to list what 
are the different attacks against an integrated circuit today, 
what is the protection level of some current circuits and why 
do they have this level of protection? 

2.1 Need for design security 

The problem of design security is simple; the designer does 
not want a competitor to be able to pirate his design.  
There are two sorts of piracy. 

• Cloning. When a competitor makes an exact copy of a 
design including the board layout and chip, and when 
he is able to create a copy of the pirated system. 

 

• Reverse engineering. When a competitor copies a 
design by reconstructing a ‘schematic’ or net list level 
representation. In this process, he analyses and 
understands how the design works and how to improve 
it, or to modify it with malicious intents. Reverse 
engineering generally consists of the following stages: 
• analysis of the product 
• generation of an intermediate level product 

description 
• human analysis of the product description to 

produce a specification 
• generation of a new product using the 

specification. 

Therefore, reverse engineering is more serious than cloning. 
These two aspects correspond to different attacks, and the 
design security must protect the system against both attacks. 
To perform cloning or reverse engineering, two types of 
attack can be considered; the non-invasive and the invasive 
attacks. 

The non-invasive attacks gather all the methods that use 
external means. For example, the attackers can use all  
the possibilities of the circuit inputs in order to obtain  
all the different outputs and draw the system truth table; this 
method is called ‘Black Box Attack’. 

In the case of SRAM FPGA, a simple attack method is 
intercepting the bitstream between the root ROM and the 
FPGA when the system power is switched on. More 
complex attacks can be brought into play; time, power and 
electromagnetic changes and measures like the simple or 
differential power analysis – interested readers can refer to 
the works on power analysis of FPGA in Standaert et al. 
(2003, 2004) and Örs et al. (2003). 

The invasive attacks (or physical attacks) are 
characterised by the necessity to destroy the integrated 
circuit (component package) to study the chip (design inside 
the component) with some complex methods. For example, 
it is possible to use laser cutter microscope in order to split 
the chip in several slices and understand the chip layout. 
These attacks can use sophisticated tools like optical 
microscope, mechanical probes and even Focused Ion Beam 
(FIB). As these attacks use the weakness of the silicon 
technology, when they are possible, it is very hard to secure 
the system against them. 

The paper Anderson and Kuhn (1996, 1997) give some 
information about these different attacks. It is possible to 
classify the integrated circuits according to their protection 
against the different types of attacks. The next section 
presents an example of security level classification. 

2.2 Protection level of some circuits 

The level of protection offered by actual integrated circuits 
is an interesting metric to identify works that must be 
carried out to improve the security level of one particular 
type of integrated circuit. In the IBM Systems Journal, a 
paper Abraham et al. (1991) defines the various security  
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levels for modern electronic systems and the corresponding 
taxonomy of attackers. 
• Level 0 (ZERO). No special security features added to 

the system. It is easy to comprise the system with low 
cost tools. 

• Level 1 (LOW). Some security features in place. They 
are relatively easily defeated with common laboratory 
or shop tools. 

• Level 2 (MODLOW). The system has some security 
against non-invasive attacks; it is protected for some 
invasive attacks. More expensive tools are required, as 
well as specialised knowledge. 

• Level 3 (MOD). The system has some security  
against non-invasive and invasive attacks. Special tools 
and equipment are required, as well as some special 
skills and knowledge. The attack may become  
time-consuming but will eventually be successful. 

• Level 4 (MODH). The system has strong security 
against attacks. Equipment is available but is expensive 
to buy and operate. Special skills and knowledge are 
required to use the equipment for an attack. More than 
one operation may be required so that several 
adversaries with complementary skills would have to 
work on the attack sequence. The attack could be 
unsuccessful. 

• Level 5 (HIGH). The security features are very strong. 
All known attacks have been unsuccessful. Some 
research by a team of specialists is necessary. Highly 
specialised equipment is necessary, some of which 
might have to be designed and built. The success of the 
attack is uncertain. 

According to this classification, it is possible to give a 
general security level for the current integrated circuits.  
Of course, these different levels are not fixed and depend of 
the factory and the type of circuit (in the same factory there 
are several families and some of them can be especially 
security-efficient like some military families). The authors 
have tried to give one level by classical integrated circuit 
and explain the reason of their choices. The security level of 
the classical integrated circuits is given in Table 1. 

Table 1 Security level of classical integrated circuits 

Integrated circuit Security level 
Conventional SRAM FPGA 0 
ASIC gate array 3 
Cell-based ASIC 3 
SRAM FPGA with bitstream encryption 3 
Flash FPGA 4 
Antifuse FPGA 4 

Conventional SRAM FPGAs have the lowest security level. 
These circuits need a bitstream transfer from the root ROM 
at power up (because the memory of configuration is a 
SRAM volatile memory). Therefore, it is easy for the pirate 
to read with a simple probe the bitstream during the transfer. 

The conventional SRAM FPGAs are inefficient for safe 
design. However, with a bitstream encryption it is possible 
to clearly improve the security level since the security 
weakness is secure. SRAM FPGAs have a good resistance 
against some attacks like power analysis (Standaert  
et al., 2003). Today few works present the results of  
attacks against SRAM FPGA (Örs et al., 2003 and Standaert 
et al., 2004). 

Often considered like a secure technology, ASICs are 
actually relatively easy to reverse engineer. Because, unlike 
FPGAs, ASICs do not have switch. Therefore, it is possible 
to strip the chip to copy with certitude the complete layout 
in order to understand how it works. Methods to reverse 
engineer ASIC exist. The cost of reverse engineering is high 
since the tools required are expensive and the process is 
time consuming. Therefore, it is not a simple process and 
therefore the security level is 3 for such devices. 

Contrary to the ASICs, the FPGAs, like antifuse or 
flash, are actually security-efficient since they are based on 
switches. With these FPGAs, no bitstream can be 
intercepted in the field (no bitstream transfer, no external 
configuration device). In the case of antifuse FPGAs, the 
attacker needs a Scanning Electron Microscope (SEM) in 
order to know the state of each antifuse. Nevertheless, the 
difference between a programming and a non-programming 
antifuse is very difficult to see. Moreover, such analysis is 
intractable in a device like Actel AX2000 that contains 53 
million of antifuses and according to Actel (www.actel.com/ 
products/rescenter/security/index.html) only 2–5% (average) 
of these antifuses are programmed. For flash FPGA, there is 
no optical difference after configuration, so the invasive 
attacks are very complex. The same advantages are given by 
QuickLogic to promote their flash FPGAs with the ViaLink 
technology (QuickLogic, 2002). 

If the antifuse and the flash FPGAs are very  
security-efficient, they are just one time configurable (or 
one time programmable), so they are not reconfigurable 
devices. The system build with these devices, is not  
flexible. If the designer wants a reconfigurable  
device, he must target a SRAM FPGA. Moreover,  
the capacities of the SRAM FPGAs are the highest for 
FPGA devices. Actually, the SRAM FPGAs have a  
market share higher than 60% (just with the two leaders 
companies Xilinx (http://www.xilinx.com) and Altera 
(http://www.altera.com)). Therefore, the research to 
improve the security level of such FPGAs and particularly 
the improvement of bitstream encryption is necessary today. 

Some works give efficient solutions to encrypt the 
SRAM FPGA bitstream. Nevertheless, there are some 
drawbacks and it is possible to improve them taking  
into account the latest innovations of these FPGAs.  
The following section presents some works about the 
bitstream encryption. 

3 Related work 

Two approaches are generally possible to address the  
design security problem. The first one considers that the 
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best solutions to protect the devices against piracy are legal 
solutions. The definition of efficient laws, the regulation and 
the management of intellectual properties are parts of this 
solution. 

The second one, according to the last section, proposes 
to improve the security level of actual SRAM FPGAs by 
configuration protection (bitstream encryption). Even if the 
two solutions must be complementary, in the following, we 
only address the latter approach. 

Xilinx proposes a security system (www.xilinx.com) 
based on a triple DES encryption scheme to protect the 
bitstream of the Virtex-II and Virtex-II Pro family device. 

Xilinx CAD software tool encrypts the bitstream using 
the powerful Triple Data Encryption (DES) algorithm 
before downloading the configuration inside the FPGA. 
Triple DES is the standard used by many governments for 
safe communication and by banks around the world for 
money transfers. This algorithm uses three 56-bits public 
keys. The designer can use random keys or choose their 
own-keys. 

Figure 1 shows the encryption/decryption system used 
by Xilinx to protect the configuration of Virtex-II devices. 

Figure 1 Xilinx Virtex-II triple DES encryption scheme.  
The bitstream is encrypted by the CAD tool during the 
EPROM storage. When power is switched on, a DES 
decryption circuit embedded in the FPGA decrypts the 
configuration. Three 56-bits keys are embedded in the 
FPGA and stored in a volatile memory with an external 
battery 

 

This system is relatively simple; it is just necessary to 
choose one option during the last step of the CAD process, 
the bitstream generation. First, a key file that describes the 
configuration of the three keys is programmed inside the 
FPGA. The customer chooses his own keys. Of course, it is 
not necessary to store the key file inside the configuration 
memory. It is not possible to encrypt two cores with 
different keys loaded into the same FPGA at the same time. 
The keys are stored in a dedicated SRAM memory inside 
the FPGA that can be backed up with a small battery  
(like a watch battery). 

Next, the configuration step is performed like a classical 
configuration without the bitstream encryption. In fact, the 
configuration stored in the external EPROM is encrypted. 
The FPGA contains a decryption circuit that automatically 
detects when the bitstream is encrypted and it decrypts the 
configuration before the SRAM bits are programmed. 

Xilinx does not give information about the necessary  
extra-time to decrypt the configuration. 

The Xilinx bitstream encryption scheme is efficient 
because without the correct key it is not possible to 
configure other chips with the encrypted bitstream. 
Nevertheless, when the device is configured, it is not 
possible to use partial reconfiguration or to do read-back 
and it is not possible to use bitstream compression. 

If the designer does not need security, the device can be 
configured with non-encrypted bitstream and the on-chip 
keys are simply ignored. 

This method has a strong drawback; it uses an external 
battery to save the key. It is poor for several reasons.  
This solution costs a lot of area on the board and even if the 
used battery is small it is necessary to add a socket, and the 
board area is a critical issue for embedded system. 
Moreover, this solution increases the board cost (2–3$ per 
board (Trimberger, 2004)) and reduces the system lifetime 
(particularly bad for long-life hardware applied in space 
applications, for example). 

It is necessary to improve the Xilinx solution by 
proposing a solution without the additional battery. 

Not long ago, Altera proposed a solution of bitstream 
encryption for the new Stratix-II device (Altera Coporation, 
2004). Figure 2 shows the encryption/decryption system 
used by Altera to protect the configuration of Stratix-II 
devices. 

Figure 2 Altera Stratix-II AES encryption scheme. Like Xilinx 
solution, the bitstream is encrypted by the CAD tool 
during the EPROM storage. When power is switched 
on, an AES decryption circuit embedded in the FPGA 
decrypts the configuration. One 128-bits key is 
embedded in the FPGA and stored in a non-volatile 
memory without an external battery 

 

Design security in Stratix-II device is enabled by  
encrypting the configuration bitstream using 128-bit AES 
and a non-volatile key. AES is a standard for encryption, 
developed to replace the DES standard. The 128-bits AES 
key makes it much more secure than DES (56-bits key size) 
and triple DES (three 56-bits key). Unlike Xilinx solution, 
the non-volatile key retains its information when the power 
is off, eliminating the need for a backup battery. 

Tom Kean of the Algotronix society proposes an 
attractive solution to answer the FPGA security problem 
(Kean, 2001; Kean et al., 2001). The first idea of Kean is to 
use a secret cryptographic key stored on an FPGA like 
Altera solution. He gives some ways to store this key as 
using a laser to program a set of links during manufacture. 
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As the secret key is only known by the FPGA, it must 
contain an encryption and a decryption circuit. However, 
contrary to Xilinx and Altera methods, the CAD does not 
change and just generates a classical bitstream. 

Figure 3 shows the encryption/decryption system used 
by Kean to protect the configuration of SRAM FPGA. 
Figure 3(a) shows the initial configuration of secure FPGA 
and Figure 3(b) shows the normal configuration of secure 
FPGA. 

Figure 3 Kean proposes encryption/decryption scheme 
embedded in the FPGA. (a) shows the initial 
configuration to encrypt the bitstream (inside the 
FPGA) and stores it in the EPROM and (b) shows the 
normal configuration of the FPGA when the power is 
switched on, the encrypted bitstream is decrypted 
inside the FPGA and configures it 

 

This solution has many advantages; it does not affect system 
reliability, requires no additional components and it does 
not require support from CAD software. In this system, 
nobody (the designer or the CAD tool) needs knowledge of 
the key. 

If Kean’s and Altera solutions overcome the battery 
limitation of the Xilinx solution, all the solutions have the 
same important disadvantages. In all the cases, the 
decryption circuit is embedded inside the FPGA. These 
circuits take FPGA silicon area normally reserved for the 
developed application. Therefore, the total application 
dedicated-area is reduced by these solutions, particularly  
in the case of Algotronix solution, since the encryption and 
the decryption circuits are both embedded in the same 
FPGA. 

Moreover, in all solutions the encryption and the 
decryption circuits are fixed, so it is not possible to upgrade 
them or to choose the encryption/decryption algorithm and 
architecture. It is a lack of flexibility for the system; it will 
be impossible to update it with new encryption algorithms, 
for example. 

In all solutions, the entire design is encrypted with the 
same encryption algorithm. However, such approach is very 
restrictive since it does not consider any security policy. 
Actual designs (owing to the high degree of application 
complexity) are based on numerous heterogeneous parts that 
do not present the same ‘security sensitivity’. Hence, the 
designer may want to partition his application in several 
parts and use different encryption/decryption algorithms to  
 
 

encrypt/decrypt these parts. For example, if the designer 
uses some free or very-easy-to-find IPs (Intellectual 
Property), it may be not necessary to encrypt these parts of 
the application. Other parts like interfaces, for example, do 
not need a high security level. On the other hand, the real 
designer’s IPs need a high security level. 

Finally, the three proposed solutions give only one fixed 
answer to the bitstream security problem and lack 
flexibility. 

Other solutions are proposed; most of them can be found 
in recent US Patents for example, Kelen and Burnham. 
(2000), Erickson et al. (2001), Mason et al. (2001) and Pang 
et al. (2002). Nevertheless, these solutions are not very 
different from Xilinx (www.xilinx.com), Altera 
(www.altera.com) or Kean (2001; Kean et al., 2001) 
solutions. 

If existing solutions are not very different one  
from another, it is mainly owing to the fact that they  
do not use the new features of SRAM FPGAs like  
partial reconfiguration, dynamic reconfiguration and  
self-reconfiguration. 

In the following section, we present the new  
self-reconfiguration capabilities of SRAM FPGA. 

4 New self-reconfiguration technique for SRAM 
FPGA 

According to previous sections, actual solutions to  
secure the SRAM FPGA bitstream are efficient, but lack 
flexibility. However flexibility, given by the reconfiguration 
capabilities, is the main advantage of the reconfigurable 
devices like SRAM FPGAs (particularly in comparison with 
other FPGAs or ASIC). This advantage is increasingly 
important with the new capabilities of SRAM FPGAs  
like partial reconfiguration, dynamical reconfiguration or 
self-reconfiguration. 

In Blodget et al. (2003) and Blodget and McMillan 
(2003) Xilinx presents a Self-Reconfiguring Platform (SRP) 
for Xilinx Virtex-II and Xilinx Virtex-II Pro devices.  
Self-reconfiguration extends the concept of dynamic 
reconfiguration. It assumes that dedicated circuits within  
the FPGA are used to control the configuration of  
the other parts of the FPGA. In this case, the FPGA  
is able to dynamically reconfigure itself under the  
control of an embedded microprocessor or controller. This 
microprocessor can be a soft-core like Xilinx Micro 
Blaze (32-bit RISC) or a hard-core like IBM PowerPC  
(32-bit RISC) embedded on the Xilinx Virtex-II  
Pro. To perform the dynamical reconfiguration, the 
microprocessor or the controller use a specific interface 
called ICAD (Internal Configuration Access Port). When 
the bitstream is stored within the FPGA, the FPGA 
embedded RAM (called BlockRAM in Xilinx Virtex 
devices) are used like small configuration cache. Figure 4 
presents a schematic view of the self-reconfigurable 
platform. 
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Figure 4 Schematic view of the self-reconfigurable platform 
SRP. The ICAP port is directly connected to the 
configuration array. It can partial reconfigure the 
different frame of configuration. The configuration 
controller can be a MicroBlaze soft core. The bitstream 
file can be provided from outside or inside the circuit. 
The BlockRAM can be used like configuration 
memory 

 

The Virtex ICAP is a version of the Xilinx Select Map 
programming port that is internally accessible to the 
configure FPGA logic. According to Fong et al. (2003)  
the ICAP, interface is fairly simple, consisting of separate 
eight-bit datapaths for reads and writes, write and chip 
enables, a busy signal and a clock input. The ICAP interface 
is physically located in the lower right corner of the  
Virtex-II FPGA, and can be seen using the Xilinx FPGA 
editor tool. When using the Select Map express 
configuration mode (data available every clock cycle), 
ICAP can be loaded with data without the need for 
handshaking. The ICAP throughput is limited to 50 Mbit/s. 

Xilinx proposes a tool to manage these new  
FPGA capabilities called XPART for Xilinx Partial 
Reconfiguration Toolkit. 

Some applications of self-reconfiguration have been 
done in Fong et al. (2003), Ulmann et al. (2004) and Hübner 
et al. (2004). In Ulmann et al. (2004), self-reconfiguration is 
used for CAN-bus management, and in Hübner et al. (2004) 
the same authors use self-reconfiguration and bitstream 
compression. 

In the following section, we present how the new 
solution to address the bitstream security problem  
takes advantage of the dynamic SRAM FPGA  
self-reconfiguration. 
 
 
 
 
 

5 A new solution to protect the SRAM FPGA 
bitstream 

5.1 Introduction 

This solution takes benefit of the new possibilities of 
reconfiguration of SRAM FPGAs to improve their security 
level without the drawbacks highlighted previously. 

The encryption and the decryption circuit must leave all 
the silicon area free for the developed application. 

The solution must use an embedded key in order  
to work without an extra battery; to store the key, a  
model close to Kean’s solution (Abraham et al., 1991; 
www.actel.com/products/rescenter/security/index.html) can 
be chosen. It is possible to use laser to engrave the key or 
use some antifuse elements to do a non-volatile key 
programming. 

A very important feature is also to give the designer the 
opportunity to choose the encryption/decryption algorithms 
and architectures. In this way, it is possible to adapt the 
encryption/decryption scheme according to the requested 
security level for the developed application. Furthermore, 
this feature enables to easily upgrade the system if a new 
efficient encryption/decryption algorithm is available. 

Finally, we address the security-sensitivity policy 
problem by allowing the designer to use different encryption 
algorithms for a single application. The Security-Critical 
Parts (SCP) of the application will only be encrypted. 

For test, we use a Xilinx Virtex-II Pro XCV2VP20 
FF1152 proto-board. 

5.2 Application security policy 

As the encryption/decryption scheme is costly owing to 
time, power consumption and takes silicon area, it is very 
interesting to adapt it according to the required security 
level of the application parts. 

All the solutions presented in Section 3 use a complete 
bitstream encryption with a single encryption algorithm. 
Nevertheless, a security application analysis can show that 
some parts of the application do not need protection 
whereas other parts need strong protection. These last parts 
can be security-sensitive part (global system security) or 
they can be the custom intellectual properties with high 
development cost, for example. We call these application 
parts Security-Critical Parts (SCP) and the other parts, like 
some communication protocol IPs or easy-to-find IPs, the 
No-Critical Parts (NCP). 

The designer must partition his application in  
function of the security level of the different parts. It is a 
security-oriented partitioning. He must choose the suitable 
encryption/decryption algorithm and architecture for the 
protection of the SCP bitstreams. The designer can choose  
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different encryption/decryption algorithms and architectures 
for several SCPs or he can choose the same for all. We think 
that it could be more security-efficient to choose different 
security features for the different SCPs. 

To understand our approach, in the following, two 
examples are given; process during the initial configuration 
step and process during the normal configuration step of the 
FPGA. In the examples, the application is partitioned into 
three different parts; two SCPs that need high security  
level (they are encrypted with two different encryption 
algorithms) and one NCP that does not need encryption.  
For the examples, each SCP bitstream is encrypted with a 
different algorithm but a solution with a same algorithm can 
be considered. The case with two SCPs is just an example 
and other configurations can be considered. 

5.3 Key management 

One feature is very important in our solution; the key 
management. It is mandatory that a pirate cannot access the 
keys used by the different decryption/encryption circuits. To 
prevent spy configuration, we use bitstream authentication 
with checksum. The circuit used to control the bitstream 
authentication is embedded in the FPGA on the JTAG port. 

Moreover, since in this solution, the decryption/ 
encryption algorithm is not fixed, it is necessary to store a 
large key. Indeed different algorithms do not use the same 
key size (for example the AES algorithm uses a 128-bits 
key, and the triple DES uses three 56-bits keys). In fact, 
among the n-key bits, the encryption/decryption circuits 
select m necessary bits. Since only the designer knows the 
position in the large key of the m chosen bits, it is a 
supplementary security barrier. With the large key 
knowledge necessary, the pirate must investigate to identify 
the effective key bits for the suitable algorithm. 

5.4 Security configuration controller 

Our solution uses the partial configuration and the dynamic 
self-reconfiguration of the FPGA. The management of  
such configuration process is complex, particularly for the 
self-reconfiguration. Moreover, several bitstreams are used 
while the application runs. In our system, there are three 
types of bitstream, 

• encrypted bitstream of a SCP 

• no-encrypted bitstream of a decryption circuit 

• no-encrypted bitstream of a NCP. 

The controller must be able to detect the different 
bitstreams. A bitstream signature (ID) gives the controller 
the bitstream characteristics (encrypted or not for example). 
These characteristics are used like processor instructions  
by the controller. According to the characteristics, the 
controller partial-configures directly the FPGA with the 
selected NCP bitstream or it partial-configures the FPGA 
with first the decryption circuit bitstream associated with an 
encrypted SCP bitstream before using self-reconfiguration 
to configure the FPGA with the decrypted SCP bitstream. 

The security configuration controller is based on a finite 
state machine to perform the configuration management.  
To handle the configuration sequence, the controller needs 
the external EPROM memory partitioning (the memory 
mapping). We can notice that this mapping can be complex 
in order improve the system security. For example the 
designer can interleave the data stored in the memory and 
mix the several encrypted and no-encrypted configurations. 
A configuration address register stores the memory 
mapping. 

The security configuration controller can be external 
like a dedicated CPLD or a microprocessor. However, it is 
also possible that this controller is embedded inside the 
FPGA, like in the case of Xilinx self-configuration system 
(Fong et al., 2003). In this last case, the configuration 
controller can be a soft-core microprocessor (like Xilinx 
MicroBlaze) or a hard-core microprocessor (like IBM 
PowerPC for Xilinx VirtexII-Pro devices). 

5.5 Initial FPGA configuration 

The initial FPGA configuration is performed in the 
laboratory or manufactory in order to store all the different 
bitstreams in the EPROM memory. The CAD tool performs 
the initial configuration. If there are SCPs in the application, 
the bitstreams of each encryption circuits are generated to 
use these circuits to encrypt the SCPs bitstreams. In the 
same way, the bitstreams of the decryption circuits are 
generated to use these circuits to decrypt the encrypted 
SCPs bitstreams. 

Figure 5 presents the encryption system when the FPGA 
is initially configured and the root configuration memory is 
programmed (initial configuration). 

Figure 5 Encryption scheme during the initial FPGA 
configuration. The bitstreams are stored in the  
EPROM from the CAD tool through the FPGA JTAG 
port. For the SCPs bitstreams, the FPGA is configured 
with encryption circuits to encrypt the bitstreams 
before being stored it in the EPROM. The NCP 
bitstream are not encrypted. 
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During the initial FPGA configuration, the first step consists 
of programming the root configuration memory with the 
non-encrypted parts. First, the NCP bitstreams are stored; in 
the example shown in Figure 5, there is only one NCP.  
For the same example, two decryption circuits will be used 
to decrypt the encrypted SCPs bitstreams. Therefore, the 
bitstreams of the two decryption circuits are stored in the 
EPROM. In Figure 5, after the first step there are three  
no-encrypted bitstreams stored in the EPROM; the NCP 
bitstream, the decryption circuit 1 bitstream (associated  
with the SCP 1) and the decryption circuit 2 bitstream 
(associated with the SCP 2). 

The second step is the storage of the encrypted 
bitstreams of the SCP 1 and SCP 2. First, it is necessary  
to configure the FPGA with the encryption circuit 1 in  
order to encrypt the bitstream of the SCP 1. Once the SCP 1 
bitstream is encrypted, it is stored in the root external 
EPROM. Since the SCP 2 needs other encryption circuit, it 
is not necessary to keep the encryption circuit 1 in the 
device. The FPGA is partial configured with the encryption 
circuit 2; the SCP 2 bitstream is encrypted and stored in the 
EPROM. 

Of course, it is necessary for the CAD to manage partial 
reconfiguration like in Xilinx proposition (Blodget and 
McMillan, 2003). 

At the end of the initial configuration step, the root 
configuration memory contains the encrypted bitstreams of 
SCP 1 and SCP 2, the no-encrypted bitstream of the NCP 
and the no-encrypted bitstreams of the decryption circuits 
required to decrypt SCP 1 and SCP 2 (decryption circuit 1 
and decryption circuit 2). 

5.6 Normal FPGA configuration (when power  
is switched on) 

When power is switched on, the SRAM FPGA must be 
configured since this inside configuration memory is 
volatile. Figure 6 shows the decryption-configuration 
system when the FPGA is configured from an external 
EPROM memory that stores the configuration (normal 
configuration). The configuration controller manages the 
configuration process. 

The FPGA configuration process works as follows: 
First, the FPGA is configured with the decryption circuit 1 
bitstream. Then the FPGA uses it to decrypt the encrypted 
SCP 1 bitstream and self-configures the SCP 1. As we can 
see on Figure 6, the SRP (Self-Reconfiguring Platform, see 
Section 4) is used to perform self-reconfiguration. Once the 
SCP 1 bitstream is decrypted and the FPGA is configured 
with the SCP 1 circuit, it is not necessary to keep the 
decryption circuit 1. The decryption circuit 2 replaces  
(with FPGA partial reconfiguration) it in order to decrypt 
the encrypted bitstream of SCP 2. In the same way,  
after the decryption and the self-configuration of the  
SCP 2 bitstream, it is not necessary to keep the decryption 
circuit 2. 
 
 

Figure 6 Decryption and self-configuration scheme during the 
normal FPGA configuration. The FPGA is  
partial-configured by the decryption circuit 1 or 2 to 
decrypt the encrypted SCP 1 and SCP 2 bitstreams.  
The FPGA is self-configured with these decrypted 
bitstreams. The self-reconfiguration is performed by 
the SRP. At the end of the configuration process, the 
FPGA is configured with the NCP bitstream 

 

After this first phase, the FPGA is configured with the  
SCP 1 and the SCP 2 circuits. The last step consists in 
configuring the FPGA free area with the other application 
parts that have not an encrypted configuration; so with the 
NCP bitstream. 

Finally, the FPGA is configured with all the application 
parts; the SCP 1, the SCP 2 and the NCP. There can be  
any encryption or decryption circuit configured in the 
FPGA. 

5.7 Configuration controller finite state machine 

As described previously, the configuration controller is 
developed with a finite state machine. With the knowledge 
of the memory mapping, the configuration management 
finite state machine is relatively simple. The configuration 
controller is used only for normal FPGA configuration when 
power is switched on. The initial configuration is processed 
by the CAD tool. 

Figure 7 shows the three-global-states used by the 
configuration controller. Table 2 describes the actions 
associated to the states of the configuration controller.  
The first state of this three-states FSM is an idle state.  
To change state the configuration controller waits for a start 
signal. This signal is the begin-signal of the normal 
configuration process. 
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Figure 7 Configuration controller finite state machine. It is a 
three-global-states machine. The states represent 
several actions. The active state depends if the 
bitstream is encrypted or not 

 

Table 2 States description of the configuration controller 
FSM 

State name Actions 

Idle Wait start 
Configure the FPGA with selected bitstream* 
using partial-configuration 
Update the configuration address register 

Loading 

*The selected bitstream can be the no-encrypted 
bitstream of a decryption circuit or a NCP 
Start the decryption algorithm and load the 
corresponding SCP bistream* on the FPGA 
Update the configuration address register 

Loading and 
decrypting 

*The selected bitstream is an encrypted bitstream 

Once in the second state, the loading state, the configuration 
controller changes states according to the type of bitstream. 
If the bitstream is not encrypted the current state is the 
second state. In this state, the normal configuration  
of the FPGA is performed. If the bitstream is encrypted  
(so it is a SCP bitstream), the current state is the ‘loading 
and decrypting’ state. In this state, the configuration 
controller loads first the decryption circuit bitstream inside 
the FPGA before loading the encrypted bitstream of a SCP. 

The machine returns to the idle state when all the 
application is loaded inside the FPGA. 

This section has shown the main technological 
characteristics of our bitstream protection system for SRAM 
FPGA. The following sections give the drawbacks and 
advantages of our solution and compare it with the different 
solutions (presented in Section 3). 

6 Drawbacks and advantages of the proposed 
solution 

If this method permits to overcome the limitation of other 
proposed solutions, it has, however, some drawbacks. 

The first drawback is the relative complexity of the 
method, since it is necessary to manage the partial 
reconfiguration and dynamic self-configuration. Most of the 
FPGA manufacturers do not have the technology and the 
CAD tools to manage these types of configurations but 
Xilinx, which proposes an efficient tool for such needs. 

The decryption circuit can have several sizes according 
to the algorithm and the implementation. For example, 
several works give comparisons of the hardware 
performance of the different AES final candidates (MARS, 
RC6, Rijndael, Serpent or Twofish for example) using 
FPGA (Dandalis et al., 2000; Elbirt et al., 2000; Gaj and 
Chodowiec, 2000; Weaver and Wawrzynek, 2000). All 
these works use the Xilinx Virtex as the reconfigurable 
target. The Tables 3 and 4 compare the results of these 
studies for the area requirement (one Virtex slice 
corresponds to two four-inputs LUTs, two flip-flops and one 
carry chain) and time performance (throughput). 

Table 3 Area requirement of FPGA implementations of AES 
final candidates 

No. of slices of the cryptographic core 

Algorithm 
Dandalis et al. 

(2000) 
Elbirt et al. 

(2000) 
Gaj and Chodowiec 

(2000) 

Rijndael 4312 5302 2902 
Serpent 1250 7964 4438 
RC6 1749 3189 1139 
Twofish 2809 3053 1076 
MARS 4621 – 2737 

Table 4 Time performance of FPGA implementations of AES 
final candidates 

Throughput (Mbit/s) 

Algorithm 
Dandalis et al. 

(2000) 
Elbirt et al. 

(2000) 
Gaj and Chodowiec 

(2000) 

Rinjdael 353.0 300.1 331.5 
Serpent 148.9 444.2 339.4 
RC6 112.9 126.5 103.9 
Twofish 173.1 119.6 177.3 
MARS 101.9 – 39.8 

The performances (time and area) showed in the two tables 
are different for each work. Because the architectures 
chosen, for the different studies, have different structures 
(loop unroll, pipeline and sub-pipeline). All these results are 
given only for an encryption core without the key-setup 
circuit. Nevertheless, this circuit must be considered 
because it can take area (slices). The Table 5 shows the 
number of slices for key-setup circuit of the five AES final 
candidates and the relative area percentage of the total area 
requirement (encryption core and key-setup circuits). 

According to these results, it is significant to consider 
the key-setup circuit in the area requirement. Finally,  
the three tables show that a same decryption standard  
(AES in this example) can be performed with several 
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algorithms and each algorithm can have different 
implementations. Therefore, it is necessary to give all the 
possibilities to the designer, and our solution gives this 
flexibility. Moreover, the studies Dandalis et al. (2000), 
Elbirt et al. (2000), Gaj and Chodowiec (2000) and Weaver 
and Wawrzynek (2000) are throughput oriented, therefore, 
the area (or the number of used FPGA resources) is  
not the main constraint. In our system, the out data  
of the decryption circuit are used to self-reconfigure the 
FPGA. In the case of Xilinx technology, the ICAP interface 
limits the throughput to 50 Mbit/s. This throughput is 
widely inferior to most of the Table 4 results. Therefore, it 
is possible to develop decryption algorithm with area (used 
resources) constraint. Actually, the number of Virtex slices 
used for the cryptographic cores given in Table 3 must  
be reduced. For example, in our Xilinx proto-board, the 
Virtex-II Pro XC2VP20 contains 9280 slices, according to 
the Table 3, with such device, the Rijndael implementation 
of AES use from 31% to 57%. It is probably necessary to 
limit the number of used resources since the FPGA is not 
configured only with the decryption algorithm. 

Table 5 Area requirement of FPGA implementations of AES 
final candidates 

No. of slices of the 
key-setup circuit  Percent of the total area 

Algorithm 

Dandalis 
et al. 

(2000) 

Weaver and 
Wawrzynek 

(2000) 

Dandalis 
et al. 

(2000) 

Weaver and 
Wawrzynek 

(2000) 
Rijndael 1361 128 24 14 
Serpent 1300 2060 51 35 
RC6 901 290 34 15 
Twofish 6554 1260 70 48 
MARS 2275 50 33 3 

The configuration controller can be complex. Its complexity 
depends on the number of SCPs in the application.  
This number is correlated to the application security 
partitioning. The costs of a larger root memory and a 
complex configuration controller are the hardware overhead 
costs of this method but they represent the origin of its 
flexibility. The system security has always costs that are 
necessary to evaluate in order to choose the best solution 
according to the required security level. 

Since it is necessary to first configure the decryption 
circuit before the real configuration of each SCP, this 
method can spend time when the system is powered up. 
Nevertheless, today the SRAM FPGA configuration is 
increasingly faster (about 10 millisecond for a partial 
reconfiguration for a Xilinx Virtex 1000-E device 
(Delahaye et al., 2004)). 

This method has many very interesting advantages. 
First, the encryption/decryption circuits do not take FPGA 
application-dedicated resources, since when a decryption 
circuit has been used it is removed from the FPGA.  
The FPGA resources initially used to perform the 
decryption circuit are free for other uses. 

We choose, like Kean (2001; Kean et al 2001), to embed 
the key inside the FPGA in order to have non-external  
extra-battery. 

One of the main advantages of this method is the 
increase of flexibility. The designer can partition the 
application according to the required security level. 
Therefore, if just a small part of the application needs a 
strong security, the system can be very simple (just one 
small SCP). The designer has the possibilities to choose the 
suitable algorithms and architectures for the encryption/ 
decryption circuits. It is possible to adjust the security level 
according to the application constraints. 

Moreover, the designer can upgrade his application and 
the security scheme with the same reconfigurable hardware. 
In this way, it is possible to take advantage of the latest 
improvements of the security field. 

7 Comparison of the different actual solutions 

Section 3 of this paper has shown different actual  
solutions of FPGA protection against cloning and  
reverse engineering. It is interesting to compare these 
different solutions with our solution for several aspects; 
security level, encryption flexibility, reconfiguration 
flexibility and complexity. Table 6 presents the result of 
comparisons. 

Table 6 Area requirement of FPGA implementations of AES 
final candidates 

 Security 
Encryption 
flexibility 

Reconfiguration 
flexibility Complexity 

Actel 

Antifuse 

High – Any Easy 

QuickLogic 

Flash 

High – Any Easy 

Xilinx 

Triple DES 

Middle Any Low Easy 

Altera 

AES 

Middle Any Low Easy 

Algotronix 

T. Kean 

Middle Any Low Middle 

UBS/UMASS 

L. Bossuet 

Middle+ High High Complex 

According to the table, we think that the security  
level is higher for antifuse or flash logic, but we think  
that it is necessary to better expertise the real security level 
of bitstream encryption system. The real advantage  
of our solution is the flexibility of encryption and 
reconfiguration. Moreover, with a real application security 
policy (i.e., security-oriented application partitioning), our 
solution proposes a higher security level that the other 
solution for SRAM FPGA. Nevertheless, our solution 
complexity is higher since it is necessary to manage the 
partial and self-reconfiguration. 
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8 Conclusion 

Since the SRAM FPGAs are increasingly important  
for the electronic industry, it is necessary to improve the 
security level of such devices. Although some works  
have already proposed solutions to improve this security 
level, we think that is it possible to investigate more this 
domain. 

In this paper, we propose a new solution to prevent 
piracy against SRAM FPGAs bitstream. Our contribution is 
to use the latest developments of configuration technique in 
order to improve the security system flexibility. The use of 
self-reconfiguration allows using the decryption circuit out 
data to configure the decrypted bitstream. Unlike the actual 
bitstream encryption scheme (Xilinx or Altera solution), our 
solution is flexible; the designer can choose the different 
encryption/decryption algorithms and architectures. He can 
easily update the system with new security feature. 
Moreover, we propose to the designer to apply a true 
security policy for the applications, by security-oriented 
partitioning. 

We think that the security problem is a very important 
issue for FPGAs and for the reconfigurable systems on chip. 
Probably in the near future, there will be more and more 
works done about this subject. 
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