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Abstract 

 
With the new and powerful Field Programmable 

Gate Array (FPGA) families, new possibilities have 
been opened. One of these features is the possibility of 
reconfiguring a section of the FPGA while the rest is 
working. Moreover, this fixed part could be 
responsible for reprogramming the reconfigurable 
part, either because a change in functionality is 
required or because a new version of the hardware 
needs to be implemented. This paper shows how an 
FPGA system based on an Open Source OpenRISC 
1200 microprocessor takes advantage of this feature to 
perform the Secure Download of the firmware and the 
hardware needed to run an application. In this 
particular case a Reed-Solomon Encoder and a 
Cryptographic application were used to demonstrate 
the viability of the scheme. 

 
 
1. Introduction 
 

The incredible growth of FPGA capabilities in 
recent years and the new features included on them has 
opened many new investigation fields. One of the 
more interesting ones concerns Partial Reconfiguration 
and its possibilities. This feature allows the device to 
be partially reconfigured while the rest of the device 
continues its normal operation.  

In a system without Partial Reconfiguration 
capabilities the responsibility of reprogramming the 
FPGA with a new configuration is taken by an external 
device, usually a microprocessor[1]. This device 
downloads the bitstream which contains the new 
configuration inside the programmable device through 
its configuration pins. It is not unusual that the new 
bitstream has to be transmitted to the board through a 
communication channel[2] (Internet, RS232, PCI, 
Wireless,…). This transmission also requires external 

hardware controllers that have to be physically 
connected on the board. 

With the capacity of the new FPGA families 
(millions of equivalent gates) it is not difficult to 
imagine a new scenario where all the external logic is 
implemented inside the FPGA, including the 
microprocessor and the hardware controllers, saving 
area and money. 

Using this approach, the reconfigurable area can be 
seen as an FPGA inside the FPGA, where the fixed 
part is responsible for controlling and securing the 
reconfigurable one and reprograms it when it is 
required [3].   

This paper proposes an architecture based on open 
source cores in order to develop a functional auto-
reconfiguring platform. The viability of Open-Source 
Cores has been discussed in previous works[4][5][6]. 
The main element of the architecture is a soft-core 
processor (OpenRISC 1200) which takes a bitstream 
from the communication channel, a remote TFTP 
server in this case, and partially reprograms the FPGA 
in a secure way. 

In chapter 2 we will describe the overall system 
architecture that allows the partial reconfiguration. 
Chapter 3 exposes the Xilinx Partial Reconfiguration 
Flow that generates the partial bitstreams needed to 
partially reprogram the system. This chapter also 
describes the ICAP port which is physically 
responsible for reprogramming the FPGA. Chapter 4 
shows the system implementation describing all the 
parts that compose the system. In Chapter 5 the 
viability of this scheme will be demonstrated by 
applying it to two examples, a Reed-Solomon Encoder 
and a Cryptographic application. Finally, the 
conclusions,  
results, and future work are presented. 

 

 



2. System Architecture 

The proposed architecture is composed of the 
elements shown in Figure 1. The most significant 
element is the microprocessor. In this particular case 
an open-source OR1200 core was selected to be the 
heart of the system.  
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Figure 1. System Architecture 

 
The soft-core is responsible for controlling the 

communication channel, taking the data from it, 
decrypting and checking the bitstream using the DES 
and CRC cores, and reprogramming the reconfigurable 
area using the ICAP controller. The configuration data 
is transmitted to the system through the 
communication channel, this channel could be for 
example, Ethernet, RS232, 802.11, Bluetooth, … 

The partial bitstream contains not only the custom 
hardware, it also has block rams configured as ROM 
with the firmware needed to run the application.  

When the reconfigurable part is reprogrammed the 
OR1200 jumps to the new firmware and the execution 
of the application begins. 

There are two ways to exit from the current 
application. The first one is when the application runs 
only during a limited time or a limited number of 
iterations and then returns the control to the 
Reconfiguration Manager. The second one is the most 
common and is when the OR1200 receives an 
interruption from the communication controller with a 
“stop” command. When this happens, the OR1200 
jumps again to the subroutine that controls the 
reconfiguration process. Then you can download a 
new partial bitstream or restart the application 
returning from the exception to the point where the 
software was before. 

 
3. Self-Reconfiguration 
 

The proposed architecture bases its functionality on 
the possibility of reconfiguring one part of the device 
while the other part is working. The fixed part is 
responsible for reprogramming the reconfigurable part 

using the ICAP port included by Xilinx in some of 
their FPGA families. To perform this task some 
considerations must be followed when designing the 
system. 

 
  3.2. Partial Reconfiguration Flow 
 

In order to develop a functional system with self-
reconfiguration capability, Partial Reconfiguration 
Flow must be followed as described in [7]. This flow 
allows the generation of partial bitstreams which 
contains configuration information regarding an FPGA 
area while the rest is not affected during the 
programming.  

The first step is to create two modules including all 
the elements which compose the design. One module is 
the fixed part containing the soft-core processor with 
the boot firmware, the peripheral controllers, the ICAP 
port controller and the Security Controller. In the other 
module the application with its associated firmware is 
included.  

Because two applications are going to be tested, 
two different modules have to be developed, one 
containing the Reed-Solomon application and another 
containing the Cryptographic Application. Both 
modules must have the same ports in order to keep the 
interface between the fixed and the reconfigurable part 
during the partial reconfiguration. 

Once the two modules are designed and the 
interface between them is well defined, the top files are 
written. The top files only contain modules instantiated 
as black boxes, that means, only their interface is 
declared. The connections between these modules have 
to be done using bus macro elements. The bus macro is 
a critical element in the Partial Reconfiguration Flow. 
The bus macro is just a hard macro locked in a fixed 
position. When the new configuration is loaded, the 
hard macro keeps the connections between the fixed 
part and the new reconfigurable module.  

Two top files have to be developed, one for each 
user application. Both have to be equal, the only 
difference is the user application instantiation. In each 
different top file the associated user application must 
be instantiated. 

The next step consists of writing the UCF constraint 
file. In this file the location of the external pins, the 
positions of the bus macros , and the area constraints 
must be specified. 

The system description files and the constraints file 
are the input to the Modular Design Flow [8].  

 
 
 



The Modular Design Flow is composed of three 
phases: 

 
• Initial Budgeting Phase 
• Active Module Implementation 
• Final Assembly 

 
During the Initial Budgeting Phase the positioning 

of all modules and I/O pins is done. The result is a 
NGD file with all modules instantiated as unexpanded 
blocks. 

 

 
Figure 2. On the left side you can see the area 
constraints. On the right side, the design after 
the place and route process. The way in which 
the area boundary is only crossed by the bus 
macro primitives can be seen. 
 

In the second phase each module that composes the 
system is mapped and routed inside the area bounds 
described in the constraints file. The result is a partial 
bitstream which can be used to partially reprogram the 
system. The module implementation is also published 
in the pims directory to be an input in the final 
assembly phase. 

The final step is the final assembly phase where the 
top file with the unexpanded blocks and the 
implementation of the modules, resulting from the 
second phase, are combined to get an initial bitstream.  

After the process, an initial bitstream for each top 
file, and a partial bitstream for each reconfigurable 
module are obtained. 

These partial bitstreams will be transmitted to the 
system and used for self reconfiguration through the 
ICAP Interface. 
 
3.2. ICAP 

 
The fixed part of the FPGA needs a mechanism to 

reprogram the reconfigurable part. This mechanism is 
provided by Xilinx in some of their FPGA families and 
is called “Internal Configuration Access Port” (ICAP). 
The ICAP interface is a subset of the SelectMap 

interface, and it allows the internal logic to access the 
configuration data of the FPGA.  

The ICAP interface is located in the lower right 
hand corner of the FPGA, so this introduces a 
restriction to our system. The fixed part responsible for 
reprogramming the FPGA must be located on the right 
hand side.  

The ICAP can accept data up to 50Mhz without 
handshaking protocol, but by controlling the CCLK 
input data can be downloaded at lower rates. The ICAP 
port only accepts partial bitstreams because it cannot 
stop the FPGA during the reconfiguration process.  

 
4. System Implementation 
 

The system was implemented over a Celoxica 
RC203 development board with a Virtex-II 
X2CV3000FG676 FPGA.  

The fixed part was implemented as explained before 
in the right hand side of the FPGA. This part uses an 
Ethernet link as a communication channel to download 
the bitstreams from the host PC. The Security 
Controller is made up of a DES cryptographic core, 
and a CRC calculator. The OR1200 soft-core takes the 
data from the communication controller and sends it to 
the Security Controller to decrypt and check the data. 
Then the data is applied to the ICAP through the ICAP 
controller.  

To demonstrate the viability of the scheme two 
applications are shown: one based on a Reed-Solomon 
Encoder, and the other on a data encryption and 
hashing accelerator composed by an AES core of 192 
bits key length and a MD5 hash algorithm. 

 
4.1. OpenRisc 1200 
 

The chosen microprocessor was an OpenRISC1200 
core. This soft-core is freely distributed under an 
LGPL license at OpenCores website [9]. The OR1200 
[10] is a 32-bit scalar RISC with Harvard architecture 
with a 5-stage integer pipeline intended for embedded, 
portable and networking applications.  

One of its main characteristics is its configurability. 
Using a configuration file you can add or remove more 
than ten optional units as data and instruction caches, 
memory management unit (MMU), power 
management unit, and many others. 

The basic communication channel of the platform is 
an OpenCores Wishbone Compatible Bus [11]. It has 
synchronous data and address buses with multiple 
masters and slaves. An arbiter decides in each moment 
which master takes the control of the bus. 



OR1200 includes a complete SDK based on GNU 
tools with a GCC compiler, Binutils containing linker 
and assembler and GDB for debugging purposes. 
Many operating systems have been ported to OpenRisc 
Architecture, eCos, uClinux, Linux, RTEMS, 
microC/OS-II. Also different C libraries have been 
ported to OpenRISC architecture like uClibc or newlib.  

Even though uClinux and eCos over OR1200 have 
run successfully, for this work no operating system 
was used, since our embedded applications do not 
require it. ANSI C code and newlib to support basic C 
libraries, as well as assembler code to start the 
execution of the program were used. 

 
 4.2. Security Controller 

 
The configuration data transferred from a remote 

source contains valuable information which has to be 
secured. The data has to be secured in three ways. First 
the data has to be encrypted to protect the data from 
unauthorized readers. If the bitstream is not encrypted, 
it can be copied or reverse engineered. Second, the 
data has to be protected from communication errors or 
modifications during the transmission, this could be 
achieved by using a CRC and optionally with a digest 
algorithm. Third, the data source has to be 
authenticated to ensure that the source of the data is 
valid. This can be done using certificates based on 
public key cryptography. 

The implemented Security Controller performs the 
first two operations: it decrypts the data using a 64 bit 
DES [12] algorithm and checks its integrity using a 
CRC. The selected CRC method was a 16-bit CRC-
CCITT specification. This CRC calculation is applied 
to each block of 64 bits, obtaining data packets of 80 
bits.  

These packets are sent to the FPGA through the 
communication channel and checked and decrypted by 
the Security Controller. If an error is detected, the 
process is aborted and the initial configuration is 
loaded to return to the initial state. 

 
4.3. ICAP Controller 

 
The ICAP port is the element provided by Xilinx 

that allows the Self- Reconfiguration in Xilinx devices.  
In order to manage the ICAP controller from the 

OR1200 microprocessor, a controller connected to the 
system bus has been developed. This controller has 
two registers mapped into the memory of the 
microprocessor, a data register where the data to be 
written/read to the ICAP port is contained, and a 

control register to indicate when the transference has to 
begin or when it has finished.  

 
5. Application Test 
 

To test the system two applications were run. One is 
based on a Reed-Solomon Encoder core downloaded 
from OpenCores. The second one is a Cryptographic 
Application based on an AES [13] algorithm of 192 
bits key length and an MD5 [14] digest algorithm. 

At the beginning the FPGA is configured with 
initial configuration data containing the Reed-Solomon 
Application. This configuration data is stored in a 
Smart Media Flash Memory. At the power up, a CPLD 
reads the initial configuration from the Flash and 
applies it to the FPGA performing a full 
reconfiguration.  

When the system starts up, a menu is displayed 
through the RS232 interface. 

The menu has three different options. The first one 
is to run the user application stored in the 
reconfigurable area. The second is to reconfigure the 
FPGA with a new partial bitstream. The last option is 
to download from a remote TFTP server a new 
program in the external ZBT SRAM and run it. 

The partial bitstreams transmitted to the FPGA are 
120 KB in length. The transmission time of the data 
over Internet depends on where the server is located. 
When the TFTP server is in the same LAN segment, 
the time is in the order of milliseconds, whilst the 
server is not in the same LAN segment the 
transmission time is not predictable, depending on the 
net status. The self-reconfiguration itself takes 19 
milliseconds to be completed. 

Selecting the first option, the application stored in 
the initial bitstream, in this case the Reed-Solomon 
application, can be executed. By selecting the second 
option the Cryptographic application could be 
downloaded to the FPGA using the ICAP port.  

Once the system is reprogrammed, the menu 
appears again through the RS232 link and a new 
bitstream can be downloaded or a jump to the new 
application just downloaded can be made. After the 
user application is finished, the control returns to the 
boot menu. If the application is an infinite loop, which 
is very common in an embedded system, sending a 
“stop” command through the communication channel 
exits the loop and jumps to the boot menu again. 

 
 
 
 



5.1. Reed-Solomon Encoder 
 

The initial bitstream which is loaded in the FPGA at 
the start contains a Reed-Solomon Encoder application 
and its associated software.  

Reed-Solomon [15] are block-based error 
correcting codes with applications in digital 
communications and storage. There is a wide range of 
different Reed-Solomon codes depending on the 
number of bits taken as input and the number of 
redundant bits added. In this case the core implements 
(n, k) code where n-k = 16 (8 byte error correction 
code). The selected code length was (255,239) which 
is one of the most used ones, for example many 
popular standards such as G709, DVB1 and DVB2 use 
it.  

The application software receives a block from the 
communication channel, encodes it using the Reed-
Solomon core and sends the result back through the 
channel.  

The application takes up 456 slices and 3 block 
RAMS containing the associate software needed to run 
the application. This area is roughly 25% of the 
reconfigurable area.  

 
5.2. Cryptographic Application 

 
The other selected application is a Cryptographic 

Application made up of an AES core of 192 bits key 
length and an MD5 digest algorithm. As in the 
previous example, the partial bitstream also includes 
the associated software needed to test the application.  

The Cryptographic Application takes a block, 
calculates the hash of the block and applies the AES 
algorithm over the concatenation of the block with the 
hash. Then, it decrypts the block, recalculates the hash 
and compares it with the original. If they are equal the 
test is OK, if not an error message is displayed through 
the communication channel. 

The AES algorithm plus the MD5 algorithm take up 
954 slices and 3 block RAMS for the application 
software, approximately 45% of the reconfigurable 
area. 
 
6. Cost Saving Analysis 

 
The first point that has to be taken into account to 

compare the two approaches is the amount of area 
needed to support this scheme in the FPGA. 

The number of slices used by the SCP, the Security 
Controller, the ICAP controller and the 
Communication Controller is 3090, for a VirtexII 
FPGA. Assuming the number of slices the system 

occupies is independent of the FPGA size whilst the 
family doesn’t change, the smallest FPGA needed to 
store the system is an XC2V1000 with 5120 slices. 
Therefore, the system has 2030 slices free for the 
reconfigurable area.  

The price Xilinx offers for an XC2V1000 for high 
volumes is around 100$ depending on the encapsulate 
type and the speed grade.  

The economic cost of the system using a traditional 
architecture is made up of microprocessor, 
communication controller and an FPGA, a smaller one 
in this case.  

A 32 bit microprocessor in the market costs about 
15$ depending on the performance of the 
microprocessor. The communication controller 
(Ethernet, RS232,…) cost is about 2$ each. Finally, the 
price of the cheapest FPGA required to fit in the design 
(XC2V500 with 3072 slices) is roughly 80$.  

As can be seen, the economic cost of the parts for 
the design is very similar for both approaches, but 
there are other considerations to take into account.  

Using our approach, the PCB is made up of only 
one chip, instead of four. That is translated into an 
economic saving in the PCB design and 
manufacturing, and also in the size of the PCB, which 
in this case is smaller than using a traditional scheme. 

In this case the FPGA family used was a  VirtexII, 
which is the most expensive one sold by Xilinx. Using 
for example a Spartan3 or a Virtex4 family the cost of 
the FPGA will be significantly smaller. Using these 
FPGA families and this new scheme, the economic 
cost of the system’s parts could be reduced in a 
significant percentage. 
 
7. Results 
  

The area for the fixed part of the system is 
presented in Table 1: 

 
Table 1. Synthesis results 
     Slices 

OR1200 2184 
Security Controller 386 
ICAP controller 14 
RS232 Controller 440 
Ethernet Controller 66 
Total 3090 

 
 



This area represents 60% of the total FPGA 
resources using an XC2V100 FPGA. Therefore, up to 
40% of the FPGA could be freely use for the 
reconfigurable modules depending on the 
floorplanning. Using a bigger FPGA, like an 
XC2V3000 FPGA, the area for the reconfigurable part 
could be up to the 80% of the device. 

Another important data to take into account is the 
partial reconfiguration time. Ignoring the bitstream 
transmission time that depends on the communication 
channel and its status, the time is made up of two 
different times. The first one is the time the system 
spends decrypting and checking the integrity of the 
received data and the second one is the proper 
reconfiguration time of the FPGA.  

The system clock frequency is 25 Mhz. The DES 
algorithm takes 16 cycles decrypting a 64 bits block. 
The CRC takes only 1 cycle to perform the operation. 
Although the ICAP can accept data up to 50Mhz, this 
throughput is reduced because the data has to be taken 
from the memory and writen to the ICAP controller 
connected to the microprocessor which uses a shared 
Wishbone bus for instructions and data. This process is 
slow and makes the ICAP to receive a data every 20 
clock cycles. Other architectures to solve this problem 
have being studied, but the most suitable would be a 
bitstream cache directly connected to the ICAP, to 
avoid accesses to the main memory. The measures 
gives that the whole reconfiguration takes 115 ms.  

 
8. Challenges and Future Work 
 

One of the greatest problems when facing Self 
Reconfiguration over Xilinx devices is the lack of tools 
to simplify the flow. One of the most important things 
to be done in this field is designing tools that help to 
design a self reconfigurable system. There are some 
initiatives trying to solve this problem such as [16]. 
Another problem is that the commercial boards 
available on the market don’t help the designer 
because the pin assignment is not appropriate for a 
partial reconfiguration flow since the pins driven  by 
each module of the design have to be locked in the 
area occupied by that module. Future work in Partial 
Self Reconfiguration has to be focused on solving 
these two main problems. 

Our future work will be aimed at supporting public 
cryptography capabilities to the system using an RSA 
core. This will allow making secure key session 
interchange and authentication of the data source. 

Another step will be to create a graphical tool that 
helps to perform all these tasks in an easy way. Now 
all the process is automated using batch files, the idea 

is to make it simpler providing a graphical tool and a 
set of libraries and APIs that simplify the tasks of 
developing a complete system on an FPGA making 
possible to companies to use this architecture in a 
easiest way. 

 
9. Conclusions 
 

In this paper a secure architecture based on Open-
Source cores has been presented. The capacity of new 
FPGA families (millions of equivalent gates) makes it 
possible to implement the whole system inside them, 
not requiring external device controllers or peripherals. 
The FPGA keeps its reconfiguration capability by 
using an area as an FPGA inside the FPGA. This 
reconfigurable area is reprogrammed by using the 
ICAP port by the FPGA itself.  

In this scheme the partial bitstream is made up of 
the software and hardware needed in order to run the 
application. An OR1200 soft-core processor takes the 
bitstream from the communication channel and 
reprograms the reconfigurable part of the FPGA in a 
secure way. The viability of this approach was tested 
with the implementation of a Reed-Solomon encoder 
and a Cryptographic application. 
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