
A Secure Self-Reconfiguring Architecture based on Open-Source Hardware

Javier Castillo, Pablo Huerta, Victor López, José Ignacio Martínez
Universidad Rey Juan Carlos, Móstoles, Spain

{javier.castillo, pablo.huerta,victor.lopez,joseignacio.martinez}@urjc.es

Abstract

With the new and powerful Field Programmable

Gate Array (FPGA) families, new possibilities have
been opened. One of these features is the possibility of
reconfiguring a section of the FPGA while the rest is
working. Moreover, this fixed part could be
responsible for reprogramming the reconfigurable
part, either because a change in functionality is
required or because a new version of the hardware
needs to be implemented. This paper shows how an
FPGA system based on an Open Source OpenRISC
1200 microprocessor takes advantage of this feature to
perform the Secure Download of the firmware and the
hardware needed to run an application. In this
particular case a Reed-Solomon Encoder and a
Cryptographic application were used to demonstrate
the viability of the scheme.

1. Introduction

The incredible growth of FPGA capabilities in
recent years and the new features included on them has
opened many new investigation fields. One of the
more interesting ones concerns Partial Reconfiguration
and its possibilities. This feature allows the device to
be partially reconfigured while the rest of the device
continues its normal operation.

In a system without Partial Reconfiguration
capabilities the responsibility of reprogramming the
FPGA with a new configuration is taken by an external
device, usually a microprocessor[1]. This device
downloads the bitstream which contains the new
configuration inside the programmable device through
its configuration pins. It is not unusual that the new
bitstream has to be transmitted to the board through a
communication channel[2] (Internet, RS232, PCI,
Wireless,…). This transmission also requires external

hardware controllers that have to be physically
connected on the board.

With the capacity of the new FPGA families
(millions of equivalent gates) it is not difficult to
imagine a new scenario where all the external logic is
implemented inside the FPGA, including the
microprocessor and the hardware controllers, saving
area and money.

Using this approach, the reconfigurable area can be
seen as an FPGA inside the FPGA, where the fixed
part is responsible for controlling and securing the
reconfigurable one and reprograms it when it is
required [3].

This paper proposes an architecture based on open
source cores in order to develop a functional auto-
reconfiguring platform. The viability of Open-Source
Cores has been discussed in previous works[4][5][6].
The main element of the architecture is a soft-core
processor (OpenRISC 1200) which takes a bitstream
from the communication channel, a remote TFTP
server in this case, and partially reprograms the FPGA
in a secure way.

In chapter 2 we will describe the overall system
architecture that allows the partial reconfiguration.
Chapter 3 exposes the Xilinx Partial Reconfiguration
Flow that generates the partial bitstreams needed to
partially reprogram the system. This chapter also
describes the ICAP port which is physically
responsible for reprogramming the FPGA. Chapter 4
shows the system implementation describing all the
parts that compose the system. In Chapter 5 the
viability of this scheme will be demonstrated by
applying it to two examples, a Reed-Solomon Encoder
and a Cryptographic application. Finally, the
conclusions,
results, and future work are presented.

2. System Architecture

The proposed architecture is composed of the
elements shown in Figure 1. The most significant
element is the microprocessor. In this particular case
an open-source OR1200 core was selected to be the
heart of the system.

OR1200

Communication Controller

ICAP Controller
I
C
A
P

Security Controller
DES+CRCReconfigurable

Hardware

Application
Firmware

Reconfigurable Area Fixed Area

Boot Firmware

Communication
Channel

Wishbone
Interface

Bus
Macro

Figure 1. System Architecture

The soft-core is responsible for controlling the

communication channel, taking the data from it,
decrypting and checking the bitstream using the DES
and CRC cores, and reprogramming the reconfigurable
area using the ICAP controller. The configuration data
is transmitted to the system through the
communication channel, this channel could be for
example, Ethernet, RS232, 802.11, Bluetooth, …

The partial bitstream contains not only the custom
hardware, it also has block rams configured as ROM
with the firmware needed to run the application.

When the reconfigurable part is reprogrammed the
OR1200 jumps to the new firmware and the execution
of the application begins.

There are two ways to exit from the current
application. The first one is when the application runs
only during a limited time or a limited number of
iterations and then returns the control to the
Reconfiguration Manager. The second one is the most
common and is when the OR1200 receives an
interruption from the communication controller with a
“stop” command. When this happens, the OR1200
jumps again to the subroutine that controls the
reconfiguration process. Then you can download a
new partial bitstream or restart the application
returning from the exception to the point where the
software was before.

3. Self-Reconfiguration

The proposed architecture bases its functionality on
the possibility of reconfiguring one part of the device
while the other part is working. The fixed part is
responsible for reprogramming the reconfigurable part

using the ICAP port included by Xilinx in some of
their FPGA families. To perform this task some
considerations must be followed when designing the
system.

 3.2. Partial Reconfiguration Flow

In order to develop a functional system with self-
reconfiguration capability, Partial Reconfiguration
Flow must be followed as described in [7]. This flow
allows the generation of partial bitstreams which
contains configuration information regarding an FPGA
area while the rest is not affected during the
programming.

The first step is to create two modules including all
the elements which compose the design. One module is
the fixed part containing the soft-core processor with
the boot firmware, the peripheral controllers, the ICAP
port controller and the Security Controller. In the other
module the application with its associated firmware is
included.

Because two applications are going to be tested,
two different modules have to be developed, one
containing the Reed-Solomon application and another
containing the Cryptographic Application. Both
modules must have the same ports in order to keep the
interface between the fixed and the reconfigurable part
during the partial reconfiguration.

Once the two modules are designed and the
interface between them is well defined, the top files are
written. The top files only contain modules instantiated
as black boxes, that means, only their interface is
declared. The connections between these modules have
to be done using bus macro elements. The bus macro is
a critical element in the Partial Reconfiguration Flow.
The bus macro is just a hard macro locked in a fixed
position. When the new configuration is loaded, the
hard macro keeps the connections between the fixed
part and the new reconfigurable module.

Two top files have to be developed, one for each
user application. Both have to be equal, the only
difference is the user application instantiation. In each
different top file the associated user application must
be instantiated.

The next step consists of writing the UCF constraint
file. In this file the location of the external pins, the
positions of the bus macros , and the area constraints
must be specified.

The system description files and the constraints file
are the input to the Modular Design Flow [8].

The Modular Design Flow is composed of three
phases:

• Initial Budgeting Phase
• Active Module Implementation
• Final Assembly

During the Initial Budgeting Phase the positioning

of all modules and I/O pins is done. The result is a
NGD file with all modules instantiated as unexpanded
blocks.

Figure 2. On the left side you can see the area
constraints. On the right side, the design after
the place and route process. The way in which
the area boundary is only crossed by the bus
macro primitives can be seen.

In the second phase each module that composes the
system is mapped and routed inside the area bounds
described in the constraints file. The result is a partial
bitstream which can be used to partially reprogram the
system. The module implementation is also published
in the pims directory to be an input in the final
assembly phase.

The final step is the final assembly phase where the
top file with the unexpanded blocks and the
implementation of the modules, resulting from the
second phase, are combined to get an initial bitstream.

After the process, an initial bitstream for each top
file, and a partial bitstream for each reconfigurable
module are obtained.

These partial bitstreams will be transmitted to the
system and used for self reconfiguration through the
ICAP Interface.

3.2. ICAP

The fixed part of the FPGA needs a mechanism to

reprogram the reconfigurable part. This mechanism is
provided by Xilinx in some of their FPGA families and
is called “Internal Configuration Access Port” (ICAP).
The ICAP interface is a subset of the SelectMap

interface, and it allows the internal logic to access the
configuration data of the FPGA.

The ICAP interface is located in the lower right
hand corner of the FPGA, so this introduces a
restriction to our system. The fixed part responsible for
reprogramming the FPGA must be located on the right
hand side.

The ICAP can accept data up to 50Mhz without
handshaking protocol, but by controlling the CCLK
input data can be downloaded at lower rates. The ICAP
port only accepts partial bitstreams because it cannot
stop the FPGA during the reconfiguration process.

4. System Implementation

The system was implemented over a Celoxica
RC203 development board with a Virtex-II
X2CV3000FG676 FPGA.

The fixed part was implemented as explained before
in the right hand side of the FPGA. This part uses an
Ethernet link as a communication channel to download
the bitstreams from the host PC. The Security
Controller is made up of a DES cryptographic core,
and a CRC calculator. The OR1200 soft-core takes the
data from the communication controller and sends it to
the Security Controller to decrypt and check the data.
Then the data is applied to the ICAP through the ICAP
controller.

To demonstrate the viability of the scheme two
applications are shown: one based on a Reed-Solomon
Encoder, and the other on a data encryption and
hashing accelerator composed by an AES core of 192
bits key length and a MD5 hash algorithm.

4.1. OpenRisc 1200

The chosen microprocessor was an OpenRISC1200
core. This soft-core is freely distributed under an
LGPL license at OpenCores website [9]. The OR1200
[10] is a 32-bit scalar RISC with Harvard architecture
with a 5-stage integer pipeline intended for embedded,
portable and networking applications.

One of its main characteristics is its configurability.
Using a configuration file you can add or remove more
than ten optional units as data and instruction caches,
memory management unit (MMU), power
management unit, and many others.

The basic communication channel of the platform is
an OpenCores Wishbone Compatible Bus [11]. It has
synchronous data and address buses with multiple
masters and slaves. An arbiter decides in each moment
which master takes the control of the bus.

OR1200 includes a complete SDK based on GNU
tools with a GCC compiler, Binutils containing linker
and assembler and GDB for debugging purposes.
Many operating systems have been ported to OpenRisc
Architecture, eCos, uClinux, Linux, RTEMS,
microC/OS-II. Also different C libraries have been
ported to OpenRISC architecture like uClibc or newlib.

Even though uClinux and eCos over OR1200 have
run successfully, for this work no operating system
was used, since our embedded applications do not
require it. ANSI C code and newlib to support basic C
libraries, as well as assembler code to start the
execution of the program were used.

 4.2. Security Controller

The configuration data transferred from a remote

source contains valuable information which has to be
secured. The data has to be secured in three ways. First
the data has to be encrypted to protect the data from
unauthorized readers. If the bitstream is not encrypted,
it can be copied or reverse engineered. Second, the
data has to be protected from communication errors or
modifications during the transmission, this could be
achieved by using a CRC and optionally with a digest
algorithm. Third, the data source has to be
authenticated to ensure that the source of the data is
valid. This can be done using certificates based on
public key cryptography.

The implemented Security Controller performs the
first two operations: it decrypts the data using a 64 bit
DES [12] algorithm and checks its integrity using a
CRC. The selected CRC method was a 16-bit CRC-
CCITT specification. This CRC calculation is applied
to each block of 64 bits, obtaining data packets of 80
bits.

These packets are sent to the FPGA through the
communication channel and checked and decrypted by
the Security Controller. If an error is detected, the
process is aborted and the initial configuration is
loaded to return to the initial state.

4.3. ICAP Controller

The ICAP port is the element provided by Xilinx

that allows the Self- Reconfiguration in Xilinx devices.
In order to manage the ICAP controller from the

OR1200 microprocessor, a controller connected to the
system bus has been developed. This controller has
two registers mapped into the memory of the
microprocessor, a data register where the data to be
written/read to the ICAP port is contained, and a

control register to indicate when the transference has to
begin or when it has finished.

5. Application Test

To test the system two applications were run. One is
based on a Reed-Solomon Encoder core downloaded
from OpenCores. The second one is a Cryptographic
Application based on an AES [13] algorithm of 192
bits key length and an MD5 [14] digest algorithm.

At the beginning the FPGA is configured with
initial configuration data containing the Reed-Solomon
Application. This configuration data is stored in a
Smart Media Flash Memory. At the power up, a CPLD
reads the initial configuration from the Flash and
applies it to the FPGA performing a full
reconfiguration.

When the system starts up, a menu is displayed
through the RS232 interface.

The menu has three different options. The first one
is to run the user application stored in the
reconfigurable area. The second is to reconfigure the
FPGA with a new partial bitstream. The last option is
to download from a remote TFTP server a new
program in the external ZBT SRAM and run it.

The partial bitstreams transmitted to the FPGA are
120 KB in length. The transmission time of the data
over Internet depends on where the server is located.
When the TFTP server is in the same LAN segment,
the time is in the order of milliseconds, whilst the
server is not in the same LAN segment the
transmission time is not predictable, depending on the
net status. The self-reconfiguration itself takes 19
milliseconds to be completed.

Selecting the first option, the application stored in
the initial bitstream, in this case the Reed-Solomon
application, can be executed. By selecting the second
option the Cryptographic application could be
downloaded to the FPGA using the ICAP port.

Once the system is reprogrammed, the menu
appears again through the RS232 link and a new
bitstream can be downloaded or a jump to the new
application just downloaded can be made. After the
user application is finished, the control returns to the
boot menu. If the application is an infinite loop, which
is very common in an embedded system, sending a
“stop” command through the communication channel
exits the loop and jumps to the boot menu again.

5.1. Reed-Solomon Encoder

The initial bitstream which is loaded in the FPGA at
the start contains a Reed-Solomon Encoder application
and its associated software.

Reed-Solomon [15] are block-based error
correcting codes with applications in digital
communications and storage. There is a wide range of
different Reed-Solomon codes depending on the
number of bits taken as input and the number of
redundant bits added. In this case the core implements
(n, k) code where n-k = 16 (8 byte error correction
code). The selected code length was (255,239) which
is one of the most used ones, for example many
popular standards such as G709, DVB1 and DVB2 use
it.

The application software receives a block from the
communication channel, encodes it using the Reed-
Solomon core and sends the result back through the
channel.

The application takes up 456 slices and 3 block
RAMS containing the associate software needed to run
the application. This area is roughly 25% of the
reconfigurable area.

5.2. Cryptographic Application

The other selected application is a Cryptographic

Application made up of an AES core of 192 bits key
length and an MD5 digest algorithm. As in the
previous example, the partial bitstream also includes
the associated software needed to test the application.

The Cryptographic Application takes a block,
calculates the hash of the block and applies the AES
algorithm over the concatenation of the block with the
hash. Then, it decrypts the block, recalculates the hash
and compares it with the original. If they are equal the
test is OK, if not an error message is displayed through
the communication channel.

The AES algorithm plus the MD5 algorithm take up
954 slices and 3 block RAMS for the application
software, approximately 45% of the reconfigurable
area.

6. Cost Saving Analysis

The first point that has to be taken into account to

compare the two approaches is the amount of area
needed to support this scheme in the FPGA.

The number of slices used by the SCP, the Security
Controller, the ICAP controller and the
Communication Controller is 3090, for a VirtexII
FPGA. Assuming the number of slices the system

occupies is independent of the FPGA size whilst the
family doesn’t change, the smallest FPGA needed to
store the system is an XC2V1000 with 5120 slices.
Therefore, the system has 2030 slices free for the
reconfigurable area.

The price Xilinx offers for an XC2V1000 for high
volumes is around 100$ depending on the encapsulate
type and the speed grade.

The economic cost of the system using a traditional
architecture is made up of microprocessor,
communication controller and an FPGA, a smaller one
in this case.

A 32 bit microprocessor in the market costs about
15$ depending on the performance of the
microprocessor. The communication controller
(Ethernet, RS232,…) cost is about 2$ each. Finally, the
price of the cheapest FPGA required to fit in the design
(XC2V500 with 3072 slices) is roughly 80$.

As can be seen, the economic cost of the parts for
the design is very similar for both approaches, but
there are other considerations to take into account.

Using our approach, the PCB is made up of only
one chip, instead of four. That is translated into an
economic saving in the PCB design and
manufacturing, and also in the size of the PCB, which
in this case is smaller than using a traditional scheme.

In this case the FPGA family used was a VirtexII,
which is the most expensive one sold by Xilinx. Using
for example a Spartan3 or a Virtex4 family the cost of
the FPGA will be significantly smaller. Using these
FPGA families and this new scheme, the economic
cost of the system’s parts could be reduced in a
significant percentage.

7. Results

The area for the fixed part of the system is
presented in Table 1:

Table 1. Synthesis results
 Slices

OR1200 2184
Security Controller 386
ICAP controller 14
RS232 Controller 440
Ethernet Controller 66
Total 3090

This area represents 60% of the total FPGA
resources using an XC2V100 FPGA. Therefore, up to
40% of the FPGA could be freely use for the
reconfigurable modules depending on the
floorplanning. Using a bigger FPGA, like an
XC2V3000 FPGA, the area for the reconfigurable part
could be up to the 80% of the device.

Another important data to take into account is the
partial reconfiguration time. Ignoring the bitstream
transmission time that depends on the communication
channel and its status, the time is made up of two
different times. The first one is the time the system
spends decrypting and checking the integrity of the
received data and the second one is the proper
reconfiguration time of the FPGA.

The system clock frequency is 25 Mhz. The DES
algorithm takes 16 cycles decrypting a 64 bits block.
The CRC takes only 1 cycle to perform the operation.
Although the ICAP can accept data up to 50Mhz, this
throughput is reduced because the data has to be taken
from the memory and writen to the ICAP controller
connected to the microprocessor which uses a shared
Wishbone bus for instructions and data. This process is
slow and makes the ICAP to receive a data every 20
clock cycles. Other architectures to solve this problem
have being studied, but the most suitable would be a
bitstream cache directly connected to the ICAP, to
avoid accesses to the main memory. The measures
gives that the whole reconfiguration takes 115 ms.

8. Challenges and Future Work

One of the greatest problems when facing Self
Reconfiguration over Xilinx devices is the lack of tools
to simplify the flow. One of the most important things
to be done in this field is designing tools that help to
design a self reconfigurable system. There are some
initiatives trying to solve this problem such as [16].
Another problem is that the commercial boards
available on the market don’t help the designer
because the pin assignment is not appropriate for a
partial reconfiguration flow since the pins driven by
each module of the design have to be locked in the
area occupied by that module. Future work in Partial
Self Reconfiguration has to be focused on solving
these two main problems.

Our future work will be aimed at supporting public
cryptography capabilities to the system using an RSA
core. This will allow making secure key session
interchange and authentication of the data source.

Another step will be to create a graphical tool that
helps to perform all these tasks in an easy way. Now
all the process is automated using batch files, the idea

is to make it simpler providing a graphical tool and a
set of libraries and APIs that simplify the tasks of
developing a complete system on an FPGA making
possible to companies to use this architecture in a
easiest way.

9. Conclusions

In this paper a secure architecture based on Open-
Source cores has been presented. The capacity of new
FPGA families (millions of equivalent gates) makes it
possible to implement the whole system inside them,
not requiring external device controllers or peripherals.
The FPGA keeps its reconfiguration capability by
using an area as an FPGA inside the FPGA. This
reconfigurable area is reprogrammed by using the
ICAP port by the FPGA itself.

In this scheme the partial bitstream is made up of
the software and hardware needed in order to run the
application. An OR1200 soft-core processor takes the
bitstream from the communication channel and
reprograms the reconfigurable part of the FPGA in a
secure way. The viability of this approach was tested
with the implementation of a Reed-Solomon encoder
and a Cryptographic application.

10. References

[1] K. Brunham, W. Kinsner, “Run-time reconfiguration:
towards reducing the density requirements of FPGAs”,
CCECE, 2001, Volume 2, pp: 1259-1264 vol.2 B.

[2] R. Fong, S. Harper, P. Athanas, “A Versatile Framework
for FPGA Field Updates: An Application of Partial Self-
Reconfiguration”, Proceedings of the 14th IEEE
International Workshop on Rapid System Prototyping, San
Diego, CA, June 2003.

[3] B. Blodget, P.J-Roxby, E. Keller, S. McMillan, P.
Sundararajan, “A Self-Reconfiguring Platform”, Proceedings
of the 13th International Conference on Field Programmable
Logic and Applications (FPL'03), pp. 565-574, Sept 2003

[4] M. Bolado, H. Posadas, J. Castillo, P.Huerta, P. Sanchez,
C. Sanchez, H. Fouren, P. Blasco, “Platform based on Open-
Source Cores for Industrial Applications”, DATE 2003,
February 2003

[5] M. Bolado, J. Castillo, H. Posadas, P. Sanchez, E. Villar,
C. Sanchez, H. Fouren, P. Blasco, “Using Open-Source
Cores in Real Applications”, DCIS 2003, November 2003

[6] J. Castillo, P. Huerta, J. I. Martinez, “SystemC Design
Flow for a DES/AES Cryptoprocessor” , WSEAS 2004.

[7] Xilinx: XAPP290, “Two Flows for Partial
Reconfiguration: Module Based or Small Bit
Manipulations”, 2002
[8] Xilinx , “Development System Reference Guide, Chapter
4, Modular Design”
[9] OpenCores, http://www.opencores.org

[10] D. Lampret, “OpenRISC 1200 IP Core Specification”,
September June 2001.

[11] Silicore Inc., “WISHBONE System-on-Chip (SoC)
Interconnection Architecture for Portable IP Cores.”,
September 7, 2002

[12] FIPS, “Data Encryption Standard”, January, 1977
FIPS, “Advanced Encryption Standard”, November, 2001

[13] “RFC 1321 - The MD5 Message-Digest Algorithm”,
April 1992

[14] B. Sklar, “Reed-Solomon Codes”

[15] P. Butel, G. Habay, A. Rachet, “Managing Partial
Dynamic Reconfiguration in Virtex-II Pro FPGAs”, Xcell
Journal , Fall, 2004

