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Introduction

Context

Nowadays embedded systems are an integral part of our lives. Not a day goes by
without using embedded systems and all major companies now rely on mobility and
telecommunications. They can be, for example, smartphones, phones, computers,
tablets, home appliances, GPSs (Global Positioning Systems), music players, car
electronics, set-top boxes, video equipments, game consoles, medical facilities, ...
They allow us to easily access services everyday: geolocation, communication, online
banking, web browsing, gaming, remote working, ... All these devices have access to
both personal and professional, who can be sensitive: banking informations, emails,
photos, passwords, location data, ...

To realize embedded systems, designers have two options. They can
design specific circuits for the developed application: ASICs (Application-Specific
Integrated Circuits), or use reconfigurable circuits: FPGAs (Field-Programmable
Gate Arrays). The latter correspond to circuits whose architecture is configurable
depending on the application to be developed. The use of these in embedded systems
is the result of a process of evolution and innovation for several decades.

In the 1980s, the U.S. company Xilinx represented by the two Co-Founders, Ross
Freeman and Bernard Vonderschmitt, and installed in California in Silicon Valley
was a forerunner in the field by launching the first FPGA business, the XC2064. This
FPGA is composed by 64 CLBs (Configurable Logic Blocks) containing two 3-input
LUTs (Look Up Tables). Xilinx will be followed in early 1990 by its competitors
Altera and Actel.

These components bring new concepts due to their portability and their ability
to be reconfigured. In the beginning, they could not be integrated directly to
commercial products, except to make some logical functions. Yet they were widely
used in design offices for ASIC prototyping. Their ability to be reconfigured offered
a much faster development process to designers.

Now FPGAs are widely used in embedded systems. Indeed, they are used to
their multiple advantages:

• they reduce time to market by reducing development duration

• they reduce cost for low sale volume products. This becomes true for sale
volume more and more important.

• they permit remote reconfiguration.



2 List of Tables

Security is becoming a new challenge for all these devices. It is very difficult
to estimate the cost of internet fraud. Some talk about hundreds of millions of
dollars, others about ten billion dollars. In any case, the experts agree on one point:
banking fraud on the internet and fraud on smartphones are steadily increasing.
Embedded systems are particularly vulnerable since physical access to these devices
is facilitated. Indeed, the owner can be the attacker. [Kocher 2004] explains that
security has become an important issue in embedded systems.

Problematic

Confidentiality, integrity and authenticity are often addressed in the literature.
However, most contributors address only partially the concept of integrity. Indeed,
they forget up-to-dateness that can be affected by a replay attack, especially for
FPGA devices.

Updates are a convenient service to fix security flaws. That is why tamper up-
to-dateness can be very interesting for an attacker. In fact, a replay attack is a way
to downgrade a system in order to exploit vulnerabilities present in a previously
fixed version.

Objectives

For this reason, we decided in 2009, in the frame of a collaboration between Netheos
company and LIRMM, to conduct research work about the security of embedded
systems based on FPGA technologies.

That is why this thesis aims to secure embedded systems based on FPGAs, by
increasing the level of security taking up-to-dateness into account.

Contribution

This dissertation proposes robust and industrializable solutions matching
requirements and constraints related to embedded systems in an industrial context.
By providing dedicated and adapted solutions, this thesis considers the entire life of
the embedded system (startup, updates and execution) and the whole system (the
FPGA bitstream, the operating system’s kernel, code and critical data).

This thesis is distinguished by offering innovative solutions suitabled to the world
of FPGAs and providing ways to protect against replay attacks.
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Organization

The layout of this document is organized in order to follow step by step how to
secure an embedded system to trust it starting from hardware to reach the final
software application. That is why the outline of this document begin to address
FPGA bitstream to move up through the abstraction layers as follow:

Chapter 1 introduces basic security and cryptography concepts extensively used
in this thesis and presents a security taxonomy in order to evaluate the security level
of embedded systems. It also introduces specific vocabulary related to cryptography
and FPGA to finally present the main attacks targeting FPGAs.

Chapter 2 addresses the securing of both Flash and SRAM (Static Random
Access Memory) FPGAs. The first part proposes a secure protocol for remote
bitstream update in order to prevent replay attacks on Flash FPGA bitstream.
It describes the implementation and evaluates the solution performance and area
overhead. The other part presents the SecURe DPR (Secure Update against Replay
attacks for DPR (Dynamic Partial Reconfiguration)) protocol. Owing to the fact
that DPR is only provided by SRAM FPGAs, SecURe DPR aims to propose a new
approach taking into account volatile nature of this reconfigurable device family.
The goal is to ensure confidentiality, integrity, authenticity and up-to-dateness of
partial bitstreams.

Chapter 3 describes how to secure OSs (Operating Systems) and applications
running on previously trusted FPGAs. It presents an overview of currently used
counter-measures to protect OSs and applications on FPGAs. It summarizes,
organizes and explains existing counter-measures which are not necessarily specific to
FPGAs. It also proposes an OS boot verification that allows precluding malicious
kernel modifications. This work also ensures kernel up-to-dateness and supports
updates management. It highlights the performance improvement of this security
mechanism thanks to hardware acceleration mechanisms. It also describes the
implementation and evaluates the overhead of this solution in terms of performance
and area.

Chapter 4 is an overview of the SecReSoC platform supported and granted by
the ANR -French National Research Agency- ARPEGE 2009 program (ANR-09-
SEGI-013). It replaces also the work of this thesis into a shared project that aims
to offer a complete protection for multiprocessor architectures based on FPGAs.

Finally, a conclusion summarizes the contributions of this dissertation and
proposes further works and ideas.
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This first chapter aims to set out the context of the thesis. It classifies the
different types of attack and the tools to evaluate the security level of embedded
systems. It also explains basic security principles and introduces the specific
vocabulary related to cryptography and FPGA. Finally, it presents the main attacks
targeting FPGAs.
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1.1 Security and cryptography introduction

Cryptology means science of secret and is composed by cryptography and
cryptanalysis.

Cryptography is the practice and study of techniques dedicated to keep a message
secret. Cryptanalysis is the science to analyze a cryptographic message in order to
break its secret. This discipline developed in ancient times was designed for military
usage.

Nowadays cryptography would continue to be important for national security
and intelligence gathering.

Cryptography provides four main security aspects: confidentiality,
authentication, data integrity and non-repudiation. The definitions of this
security objectives are taken from [Menezes 1996]:

• Confidentiality is a service used to keep the content of information from
all but those authorized to have it. Secrecy is a term synonymous with
confidentiality and privacy. There are numerous approaches to providing
confidentiality, ranging from physical protection to mathematical algorithms
which render data unintelligible.

• Data integrity is a service which addresses the unauthorized alteration of
data. To assure data integrity, one must have the ability to detect data
manipulation by unauthorized parties. Data manipulation includes such
things as insertion, deletion, and substitution.

• Authentication is a service related to identification. This function applies
to both entities and information itself. Two parties entering into a
communication should identify each other. Information delivered over a
channel should be authenticated as to origin, date of origin, data content, time
sent, etc. For these reasons this aspect of cryptography is usually subdivided
into two major classes: entity authentication and data origin authentication.
Data origin authentication implicitly provides data integrity (for if a message
is modified, the source has changed).

• Non-repudiation is a service which prevents an entity from denying previous
commitments or actions. When disputes arise due to an entity denying that
certain actions were taken, a means to resolve the situation is necessary. For
example, one entity may authorize the purchase of property by another entity
and later deny such authorization was granted. A procedure involving a
trusted third party is needed to resolve the dispute.

This thesis also addresses up-to-dateness that can be considered as integrity.
Up-to-dateness concept will be described in details into Section 1.2.
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1.2 Security technology and metrics

Security and cryptography exist because there are threats and attacks. Section 1.2.1
classifies and describes the different attack types to evaluate the security robustness
of a system.

1.2.1 Attacks

Attacks can be distinguished in two families:

• Passive attacks which consist in secretly observing, on a communication
channel, a private conversation between several parts without their consent
(eavesdropping). The main characteristic of a passive attack is to observe
without injecting or modify data.

• Active attacks which allow modifying messages with deletions, corruptions,
injections or replays. In this case, the attacker affects the data flow.

It is possible to separate attacks in two categories considering penetration into
the attacked hardware.

• Non-invasive attacks which consist in compromising a system without
hardware intrusion, for instance by probing electromagnetic leakages over a
chip, probing an electrical signal on a copper track or by exploiting software
vulnerabilities.

• Invasive or semi-invasive attacks which consist in compromising a system
with hardware intrusion, for instance by probing a signal into a chip after
removing the chip package with acids and eventually by abrading the die to
access inside the silicon.

Non-invasive attacks are particularly dangerous since the user might be not aware
of the system compromising. However, this type of attacks does not work directly
with the information but with information dependent phenomena. They require a
detailed knowledge of both the hardware and software. Considering invasiveness is
interesting because it gives an overview of the attacker investment in term of efforts
and expenses.

1.2.2 Metrics

This section aims to evaluate the security of a given device.
In [Abraham 1991], IBM (International Business Machines) proposes to classify

attackers in three levels according to their strength:
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• Class I (clever outsiders): They are often very intelligent but may have
insufficient knowledge of the system. They may have access to only moderately
sophisticated equipment. They often try to take advantage of an existing
weakness in the system, rather than try to create one.

• Class II (knowledgeable insiders): They have substantial specialized
technical education and experience. They have varying degrees of
understanding of parts of the system but potential access to most of it. They
often have highly sophisticated tools and instruments for analysis.

• Class III (funded organizations): They are able to assemble teams of
specialists with related and complementary skills backed by great funding
resources. They are capable of in-depth analysis of the system, designing
sophisticated attacks, and using the most advanced analysis tools. They may
use Class II adversaries as part of the attack team.

1.2.2.1 Common Criteria

The Common Criteria for Information Technology Security Evaluation is best
known as CC (Common Criteria). It is an international standard for computer
security certification allowing vendors to objectively claim about the security
attributes of their products. CC provides assurance that the process of specification,
implementation and evaluation of a computer security product has been conducted
in a rigorous and standard manner. It is originated out of three standards:
ITSEC (Information Technology Security Evaluation Criteria), CTCPEC (Canadian
Trusted Computer Product Evaluation Criteria) and TCSEC (Trusted Computer
System Evaluation Criteria). These three standards are respectively European,
Canadian and Americans.

They propose seven level of certification corresponding to different EALs
(Evaluation Assurance Levels). In other words, EAL is a rating describing the
depth and rigor of the evaluation.

CC involves five main concepts:

• TOE (Target Of Evaluation) is the product or system that is the subject of
the evaluation. It can be a set of software, firmware and/or hardware possibly
accompanied by guidance.

• SFRs (Security Functional Requirements) is a translation of the security
functions provided by the TOE into a standardised language. The CC presents
a standard catalogue of such functions.

• PP (Protection profile) describes the general requirements for a TOE type,
a class of security devices.
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• ST (Security Target) identifies the security properties of the TOE. It may
refer to one or more PPs. The TOE is evaluated against the SFRs established
in its ST. It is can be built from one or several PPs.

[CC 2009] defines seven EALs.
These levels are summarized in figure 1.1 and detailed below:

Functionally
tested

Methodically
tested and

checked

EAL 1 EAL 2 EAL 3 EAL 4 EAL 5 EAL 6 EAL 7

Structurally
tested

Methodically
designed,
tested and
reviewed

Semiformally
designed

and tested

Semiformally
veri�ed,

designed
and tested

Formally
veri�ed,

designed
and tested

Figure 1.1: The seven EALs of the CC

• EAL1: functionally tested EAL1 is applicable where some confidence in
correct operation is required, but the threats to security are not viewed as
serious. It will be of value where independent assurance is required to support
the contention that due care has been exercised with respect to the protection
of personal or similar information.

EAL1 requires only a limited security target. It is sufficient to simply state
the SFRs that the TOE must meet, rather than deriving them from threats,
OSPs and assumptions through security objectives.

EAL1 provides an evaluation of the TOE as made available to the customer,
including independent testing against a specification, and an examination of
the guidance documentation provided. It is intended that an EAL1 evaluation
could be successfully conducted without assistance from the developer of the
TOE, and for minimal outlay.

An evaluation at this level should provide evidence that the TOE functions in
a manner consistent with its documentation.

• EAL2: structurally tested EAL2 requires the co-operation of the developer
in terms of the delivery of design information and test results, but should not
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demand more effort on the part of the developer than is consistent with good
commercial practice. As such it should not require a substantially increased
investment of cost or time.

EAL2 is therefore applicable in those circumstances where developers or users
require a low to moderate level of independently assured security in the absence
of ready availability of the complete development record. Such a situation may
arise when securing legacy systems, or where access to the developer may be
limited.

• EAL3: methodically tested and checked EAL3 permits a conscientious
developer to gain maximum assurance from positive security engineering at
the design stage without substantial alteration of existing sound development
practices.

EAL3 is applicable in those circumstances where developers or users
require a moderate level of independently assured security, and require a
thorough investigation of the TOE and its development without substantial
reengineering.

• EAL4: methodically designed, tested, and reviewed EAL4 permits
a developer to gain maximum assurance from positive security engineering
based on good commercial development practices which, though rigorous, do
not require substantial specialist knowledge, skills, and other resources. EAL4
is the highest level at which it is likely to be economically feasible to retrofit
to an existing product line.

EAL4 is therefore applicable in those circumstances where developers or
users require a moderate to high level of independently assured security in
conventional commodity TOEs and are prepared to incur additional security
specific engineering costs.

• EAL5: semiformally designed and tested EAL5 permits a developer
to gain maximum assurance from security engineering based upon rigorous
commercial development practices supported by moderate application of
specialist security engineering techniques. Such a TOE will probably be
designed and developed with the intent of achieving EAL5 assurance. It is
likely that the additional costs attributable to the EAL5 requirements, relative
to rigorous development without the application of specialized techniques, will
not be large.

EAL5 is therefore applicable in those circumstances where developers or users
require a high level of independently assured security in a planned development
and require a rigorous development approach without incurring unreasonable
costs attributable to specialist security engineering techniques.
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• EAL6: semiformally verified design and tested EAL6 permits
developers to gain high assurance from application of security engineering
techniques to a rigorous development environment in order to produce a
premium TOE for protecting high value assets against significant risks.

EAL6 is therefore applicable to the development of security TOEs for
application in high risk situations where the value of the protected assets
justifies the additional costs.

• EAL7: formally verified design and tested EAL7 is applicable to the
development of security TOEs for application in extremely high risk situations
and/or where the high value of the assets justifies the higher costs. Practical
application of EAL7 is currently limited to TOEs with tightly focused security
functionality that is amenable to extensive formal analysis.

In France, Cofrac (Comité français d’accréditation) accredits CC evaluation
facilities, CESTI (Centre d’Evaluation de la Sécurité des Technologies de
l’Information), according to norms and standards specified by the ANSSI (Agence
nationale de la sécurité des systemes d’information).

In United states, NIST (National Institute of Standards and Technology)
accredits CCTLs (Common Criteria Testing Laboratories) according to norms and
standards specified by the NSA (National Security Agency).

1.2.2.2 FIPS 140-2

FIPS (Federal Information Processing Standard) 140-2, published by the NIST,
defines four levels of security in order to evaluate the level of security offered by
cryptographic modules.

Figure 1.2 summarizes the security requirements for the four security levels
according to the FIPS 140-2 Standard.

These definitions are taken from [FIPS 2001]:

• Security Level 1: provides the lowest level of security. Basic security
requirements are specified for a cryptographic module (e.g., at least one
Approved algorithm or Approved security function shall be used). No specific
physical security mechanisms are required in a Security Level 1 cryptographic
module beyond the basic requirement for production-grade components. An
example of a Security Level 1 cryptographic module is a personal computer
(PC) encryption board.

Security Level 1 allows the software and firmware components of a
cryptographic module to be executed on a general purpose computing system
using an unevaluated operating system. Such implementations may be
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Security Level 1

At least one approved
cryptographic
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cryptographic function
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Security Level 2 Security Level 3 Security Level 4
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+ Plaintext CPS I/O port
and data I/O port
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+ Identity based
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+ Complete protection
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+ Environmental
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+ High-security trusted
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Figure 1.2: The four security levels of the FIPS 140-2 Standard

appropriate for some low-level security applications when other controls,
such as physical security, network security, and administrative procedures are
limited or nonexistent. The implementation of cryptographic software may be
more cost-effective than corresponding hardware-based mechanisms, enabling
organizations to select from alternative cryptographic solutions to meet lower-
level security requirements.

• Security Level 2: enhances the physical security mechanisms of a Security
Level 1 cryptographic module by adding the requirement for tamper-evidence,
which includes the use of tamper-evident coatings or seals or for pick-resistant
locks on removable covers or doors of the module. Tamper-evident coatings
or seals are placed on a cryptographic module so that the coating or seal
must be broken to attain physical access to the plaintext cryptographic keys
and critical security parameters (CSPs) within the module. Tamper-evident
seals or pick-resistant locks are placed on covers or doors to protect against
unauthorized physical access.

Security Level 2 requires, at a minimum, role-based authentication in which
a cryptographic module authenticates the authorization of an operator to
assume a specific role and perform a corresponding set of services.

Security Level 2 allows the software and firmware components of a
cryptographic module to be executed on a general purpose computing system
using an operating system that

– meets the functional requirements specified in the Common Criteria (CC)
Protection Profiles (PPs) listed in Annex B and

– is evaluated at the CC evaluation assurance level EAL2 (or higher).
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An equivalent evaluated trusted operating system may be used. A trusted
operating system provides a level of trust so that cryptographic modules
executing on general purpose computing platforms are comparable to
cryptographic modules implemented using dedicated hardware systems.

• Security Level 3: In addition to the tamper-evident physical security
mechanisms required at Security Level 2, Security Level 3 attempts to prevent
the intruder from gaining access to CSPs held within the cryptographic
module. Physical security mechanisms required at Security Level 3 are
intended to have a high probability of detecting and responding to attempts
at physical access, use or modification of the cryptographic module. The
physical security mechanisms may include the use of strong enclosures and
tamper detection/response circuitry that zeroizes all plaintext CSPs when the
removable covers/doors of the cryptographic module are opened.

Security Level 3 requires identity-based authentication mechanisms, enhancing
the security provided by the role-based authentication mechanisms specified
for Security Level 2. A cryptographic module authenticates the identity of an
operator and verifies that the identified operator is authorized to assume a
specific role and perform a corresponding set of services.

Security Level 3 requires the entry or output of plaintext CSPs (including
the entry or output of plaintext CSPs using split knowledge procedure)
be performed using ports that are physically separated from other ports,
or interfaces that are logically separated using a trusted path from other
interfaces. Plaintext CSPs may be entered into or output from the
cryptographic module in encrypted form (in which case they may travel
through enclosing or intervening systems).

Security Level 3 allows the software and firmware components of a
cryptographic module to be executed on a general purpose computing system
using an operating system that

– meets the functional requirements specified in the PPs listed in Annex
B with the additional functional requirement of a Trusted Path
(FTP_TRP.1) and

– is evaluated at the CC evaluation assurance level EAL3 (or higher) with
the additional assurance requirement of an Informal Target of Evaluation
(TOE) Security Policy Model (ADV_SPM.1).

An equivalent evaluated trusted operating system may be used. The
implementation of a trusted path protects plaintext CSPs and the software
and firmware components of the cryptographic module from other untrusted
software or firmware that may be executing on the system.
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• Security Level 4: Security Level 4 provides the highest level of
security defined in this standard. At this security level, the physical
security mechanisms provide a complete envelope of protection around the
cryptographic module with the intent of detecting and responding to all
unauthorized attempts at physical access. Penetration of the cryptographic
module enclosure from any direction has a very high probability of being
detected, resulting in the immediate zeroization of all plaintext CSPs.
Security Level 4 cryptographic modules are useful for operation in physically
unprotected environments.

Security Level 4 also protects a cryptographic module against a security
compromise due to environmental conditions or fluctuations outside of the
module’s normal operating ranges for voltage and temperature. Intentional
excursions beyond the normal operating ranges may be used by an attacker to
thwart a cryptographic module’s defenses. A cryptographic module is required
to either include special environmental protection features designed to detect
fluctuations and zeroize CSPs, or to undergo rigorous environmental failure
testing to provide a reasonable assurance that the module will not be affected
by fluctuations outside of the normal operating range in a manner that can
compromise the security of the module.

Security Level 4 allows the software and firmware components of a
cryptographic module to be executed on a general purpose computing system
using an operating system that

– meets the functional requirements specified for Security Level 3 and

– is evaluated at the CC evaluation assurance level EAL4 (or higher).

An equivalent evaluated trusted operating system may be used.

1.3 FPGA and security

The work presented in this thesis deals with FPGAs. That is why these section
objectives are to answer some questions.

What is a FPGA?
How the use of FPGAs in the world of security is interesting?
What is the terminology specific to FPGA?
What are the FPGA requirements in terms of security?

1.3.1 FPGAs

A FPGA is an IC (Integrated Circuit) designed, like microprocessor, to be
programmed and reprogrammed by the designer after manufacturing. Contrary
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to microprocessors, with programmable logic devices, it is possible to change the
logical function of the chip. Thus, FPGAs can be used to implement any logical
function that an ASIC could perform.

FPGAs contain programmable logic components called logic blocks, and
reconfigurable interconnects that allow the blocks to be wired together. Logic blocks
also include memory elements, which may be basic flip-flops or more complete blocks
of memory like block RAMs (Random Access Memories).

Contrary to microprocessor languages which are procedural (or sequential),
FPGAs require handling concurrency. In fact, with FPGAs or ASICs, signals
propagate simultaneously across all the circuit. It is impossible to describe a circuit
with sequential languages which execute instructions the one after the other. That is
why FPGA configuration is generally specified using a HDL (Hardware Description
Language). Any change to the process’s input automatically triggers an update in
the simulator’s process stack.

The two most used HDL are:

• VHDL (VHSIC (Very-High-Speed Integrated Circuit) Hardware
Description Language): based on Ada syntax, it was originally developed
at the behest of the U.S Department of Defense.

• Verilog: based on C syntax, it was a proprietary language of Cadence Design
Systems. Since 1995, it is an open standard.

These HDLs have been introduce in 1980s.
Traditionally, FPGAs have been created for prototyping or small volume

production. With ASICs, the cost of the first produced chip is very expensive
due to the photomask set price. FPGAs permit producing the same chip for several
applications.

For more information about FPGAs architecture, refer to this thesis
[Ahmed 2011].

1.3.2 FPGA contribution to cryptography

Applications of FPGAs include digital signal processing, software-defined radio,
aerospace and defense systems, ASIC prototyping, medical imaging, computer
vision, speech recognition, cryptography, bioinformatics, computer hardware
emulation, radio astronomy, metal detection and a growing range of other areas.

FPGAs are commonly used to reach high performance computation due to they
offer a full parallel operating mode. In cryptography, this parallelism feature permits
hardware accelerators.

If we deal with encryption, although the frequency of FPGAs is lower than that
of processors, FPGAs can provide a result (e.g. a 128 bits ciphered output) at each
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clock cycle. Processors require a large number of clock cycle to provide the same
result and ultimately, FPGAs are faster for this type of processing. Like with ASICs,
it is possible to pipeline an architecture implemented in FPGAs.

1.3.3 FPGA terminology

In this document, a FPGA-specific vocabulary is used. It is important to define the
terms invoked in the following sections in order to well understand the contribution
of this work.

There are four entities implicated in the FPGA life cycle:

• FPGA vendor is the entity that designs and produces FPGA chips. The
market leaders are Xilinx and Altera. The main other competitors are Lattice
Semiconductor and Microsemi (ex-Actel).

• IPs (Intellectual Properties) designer designs and provides hardware
units often delivered as HDL code or netlist (a list of the logic gates) in the
goal to be reused by the system designer. IP cores may be communication
controllers or interfaces, specific processors, memory interfaces or encryption
engines.

• SD (System Designer) designs the system by connecting IPs in order to
generate an FPGA-based system.

• System owner is the end user that exploits the system. He can often have
directly access to the hardware and can be potentially malicious. SDs and IP
designers should not necessarily trust him.

The FPGA is composed of two parts:

• CL (Configuration Logic) is hard-wired and cannot be configured or
modified by the SD. This is this part that is responsible of loading the
configuration file (more commonly called bitstream) into the user logic. It
is composed by at least a configuration port: in most cases the JTAG (Joint
Test Action Group) chain (the common name of the Standard Test Access Port
and Boundary-Scan Architecture). CL can also contain a bitstream decryption
engine and/or a bitstream integrity checking mechanism.

• UL (User Logic) is the part that can be configured by SD. It can contains
LUTs, block RAMs, hardly implemented processors or IPs, DSPs (Digital
Signal Processors), and switch matrix for routing signals. When dealing with
partial reconfiguration (explained later), UL usually contains two sub-areas:
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– Static area: the main part of the UL which cannot be partially
reconfigured.

– Partial reconfigurable area: composed of RPs (Reconfigurable
Partitions), in gray in the Figure 1.3. They are considered as slots in
UL and are intended to host RMs (Reconfigurable Modules). RPs are
reconfigured using partial reconfiguration by sending pieces of bitstream,
called partial bitstreams, through the ICAPs (Internal Configuration
Access Ports) module.

FPGA
Configuration

Logic (CL)

Config.
Controller

User Logic (UL)

Bitstream
Decryptor RP

1 RP
2
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RM
2aRM

1b

Flash External
Memory

Full Bitstream
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Figure 1.3: FPGA architecture overview

FPGAs are classified in two families:

• Volatile FPGAs

– SRAM FPGAs: This technology is the most widespread. These FPGA
devices are composed only by SRAM memory cells. It permits having the
best performances while using a standard CMOS (Complementary Metal
Oxide Semiconductor) manufacturing processes. However they cannot
keep their configuration when power is down and need an external non-
volatile memory to store the bitstream.

• Non-volatile FPGAs

– Fuse FPGAs: Configuration cannot be changed after programming
(One-time programmable). Each configuration point is controlled by
a fuse element. Before programming, a fuse element has a conductor.
Programming consists in permanently break the electrically conductive
path (typically with an excessive current). It is the only bipolar
technology; others FPGAs use CMOS technologies.
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– Antifuse FPGAs: Compared with Fuse, it is the same but the opposite.
It is the same because it is a one-time programmable device. But it is
the opposite because, in addition to be a CMOS technology, an antifuse
element is an insulator before programming. Programming consists in
permanently create an electrically conductive path (typically with an
excessive voltage).

– EPROM (Erasable Programmable Read-Only Memory)
FPGAs: This technology is an array of floating-gate transistors and is
one-time programmable but can be erased with strong UV (UltraViolet)
light. They are easily recognizable by a window in the top of the
package, through which the silicon chip is visible. This window permits
exposure to UV light during erasing.

– EEPROM (Electrically Erasable Programmable Read-Only
Memory) FPGAs: They have the same characteristic than EPROM
FPGAs but they are design to be erased electrically instead of with UV
light. That is why there is no window in the top of the package.

– Flash FPGAs: They are EEPROMs with a greater storage density
(ie with a lower cost). This is the current and most used non-volatile
technology. The configuration memory is distributed in the component
in order to have a truly single chip FPGA, completely live at power-
up, with no internal loading of configuration. This technology has lower
performances than SRAM FPGAs but offers a higher security level.

There are several types of reconfiguration:

• Entire reconfiguration: it is the "normal" way to reconfigure a FPGA. It
consists in substituting the previous bitstream by the new one.

• Partial reconfiguration: it is the process of configuring only a portion of a
FPGA. In this case, partial reconfiguration can be divided into two groups:

– Static partial reconfiguration: In this case, the device is stopped
during the reconfiguration process. While the partial data (or partial
bitstream) is sent to the FPGA, the rest of the device is stopped and
brought up after the configuration is completed.

– Dynamic partial reconfiguration: It permits changing the part of
the FPGA while the rest of the architecture is still running. It can be
interesting for applications where it is important to never be unavailable.
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We distinguish two partial reconfiguration cases:

• Module-based partial reconfiguration permits the reconfiguration of a
predefined part of the architecture. In this case each version of the module
requires having the same inputs and outputs. The module size must be well
appreciated during the design specification because it is impossible to put a
too large module in a too small slot.

• Difference-based partial reconfiguration: It consists in reconfiguring
only changes between two bitstreams. The partial bitstream contains only
information about these differences. It can be used when the design is affected
by small changes. It is often used to change the content of a dedicated memory
blocks.

1.3.4 Conclusion

The reconfigurable aspect may be considered as a drawback for security-sensitive
applications. For example an attacker could easily modify the design. That is why
certain types of FPGA are one-time programmable.

But the reconfiguration feature can be an advantage. The fact that a SD can
remotely reconfigure an FPGA permits him to apply security updates in order to
fix vulnerabilities. In this case remote update for hardware systems is a convenient
service, impossible with ASICs but enabled by FPGAs. That turns out to be
essential when high volume sale products are considered. Effectively it would be
extremely expensive or impossible for a constructor to recall a large number of
devices.

High performances, low cost, and remote updates must be the main reasons to
use FPGAs in security applications, but in this case, security concerns should be
taken into account.

1.4 Threats targeting FPGAs

1.4.1 Side channels attacks

Side channels attacks are a large family of cryptanalytic techniques that exploit
unexpected properties of a system due to its software or hardware implementation.
A side channel can be defined by an information leakage that is not required by
the system to complete the functionality. Indeed, a mathematical security does not
necessarily guarantee security when using in practice. In this area, the attacks are
numerous and focus on different parameters.
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1.4.1.1 Timing attacks

This attack analyzes the time taken to perform certain cryptographic operations
in order to discover secret information and can be remotely performed. The basis
of this attack is based on the fact that, for the purpose of optimizing the software
implementation, some operations of cryptographic algorithms running in a non-
constant time. These optimizations include, for example, avoidance of unnecessary
operation or use of memory cache (cache attack).

For example, in RSA (Rivest, Shamir and Adleman) algorithm, the execution
time for the square-and-multiply algorithm used in modular exponentiation depends
on the key. The square-and-multiply algorithm is executed for each bit of the key:
a "1" requires two computations while a "0" requires only one computation. Thus,
it is possible to retrieve the key value thanks to the execution time.

The first timing analysis has been described by Kocher in [Kocher 1996].

1.4.1.2 Power analysis

Power or consumption analysis consists in studying the power consumption of a
system in order to discover secret information such as encryption key. The energy
consumed by a chip is highly dependent on the process running. Some operations,
more expensive, increase the power consumption of the circuit. This analysis of
variations and spikes permits extracting valuable information to the cryptanalyst.

SPA

SPA (Simple Power Analysis) is the simplest attack based on power consumption
and introduced by Kocher in [Kocher 1998]. It consists in a visual examination of
a single current trace acquisition over the time. Each microprocessor instruction or
device operation involves a different number of transistors. At any time, measuring
the current consumption may reflect the activity of the device or the microprocessor.

Figure 1.4, from [Wikipedia ], shows a SPA trace permitting to decode RSA
key bits thanks to the square-and-multiply operations. The left peak represents the
CPU power variations during the step of the algorithm without multiplication, the
right (broader) peak represents the CPU power variations during the step of the
algorithm with multiplication. This analysis allows reading bits 0, 1.

Information gathered during SPA can be used to improve other more complex
power attacks.

DPA

DPA (Differential Power Analysis), presented by Kocher in [Kocher 1998] and
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Figure 1.4: SPA trace allowing to read bits 0, 1

[Kocher 1999], combines the analysis of consumption with statistical methods
for several operations. It does not require any knowledge about the algorithm
implementation.

The attack by analysis of differential consumption is more powerful than SPA
attack because it requires less information on the implementation of the attacked
algorithm.

HO-DPA (High-Order Differential Power Analysis) [Messerges 2000], an
advanced type of DPA attack, involves multiple data sources and incorporates time
offsets in the attack. Although the HO-DPA is less widely practiced than SPA and
DPA, it makes more devices vulnerable.

1.4.1.3 EMA

EMA (ElectroMagnetic Analysis) is the analysis of electromagnetic radiations
emitted by integrated circuits. These radiations are mainly due to the moving
of loads through power and ground network (the rails of the metal layers).
Thus, transistors switching causes the moving of loads that creates variations of
electromagnetic radiations. These radiations are closely correlated to the chip
activity. Quisquater presents EMA in [Quisquater 2001]. This analysis can be done
with a specific equipment (refer to Figure 1.5) on a whole chip (refer to Figure 1.6(a))
similarly to power analysis or with a smaller sensor (refer to Figure 1.6(b)) allowing
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to focus on small portion of the chip. Thanks to that, it is possible to perform
cartography.

Victor LOMNE - LIRMM The Electromagnetic Side-ChannelSpartan-3 Board
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Figure 1.5: Lab equipments involved in electromagnetic analyses

EMA is very similar to power analysis. It is possible to process to SEMA (Simple
ElectroMagnetic Analysis) like SPA or to DEMA (Differential ElectroMagnetic
Analysis) like DPA. It also exists CEMA (Correlation ElectroMagnetic Analysis)
and TEMA (Template ElectroMagnetic Analysis).

1.4.1.4 Acoustic cryptanalysis

This cryptanalysis consists in analyzing the acoustic sounds of the equipment
performing cryptographic operations.

The first acoustic cryptanalysis has been done during the cold war. The British
intelligence agency named Security Service but commonly known as MI5 (Military
Intelligence, Section 5) spied the Egyptian embassy thanks to a microphone placed
near the rotor of the Egyptian Hagelin cipher machine. MI5 was able to recover
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(a) A global electromagnetic analysis sensor (b) A localized electromagnetic analysis sensor

Figure 1.6: Timing overhead

some plaintext by analysis click sounds produced by the machine.

Emanations analyses are also named TEMPEST attacks. TEMPEST is
a codename used by the NSA referring to studies and investigations about
electromagnetic leaks. Wim van Eck publishes the first analysis of the security
risks of emanations from computer monitors and presents a real attack with low
cost equipment in [Van Eck 1985].

In [Shamir 2004] Shamir and Tromer adapt this attack to microprocessors.

1.4.2 Data remanence

Data remanence is the property of residual data that persists even after attempting
to remove or delete them. That can be caused by software or hardware.

For instance, software issues can be data being left intact on a non-volatile
support due to a file system deletion operation that not really erase the data on
hardware.

Physical properties of the hardware storage medium that allow retrieving data
considered erased. [Halderman 2009] presents a cold boot attack. Security processors
or IPs store their key in volatile memories. When the device is turned off, possibly
due to violation detection, these volatile memories lose power. At room temperature
data are promptly erased but with a temperature of -20 ◦ C the contents of SRAM
can be "frozen". Thus the data and possibly the keys remain readable for several
minutes. 1.7 shows a cold boot attack.
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Figure 1.7: A cold boot attack on a computer RAM (from Princeton University)

1.4.3 Probing

The principle of a probing attack is to spy the electrical activity of an electronic
component or the communication between two components. 1.8 shows a probing
procedure.

Probing permits an attacker to spy communications and to insert chosen texts
(active attack). That offers the possibility to perform four kinds of attacks.

• Read back attack: the attacker can insert instruction, for instance in
destination of the memory controller, in order dump all the memory.

• Spoofing attack: the adversary replaces the data transmitted over the bus
by his own.

• Splicing attack: this is a spatial permutation of memory blocks: the attacker
relocalizes a memory block. This is possible, for example, by spoofing the
destination address transiting on the bus.

• Replay attack: this is a temporal modification. First, the adversary records
a data transfer. Later, it replays this transfer through the network.

It is possible to perform such attack even if the data are encrypted.
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Figure 1.8: A probing procedure

It is used for the extraction of information, such as the contents of the memory
targeting secret keys. In [Huang 2003], Huang explains his attack on the X-Box
(the Microsoft game console), using a probing attack. This game console has been
hacked by analyzing and modifying the processor data and instructions during the
execution.

1.4.4 Fault injection

Fault injections are a family of techniques which are to produce voluntarily errors in
a cryptosystem. Their purpose is to cause unexpected behavior of the cryptographic
operations in order to extract secret information (such as an encryption key).

A fault injection can be performed at every level. The only assumption is that
the attacker can affect the internal state of the system by writing values. It can be
performed for instance by:

• probing a bus between a processor and the memory or directly into a chip;

• lighting a targeted transistor or memory block with a laser;

• heating the chip in order to create setup/hold time violation (temperature
affects the speed of signal propagation);

• increasing the frequency to produce the same effect as heating the chip;

• increasing or decreasing the power supply voltage.
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1.5 Conclusion

Embedded systems have expanded significantly in recent years thanks to their
growing performances. FPGAs are essential devices in embedded systems thanks to
their reconfigurable features.

Up to now, FPGAs’ capabilities and threats have been presented, and it appears
a significant problematic: if such systems are technologically, economically and
commercially major players, it is essential to protect them against a considerable
number of attacks while avoiding significantly impacting performances to remain
consistent with the expectations of embedded systems.

The next sections propose contributions to enhance this situation, considering
the entire lifecycle and addressing the two types of FPGAs which are widely used
in embedded systems: Flash-based and SRAM-based FPGAs. This work considers
the FPGA in the embedded system addressing both basic and advanced FPGA
capabilities.
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Bitstream Security

- I sense a trap.
- Next move?
- Spring the trap.

Obi-Wan Kenobi and Anakin Skywalker -
Revenge of the Sith, Star Wars 3
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This chapter addresses the securing of both Flash and SRAM FPGAs. The first
part proposes a secure protocol for remote bitstream update in order to prevent replay
attacks on Flash FPGA bitstream. It describes the implementation and evaluates
the solution performance and area overhead. The other part presents the SecURe
DPR protocol. Owing to the fact that DPR is only provided by SRAM FPGAs,
SecURe DPR aims to propose a new approach taking into account volatile nature
of this reconfigurable device family. The goal is to ensure confidentiality, integrity,
authenticity and up-to-dateness of partial bitstreams.
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2.1 Introduction

Remote update for hardware systems is a convenient service enabled by FPGA
based systems. This service turns out to be essential. Indeed, in high volume sale
products (like set-top boxes) or space-based systems it is too expensive or impossible
to retrieve the device in order to update it.

However, the remote feature allows a set of attacks that may challenge the
confidentiality and the integrity of the FPGA configuration: the bitstream. For
example transmissions of hardware IPs through an insecure network is an important
issue. An attacker can record the transmitted bitstream in order to steal the whole
bitstream or some IP blocks from an IP vendor.

He can also downgrade the system in replaying a previous version with known
flaws. That is a good way to exploit previously fixed vulnerabilities. Indeed updates
are the only possibility for a designer to protect his system against threat progress.

Several security schemes providing encryption and integrity checking of the
bitstream have been proposed in the literature. However, they do not detect the
replay of old FPGA configurations.

This chapter is composed by two parts in order to propose solutions for Flash
FPGAs in Section 2.2 and for SRAM FPGAs in Section 2.3.

2.2 Flash FPGAs

Considering FPGAs with embedded NVM (Non-Volatile-Memory), this section
proposes a new protocol ensuring bitstream confidentiality, integrity and preventing
old bitstreams replay.

That is why, this work proposes a new protocol focusing on spoofing and replay
attacks (refer to Section 1.4.3) in order to guarantee bitstream confidentiality,
integrity and to prevent old bitstreams replay.

In this work, previous presented ideas [Badrignans 2008] are improved and
implemented in order to achieve more flexibility. That is why this contribution
insists on the way to manage bitstream versions. This work also highlights the low
area overhead and the almost zero performance overhead of our solution.

2.2.1 Threat model

The threat model assumes that the FPGA system is exposed to hostile environment
where physical but non-invasive attacks are feasible. FPGA chip is considered as a
trusted zone. Typically, side channel attacks on the FPGA device are not considered.
For DoS (Denial of Service) considerations, destruction and power off attacks are
not considered. Only remote DoS are considered.
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Only non-volatile FPGAs including an on chip user NVM are considered. This
point will be discussed later on.

All attacks that allow reading, modifying or replaying the bitstream directly on
the board or through the network are considered. The SD is supposed trusted and
the FPGA platform is initialized in a trusted area.

Typically in "man-in-the-middle" attacks, an attacker is assumed to be placed
upon the network between the SD and the FPGA. He is able to retrieve and modify
all the communications transmitted through this network. Considering such an
attacker, this work focuses on spoofing and replay attacks.

Figure 2.1 describes a replay attack affecting the FPGA bitstream. It details
the three steps of such an attack:

1. The SD sends the version i to the FPGA. Meanwhile the adversary records
the data transfer.

2. The SD updates the FPGA to a version i+n. Here the FPGA is well updated.

3. The adversary replays the data transfer recorded in step 1. This replay can
be also performed by substituting the data transfer of the version i+n by the
data transfer of the version i. By this way the FPGA remains to the same
version instead of being upgraded then downgraded. In all cases, the goal of
the attacker is achieved: back to the version i.

Replay attacks are particularly dangerous, because, as explained in
Section 2.2.2.1, the current solutions proposed by FPGA vendors to ensure bitstream
encryption and integrity are inefficient against replay. It is possible to downgrade
a system in order to exploit its vulnerabilities present in a previous version. An
update may typically be performed to correct a critical security flaw.

2.2.2 Related works

2.2.2.1 Bitstream confidentiality and integrity

Confidentiality ensures that the bitstream can only be read by the cryptographic
key owners. This feature is available in a large number of FPGAs. It is
generally performed thanks to a hard-wired block cipher cryptocore (for instance
AES (Advanced Encryption Standard) [Altera ] or 3-DES (Triple Data Encryption
Standard) in [Microsemi 2010b]).

Integrity mechanisms protect the system against unauthorized modifications.
It ensures that the bitstream does not undergo any fortuitous or malicious
modifications. Some FPGA vendors provide a CRC (Cyclic Redundancy
Check) [Höflich 1994]. In this case the device is only protected against
fortuitous modifications because CRC is proven as not cryptographically resistant
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Figure 2.1: The three steps of a replay attack
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[Chawla 2009]. Indeed, CRC codes are exposed to collisions and can be relatively
easily broken with brute force attacks since they are only 16 or 32-bit long.

To efficiently protect the data integrity against unauthorized modifications
of a bitstream fragment, some FPGA vendors like Microsemi with the ISP (In-
System Programming) system [Microsemi 2009] use AES-based MAC (Message
Authentication Code).

Currently, no FPGA vendors provide any integrity mechanism that can prevent
whole bitstream modifications, for instance substitution by an older one in case of
replay attack.

2.2.2.2 Secure remote update preventing replay attacks

Most FPGA vendors provide solutions to facilitate remote update management
but do not prevent replay attacks. For instance Altera provides an IP core
called altremote update megafunction [Altera 2009], that allows the designer to
easily provide bug fixes without product recall, and by this way, extends device
lifetime. However Altera does not provide solutions to perform this process securely,
especially mechanisms preventing the replay attack.

Conceptually, integrity ensures bitstream up-to-dateness since it avoids data
modifications. In fact, replacing a bitstream by an older one is considered as a data
modification. But, integrity checking mechanisms, like hash algorithms or MACs,
do not ensure up-to-dateness without the use of a temporal reference. In practice,
none of them are designed to handle these versioning issues. Nevertheless, academic
literature proposes mechanisms against downgrades.

In [Drimer 2009], Drimer describes a system with several flash memory slots.
In case of update failure due, for example, to a power outage during an update
process, the FPGA platform can start thanks to a bitstream present in a rescue
slot. This secure mechanism requires involving an embedded processor and was
never implemented and tested to our knowledge.

Braeken et al. propose STRES (Secure Techniques for Remote reconfiguration
of Embedded Systems) [Braeken 2011] based on STS (Station-to-Station) protocol
also requiring processor instantiation. It uses elliptic curve communicating through
a TCP/IP (Transmission Control Protocol / Internet Protocol) connection.

In [Badrignans 2009], Badrignans describes three mechanisms:

1. The first one is applicable to any FPGA device supporting bitstream
encryption and integrity checking. It is based on regular challenge-response
verification. This protocol needs a very constraining regular polling.

2. The second one is applicable to any non-volatile FPGA embedding a user
NVM. This user NVM allows storing the current bitstream version number.
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At each FPGA boot this value is compared to bitstream version to ensure its
up-to-dateness.

This solution requires having a specific bitstream for each FPGA that
considerably complicates the bitstream management of wide FPGA sets.

3. The last one requires modifying the static logic (the hard-wired FPGA part)
and can be only set up by FPGA vendors.

2.2.3 Secure update principle

The goal of this secure update mechanism is to lock the FPGA to a specific version
in order to prevent replay attacks.

This contribution is an extension of the work presented in the second mechanism
of [Badrignans 2009] in view to correct this bitstream specificity issue. It also
improves this protocol to be resistant to update failures.

2.2.3.1 Generic design overview

The figure 2.2 shows the FPGA design enabling to implement the secure remote
update of bitstream mechanism. The FPGA is composed of three parts.
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Figure 2.2: Design overview

1. The first one, static logic, is hard-wired and cannot be configured. It contains
a decipher, protecting the bitstream confidentiality and integrity, and its key.
This key, named KB, is only known by the FPGA and the SD.

2. The second one, user logic, can be configured by the SD and contains a
bitstream version verification mechanism. It is composed of a FSM (Finite
State Machine) able to manage:

• A network controller: to enable the update to be remotely performed.
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• A Non-volatile memory controller: to store a first power-up flag, the
current bitstream version number and keys shared with the SD.

• A block cipher: to ensure the mutual authentication of the FPGA and
the SD.

3. The third one, user NVM contains three keys shared with the SD. They must
be unique for each FPGA and are used to encrypt the tag:

• Kreq: for the Update command.

• Kack1: for the Update command acknowledgment.

• Kack2: for the new bitstream version reception and start-up on the good
device acknowledgment.

Since the goal is to lock the FPGA to a particular version, the NVM contains
also the value indicating the current one. This value, named TAGF can be only
incremented by the SD. It will be compared to the tag contained in the user logic,
named TAGUL (refer to figure 2.2). Each Bitstream version contains his proper
TAGUL.

In practice, it is a constant in the design source code: version zero is tagged
with number zero, version one with number one, and so on. The NVM is written
the first time from outside of FPGA chip in a trusted zone before to be locked using
FPGA vendor mechanism [Microsemi 2009]. After locking, the NVM can be read
and write only from the user logic.

2.2.3.2 Update process

The figure 2.3 focuses on communications between the SD and the FPGA. It explains
the process able to verify that the current bitstream version is genuine and increment
securely this non volatile value in view to a future update.

This update process is described more precisely in the following section.

Update command

This command increments TAGF with a view to prepare the FPGA to an update.
The SD sends the update command containing the tag encrypted with the Kreq as
cipher key to the FPGA. This encryption is required to prevent that an attacker
could increment this TAG himself. Cipher mode can be non-chained if TAGF can
be contained in one block cipher input.

After decryption, the FPGA compares the tag contained in his own bitstream
(TAGUL) and the tag sent by the supposed SD. If they are different, the FPGA
continues to work and waits for a new update command. Else it is sure that the
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Figure 2.3: Remote secure update protocol diagram

command comes from the SD. In this case, the FPGA increments TAGF and starts
to encrypt the new tag with the cipher key Kack1. To inform the SD that the tag
incrementing command is received, the FPGA sends the result of the encryption.
Thereby the SD, who knows the Kack1, can check the FPGA has received the update
command and the new TAGF is effectively up to date. Now, the FPGA is ready to
receive the bitstream, and so, to become up-to-date. The design is stopped.
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Download a new bitstream version

When the previous step is validated, the SD sends the new ciphered bitstream, with
its MAC, to the FPGA.This protects the FPGA against malicious bitstreams.

At the start-up of this new design, the FPGA performs the new tag encryption
with Kack2 as cipher key and sends the result to the SD.

This acknowledgment informs the SD that the new bitstream was correctly
downloaded to the right FPGA and the design was effectively started-up on the
right FPGA. In fact the new TAG is contained only in this new bitstream and the
Kack2 is known only by this FPGA.

Bitstream version verification

Each time the FPGA design starts-up, it will check that TAGUL and TAGF are
equals, using a comparator as wide as TAGs length. If they were different, a replay
attack is detected, an alarm (a signal in the design) is triggered that can be used by
the SD to apply his policy. He can for instance stop, destroy the system or enter in
a degraded mode.

2.2.4 Security analysis

This analysis focuses on bitstream replay and remote DoS attacks.
Our scheme assumes that the FPGA vendors encryption and integrity

verification mechanisms (refer to Section 2.2.2.1) are secure. For instance, as it
is explained in [Microsemi 2010b], ISP Microsemi mechanism, implemented in the
static logic, checks the bitstream integrity thanks to a MAC while the device is
still operating. If the MAC validates the bitstream, the device will be erased and
programmed. Else, the device will continue to operate uninterrupted and does not
take the new bitstream into account. The new bitstream tag cannot be changed by
an attacker thanks to the MAC.

This should preclude DoSs in the case that an attacker modifies the end of the
bitstream. Actually, contrary to the documentation [Microsemi 2010b], the device
is not erased and programmed after checking the integrity of the whole bitstream.
The buffer used to store the bitstream during the verification is not large enough.
By this way, the ISP mechanism splits the bitstream in several small sized fragment
in order to verify and and copy it to the FPGA, the one and then the other. That
is why, if an attacker modifies only the end of the bitstream without modifying the
begining, the ISP start de overwrite the right bitstream.

In a nutshell, this update protocol is not DoS resistant, contrary to what the
Microsemi documentation [Microsemi 2010b] says.
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The tag is encrypted with three different keys to prevent replay attacks. Indeed,
to avoid that the attacker responds by pretending to be the device or the SD, only
one-time messages (key-tag pairs) are transmitted upon the untrusted network. If
it is not the case, everyone can replay this message to increment the TAG in order
to perform a remote DoS attack. Since, for a bitstream version, the tag is the same
for all the FPGAs, Kreq, Kack1 and Kack2 must be unique for each device.

In the step, which is to download a new bitstream version, the new TAGUL

cannot be spoofed because his integrity is verified thanks to a MAC (cf.
Section 2.2.2.1). For the same reasons an attacker cannot replace this bitstream
by his own.

The bitstream first boot acknowledgment able to detect update failures. If the
SD does not received this acknowledgment, he can send the new bitstream until the
FPGA succeed to boot on him.

2.2.5 Implementation considerations

This new secure remote update of bitstream protocol can be implemented on other
FPGA platforms. The only requirement is the presence of:

• An embedded flash memory in the FPGA chip to securely store the first power-
up flag, the FPGA current TAG, Kreq, Kack1 and Kack2.

• A mechanism proposed by the FPGA vendor providing bitstream
confidentiality and integrity.

For instance Xilinx with the Spartan3-AN FPGA [Xilinx 2009] embeds a flash
memory. It also provides a DNA mechanism, explained by Xilinx in [Smerdon 2008],
but that does not protect bitstream confidentiality.

It is possible to implement a cryptocore in user logic to decipher the encrypted
bitstream provided by the SD before storing it in configuration flash. Bitstream
integrity must be also verified with a secure mechanism based for instance on a
MAC. This securing needs an extra cost in terms of area.

Spartan3-AN provides several bitstream slots and allows a better robustness
against update failures with a Drimer-like mechanism like it is explained in
[Drimer 2009].

Lattice provides also such services in XP2 [Lattice corporation 2010a] and
MachXO2[Lattice corporation 2010b] FPGA Family. Bitstream confidentiality and
integrity are provided but NVM is used to save a RAM copy and it is less easy
to store data: the first power-up flag, TAGF , Kreq, Kack1 and Kack2 in our case.
A rescue bitstream slot, named "golden", is also provided by Lattice, protecting
against update failures.
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Figure 2.4: FPGA-focused overview

2.2.5.1 Demonstration platform

A demonstrator has been developed to validate the protocol and to evaluate the
performance and area overhead of such a mechanism. This demonstration platform
is based on an Microsemi Fusion starter kit (FPGA: Fusion AFS600). It is a non-
volatile FPGA, embedding a user flash memory and providing a confidentiality and
integrity mechanism. Figure 2.4 describes this demonstrator.

The network input is composed of a JTAG port and a serial communication port
based on RS232 link:

• The first one (JTAG) is used to received the bitstream.

• The second one (RS232) is used to receive update commands and send the
two acknowledgments (the first-boot and the tag incrementing ones).

In a real application it shall be replaced by a network adapter.
The block cipher used in this implementation is a 3-DES. AES uses about two

times more tiles than 3-DES and needs a more complex design on Microsemi FPGAs
because of block RAMs initialization.

The fact that Kreq, Kack1 and Kack2 are stored in the flash memory with TAGF is
very useful for applications mostly when a large number of FPGAs are managed and
of course avoiding in this way a vulnerability at the first FPGA initialization. This
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allows producing the same bitstream file for the whole set of FPGAs contrary to
the work presented in [Badrignans 2008], since, for a given version of the bitstream
that is only the three keys, Kreq, Kack1 and Kack2, that differentiate the device.

Indeed during the initialization procedure this three keys and TAGF are
downloaded through the JTAG port before locking. Then the flash access through
this port is locked. This locking prevents that an attacker reads or overwrites the
keys and the TAGF , otherwise the whole protocol will be compromised.

The figure 2.5 describes the FPGA Master FSM algorithm.
The Section 2.2.3.2 explains how the SD is authenticated by the FPGA. The

Kreq-ciphered tag is received from the supposed SD. After decryption, a comparison
between the TAGUL (which is equal to TAGF in this step) and the TAG sent by
the SD is performed in order to authenticate the SD.

However, in order to reduce the latency due to this decryption, TAGUL is
ciphered with Kreq in waiting the update command. Then, a comparison between
the two ciphered TAGs is performed as soon as the SD one is received. With
this improvement, steps 1, 2 and 3 (respectively Power-up, First power-up and
Authentication) are performed before receiving the SD’s update command.

Moreover, this is also important in terms of resources if the 3-DES block cipher is
replaced by an AES one. Contrary to 3-DES engine, AES requires a non-negligible
extra-cost in resources to provide decipher mode when cipher is already implemented
(or cipher mode when decipher is already implemented). Thanks to the previous
trick, only cipher operation is necessary and this extra-cost is not effective because
it allows not using a decipher in addition to the cipher.

2.2.5.2 Results

The table 2.1 summarizes the overhead in terms of clock cycles and time for each
step. The design is clocking at 60 MHz. For each step the total overhead is
calculated.

To evaluate the performance overhead of this protocol implementation, only step
1 (Power-up) should be considered.

• On each power-up: Step 1 (Power-up) is performed before starting the user
design in order to verify the TAG version.

• On each update command: Step 4 (TAGF incrementing) is performed before
receiving a new bitstream version. For the acknowledgment sending, network
latency should be also considered, and depends only on the network type.

Steps 2 and 3 (respectively First power-up and Authentication) are performed
during the user design execution and do not increase the mechanism performance
overhead.
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TAGF : Flash memory tag
TAGUL : User l o g i c tag
Ek(M) : Encryption o f M with K as c iphe r key
CTAGKx: Tag c iphered by Kx

Step 1: Power-up

1 Read (TAGF )
2 i f (TAGF 6= TAGUL) then
3 goto 22
4 end i f ;

Step 2: First power-up

5 Read (flag)
6 i f (flag = true) then
7 Read (Kack2)
8 CTAGKack2 := EKack2

(TAGUL)
9 Send(CTAGKack2)
10 end i f ;

Step 3: Authentication

11 Read (Kreq)
12 CTAGKreq := EKreq

(TAGUL)
13 Read (Kack1)
14 CTAGKack1 := EKack1

(TAGUL)
15 Wait for CMD
16 I f (CMD = CTAGKreq) then

Step 4: TAGF incrementing

17 Write (TAGF +1)
18 Send(CTAGKack1)
19 Else
20 goto 15
21 end i f ;
22 SYSTEM SHUTDOWN

Figure 2.5: Security protocol implementation on FPGA

Step 4 is not considered because performance overhead is not significant face
to FPGA programming (several seconds). Considering all these elements, the
performance overhead is estimated at only 54 cycles: step 1 (Power-up).

The table 2.2 summarizes the overhead in terms of area. It shows the
FPGA part occupied by each component of this secure remote update mechanism
implementation.
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Table 2.2: Area overhead for the AFS600 device

This area overhead can be relativized considering that 3-DES, RS232 and flash
memory controller can be reused by the SD. Only Master FSM cannot be reused.

Flash memory cost is not shown because it is not significant: 672 bits (including
32 bits for the first power-up flag) on the 4 Mbits (0.016%). The SD can use the
rest of this physical flash memory for its own purposes. It is also possible, but not
very gainful, to use only 63 bits for TAGF . In this case, bit 64 is the flag in order
to use only 640 bits instead of 672. Bit 64 of the cipher input data may be zero.

2.2.6 Discussion

Remote update of FPGA-based systems is a challenging issue from a security
point of view. Section 2.2.1 showed that existing mechanisms to ensure bitstream
confidentiality and integrity via encryption and authentication fail to prevent
bitstream replay and thus system downgrade.
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This work proposed a new communication protocol between the SD and
an FPGA platform to update the FPGA configuration while preserving its
confidentiality and integrity. This protocol also provides a protection against replay
attacks and detects update failures.Moreover, the corresponding area overhead,
when considering core reusability, and performance overhead are negligible.

This section highlights the need to embedded flash memory into the FPGA chip
for security solutions in order to prevent bitstream.

In the future, Kreq, Kack1 and Kack2 could be generated thanks to a PUF
(Physically Unclonable Function) [Verayo ]. A PUF is a physical structure that
provides randomness. This randomness is introduced during the manufacturing
process and cannot be controlled. It can be a good solution to ensure a secure
unique number generation in order to identify a FPGA.

2.3 SRAM FPGAs

SRAM FPGAs are increasingly used in embedded systems for many applications.
Their ability to be deployed on-field and remotely updated, makes them essential
when HoD (Hardware on Demand) is required. The mobility of these devices requires
efficient, flexible and adaptive approaches while having low-power consumption. In
this context, DPR stands out as being a significant advantage. DPR makes run-
time reconfiguration possible to allow reducing chip area [Eldredge 1996] and power
consumption [Lie 2009].

Although the ability to be remotely updated can fix design vulnerabilities, it also
exposes FPGA-based systems to security attacks, related to hostile environments
in which they could operate. For instance, replay attacks allow an attacker to
downgrade a system in order to re-expose it to outdated vulnerabilities.

Nowadays, DPR is only provided by SRAM FPGAs which are harder to secure
because of their volatile nature: there is no possibility to store version references
on chip. In addition to provide common security services such as confidentiality,
integrity, and authenticity of bitstream, it is necessary to ensure bitstreams up-to-
dateness.

Currently, no solution for DPR addresses replay attacks. This is for these reasons
that it is important to protect such systems embedding FPGAs and that is why the
main concern of this paper is to propose a new approach to secure updates against
replay attacks addressing DPR.

2.3.1 Problem Formulation

The terminology used here is the one stated in Section 1.3.3. RP and RM are noted
RPx and RMxy: x being the identifier of the RP and y being the identifier of the
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RM.

2.3.1.1 Threat Models

The threat model does not consider side channel attacks, introduced by Kocher et
al. in [Kocher 1996], destruction and power off DoSs. This work especially focuses
on bitstream spoofing and replay attacks. In a spoofing attack, the adversary simply
replaces a data by one of his own.

Replay attacks are particularly dangerous because the current approaches
proposed by FPGA vendors [Xilinx 2010c] to ensure bitstream confidentiality and
integrity are inefficient against replay. Even if an update may typically be performed
to correct a critical security flaw, it is possible to downgrade a system, in order to
exploit vulnerabilities present in a previous version.

This work proposes two case studies, each of them offering different trade-offs
and described in the following sections. They match the two different threat models
as described into Figures 2.6 and 2.7.

Case 1: BiT (Board is Trusted)

As shown in Figure 2.6, the first case, named BiT (Board is Trusted), considers
that the adversary is unable to have physical access to the device and therefore he
cannot proceed to passive or active attacks. The only way to tamper the system is
through the network. Of course man-in-the-middle attacks are considered.

Embedded
system

System
Designer (SD)

Untrusted 
Network

FPGA
chip

External
Flash

External
RAM

Trusted zone

Figure 2.6: In BiT case, the whole board is trusted
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Case 2: FPGA is Trusted (FiT)

As shown in Figure 2.7, the second case, named FiT (FPGA is Trusted), considers
the adversary to have physical access to the device. Attackers are able to proceed
to passive and active (injection) probing attacks. All attacks that allow reading,
modifying or replaying the bitstream directly on the board or through the network
are considered.

Embedded
system

System
Designer (SD)

Untrusted 
Network

FPGA
chip

External
Flash

External
RAM

Trusted zone

Figure 2.7: In FiT case, only the FPGA chip is trusted

In this case we need to secure remote update (the SD sends a new bitstream to
the flash) and partial reconfiguration (the FPGA loads the bitstream stored in the
flash memory).

2.3.2 Related works

Bossuet et al. [Bossuet 2004] use DPR and self-reconfiguration in order to secure
the bitstream of SRAM FPGAs. In this scheme, the secret key is stored in the
UL static area. By this way, it does not need non-volatile memories or external
batteries to store the secret key. It does not secure the DPR but it uses it and self-
reconfiguration capabilities to secure the bitstream of SRAM FPGAs. This solution
allows the SD to override the problems related to the CL that cannot be configured
by the SD.

Zeineddini et al. [Zeineddini 2005] protect partial bitstreams with encryption
and authentication. AES is used for encryption and HMAC-SHA1 (HMAC (Hash-
based MAC)-SHA (Secure Hash Algorithm)1) for authentication. This mechanism
has been implemented on a Xilinx ML310 board. Two schemes have been compared
in terms of area and performances: one based on a hard-wired PowerPC and the
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other on a MicroBlaze soft processor. Their threat model consider the board as a
trusted area: the partial bitstreams are stored in plaintext in external memory.

Hori et al. [Hori 2008] similarly to Zeineddini et al., propose to secure partial
bitstream with confidentiality and authenticity. However, they use AES-GCM (AES
in GCM (Galois Counter Mode) mode) on a Virtex-5 XC5VLX50T FPGA and
reduce the trusted area to the FPGA chip. In this approach the partial bitstreams
are not stored. They are sent through the UART (Universal Asynchronous Receiver
Transmitter) to be used directly for reconfiguration. The system cannot process
to a self-reconfiguration without requests and waits for a partial bitstream. This
solution is difficult to carry out for an industrial context.

Kepa et al. [Kepa 2010] propose the SecReCon architecture. This method, based
on a RoT (Root of Trust), requires involving a trusted authority and is far too heavy
and complicated to implement.

None of these works preclude replay attacks.
Drimer et al. [Drimer 2009] address replay attacks with a threat model

corresponding to our BiT case. However, this work is not suitable for DPR.
Similarly, we have presented in [Badrignans 2008] and [Devic 2010] two protocols

that ensure up-to-dateness but with a threat model matching our FiT case for non-
volatile FPGAs embedding a non-volatile memory. But once again these works does
not deal with DPR.

The problematic of securing DPR has been already addressed. However, no
current solution for DPR deals with replay attacks. This paper attempts to fill this
gap by proposing a robust solution.

2.3.3 SecURe DPR Design Architecture

The SecURe DPR protocol aims to secure hardware updates against tampering and
more particularly to preclude replay attacks. In order to be industrially convenient,
partial bitstreams are stored on-board in order to process to self-reconfiguration at
any time. We consider partial bitstreams to be generated using the module-based
flow. Figure 2.8 presents the protocol to update a full or partial bitstream with the
SecURe DPR protocol. The next two parts describe this protocol more precisely
highlighting the differences between the BiT and FiT cases.

2.3.3.1 SecURe DPR: the BiT case

We remain that in BiT case, the whole board is trusted. Figure 2.9 shows the
SecURe DPR architecture for this case.

In order to update the system, the SD sends a ciphered frame containing a full
bitstream or a partial bitstream to the FPGA. This frame is processed and stored in
external RAM memory (step 1 in Figure 2.9). This process consists in deciphering
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System Designer 

System Designer 

FPGA 

FPGA 

EK(RP Number - TAGSF - (Partial) Bistream) 

Decipher to the RAM (and verify authenticity) 

Read RP Number 

Verify that TAGSF ≥ TAGF 

Overwrite the (partial) bitstream to the flash 

alt [if previous version] 

Copy the (partial) bitstream to the flash 

[else] 

Overwrite TAGF with TAGSF 

Send Acknowledgment: EK(TAGSF - RP Number)

loop [Remote Update] 

www.websequencediagrams.com 
Figure 2.8: SecURe DPR protocol diagram
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and verifying the integrity and authenticity of the frame. Confidentiality is ensured
by AES symmetric block cipher, while integrity and authenticity are verified with a
HMAC algorithm. The keys are stored in the UL static area.
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Figure 2.9: SecURe DPR architecture for the BiT case

Figure 2.10 shows the frame before and after being deciphered. As shown in this
figure, after being deciphered, the frame contains three parts:

• The RP number: the identification number of the reconfigurable partition.

• The Tag: the version of reconfigurable module(s) corresponding to the
reconfigurable partition identified by the RP number.

• The full bitstream or the partial bitstream: a whole bitstream is distinguished
from a partial one by its RP number that is equal to zero.
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Figure 2.10: Composition of a frame before and after being deciphered

The system then reads the corresponding Tag stored in flash memory (TAGF )
and compares it with the Tag of the sent frame (TAGSF ). TAGF is evaluated. If



2.3. SRAM FPGAs 47

TAGSF is lower than TAGF , then replay attack has been attempted: a signal in the
design acting as an alarm is triggered to the system to react to the attack according
to the system security policies. If TAGSF is equal or higher than TAGF , the full
or partial bitstream must be stored in the file system of the external flash memory
(step 2 in Figure 2.9). There are two possibilities:

• Update - If a full or partial bitstream with the same name already exists, the
system overwrites it in the flash memory.

• Extension - If this is the first full or partial bitstream with this name, it is
stored in the flash memory.

Then, TAGF is overwritten by TAGSF in the external flash memory (step 3 in
Figure 2.9).

Optionally, an acknowledgment (TAGSF and RP number zero-padded and
encrypted) can be sent back to the SD to inform him that the update is well done.

2.3.3.2 SecURe DPR: the FiT case

We remain that in FiT case, only the FPGA chip is trusted. Figure 2.11 shows the
SecURe DPR architecture for this case.
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Figure 2.11: SecURe DPR architecture for the FiT case

In this case, BRAMs (Block RAMs) replace the part of the external RAM
memory used to temporally store the received partial bitstream. Similarly to the
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BiT case, the SD sends a ciphered frame containing a partial bitstream to the
FPGA to update the system. The frame is formed with the same elements as in
FiT case (refer to Figure 2.10). The difference is that the frame is not deciphered.
Integrity and authenticity are verified with HMAC (step 1 in Figure 2.11). Only the
beginning of the frame is deciphered to know the Tag and the RP Number. Like
in the previous, TAGSF is verified. It is not compared to TAGF but to TAGUL,
the Tag contained in the UL. Everything then goes as described previously in BiT
case except for the whole frame containing the partial bitstream which is stored
ciphered with RP number, Tag and integrity verification in the flash memory (step
2 in Figure 2.11). Then, TAGF is overwritten by TAGSF in the static area of UL
(step 3 in Figure 2.11).

In this scheme, the security is higher but each partial reconfiguration requires
deciphering and verifying the integrity and authenticity of the partial bitstream.

The designer should choose the best option corresponding to the required
security and performances.

2.3.3.3 Security analysis

With the SecURe DPR protocol, the cipher must be in a chaining mode and
the Tag must be ciphered with the bitstream. HMAC uses the ciphertext as
input message. This avoids deciphering the whole frame to perform integrity and
authenticity checking in FiT case without compromising robustness. It poses no lack
of security since HMAC is used instead of non-keyed hash functions which perform
cryptographic operations on plaintext before encryption.

In FiT case, probing is considered but full bitstream is not protected against
replay attacks. Therefore, the full bitstream should not be updated or the replay
should not be a critical issue in this case. However, the FPGA vendor’s mechanism
preserves authenticity and confidentiality of the bitstream containing the AES and
HMAC keys (stored in UL static area). Also in FiT case, we consider that the
system is never switched-off. Actually, when the system turned-off, every current
versions of partial bitstreams are lost and after system power-on, the FPGA must
request the current Tags to a server. To preclude replaying this Tag transfer, the
FPGA must send a Nonce (Number used once), ciphered with the key contained in
the full bitstream, to the server. The latter replies by sending Tags and a Nonce
derived from the received Nonce.

There are situations where both BiT and FiT cases are not sufficient in terms
of security: the adversary is able to perform passive and active bus probing
and the up-to-dateness of the full bitstream is critical. In these situations, it
is possible to limit such type of physical access by using specific IC packages.
Approaches [MacPherson 1994] offers a detection mechanism against enclosure
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tampering. This enclosure wraps several components and their interconnections.
In case of tampering, it generates an alarm triggered by package sensors.

A solution could be that the FPGA vendors embed a non-volatile memory, even
small-sized, in the chip in order to have the benefits of proposed solutions for both
cases BiT and FiT. In this case the Tags would be stored in the embedded non-
volatile memory. By this way problems related to the volatility of BRAMs would be
avoided. Moreover, as partial bitstreams are small, they could be stored directly in
plaintext in the embedded non-volatile memory and it would no longer be necessary
to consider two cases.

2.3.4 Results

The implementation of our SecURe DPR protocol is based on a ML605 Xilinx
development board embedding a Virtex-6 XC6VLX240T. The AES-CBC (AES in
CBC (Cipher Block Chaining) mode) core is iterative and provides both encryption
and decryption. It computes 128-bits in 11 clock cycles. HMAC algorithm is based
on folded SHA-256. Each 256-bits computation takes 64 clock cycles. Data are
sent by the processor through the AXI (Advanced eXtensible Interface) AMBA
(Advanced Microcontroller Bus Architecture) bus.
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Figure 2.12: Secure DPR implementation overview

This design presented in Figure 2.12 was realized with the Xilinx 13.4 design flow
(XPS (Xilinx Platform Studio), SDK (Software Development Kit), and PlanAhead).
The processor is a MicroBlaze soft core operating at 100 Mhz with 8 KB of
instruction cache and 8 KB of data cache. Xilfatfs has been used to access the
file system on the CF (Compact Flash) memory. The size of partial bitstreams is
23 KB.

All results have been provided post PAR (Place And Route) process.
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(b) Reconfiguration performance overhead

Table 2.3: Performance overhead

2.3.4.1 Performance evaluation

Tables 2.3(a) and 2.3(b) provide a summary of performances overhead for the two
case studies described in Section 2.3.1.1 (BiT case) and Section 2.3.1.1 (FiT case).
Table 2.3(a) shows the performance overhead of a partial bitstream update, while
Table 2.3(b) highlights the performance overhead of a partial reconfiguration. Since,
reconfiguration occurs more frequently than update, SecURe DPR has been designed
to impact more updates than reconfigurations.

2.3.4.2 Area evaluation

Tables 2.4(a), 2.4(b) and 2.4(c) present the area overhead.
Table 2.4(a) shows the area for the base system without security detailing

each component (MicroBlaze, DDR3 (DDR (Double Data Rate) 3rd generation)
controller, Ethernet controller, AXI and AXI lite buses, HWICAP (HardWare
ICAP), RS232 UART and System ACE (System Advanced Configuration
Environment) CF wrapper). Tables 2.4(b) and 2.4(c) highlight the area overhead for
the two use cases (BiT and FiT) corresponding to the two threat models described
in Section 2.3.1.1. The only difference for the FiT case architecture is the need of 16
36Kb-BRAMs to avoid using external RAM. These BRAMs allow processing up to
64 KB-sized partial bitstreams. The number of BRAMs can be modified to fit the
system requirements. This area overhead is compared to a lightened base system
embedding an area-optimized MicroBlaze (3-stage pipelined and implemented with
DSPs). In addition, it can be relativized considering AES-CBC and HMAC-SHA256
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(c) Area overhead for FiT case

Table 2.4: Area overhead
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(HMAC-SHA256) cores which can be reused for a targeted application.
This section shown that SecURe DPR is an efficient solution. The performance

overhead for self-DPR is null or very low (14%) depending on the case (BiT or FiT).
The area overhead is quasi-null if reusability is considered.

This implementation is a proof of concept. The goal is that FPGA vendors, like
Xilinx, integrate the SecURe DPR protocol in the CL. Since existing mechanism
[Xilinx 2010c] already provides AES and HMAC cores, the area overhead could be
quasi-null: it requires mainly to modify interconnections.

2.3.5 Discussion

This section proposes the SecURe DPR protocol, to fill-in the lack in DPR
context concerning replay attacks. To the best of our knowledge, it is the first
mechanism presenting a solution against replay attacks for DPR. SecURe DPR
provides a protection ensuring partial bitstream up-to-dateness while preserving
confidentiality, integrity and authenticity. This work suggests solutions to the
threat models corresponding to industrially-driven use cases of self-reconfiguration.
An implementation has been done to demonstrate the feasibility, and evaluate the
overhead in terms of performance and area. The results show that SecURe DPR
is a very efficient solution that can be used as it stands or integrated in the CL by
FPGA vendors.

This section highlights that the addition of a non-volatile memory embedded in
the FPGA chip would increase the security of embedded systems based on FPGAs.

2.4 Conclusion

Remote update of FPGA-based embedded systems is a challenging issue from
a security standpoint. We showed that existing mechanisms aiming to provide
bitstream confidentiality and integrity with encryption and authentication fail to
preclude bitstream replays and thus system downgrades. It is surprising that the
FPGA vendors do not protect their devices against replay attacks which are serious
threats, easy to perform for an attacker with basic equipments.

This chapter proposes very efficient solutions for both Flash and SRAM FPGAs
taking into account their strengths and weaknesses addressing several industrially-
driven threat models. It covers a very large domain application by considering
advanced FPGA capabilities like DPR. These bitstream securing solutions have
been implemented to prove the feasibility as well as to evaluate their area and
performance overheads.

This work is a sound basis for securing embedded systems based on FPGA
technologies. Indeed, now that we can trust the FPGA configuration, it is possible
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to continue our efforts to secure the software which will operate on the FPGA. That
is the subject of the next chapter.
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OS and Application Security

- What can you see, Neo?
- It’s strange... the code is somehow different.
- Encrypted?
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Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 OS and application execution security . . . . . . . . . . . . . 56

3.2.1 Protecting memories . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.2 Resources isolation . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 OS boot security . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.1 Threat model . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.3 Secure boot principle . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.4 Security analysis . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.5 Implementation and Hardware acceleration . . . . . . . . . . 69

3.4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

This chapter describes how to secure OSs and applications running on previously
trusted FPGAs. It presents an overview of currently used counter-measures
to protect OSs and applications on FPGAs. It summarizes, organizes and
explains existing counter-measures which are not necessarily specific to FPGAs.
It also proposes an OS boot verification that allows precluding malicious kernel
modifications. This work also ensures kernel up-to-dateness and supports updates
management. It highlights the performance improvement of this security mechanism
thanks to hardware acceleration mechanisms. It also describes the implementation
and evaluates the overhead of this solution in terms of performance and area.
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3.1 Introduction

Embedded systems require more and more security. Due to the mobility feature,
these systems could be exposed to an hostile environment.

The constant complexity growing of this kind of devices, that can be FPGAs,
involves to embed an OS.

An attacker can inject, through memory or another way, malicious code during
the OS execution, taking for instance entire control of the system.

[Huang 2003] is a good example of attack. In this paper, Huang explains
his attack on the X-Box (the Microsoft game console), designed with a classical
computer architecture. This game console has been hacked by analyzing and
modifying the processor data and instructions during the execution.

AEGIS [Suh 2003] is an architecture demonstrating a complete OS securing from
hardware to software. However, it requires to have a dedicated processor with a
modified OS.

Data theft or malicious code injection can be included into a generalist model
addressing access rights. We remind that considered threat covers spoofing and
replay.

This chapter is composed by two parts. First, Section 3.2 describes how to
protect OSs and applications on FPGAs but are not specific to FPGAs. Then,
Section 3.4 describes how to protect the processor kernel boot on FPGAs.

3.2 OS and application execution security

3.2.1 Protecting memories

3.2.1.1 Protecting RAM

In order to preclude an attacker to extract or modify critical data, the RAM memory
and RAM data transfers should be protected with confidentiality, integrity and up-
to-dateness. This memory requires high performances and is a critical component in
terms of security. Due to its wide area, RAM cannot be integrated in the processor
chip. Its random access behavior makes impossible to use mechanisms similar to
bitstream protection. The X-box, has been hacked because the RAM was weakly
encrypted.

Merkle-trees (refer to figure 3.1) are an interesting solution. Elbaz proposes
a new type of integrity trees, PRV (Protected Random Value)-trees approach
[Elbaz 2006], a counter-measure based on Merkle-trees concept. PRV-trees ensure
confidentiality, integrity and up-to-dateness and require only to store on chip the
root of the tree allowing to verify the whole tree and therefore the entire RAM. With
FPGAs, it is possible to store several roots, for instance in block RAM, in order to
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improve performances.
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Figure 3.1: A 2-ary Merkle-Tree (or Hash-Tree)

In [Vaslin 2009], Vaslin et al. propose a high-efficiency solution based on OTP
(One-Time Pad or One-Time Password) encryption and CRC. They explain more
precisely the mechanisms enumerated in this section.

Crenne et al. continue Vaslin’s works in [Crenne 2011] offering a more secure
solution based on AES GCM instead of CRC. This solution allows having different
memory security policies for different application tasks.

All current solutions to secure RAM impact seriously the system performances.

3.2.1.2 Protecting file system

The file system is a method of storing and organizing data into an easy-to-manipulate
database. It should be protected against the same type of attacks as RAM. However,
contrarily to RAM, the file system is stored in a NVM. That is why a non-volatile
value (like a root of Merkle-trees) has to be stored in a NVM into the FPGA chip.

For a long time, tools are available to encrypt embedded Linux file systems.
eCryptfs [Moog ] provides file system level encryption. dm-crypt [Saout 2004], the
cryptoloop successor, provides block device encryption.

In a classical X86 architecture, such mechanisms require to enter manually a
password at each system power-up to allow the processor to decrypt the file system.
With FPGAs, it is possible to store and hide the secret decryption key inside
the bitstream, making the system autonomous and able to run without a human
intervention.

3.2.2 Resources isolation

In complex systems, a good way to avoid intrusions is to use the concept of resources
isolation. The principle is to isolate each application or component of the system.
In this way, malicious applications cannot tamper other ones.
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3.2.2.1 TPM: Trusted Platform Module

The TCG (Trusted Computing Group) has proposed TPM (Trusted Platform
Module) specifications [TPM ]. TPM is a component providing cryptographic
functionalities and allowing to store keys. This component runs like a smartcard.

Figure 3.2 shows a TPM daughterboard plugged on a personal computer
motherboard. In this case, it can be used to verify the platform integrity and
to store passwords or keys.

Figure 3.2: TPM security device plugged on a personal computer motherboard

[Eisenbarth 2007] describes how to embed a TPM into an FPGA chip. With
FPGAs, the system designer can do everything in term of isolation (keys non-
accessible from the processor, for example).

3.2.2.2 Hardware firewalls

Like applications, IPs can be coded by anyone. That is why [Cotret 2011] proposes
an architecture with firewalls inserted at each interface between IP and bus. This
architecture prevents an attacker to retrieve or modify passwords, keys or other
critical data.

3.2.2.3 SandBoxing

Devices are more and more open in order to offer still more services to consumer.
Smartphones illustrate well this trend with the possibility to pick applications, coded
by anyone, from application stores. These applications can have malicious behaviors.
They can be created to retrieve confidential data or simply coded using bad practices.
In both of these two cases, the applications may affect others.
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To protect the system against such applications, it becomes usual to confine them
in sandboxes. A sandbox is a superintended environment offering a restricted set of
resources. Peripheral accesses or critical parts of host system are generally disabled
or restricted. For example, confining an application to a dedicated memory range
and disabling the network is a good way to prevent sending data over the network.
Figure 3.3 explains sandbox principle by comparing the impact of an untrusted
program execution on the system memory.
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Figure 3.3: Untrusted program execution with and without sandboxing isolation

Sandbox systems are presented in [Tzur 2004] for traditional OSs and in
[Bläsing 2010] for Android smartphones. It is possible to apply sandboxing on
FPGAs especially since the most current soft processor architectures involve a MMU
(Memory Management Unit) (refer to section 3.2.2.4).

3.2.2.4 Virtualization Approach

Virtualization is an approach to isolate resources. A virtualized component is not
aware about its real environment, and by this way, it cannot reach directly another
component.

Actual computer architectures offer hardware supports for processors, memory
and peripherals virtualization.
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VT-x (Virtualization Technology) [Uhlig 2005] for Intel and AMD-V (AMD
(Advanced Micro Devices) virtualization) [AMD 2005] for AMD offer a hardware
support for processors virtualization. This adds a new execution mode, more
privileged than kernel mode. It helps hypervisor to easily catch critical instructions
from VMs (Virtual Machines).

MMU allows protecting memory against code execution. It prevents malicious
programs from accessing memory which it does not have access rights. It avoids
may buffer overflows or dumping attacks.

Intel and AMD with respectively VT-d (Virtualization Technology for Directed
I/O) [Intel 2011] and IOMMU (Input / Output Memory Management Unit)
[AMD 2009] protect memory against peripherals like MMU protects memory against
processor. It prevents malicious devices from accessing memory which it does not
have access rights. It also avoids DMA (Direct Memory Access) attacks. DMA
allows a peripheral to perform memory transfers without involving the processor.
Figure 3.4 shows how MMU and IOMMU protect memory by isolation technique.

Main memory

Device

IOMMU

CPU

MMU

Virtual addresses

Physical addresses

Figure 3.4: MMU and IOMMU protecting memory by isolation

[Sang 2010] describes a DMA attack performed on a VT-d and a non-VT-d
protected computers. It demonstrates the efficiency of an Intel VT-d by DMA
attacking a Linux machine. This attack by code injection through the FireWire port
allows performing privileges escalation. This attack succeeds when VT-d technology
is disabled and failed with an unauthorized access message error from DMAR (Direct
Memory Access Remapping) when it is enabled.

[Sang 2010] also highlights security vulnerabilities of this counter-measure. It
explains that a malicious peripheral can access unauthorized memory range by
pretending to be another one.

Qubes OS [Rutkowska 2010] is based on a Xen hypervisor. In this scheme,
software isolation is ensured by the hypervisor. Security is based on VMs
impermeability. In fact, two processes in two different VMs can be much better
isolated between each other than if they are together in the same monolithic kernel.
In FPGA context, classical virtualization is possible but has too much impact in



3.3. Discussion 61

terms of performance overhead.
In another approach, TrustZone [ARM 2009] by ARM (Advanced RISC

(Reduced Instruction Set Computing) Machines), isolates two modes by
virtualization: a secure and an insecure one. Here a secure bit is added to the
initial bus in the hardware. OS execution is protected and monitored thanks to a
hypervisor enabling the secure bit when is switched to secure mode. TrustZone
can be implemented on FPGAs because of its lightness. Indeed, the involving
hypervisor is very simple and the IOMMU is reduced to adding the secure bit
mechanism. Figure 3.5 is an overview highlighting isolation by virtualization in
TrustZone architecture.
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Figure 3.5: ARM TrustZone approach

Currently, Xilinx offers AXI bus implementation supporting the TrustZone
secure bit (refer to [Xilinx 2010a]).

In this section, we highlight that isolation was ensured by hypervisor’s
supervision. Obviously, it considerably reduces the attack surface but security flaws
and attacks were shifted to hypervisors. In [IBM 2010], IBM offers a detailed study
on virtualization vulnerabilities and highlights that isolation can be affected by
escape to host or escape to hypervisor flaws. More precisely, XBOX360, the X-BOX
successor, was better secured thanks to virtualization but was broken exploiting a
hypervisor vulnerability (refer to [Keurentjes 2007]).

3.3 Discussion

This survey is an overview of currently used counter-measures to protect FPGA-
based devices embedding an OS and their vulnerabilities. Despite the fact that
reconfigurable architectures imply the use of specific counter-measures for FPGA-
specific problematics, some traditional computing mechanisms can be reused or
nevertheless adapted to FPGAs.
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It highlights that RAM protections against hardware probing or injections are
very penalizing in terms of performances.

TrustZone on FPGAs should be more investigated in order to use FPGA
flexibility to offer innovative solutions.

The aim in such complex designs is to reduce the attack surface: over-intricate
counter-measures are more flaw-prone.

3.4 OS boot security

Protecting the OS execution is a good thing. However, it is useless if the kernel
boot is not trusted.

To protect OS boot on FPGA it is necessary to trust progressively the different
parts during the system start-up, establishing a trusted bitstream-to-kernel-boot
chain. That is why this work proposes a trusted computing mechanism taking
into account the whole security chain from bitstream-to-kernel-boot ensuring, both
hardware and software, integrity while preventing replay attacks.

For these reasons this work proposes to protect the processor kernel boot on
FPGA. This kernel is typically stored in an external NVM due to the large storage
capacity requirement. Generally this memory is off-chip, allowing an attacker to
modify the kernel in order to introduce malicious code.

Moreover, remote update turns out to be an essential service. That is why
this chapter considers that FPGAs embedding a processor are able to process OS
updates through, for instance, an insecure network. This may give rise to security
flaws affecting the system integrity or freshness. Integrity can be altered by spoofing
or modifying data in order to introduce malicious code.

The work presented here precludes kernel modifications, prevents against replay
attacks and supports updates. It highlights the performance improvement of this
security mechanism thanks to an FPGA capability: the hardware acceleration.

3.4.1 Threat model

Figure 3.6 shows that the FPGA system is exposed to hostile environment where
physical but non-invasive attacks, excepted side channel ones, are feasible. FPGA
chip is considered as a trusted zone. Typically, off-chip bus probing and active
probing (injection) are considered in our threat model.

All attacks that allow reading, modifying or replaying the kernel directly on
the external memory are considered. Typically in "man-in-the-middle" attacks,
an attacker is assumed to be placed on the link between the FPGA chip and the
external memory where the kernel is stored. He is able to retrieve and modify all
the communications transmitted through this link.
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Figure 3.6: Threat model

Considering such an attacker, we focus on two main attacks:

• Spoofing: the adversary replaces a data or a partial data by his own.

• Replay: the adversary records a data and replays it at any time.

This threat model considers both FPGAs with and without on-chip user flash
memory. It is essential that both of them embed a hard-wired mechanism protecting
the bitstream confidentiality and integrity like [Microsemi 2010b] for Actel or
[Xilinx 2010c] for Xilinx.

• FPGAs with on-chip user flash:

Existing FPGAs embedding flash, like [Microsemi 2010a], [Xilinx 2009],
[Lattice corporation 2010a] and [Lattice corporation 2010b], can preclude
downgrades applying work [Devic 2010] explained in Chapter 2.

• FPGAs without on-chip user flash:

Existing FPGAs cannot preclude bitstream replays. Several mechanisms
against such attacks on FPGAs without on-chip user flash have been presented
in [Badrignans 2010]. These mechanisms involve modifying the configuration
logic, and are not currently proposed by FPGA vendors.

Considering the beginning of this section, securing the bitstream is supposed to
be well done and already treated in [Devic 2010] and [Badrignans 2010]: we can
assume the bitstream already secured.
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In this case study, a volatile FPGA without user flash is used, focusing on
the kernel boot protection and not considering bitstream downgrades assuming the
existence of mechanisms like [Devic 2010] and [Badrignans 2010]. As prototyping
platform, we used a Xilinx Virtex 6 XC6VLX240T on a ML605 development board
but any others FPGAs able to embed a processor can be used. This point will be
discussed in section 3.4.4.

3.4.2 Related works

The aim is to prevent physical and logical attacks against hardware components. For
instance, [Huang 2003] explains how the X-Box (the Microsoft game console), based
on a classical computer architecture, has been attacked by analyzing and modifying
the processor data and instructions.

In this work we will see how to ensure kernel integrity in FPGA thanks to
hash algorithms. Such algorithms are classically used to ensure kernel integrity
in ASICs like in [Discretix ] where Discretix used such a mechanism to securely
implemented processor. It is the same principle for Atmel [Atmel 2006] and several
others companies. However, this paper presents how to adapt this mechanism
to reconfigurable architectures, in a first time by overriding the reconfigurable
weaknesses and in a second time by using the FPGAs capabilities.

AEGIS [Suh 2003] is a well accomplished example of hardware to OS securing
but requires having a specific processor with a modified operating system.

More recently, ARM conceived TrustZone [ARM 2009] to build a boot-to-OS
chain of trust. In this scheme the software is protected and monitored thanks to
secure bit added to the bus in the hardware. TrustZone uses RSA-PSS (Rivest,
Shamir and Adleman - Probabilistic Signature Scheme) to secure the boot. This
asymmetric cryptographic protocol verifies the signature of a second level bootloader
but is vulnerable to replay attacks.

In section 3.4.3.3, we will use asymmetric cryptography in order to add more
flexibility. An Apple patent describes a similar but more complex principle in
[de Cesare 2009]. In this patent Apple uses certificates and a PKI to securely boot
a code from an off-chip memory.

3.4.3 Secure boot principle

The objective of this work is to secure embedded Linux boot on FPGA preventing
an attacker to:

• execute its own potentially malicious program stored in the external memory

• modify the kernel stored in the external memory

• replay an out-of-dated kernel containing known vulnerabilities



3.4. OS boot security 65

3.4.3.1 Classical Xilinx boot

First, it is important to well understand how a classical boot is working. The figure
3.7, derived from [Hill 2010], explains the standard boot process on Xilinx FPGAs.
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Figure 3.7: Classical Xilinx boot

First, the bitstream is copied from the external flash memory to the FPGA and
started. In the same way internal FPGA BRAMs are initialized with a small-sized
program called bootloader. It just copy the kernel from the external flash to a large-
sized RAM memory. After, the bootloader jumps to the appropriate RAM address,
the beginning of the kernel. Thus, the kernel is starting.

This process is unsecured because there is no integrity verification. For instance
an attacker can replace the kernel by his own in order to execute his potentially
malicious code.

This is an unacceptable issue when dealing with applications requiring security.

3.4.3.2 Boot with integrity verification

Hash algorithms are classically used to ensure kernel integrity in ASIC like in
[Atmel 2006] where Atmel used such a mechanism to secure hardly implemented
processor.
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Figure 3.8 shows how to add integrity verification to a classic boot mechanism.
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Figure 3.8: Boot with integrity verification

The bootloader is contained in BRAMs initialized by the bitstream. As explained
in Chapter 2, the bitstream is assumed to be securely updated. This implies that
the bootloader is trusted.

The difference with the classical boot lies in the addition of a kernel integrity
verification of the copied kernel. This verification is performed by a hash algorithm
implemented in the only trusted area: the FPGA chip. The kernel hash value is
stored in the bootloader.

In this scheme, the kernel is copied to the RAM, as in the classical boot. But
after, the hash core generates the hash value of the kernel contained in the RAM.
Then, the bootloader jumps to the kernel address in the RAM only if the resulting
kernel hash value is equal to the one stored in the bootloader.

In this way, a malicious program, a modified kernel or a previous kernel version
cannot replace the genuine one.

This manner to do involves to change the hash value contained in the bootloader,
and so the whole bitstream each time the SD updates the kernel. That is why the
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section 3.4.3.3 introduces a mechanism to avoid that by adding flexibility.

3.4.3.3 Using asymmetric cryptography to add flexibility

The goal of this section is to add flexibility to the previously trusted bitstream-to-
kernel-boot chain.

The flexibility improvement allows the SD to change the kernel, in external
memory, without changing the bitstream. More precisely, it allows removing the
performance overhead due to the bitstream downloading and FPGA programming
(several seconds).

This flexible protocol is described in figure 3.9.
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Figure 3.9: Boot with flexible integrity verification

In order to avoid storing a kernel-specific hash value in the BRAMs, asymmetric
cryptography is involved.

In this scheme, the kernel provider keeps the private part of the asymmetric key
pair to sign the different future kernel versions. The public key is stored in the
bootloader instead of the hash value to verify the kernel signature.
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Such as the previous section, a kernel hash value is processed to ensure integrity.
This hash value is signed thanks to the kernel provider’s private key. The generated
signature is placed after the kernel in the external memory.

In this scheme, the kernel is copied to the RAM, as in the classical boot.
There are two steps to verify the kernel integrity:

• First, the Hash core generates the kernel hash value as in the boot with
integrity verification.

• Then, the bootloader verifies the signature of the hash value stored in the
external Flash memory with the previously generated hash value and its public
key.

With this mechanism, the public key stored in the BRAMs remains the same even
if the kernel is updated. Consequently, the BRAMs do not need to be reinitialized
and therefore the bitstream does not require to be changed and reloaded.

In this scheme asymmetric cryptography do not increase the solution security
level. The goal is only to add flexibility.

However, this flexibility may give rise to security flaws concerning replay attacks.
The next section highlights this security flaws and propose several counter-measures.

In section 3.4.5, we will explained how to implement this kind of mechanisms in
a reconfigurable architecture like FPGA, emphasis on area saving or performances.

3.4.4 Security analysis

This analysis focuses on replay and malicious modifications attacks. However, it is
possible to add confidentiality to this mechanism by using a cipher block.

In this paper only well known algorithm, NIST approved are used:

• SHA-256 is used for integrity verification

• RSA-1024 is used for signature verification

As explained in section 3.4.3.3, the flexibility improvement allows updating the
kernel, in external memory without changing the bitstream. However, this flexibility
allows replay attacks. Indeed, after a kernel update without bitstream updating, an
old kernel can be replayed since it has been signed with the same private key.

In order to preclude the exploitation of this security flaw, several counter-
measures are proposed in the following sections:

3.4.4.1 FPGAs without on-chip user flash memory (classical SRAM
FPGAs)

To secure this FPGA family, it is required to have the bitstream protected
with confidentiality, integrity and against replay attacks. Currently, no SRAM
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FPGA vendor provides sufficient counter-measures against replay attacks but
[Badrignans 2010] proposes two solutions to solve such a problem:

• First based on regular polling.

• Second based on the modification of the configuration logic. The configuration
logic is the part of the FPGA hardly implemented by the FPGA vendor.

In the context of replay-resistant SRAM FPGAs, it is possible to have two kinds
of updates in order to avoid the exploitation of the security flaw introduced by the
flexibility feature:

• Non-critical kernel update: in this case only the kernel is updated to benefit of
the flexibility. The designer is aware that this update is vulnerable to replay
attacks and can be maliciously replaced by the previous one.

• Critical kernel update: in this case both kernel and bitstream are updated.
The bitstream is updated to securely change the public key. This key
modification prevents from validating an older kernel signed with the previous
key.

3.4.4.2 FPGAs with on-chip user flash memory

In case of such non-volatile or volatile FPGAs, it is possible to avoid striking
a balance using critical / non-critical updates. The user memory allows storing
securely the public key and to modify it without reinitialized BRAMs. In the same
way, it is possible to store directly the hash value in this user memory. In this case,
flexibility is offered by user NVM and the asymmetric cryptography is not required.

Of course, if the user flash size allows it, the kernel can be directly stored in the
user flash but it usually spends too much on-chip memory.

3.4.5 Implementation and Hardware acceleration

The concepts presented in this chapter can be implemented on any FPGA able to
embed a processor. This work can be applied to any OS or program.

As prototyping platform, we used a Xilinx Virtex 6 XC6VLX240T on a ML605
development board. The Flash memory used to store the Linux kernel is the 32MB
BPI Flash from Numonyx available on this board.

FPGAs are particularly adapted to perform hardware acceleration. That is
why, we have implemented four designs corresponding to four strategies in order to
propose four different performance/area overhead trade-offs:

The first one is a minimal design to run a Xilinx embedded Linux [Xilinx ]
running on MicroBlaze and based on the 2.6.31 Linux kernel version. In this design,
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the kernel verification is performed by the bootloader thanks to a SHA-256 function
implemented in C. This implementation does not generate area overhead except
increasing the bootloader size of 16 KB (equivalent to 4 36Kb-BRAMs) with -O2
compiler optimization. This design is the base system: the others implementation
strategies will be compared to this one.

The second one performs hardware acceleration. It means the MicroBlaze
processor does not perform the hash algorithm himself. It sends the data to
an hardware IP specifically designed to performed the SHA-256 hash in order to
accelerate the execution. This SHA-256 core has a folded architecture: the same
logic is used for each iteration of the hash value computation. Each 256-bits
computation spends 64 clock cycles. Data are sent by the processor in several
packets of one 32-bits-word through the PLB (Processor Local Bus). In this case
the acceleration factor is 7.7.

The third one sends the data to an hardware IP specifically designed to
performed the SHA-256 hash like the second one. The only difference is the data
transfer. In this design, we perform DMA: the data transfer is delegated to a XPS
central DMA controller [Xilinx 2010b]. It allows transferring packets of one, eight
or sixteen 32-bits-word through the PLB. In this case the acceleration factor is 70.

The last one corresponds to the flexibility improvement. This design is the third
one with the addition of an RSA-1024 IP. This core computes 64 iterations of 16 bits
data to use 25x18 Virtex 6 multipliers. It is only used for signature verification. That
is why the bootloader contains only the public part of the key pair. This asymmetric
variant can be used on the three previous designs (soft SHA-256, hard SHA-256,
hard SHA-256 with DMA transfers) adding only 1 ms to the boot duration.

3.4.5.1 Performance overhead

The two tables 3.1(a) and 3.1(b) highlight the performance overhead, throughput
and gain obtained through the hardware acceleration for each strategy.

These data are acquired on a ML605 development board with a Virtex 6
XC6VLX240T embedding a 100 Mhz MicroBlaze processor booting a 2.8 MB Linux
kernel. Performance overheads for others kernel size can be extrapolated thanks
to the throughput. In our case, taking into account the flexibility improvement,
the global throughput is 65 MB/s. This throughput considers only the overhead
introduced by the securing.

This performance overhead become null if the DMA controller is used to copy
kernel from Flash to RAM. The classical Xilinx boot, consisting in copying kernel
from Flash to RAM and branching to the appropriate address, lasts 280 ms using
memcpy function or 180 ms using a DMA transfer. The corresponding bootload
throughputs are respectively 10.0 MB/s and 15.6 MB/s. The whole bootload
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Table 3.1: Performance overhead for the V6 VLX240T device

throughput with the flexible strategy using hardware RSA-1024 and SHA-256 with
DMA transfers is 12.6 MB/s. That is faster than the classical Xilinx boot that does
not use DMA transfers.

Considering only the integrity verification, the throughput is limited by the SHA-
256 core and not the DMA data transfer. The hardware acceleration offers a high
improvement (x70) and the total performance overhead is lower than 50 ms. These
performances are really acceptable especially for a kernel boot context: that does
not occur really often during application lifetime and it is not significant face to
classical boot duration.

In this global loader architecture, the bottleneck remains the Flash to RAM copy
due to the external Flash memory performances.

3.4.5.2 Area overhead

This secure solution without asymmetric cryptography and hardware acceleration
can be implemented in software. Therefore, it is implemented without area overhead,
except the code size overhead due to the software SHA-256 function.

The table 3.2 shows the area overhead with different strategies with regard to
the base system. This four strategies match with the four strategies of the tables
3.1(a) and 3.1(b). For each strategy, the table 3.2 presents two results:

• In "Details" column, the area overhead details of the components added to
the previous strategy.

• In "Total" column, the total area of the strategy.

To summarize, each performance or flexibility improvement occupies 1% more
of the Virtex 6 VLX240T.
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However, all the components added in order to secure the boot can be reused for
a targeted application. Moreover, the DMA controller is generally already present
in most solutions.

Tables 3.1(a), 3.1(b) and 3.2 help to choose the adapted trade-off between timing
and area overhead.

In a nutshell, the area overhead is negligible considering actual system or re-
usability.

3.4.6 Discussion

In this section, we proposed to secure the boot of a Linux embedded on a
FPGA. The work presented here precludes malicious kernel modifications, prevents
against replay attacks and supports updates. It highlights also the performance
improvement of this security mechanism thanks to an FPGA capability: the
hardware acceleration. ToIt also describes the implementation and evaluates the
solution performance and area overhead.

This security enhancement will become increasingly useful with the FPGA
evolution. For instance when FPGA vendor will provide hardly implemented
mechanisms ensuring both confidentiality and integrity and preventing replay
attacks.

In conclusion, this work shows that it is possible to secure efficiently the boot
and that the hardware acceleration capabilities of FPGAs can be exploited to match
the needs of embedded systems.

3.5 Conclusion

Securing embedded systems is a challenge requiring to investigate a wide range of
domains. The mobility feature exposes the system with a larger attack surface in
a further hostile environment. Moreover, it is accentuated with FPGAs due to the
reconfiguration capabilities. That is why securing should impact every level from
hardware to final application execution. Indeed, it is useless to secure an application
if it runs on an untrusted hardware. Only one security flaw situated at any level,
can turn the system hacked. In a global solution each securing step allows trusting a
piece of architecture enable to secure the next step, establishing a end-to-end chain
of trust.

As the previous chapter, this one also highlights the need to embedded flash
memory inside the FPGA chip for security solutions in order to prevent software
replay attacks, in addition to bitstream replay.

With Virtex 7, Xilinx proposes a multi-die technology in [Dorsey 2010]. The fact
to embed different dies in a unique chip will be a good way to secure FPGA with
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low over-costs. More generally, the democratization of SiPs (Systems in Package)
will facilitate the production of FPGA with embedding flash memory.
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And even the smallest seed of an idea can grow.

Coob - Inception

Contents
4.1 Project description . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Details of the SecReSoC couter-measures . . . . . . . . . . . 77

4.2.1 Hardware Firewalls . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.2 HCrypt: the cryptoprocessor . . . . . . . . . . . . . . . . . . 80

4.2.3 Side-channel counter-measures . . . . . . . . . . . . . . . . . 80

4.3 Demonstrators . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1 Version 1: Embedded Crypto-Signer . . . . . . . . . . . . . . 83

4.3.2 Version 2: Several applications . . . . . . . . . . . . . . . . . 85

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

This chapter presents the SecReSoC project supported and granted by the ANR
-French National Research Agency- ARPEGE 2009 program (ANR-09-SEGI-013).
It described the works that contributed to the achievement of this ambitious project.
It replaces also the work presented in this dissertation into a shared project that aims
to offer a complete protection for multiprocessor architectures based on FPGAs.
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4.1 Project description

SecReSoC is an industrial research project that brings together the expertise of four
academic laboratories with complementary skills: the Lab-STICC (Lorient), the
LAHC (Saint Etienne), the LIRMM (Montpellier) and Télécom ParisTech (Paris)
and a Company recognized in the cryptography domain: Netheos (Montpellier).

The objective of this project is to develop a generic multiprocessor architecture
that allows the integration, into an FPGA platform, of an application requiring
different levels of data and treatment securing (logical, architectural and system
level). Indeed, FPGAs are essential to prototype cryptographic architectures
and their reconfiguration capability allows them to evolve in order to prevent
vulnerabilities and counter new attacks. Moreover, the complexity of current
applications justifies multiprocessor solutions.

This architecture will include an optimized cryptoprocessor, some standard
processors associated with a multitasking OS environment, memory resources,
input/output units and an internal architecture of communication. Secure
configuration tools and different types of physical attacks are also studied.

All confidential treatments and handling of critical plaintext data are performed
within the security perimeter, which is located inside the reconfigurable circuit.
This is the main constraint of the project which will result in the development of a
demonstrator. The SecReSoC project meets the growing needs in integration and
securing of applications requiring autonomous devices capable of operating in hostile
environments.

The SecReSoC project provides a set of software and hardware blocks (Firewalls,
HCrypt, DPA counter-measures, secure reconfiguration, monitoring, cryptocores
and key management) designed to match the interests of the industrial world.
Demonstrators use these blocks to address different threat models.

The goal is to provide a platform proving the concepts involved to ensure:

• Security: by architecture design, the partitioning precludes leakages and the
hardware counter-measures.

• Performances: by implementing hardware acceleration thanks to FPGAs
abilities.

• Ease-of-use: by offering the possibility to use un standard OS (Linux) that
proposes a complete set of features for non-critical issues and by proposing
full-compliant HDL modules (interfaced with the AXI standard bus).

The threat model considers that:

• The attacker has read and write access to board memories.
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• The attacker may attempt to copy or counterfeit an equipment.

• All interfaces (eg: network) excepting interfaces considered sure (eg: Safepad
when user is present) may be hacked.

• On-line takeover of the GPP (General Purpose Processor).

• Takeover of the bus system through the GPP.

• Side-channel attacks (SEMA, DEMA, DPA and DFA (Differential Fault
Analysis)) are feasible.

However, invasive attacks are not considered.
Figure 4.1 is an overview of the SecReSoC module composed of:

• A trusted MicroBlaze responsible for hardware and software updates, board
monitoring, trusted mode execution.

• Firewalls to ensure partitioning

• A safepad with a smart card in charge of keys initialization.

• Cryptocores to perform hardware acceleration.

Sensible data are protected thanks different keys listed in Table 4.1:
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Table 4.1: Details of the involved keys

4.2 Details of the SecReSoC couter-measures

The SecReSoC project is the gathering of several works detailed in this section. In
addition to the work carried out during this thesis, others works have contributed
to the project.
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Figure 4.1: SecReSoC module overview
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4.2.1 Hardware Firewalls

Hardware firewalls [Cotret 2011] principle is based on isolation. Figure 4.2
shows that firewalls are placed in cut-through configuration at each bus/IPs and
bus/processors connection. Firewalls aim to monitor communications before they
reach the bus and propagate within the system.

Figure 4.2: Firewalls outline in a complete architecture

As shown in Figure 4.3, there are two categories of firewalls: Local Firewalls and
a Cryptographic Firewall.

Local Firewalls restrict the access rights block by block and allow two
configurations: normal and restricted. Interruptions are raised in case of attempt
to prohibited access. All these attempts are logged in a file.

The Cryptographic Firewall is a Local Firewall enhanced with a layer of
cryptographic services like memory encryption with AES-GCM. It is located towards
the external DDR memory in order to protect it. Two zones are defined with
different access rights and cryptographic counter-measures (encryption and integrity
verification or integrity verification only). The goal is to have several options in order
to get the better security/performances trade-off. A new symmetric key is generated
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Figure 4.3: Local and Cryptographic Firewalls

on every boot to preclude side-channel attacks.

4.2.2 HCrypt: the cryptoprocessor

HCrypt [Gaspar 2010] is developed to achieve physical isolation of data, secret key
management and buses techniques preventing leaking information. Its architecture
is optimized for implementation of common cryptography tasks.

Figure 4.4 is an overview of the HCrypt. This cryptoprocessor has 128-
bit separated data and key registers, dedicated instruction set optimized for key
generation and management, embedded cipher, and embedded random number
generator. From an architectural point of view, the most important characteristic
of the proposed cryptoprocessor is the physical separation of data and key registers
and buses, insuring that confidential keys will never leave the system in clear.

Figures 4.5(a) and 4.5(b) represent the different frame types that are involved
in the HCrypt protocol.

4.2.3 Side-channel counter-measures

This work proposes a new concept [Maghrebi 2011] to hinder attacks of all order:
instead of injecting more entropy, it makes the most of a single-mask entropy. With
specially crafted bijections instantiated on the mask path, it manages to reduce
the inter-class variance (a method called leakage squeezing) so that the leakage
distributions become almost independent from the processed data. This contribution
presents two options for this counter-measure. The first one is based on a recoded
memory with a size squared with regard to the unprotected requirement, whilst the
second one is an enhancement alleviating the requirement for a large memory.
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(b) HCrypt reply frames (from HCrypt to GPP)

Figure 4.5: Frame types involved in the HCrypt protocol

4.3 Demonstrators

The solutions presented in this dissertation and in the previous section are used to
produce several demonstrators. Each of them implements several counter-measures
in order to prove their feasibility and efficiency. Those demonstrators are based on
the Xilinx ML605 development board embedding a Virtex-6 XC6VLX240T shown
in Figure 4.6.

Figure 4.6: The Xilinx ML605 development board

All the versions and applications of the SecReSoC demonstrator are protected
thanks to the work presented in this thesis. Moreover, the design of these
demonstrators is an important part of the work accomplished during my thesis.
Indeed, the achievement of the demonstrators was assumed by my thesis work.
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4.3.1 Version 1: Embedded Crypto-Signer

This first version of the demonstrator is a Linux server able to encrypt and sign a
file or decrypt and verify a file signature.

It operates as follows:

• Encryption / signature: The encryption operation is done simply by depositing
a file in a directory of the FTP (File Transfer Protocol) server’s device (eg:
ftp://ECS/toCrypt). This operation does not require special authorization
(no authentication or PIN (Personal Identification Number) code). The ECS
(Embedded Crypto-Signer) creates the encrypted file with its signature in a
particular FTP directory (eg: ftp://ECS/encrypted). To select a recipient’s
public key in the certificate store of the ECS, files to be encrypted contain a
header describing the recipient.

• Encryption / signature verification: The decryption operation is similar. The
encrypted file is placed in the good folder (eg: ftp://ECS/toDecrypt). The
ECS generates the decrypted file in the appropriate FTP folder according to
the result of the signature verification (eg: ftp://ECS/decrypted_signOK or
ftp://ECS/decrypted_signFail).

Figure 4.7 shows an overview of the SecResoC demonstrator version 1, whilst
Figure 4.8 shows a screenshot of the application being run.
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Figure 4.7: Overview of the SecResoC demonstrator

This version implements the HCrypt version 1.27 and uses a Xilinx architecture
with a PLB bus. The FTP server is a vsFTPd (Very Secure FTP Daemon) [vsf ]
running on Xilinx embedded Linux [Xilinx ]. Figure 4.9 is an overview of the internal
architecture of the SecResoC demonstrator version 1.
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Figure 4.8: Screenshot of the ECS application
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Figure 4.9: Overview of the SecResoC demonstrator version 1 architecture

This demonstrator is a progress step that proves it is possible to have such
architecture before put together the different works. This prototype achievement
is an integral part of this thesis. For instance, my work was to protect the Linux
boot and to establish of the FTP server as well as all the scripts able to provide the
desired functionalities.

4.3.2 Version 2: Several applications

The second version of the SecReSoC demonstrator differs from the first by its bus.
The change on Xilinx bus standard, have an impact on our demonstrator. Indeed,
the PLB bus is replaced by an AXI one. Work progresses made possible integrate
others counter-measures like illustrated in Figure 4.10. The work achieved in the
frame of this thesis was the integration of IPs and counter-measures for PLB bus,
then for AXI bus. My work consisted in porting the Linux on this new AXI bus
architecture.

4.3.2.1 Application 1: Low-cost Embedded Crypto-Signer

This application is the extension of the version 1. A new version of the HCrypt
(version 2.00) embedding side-channel counter-measures explained in section 4.2.3.
In addition the PRNG (Pseudo-Random Number Generator) is replaced by a TRNG
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Figure 4.10: Overview of the SecResoC demonstrator version 2

(True Random Number Generator) based on PLLs (Phase-Locked Loops). This new
version of the HCrypt is integrated and interfaced with the new AXI environment
(see Figure 4.11).

The usage is the same as in the previous version.

4.3.2.2 Application 2: Advanced Crypto-Signer

Figure 4.12 shows that the main concept of the ACS (Advanced Crypto-Signer) is
a separation in two distinct worlds:

• A generalist one (GPP), highly exposed (eg: network), running a common OS
with embedding many features.

• And a secure one (TrustedBlaze), isolated, running a trusted OS or a program,
in charge of critical treatments.

Figure 4.13 is an example of use case. The user browses the web until he wants
to make a critical operation in terms of security (eg: a purchase, a bank transfer,
etc...). At that time, the TrustedBlaze takes control of the platform to perform this
critical operation.

Here, the use of HCrypt is not required since the isolation is ensured by the
hardware firewalls represented by the switch in Figure 4.13. This switch connects
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Figure 4.11: Low-cost ECS overview
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Figure 4.13: ACS use case

the user I/O to the GPP or to the TrustedBlaze (the latter controls the switch).
The LED driven by the TrustedBlaze certifies that the demonstrator is running in
restricted mode.

4.3.2.3 Application 3: Reconfigurable Crypto-Signer

The RCS (Reconfigurable Crypto-Signer) is based on the ECS (version 2, application
1). The difference lies in the addition of the DPR support and protection. The DPR
aims to reduce the power consumption and the area of the design. For instance, it is
possible to reconfigure the cryptocores (eg: switch between SHA256 and SHA512).
The contribution to this application corresponds to the Section 2.3.

4.4 Conclusion

Table 4.2 highlights the solutions implemented and the threats addressed by each
demonstrator.

The SecReSoC project allows sharing the work of several laboratories in order to
have a common platform that offers effective solutions to a complete threats model.
It also helps to implement the work carried out in this thesis a platform to gain
greater visibility. The design of these demonstrators brought me a lot in terms of
knowledge and skills about embedded systems and OSs based on FPGAs.
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Conclusion

This dissertation presents a research work that has been conducted in order to
increase the security level of embedded systems based on FPGA technologies. The
objective was to protect the embedded system itself and its sensitive data by
preventing an attacker that would spy data transfers in order to retrieve information
or insert malicious code. This work addresses more particularly replay attacks that
are not currently considered by FPGA vendors. This lack exposes embedded systems
to critical vulnerabilities.

Contributions

This thesis provides a large state of the art of attacks applicable to FPGA devices.
This dissertation addresses the issues presented in the introduction: it is

to maintain confidentiality, integrity and authenticity while providing up-to-
dateness. This thesis provides dedicated and suitable solutions to these problems by
considering the entire lifecycle of the embedded system (boot, updates and code or
OS execution) and all the data (FPGA bitstream, operating system kernel, critical
data and code).

This work addresses all the current FPGA technologies (Flash and SRAM)
taking into account their strengths and weaknesses. It covers a very large domain
application by considering advanced FPGA capabilities like DPR. Most of the
solutions presented in this document have been implemented to prove the feasibility
as well as to evaluate area and performance overheads. They are very efficient by
taking advantage of hardware acceleration offered by FPGA capabilities in order to
match the expectations of embedded systems.

Analyses

This work is conducted step by step, each securing step allowing to trust a piece of
architecture enable to secure the next step, establishing a end-to-end chain of trust.
It highlights that it is important to consider the security in its entirety. That is why
this dissertation attempts to address every level from hardware to final application
execution. Indeed, it is important to analyze the threat model and not to forget the
slightest security flaw situated at any level from hardware to software that can turn
the system hacked.

Side channel attacks are deliberately not addressed in this work but should
be considered. In fact, embedded systems are particularly exposed to such attacks.
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Side channel counter-measures are very advanced, and rely on complex mechanisms,
but it is important to preclude at least timing attack and to periodically change
encryption keys. This aims to increase the security level even if all attacks are not
counteracted.

This work show also that the security mechanisms provided by FPGA vendors
are effective but insufficient. Nowadays academic literature offers solutions ready
to be implemented but still not yet deployed by FPGA manufacturers. This can
be explained by the fact that FPGA vendors must find a good trade-off between
functionalities and price of their chips. In addition, it is difficult to offer many
specific devices corresponding to several uses. Indeed, the concept brought by
FPGA is to have a limited number of different chips in order reduce prices thanks
to economies of scale.

Perspectives

The short-term work will be to finalize the sharing of the four thesis works conducted
in the frame of the SecReSoC project. Indeed, the several demonstrators will be
completed in order to highlight the efficiency of the contributions provided by this
joint work of several laboratories and a company.

As presented in Chapter 4, the demonstrators are based on industrially-driven
applications. These applications allow demonstrating the maturity of the project
and the efficiency of counter-measures introduced by the different works.

The work based on the security of embedded systems based on FPGA devices
is not over. It has contributed to the creation of a company: SECLAB FR.

The best fulfillment for this work would be to promote FPGA vendors to
introduce the work carried out here in their products.
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Securing embedded systems based on FPGA technologies

Abstract: Embedded systems may contain sensitive data. They are usually
exchanged in plaintext between the system on chips and the memory, but also
internally. This is a weakness: an attacker can spy this exchange and retrieve
information or insert malicious code. The aim of the thesis is to provide a dedicated
and suitable solution for these problems by considering the entire lifecycle of the
embedded system (boot, updates and execution) and all the data (FPGA bitstream,
operating system kernel, critical data and code). Furthermore, it is necessary to
optimize the performance of hardware security mechanisms introduced to match the
expectations of embedded systems. This thesis is distinguished by offering innovative
and suitable solutions for the world of FPGAs.

Keywords: FPGA, Reconfigurable architecture, Bitstream, Replay attack,
Boot, Embedded operating system, Dynamic partial reconfiguration

Sécurisation des systèmes embarqués basés sur les technologies
FPGA

Résumé: Les systèmes embarqués peuvent contenir des données sensibles.
Elles sont généralement échangées en clair entre le système sur puces et la mémoire,
mais aussi en interne. Cela constitue un point faible: un attaquant peut observer cet
échange et récupérer des informations ou insérer du code malveillant. L’objectif de
la thèse est de fournir une solution dédiée et adaptée à ces problèmes en considérant
l’intégralité de la durée de vie du système embarqué (démarrage, mises à jour et
exécution) et l’intégralité des données (bitstream du FPGA, noyau du système
d’exploitation, code et données critiques). En outre, il est nécessaire d’optimiser les
performances des mécanismes matériels de sécurité introduits afin de correspondre
aux attentes des systèmes embarqués. Cette thèse se distingue en proposant des
solutions innovantes et adaptées au monde des FPGAs.

Mots clés: FPGA, Architecture reconfigurable, Bitstream, Attaque par rejeu,
Boot, Système d’exploitation embarqué, Reconfiguration dynamique partielle
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