
On the Vulnerability of FPGA Bitstream Encryption against
Power Analysis Attacks

Extracting Keys from Xilinx Virtex-II FPGAs

Amir Moradi
Horst Görtz Institute

for IT-Security
Ruhr University Bochum

Germany
amir.moradi@rub.de

Alessandro Barenghi
Dipartimento di

Elettronica e Informazione
Politecnico di Milano

Italy
barenghi@elet.polimi.it

Timo Kasper
Horst Görtz Institute

for IT-Security
Ruhr University Bochum

Germany
timo.kasper@rub.de

Christof Paar
Horst Görtz Institute

for IT-Security
Ruhr University Bochum

Germany
christof.paar@rub.de

ABSTRACT
Over the last two decades FPGAs have become central com-
ponents for many advanced digital systems, e.g., video signal
processing, network routers, data acquisition and military
systems. In order to protect the intellectual property and
to prevent fraud, e.g., by cloning a design embedded into an
FPGA or manipulating its content, many current FPGAs
employ a bitstream encryption feature. We develop a suc-
cessful attack on the bitstream encryption engine integrated
in the widespread Virtex-II Pro FPGAs from Xilinx, using
side-channel analysis. After measuring the power consump-
tion of a single power-up of the device and a modest amount
of off-line computation, we are able to recover all three differ-
ent keys used by its triple DES module. Our method allows
extracting secret keys from any real-world device where the
bitstream encryption feature of Virtex-II Pro is enabled. As
a consequence, the target product can be cloned and ma-
nipulated at the will of the attacker since no side-channel
protection was included into the design of the decryption
module. Also, more advanced attacks such as reverse engi-
neering or the introduction of hardware Trojans become po-
tential threats. While performing the side-channel attack,
we were able to deduce a hypothetical architecture of the
hardware encryption engine. To our knowledge, this is the
first attack against the bitstream encryption of a commercial
FPGA reported in the open literature.

.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: [Unauthorized access];
D.4.6 [Security and Protection]: [Cryptographic con-
trols]

General Terms
Security, Experimentation

Keywords
Side-channel attacks, FPGA, bitstream encryption, triple
DES

1. INTRODUCTION
Electronic devices have become essential parts of our pri-

vate life (e.g., cell phones, e-readers or set-top boxes), at
work (e.g., laptops or routers) and in industrial environ-
ments (e.g., control systems or sensors). Virtually all of to-
day’s IT, communication and consumer electronic systems
employ digital technology. As a flip side of this well-known
development, reverse-engineering and product piracy have
become important issues for a wide variety of electronic
products since the creation of exact copies of digital infor-
mation is often straightforward. Examples include consumer
products, network routers and set-top boxes, or military
systems. The threat is not limited to merely counterfeit-
ing products; once a product has been reverse-engineered it
becomes vulnerable to various other attacks. For instance,
ill-intended malfunctioning of the device or circumvention
of business models based on the electronic content, as it is
regularly happening in the pay-TV sector, become possible.
Not only consumer products, but also industrial and mili-
tary applications can be affected. For instance, the recent
discovery of details of the STUXNET virus shows the po-
tential implications that embedded malware can have [12].
Another flavor of malicious manipulation of digital systems
was described in a 2005 report by the US Defense Science



Board, where the clandestine introduction of hardware Tro-
jans was underlined as a serious threat [1]. In summary, pro-
tection of digital secrets and intellectual property is a key
factor for developing and successfully marketing electronic
products nowadays.

1.1 FPGA Basics
When developing embedded systems, the main target plat-

form choices are software, i.e. running the application on
a microprocessor, or hardware, i.e realize an application-
specific integrated circuits (ASIC). A third form of device,
Field Programmable Gate Arrays (FPGAs), combines some
advantages of software (fast development, low non-recurring
engineering costs) with those of hardware (performance, power
efficiency). These advantages have made FPGAs an im-
portant fixture in embedded system design, especially for
applications that require heavy processing, e.g., for rout-
ing, signal processing or encryption. Modern high-end FP-
GAs have the functional equivalent of several tens of mil-
lions of Boolean gates, making them formidable devices for
a large spectrum of applications. Most of today’s FPGAs
are (re)configured via a blob of binary data, called bitstream,
which completely determines the functionality of the device.
As described in Sect. 2.1, programming them is quite simi-
lar to developing software for a microprocessor, allowing for
fast development and a quick time-to-market.

Nowadays FPGAs have applications in banking, defence,
aerospace, and many sophisticated commercial technical ap-
plications such as video signal processing, e.g., for HDTV,
or network routing. Even hitherto totally mechanical de-
vices such as guns nowadays incorporate FPGAs, e.g., the
XM25 Individual Airburst Weapon System [8]. Notewor-
thy for this contribution, satellite communication and other
mission-critical systems as well as high-security applications
also employ FPGAs [20]. As a key advantage, a product
relying on FPGAs can be regularly improved during its life-
cycle by simply changing the bitstream, e.g., if a design bug
is found or to provide new functionality. To name two ex-
amples, today’s network routers are easily upgraded in the
field via the Internet and set-top boxes obtain an updated
firmware via cable or a satellite link. One of the disadvan-
tages of FPGAs, especially with respect to custom hardware
such as ASICs, is that an attacker who has access to the
bitstream can clone the system and extract the intellectual
property of the design. Note that the bitstream is in the
vast majority of systems stored externally to the FPGA in
a dedicated configuration memory and is from there loaded
into the FPGA on every power-up or reset — an adver-
sary wire-tapping the relevant data signals can hence easily
monitor the bitstream. The main answer of the industry for
protecting the design is a security feature called bitstream
encryption.

1.2 Bitstream Encryption Basics
The idea of bitstream encryption is to establish end-to-

end confidentiality by means of symmetric cryptography. It
protects the entire path of an FPGA bitstream: the develop-
ment environment of the manufacturer, the insecure channel
into the product, the storage inside the product, and finally
the loading of the design into the FPGA.

Figure 1 illustrates an example for a secure firmware up-
grade of an FPGA-based network router. As a prerequi-
site, the manufacturer and the FPGA in the network router

FPGA

01001110

01001110

Internet,
satellite,

...encrypted bitstream

encrypted bitstream

Configuration

Memory

Designer

(network router, set-top box, etc.)

Figure 1: Bitstream encryption enables to securely
transfer the content of an FPGA, e.g., a firmware
update for a network router via the Internet.

possess the same secret key, that should be created individ-
ually for every device and securely stored both inside the
FPGA (kFPGA) and at the manufacturer site (kdesign). Af-
ter generating the bitstream, the designer encrypts it with
a secure symmetric cipher such as triple DES or AES using
a secret key kdesign. This encrypted bitstream can now be
safely sent, e.g., via the Internet, to the configuration mem-
ory of the target network router, from where it is loaded
into the FPGA. The latter possesses an internal decryption
engine and uses its secret key kFPGA to decrypt each bit-
stream. Finally, the FPGA configures its internal circuitry
according to the decrypted bitstream. The configuration
is successful if and only if the secret keys used for the en-
cryption and decryption of the bitstream are identical, i.e.,
kdesign = kFPGA.

A third party who gets hold of the encrypted bitstream —
e.g., from the Internet or by wire-tapping the internal data
bus that is used for the configuration inside the product —
will not be able to extract any useful information. Without
knowing the secret key for the decryption, she will not be
able to deduce the design or configure another FPGA cor-
rectly. As a major consequence, counterfeiting or attacking
the product becomes unfeasible, and no confidential or pro-
prietary information contained in the bitstream can fall into
the hands of the attacker.

1.3 Side-Channel Attacks
Side-channel attacks exploit physical information leakage

of a cryptographic implementation in order to extract secret
information, in particular the cryptographic key used. In the
case of power analysis, the consumption of electric current or
the electromagnetic emanations of the cryptographic device
are used as a side channel for key extraction. Since both
power consumption and EM emissions of a digital device
depend on the values being computed, side channel attacks
employ a divide-and-conquer approach, to model a part of
the circuit employing guesses on small parts of the key, (e.g.,
6 bits). The consumption (or EM emission) models are sub-
sequently correlated with real world measurements: only the
model dependent on the correct key guess will predict the
behaviour of the actual device. Contrary to mathematical or
brute-force attacks, where typically pairs of plaintexts and
ciphertexts are required for a key-recovery, side-channel at-
tacks require only one of them, i.e., either the plaintext or
the ciphertext [15, 18]. While the open literature reports a
number of successful attacks against cryptographic architec-
tures implemented on the FPGA fabric [25, 27], no publicly
known attack on the bitstream encryption has been reported



in the open literature. We also refer to a number of surveys
dealing with FPGA security which have not addressed bit-
stream reverse engineering as a real-world threat [14, 30].

1.4 Content of this Paper
In this paper we investigate the level of security provided

by the bitstream encryption used in the widespread Virtex-II
family of FPGAs produced by Xilinx. A detailed descrip-
tion of these FPGAs and their bitstream encryption fea-
ture, as well as an introduction to power analysis, are given
in Sect. 2. The manufacturer claims that the bitstream en-
cryption as implemented in Xilinx Virtex-II Pro FPGAs can
thwart even most Class III attacks [28], i.e., attacks by well-
funded intelligence agencies [5]. However, our research does
not support this claim as shown in Sect. 3: starting with-
out any previous knowledge about the implementation, i.e.,
a typical black box scenario, we demonstrate step-by-step
how to conclude from the power consumption and timing
behaviour of the FPGA to the detailed internal structure
of the decryption hardware that we found not side-channel
protected. Finally, we develop a side-channel attack that
exploits the power consumption of the FPGA during the
decryption of one bitstream to recover the secret keys used
for the bitstream encryption. Some of the dramatic impli-
cations of our attack are illustrated in Sect. 4.

2. PRELIMINARIES
This section introduces Field Programmable Gate Arrays

(FPGA) in general, and in particular the Virtex-II Pro de-
vice and its security features. We further describe the side-
channel analysis and digital signal processing techniques used
for our attack.

2.1 Flexible Hardware: FPGA Details
An FPGA is a reconfigurable integrated circuit that can

host highly complex digital circuitry, e.g., a complete mi-
crocontroller, digital signal processing algorithms, or almost
any other design that can be put in silicon.

Analyzing the worldwide FPGA market, Xilinx (51.2 %)
and Altera (35.5 %) together account for more than 85 %
market share, followed by Actel and Lattice with about 6 %
market share each (Gartner Inc., 2008) [13]. Both market
leaders offer security solutions for commercial and military
environments that aim at protecting the bitstream by means
of symmetric encryption. Altera programs the respective
secret keys in non-volatile e-fuses on the silicon die of the
FPGA that are covered by layers of metal to hinder extrac-
tion of the key by invasive physical attacks [7]. Xilinx on
the other hand states that programmable fuses are easy to
reverse-engineer [20] and instead promotes a battery-backed
solution to store the keys in volatile memory, ensuring that
the key is instantly zeroed if the FPGA is removed from the
product, e.g., to conduct physical attacks. In this paper we
focus on the advertised to be more secure solution of the —
in terms of FPGAs sold — leading manufacturer Xilinx.

The essential building blocks of an FPGA are config-
urable logical blocks (CLB) which consist of slices. Each
slice in turn contains small look-up tables (LUTs) that real-
ize arbitrary combinational functions, i.e., small Boolean cir-
cuits, and usually also simple memory elements, e.g., latches
storing one bit. Programmable switches allow altering of the
signal path inside the slices, as well as routing the data to
other CLBs on the FPGA. Depending on the particular type

of FPGA various other auxiliary resources are available, for
instance, multiply-and-add units, BlockRAMs that can be
accessed by several CLBs, and even entire CPUs. By appro-
priately configuring the slices and combining the inputs and
outputs of tens of thousands CLBs, an FPGA can realize
the most elaborate tasks in parallel and hence achieves very
high computational power. Obviously, the vast complexity
of this configuration process cannot be managed manually,
thus software tools are required for the design of an ap-
plication. The tools ultimately generate the configuration
information, i.e., the bitstream, for the FPGA.

The design flow for reconfigurable hardware starts with
expressing the function to be realized by means of a high-
level hardware description language (HDL) such as VHDL or
Verilog. The FPGA manufacturers provide integrated devel-
opment environments for their products, e.g., the Xilinx ISE
Design Suite [3]. They allow HDL descriptions to be synthe-
sized into a schematic representing the internal wiring of the
corresponding FPGA, commonly called netlist. The synthe-
sized netlist can be simulated on the development PC for
debugging the implementation. Finally, the netlist is trans-
lated into a low-level circuit description, the bitstream, that
specifies the exact content of each slice, each programmable
switch, and every other configurable component inside the
FPGA. Configuring the target device with this bitstream
uniquely sets the initial state of the whole circuitry to real-
ize the designed function.

2.2 Device Under Attack: Virtex-II Pro
As the target for our analysis we opted for a Virtex-II

Pro XC2VP7 FPGA. According to the data sheet [33] its
silicon die consists of nine metal layers manufactured in a
130 nm process with 90 nm high-speed transistors, allowing
for designs with clock frequencies up to 600 MHz for inter-
nal components. Amongst others, the FPGA provides more
than 11, 000 internal registers and LUTs and an embedded
PowerPC 401 processor core, wired to the fabric, in case
a general purpose processor is needed alongside application
specific hardware. For configuring all of its internal circuitry
the FPGA requires a bitstream consisting of 560, 700 bytes.

During our analysis, the power supply pins of the FPGA
are of special interest, as they form the entry point for the
side channel. The pins are divided in three main groups
according to the parts of the device they are providing en-
ergy to:V CCINT for a 1.5 V supply of the internal core logic,
V CCAUX for a 3.3 V supply of auxiliary circuits, and V CCO

for a 3.3 V supply of the input and output buffers. Note,
that the 1.5 V of the core voltage V CCINT can be distin-
guished from the other 3.3 V supply voltages and can hence
be easily identified on the unknown printed circuit board of
a real-world product.

Both Xilinx and Altera FPGAs rely on volatile static ran-
dom access memory (SRAM) for holding the configuration
information and, as a consequence, lose it when the power is
switched off. In order to keep the crucial cryptographic key,
in Xilinx products a lithium battery providing 1.0–3.6 V has
to be connected to the V CCBatt pin. The battery supplies
the SRAM-based secret key storage used to decrypt the en-
crypted bitstream and provides the basis to use Virtex-II Pro
devices in FIPS 140-2 Level 4 security devices, the highest
security standard indicated by NIST. The standard man-
dates that all cryptographic keys must be instantly zeroed
if physical tamper actions are detected on the secure device.



In case the battery is disconnected and the FPGA is not
powered up the keys are instantly flushed away, forcing the
customer to return the device to the producer for re-keying.
While power is applied to the V CCAUX pin of a Virtex-II
Pro, the battery is not required to buffer the key storage
and can be replaced [31].

2.2.1 Configuration Process and Protocols
As stated above, the configuration of the FPGA is com-

pletely erased every time the FPGA is powered off. It is thus
necessary to reprogram the device after every boot, even
when it is deployed in the field. Xilinx provides five different
configuration protocols to configure the device, namely Mas-
ter or Slave Serial mode, Master or Slave SelectMAP mode
and IEEE-1149.1-2001 standard JTAG boundary scanning
mode [4]. The first two modes input the bitstream into the
device, one bit per clock cycle, through a specific pin which
serves as a data-in line. The SelectMAP modes represent an
evolution of the simple serial mode as they are able to send a
byte of the bitstream at a time, thus decreasing significantly
the time needed for configuration. The JTAG mode allows
to input the whole bitstream into the device considering the
internal configuration memory as one of the data registers
of a standard JTAG chain. It is thus possible to insert the
configuration information one bit at a time via JTAG, tak-
ing proper care of setting all the other devices on the JTAG
chain into bypass mode.

Due to the widespread adoption and standardization of
the JTAG protocol, we chose the JTAG interface of the
FPGA for supplying the bitstream during our attack. The
vast majority of commercial products retain the JTAG line
contacts for post-production testing, hence this port is also
the most suitable for real-world attacks. The JTAG interface
is based on four lines: two for data input and output (TDI
and TDO), one to supply the clock to the whole JTAG chain
(TCK) and one to supply commands to the finite state ma-
chine implementing the JTAG port on every device (TMS).
All the modules belonging to a JTAG chain, e.g., the config-
uration memory and the FPGA itself, have their TDI and
TDO port daisy chained together and form a single loop.
The number of devices connected to the JTAG testing chain
and the order in which they are linked to the JTAG loop
can be easily reverse-engineered [26].

2.2.2 Bitstream Encryption in the Virtex-II
The bitstream encryption feature [19] enables to configure

the Virtex-II Pro FPGA with a bitstream that is encrypted
by means of the symmetric-key cipher triple DES [32]. Triple
DES is a block cipher constructed by chaining three sub-
sequent executions of the Data Encryption Standard [23]
(DES) by using either two or three different DES keys. In or-
der to provide backwards compatibility, the three executions
of DES are actually an encryption-decryption-encryption pat-
tern: in this way, if a the same key is employed for all three
cipher instances, the triple DES is effectively reduced to a
single DES. The DES cipher encrypts blocks of 64 bits em-
ploying a 56-bit key, hence the possible key lengths of triple
DES are 112 or 168 bits. Whilst single DES is vulnerable
to brute-force attacks due to its short key length, e.g., us-
ing the COPACOBANA code breaking machine [17] or with
commodity hardware such as GPUs [6], there are no theo-
retical or brute-force attacks against triple DES known with
any realistic chance of success. Hence, neither mathemati-

cal cryptanalysis nor an exhaustive search can endanger the
secrecy of a design protected by the bitstream encryption.

Since the bitstream is processed by the cipher in blocks of
64 bits, Cipher Block Chaining (CBC) [22] is implemented
to combine subsequent blocks of the bitstream. During a
decryption, this mode of operation defines that the cipher-
text of one block should be added via a bitwise XOR to
the output of the following triple DES decryption to obtain
the plaintext. Since the first block to be decrypted does
not have a predecessor, a 64-bit initialization vector (IV) is
used to mask it. This IV may be publicly known and can
hence be transmitted in plain without loss of security. The
analyzed FPGA can store up to six single DES encryption
keys, which can be independently marked for use in either
the first, the second or the third DES run of the triple DES.
This feature allows for either 3 key sets (for 2-key standard
triple DES) or 2 key sets (for use with 3-key triple DES)
and enables the manufacturer to update the bitstream even
if a key set has been compromised. Xilinx states that there
is no read port for the key storage, except for the one inter-
nally employed by the decryption engine [32]. The only way
to program the keys into the device is through the JTAG
programming mode, although no details of the key entering
mode are provided by Xilinx in the technical specification.
In order to avoid incorrect configuration of the FPGA due
to a faulty decrypted bitstream and the subsequent possible
damage to the device, Xilinx states that the FPGA performs
a CRC check on the decrypted bitstream. For this purpose,
a CRC16 standard checksum embedded in the configuration
file is being used. In fact, there is no other authentication
scheme implemented in the bitstream (encryption) mecha-
nism of Virtex-II.

2.3 Power Analysis and Power Models
The power consumption of modern CMOS-based devices

mostly depends on the ongoing switching activity. It is pos-
sible to exploit this relation in order to gain insights into
the values being involved in a computation. For power anal-
ysis, the power dissipation is measured during the regular
functioning of a secure device in order to infer the secret
keys. The literature divides this class of attacks into two
general families, “simple” (SPA) and “differential” (DPA) at-
tacks [18]. SPA attacks involve visually interpreting power
consumption measurements as a function of time in order
to detect data-dependent properties between the computed
value and the power consumption, in precise intervals of
time. This methodology assumes that it is possible to dis-
cern a subset of keys thanks to their peculiar consumption
behavior, e.g., to distinguish a square and multiply step in a
modular exponentiation from a simple squaring. In public-
key algorithms such as RSA this can lead to a complete
leakage of the secret key. SPA is rarely applicable against
symmetric ciphers, as the one used in our target device.
DPA attacks rely on building a power model of a computing
circuit, employing the input values to the circuit as inputs
to the model, and a set of possible values of the unknown
key as a parameter. To verify a correct key hypothesis, the
attacker correlates the predicted values with the actual mea-
surements from the device under attack through a statistical
tool of her choice. Commonly, for a DPA it is assumed that
the values of the measurement set and the hypothesis set
are normally distributed random variables with mean µ and
standard deviation σ, where µ is the mean consumption of



the circuit for a precise key value at a specific time instant.
Since the dynamic power consumption of a device is caused
by the switching activity of the logic gates [16], a proper
dynamic consumption model tries to express the power con-
sumption depending on the intensity of the switching activ-
ity. This switching activity may be caused, e.g., by the com-
binational logic computing the result of a Boolean function,
or by a latch storing a single bit value. A first order approxi-
mation of the switching activity of many circuits is provided
by the Hamming weight (HW) of the input value. This re-
sults in a quite approximate model and has the advantage
of requiring no precise knowledge about the implementation,
since only the data processed at one instant in time has to be
predicted. The switching activity induced by a latch storing
a value is often better modeled by the Hamming distance
(HD) between the former value stored by the latch and the
new one. A latch toggles internally (and thereby consumes
a noticeable amounts of energy) only if the previous value
being held is different from the new one to be memorized,
i.e., when their HD is 1 [11]. Consequentially, the model re-
quires to predict two intermediate values, i.e., those stored
in a register before and after the targeted operation. This
requires some additional knowledge about the implementa-
tion, compared to a HW model.

Once a power model has been chosen, the attacker pre-
dicts an intermediate value depending on both a known in-
put value and a part of the secret key. She then computes a
set of hypothetical power consumption values, one for each
of the possible values taken by the part of the secret key.
The size of the part of the secret key hypothesized during
one step of the attack is a trade-off between building an ac-
curate model of the power consumption, which requires more
key bits to be considered in a single time, and the computa-
tional complexity involved in computing a power hypothesis
for every possible value which may be taken by the key por-
tion. However, since attacking one key portion is performed
independently from attacking the others, the attacker is free
to divide the whole key in portions that are small enough
to be processed. To recover the whole key, multiple attacks
are performed (on the same set of measurements). After
collecting a large number of measurements during the cryp-
tographic operation to be attacked, the adversary employs
a statistical tool to compare the hypothesized power values
with those that have been measured, in order to infer the
correct value of the key part. The typical methodology to
correlate the predicted and actual power consumption of the
circuit is to employ Pearson’s linear correlation coefficient:
if the model correctly predicts the consumption of the cir-
cuit, the linear correlation among the synthetic values and
the recorded ones will be close to 1, while it is expected for a
wrong model to have negligible correlation values. Conduct-
ing the correlation analysis time-wise, i.e., for each time in-
stance of the consumption values recorded from the circuit,
gives the attacker additional information about the exact
moment when a side-channel leakage occurs in the power
traces: the values of the correlation coefficient of the correct
key hypothesis spike only in the time interval in which the
operation is executed.

2.3.1 Processing the Measurements
For a successful power analysis attack the collected power

traces need to fulfill a number of requirements. The first
and foremost, due to the time-wise nature of the analysis, it

is fundamental for obtaining correct results in the analysis,
that the traces are perfectly synchronized. Due to either
instrumental issues or the fact that the instant of the be-
ginning of a sensitive operation is not always in full control
of the attacker, it can be necessary to process the obtained
traces in order to compensate for the possible phase shifts.
The problem of realignment can be solved through choosing
a single trace as a reference and detecting the most likely
time delay that needs to be applied to each other measure-
ment in order to achieve correct synchronization. Since the
measurements are taken in very comparable situations (i.e.,
encryptions of different plaintexts with the same algorithm),
the most natural figure of merit to detect the appropriate
time delays is cross-correlation. Cross-correlation is a mea-
sure of the similarity of two signals as a function of a time-
lag applied to one of them. The time delay maximizing the
cross-correlation between the reference and the current trace
is taken as the optimal time delay to achieve alignment.

A further key point for a successful power analysis is min-
imizing the amount of noise in the traces. Regardless of the
quality of the measurement setup the measurements always
contain noise, since the traces represent an aggregate mea-
surement of the power consumption of the entire chip and
its environment. Digital signal processing techniques can
be employed to separate the side-channel leakage from the
unwanted signals and thereby extract only the relevant in-
formation. Their usage turns out to be of crucial importance
when dealing with large digital components as in [9]. Proper
signal filtering can also be useful to evict any components of
the measured trace which are not pertaining to the hardware
under attack, provided they pertain to different harmonic
components [10], removing even large amounts of unrelated
signal.

3. ATTACKING A BLACK BOX
This section will provide a detailed description of the steps

performed to successfully reverse engineer and break the pro-
tection scheme of Xilinx’s Virtex-II Pro. The first subsec-
tion illustrates the implementation details of the encrypted
bitstream that were gathered through the analysis of the
output of the Xilinx ISE synthesis tool. After presenting
the in-vitro analysis on the bitstream, the section will de-
scribe the custom communication device we built to program
the FPGA and the measurement setup employed to record
the power consumption profiles of the Virtex-II Pro. Subse-
quently we describe the preliminary chip analysis oriented
at identifying the moment in time when the decryption is
performed and provide an analysis of the power profile of
the device. The section then infers the inner architecture of
the DES decryption engine according to our findings about
the time instances in which the intermediate values are pro-
cessed. Finally, the precise attack techniques that allow to
recover the whole triple DES key used for the decryption
of the bitstream are illustrated and the minimal number of
traces required for the full-key recovery is determined.

3.1 Reverse Engineering of the Bitstream
As a first step, the precise format of the bitstream needs to

be analyzed. Understanding the bitstream is a prerequisite
to find out how the configuration information is processed
by the internal decryption engine of the device. We assume
that the attacker is able to monitor the entire encrypted bit-
stream of the target FPGA, since the bitstream of an FPGA



FPGA Logic
Synchronization

and Startup

CRC-16 
and finalization

Write Plain Bitstream

Unencrypted
Bitstream

FPGA Logic
Synchronization

and Startup

CRC-16 
and finalization

Select First Key + Key ID

Write IV + IV Value

Write Enc. Bitstream

Triple DES 
Encrypted
Bitstream

Figure 2: Comparison between the structure of an
encrypted and an unencrypted bitstream

retains the same size regardless of the design implemented
(the FPGA needs to be configured in full at least during
its boot phase). Moreover, in case the bitstream encryption
feature is enabled, the device cannot use the partial reconfig-
uration features — it is hence forced to perform a full recon-
figuration for each update. To obtain the full (encrypted)
bitstream an attacker has two options: i) she can wire-tap
the data pin and command lines in order to eavesdrop on
the communication while the FPGA is being configured, or
ii) she can read out the content of the non-volatile memory
attached to the FPGA which is responsible to configure the
FPGA on power-ups. Note that this external memory is not
necessarily connected via JTAG, and feeding the encrypted
bitstream using different configuration schemes, e.g., Slave
Serial, is also possible, but this does not have any impact
on the attack that we present here. From now on, we as-
sume that the attacker is in possession of the full encrypted
bitstream through one of these methods.

Comparing Bitstreams.
While the Virtex-II Pro user guide [31] from Xilinx doc-

uments all the common configuration registers and gives a
brief description of the inner addressing modes of the de-
vice, the internal registers driving the decryption are not
explicitly mentioned. The the Virtex-II Pro user guide [31]
describes the bitstream as split into packets which may tar-
get a specific configuration register to set configuration op-
tions, write to the SRAM configuration memory, or toggle
internal signals, and are formed by a 32-bit header and a
variable length body. Depending on the packet length they
are split into two types: Type 1 packets may only handle a
body shorter than 211 − 1 32-bit words (i.e., 8 kB of data),
while Type 2 packets, used to write the bitstream to the
inner configuration mechanisms, handle up to 227 − 1 words
(i.e., 512 MB of data). A peculiarity of the architecture man-
dates that only Type 1 packets may change the destination
of a read or write operation which is not changed during
a Type 2 packet operation. In order to understand which
parts of the bitstream drive the decryption, we start the re-
verse engineering on the basis of a very simple test design

comprising just a single boolean gate. We synthesized the
test design once without activating the bitstream encryption
feature, to obtain an unencrypted bitstream, and then again
with varying keys for the encryption, producing several bit-
streams that are encrypted with the different keys. In the
following we reveal the relevant details of the configuration
by comparing the files containing the different bitstreams.

The differences deduced from the comparison are summa-
rized in Fig. 2. The content of the bitstream is organized
in packets, preceded by a single 32-bit synchronization word
(namely, 0xAA995566). This initialization header is the same
for both encrypted and unencrypted bitstreams and has the
purpose to synchronize the FPGA logic and reset the in-
ner programming logic to a default state. After this phase,
the unencrypted variant of the bitstream simply consists of
a large packet with the whole configuration information. In
contrast, the encrypted bitstream contains some extra infor-
mation for initializing the cryptographic engine. The first
value indexes the first key in the key storage to be employed
for the triple DES decryption. The two remaining keys are
determined by flags marking two cells of the 6-keys buffer
as “middle” and “last”. After the key indexes, the value of
the IV required for the CBC mode is passed in plain. Fol-
lowing the IV value, the bitstream continues with a large
packet containing the whole configuration information en-
crypted with triple DES. The writing command is the same
as for the unencrypted bitstream, with the exception of an
extra bit which is set to 1: we thus infer that setting the
bit effectively enables the decryption engine. The next step
was to reverse-engineer how the 64-bit secret keys input to
the ISE synthesis tool are processed before being used for
the encryption of a bitstream. In contrast to the DES stan-
dard, which suggests either to discard the eighth bit of every
byte of the DES key or to employ it for a parity check, we
have discovered that the ISE tool discards the full first byte
of the 64-bit supplied key in order to obtain the 56-bit key
for the DES encryption/decryption.This is done regardless
of the fact that the manuals point out that the first byte
is employed only for key indexing in the storage. As a fi-
nal check to all our inferences and in order to understand
the endianness of the bitstream, we generated a special bit-
stream that is encrypted with triple DES employing one of
the known weak keys of DES — the same for all three exe-
cutions of DES. These special weak keys have the property
that a DES encryption involving one of them becomes an
involutary operation, i.e., encrypting a second time with the
same weak key is identical to a decryption and hence yields
the plaintext. Through generating a bitstream that is en-
crypted with weak keys and with the IV of the CBC mode
set to zero, due to the properties of the CBC mode the sec-
ond 64-bit block contained in the bitstream is equal to the
plaintext corresponding to the first block in the bitstream —
thus we obtain a correctly deciphered plaintext in the gen-
erated bitstream file. Comparing this deciphered plaintext
with the available unencrypted bitstream we confirmed that
we correctly understood the triple DES engine input format
and in particular the order in which the bits are processed
internally.

Timing Issues.
The last information we were able to infer before tackling

the device pertains the minimum throughput of the internal
decryption engine. The Xilinx user guide reports that the



maximum clock rate to be externally supplied during JTAG
programming of an encrypted bitstream is fclk = 33 MHz.
In every clock cycle, one new bit of the bitstream is sup-
plied to the FPGA. This in turn implies that the triple DES
engine must be able to perform a full triple DES decryp-
tion of a 64-bit block in a time less than 64 × Tclk, where
Tclk = 1

fclk
denotes the duration of a clock cycle. This

gives us the expected time for a full triple DES of around
64 × Tclk = 1.94µs which implies that, assuming all 48
rounds of the triple DES take roughly the same time, a sin-
gle round of the DES must be executed in around 40 ns.
Accordingly, the hypothesis of the DES being perfomed by
means of a software implementation running on an inter-
nal microcontroller becomes highly unlikely, since it would
be too slow — instead we now assume a hardware imple-
mentation. If the decryption was realized by implementing
one DES round in hardware and execute it 48 times for the
triple DES, the above details about the timing give a lower
bound for the clock rate of the inner cryptographic engine
of 24.75 MHz.

3.2 Customizing the Measurement Setup
After analyzing the format of the bitstream and the spec-

ifications of the target device, we moved on to develop a
measurement workbench in order to record the power pro-
file of our target FPGA during its operation in a real-world
scenario. The first step in this direction was to develop a
customized communication module that is able to correctly
configure an FPGA via JTAG. Hence, we designed an in-
system programmable board that is based on an Atmel AT-
Mega256 8-bit microcontroller and provides a JTAG port,
a universal serial bus (USB) as well as a dedicated pin for
triggering the oscilloscope. We implemented a framework
on the microcontroller comprising the JTAG protocol and
a serial protocol for communicating via USB. The firmware
allows to freeze the configuration process through stopping
the clock signal fed to the Virtex-II Pro and enables to issue
the trigger signal to the oscilloscope before the clocking in
of any chosen bit, i.e., with a resolution of 125 ns. While the
fixed header of the bitstream (see Fig. 2) fits into the mem-
ory of the microcontroller, the remaining bits to be sent are
provided by the control PC and sent to the communication
module. The latter then wraps the bitstream in the JTAG
protocol and forwards it to the device under attack while
issuing trigger signals at the appropriate time instants.

As the target platform for attacking the bitstream en-
cryption we chose the customized FPGA development board
SASEBO [2]. It contains an XC2VP7 Virtex-II Pro FPGA
and provides stable and suitable voltages by means of on-
board voltage regulators. A JTAG connector is provided
to configure both the FPGA and a dedicated PROM which
are connected in a daisy chain form. During the analyses
we slightly modified the board by inserting resistors that
allow measuring the power consumption of the V CCINT ,
V CCAUX and GND paths. Similar modifications are also
required for attacking other real-world products comprising
a bitstream encryption.

A LeCroy WP715Zi digital oscilloscope with a maximum
sampling rate of 20 GSamples/s and an analog bandwidth
of 1.5 GHz was employed to record the instantaneous power
consumption of the target FPGA at a maximum vertical
precision of 2 mV/division.All the traces where acquired at
10 GSamples/s to avoid any possible aliasing due to under-

sampling. The program feeding the encrypted bitstreams to
our customized programmer and controlling the acquisition
of the power consumption traces runs on the oscilloscope it-
self, i.e., the communication module is connected to it via
USB. The employed probe connecting the oscilloscope to the
measurement resistor on the board is a LeCroy AP033 ac-
tive differential probe, which includes a low noise 10x analog
amplifier that boosts the effective vertical resolution of our
measurement subsystem to 200µV/division.

For verifying that our setup allows to correctly configure
the target FPGA with custom (encrypted) bitstreams, we
again synthesized our test design comprising a single boolean
gate and connected the appropriate pins of the FPGA to two
external switches serving as inputs and an LED displaying
the output of the logical operation. Experimenting with var-
ious self-generated bitstreams, e.g., by means of arbitrary
IVs, we used the simple circuit as a practical means to de-
bug the proper configuration of the FPGA and successfully
verified the functionality of our setup.

3.3 Timing and Power Profile Analysis
With the framework for configuring the FPGA and ac-

quiring its power consumption at hand we now proceed to
analyze the power profile of the target FPGA, in order to
identify the point in time when the targeted triple DES
decryption takes place. We started our analyses from the
V CCINT line, which, according to the specifications pro-
vided by Xilinx, powers the whole FPGA fabric and inner
circuits. This line turned out to be the actual line feeding
the decryption engine. For the sake of completeness, the
detection analyses have been repeated also on V CCAUX ,
which did not show any change in the power consumption
whether or not the decryption engine is enabled. We may
thus conclude that only V CCINT is effectively powering the
FPGA decryption engine. To record the power consumption
of the internal circuits connected to V CCINT , there are two
options: the power consumption can be sampled either by
measuring the voltage drop across resistor between V CCINT

and the device, or one between the device and GND.
Trying the second option first, we detected a strong echo

from the ground plane, implying a strong variation of the off-
set of the measured power consumption that rendered the
power traces useless for further analysis. The disturbing ef-
fect turned out to be related to the activities at the input
and output ports of the FPGA during the configuration, i.e.,
the communication via JTAG: the power consumption of all
voltage supply inputs (V CCINT , V CCAUX and V CCO) is
summed up when measuring at the GND path, as a conse-
quence the data and clock signal of the JTAG port caused
the undesired variations in the offset. As a remedy for the
problem we finally decided to acquire all our measurements
between V CCINT and the device and thereby solely record
the power consumption of this pin, separated from all other
activities on the other power pins.

To learn more about the internal configuration process
we performed tests with bitstreams that were generated in-
tentionally wrong, i.e., configuring an FPGA with them re-
sults in an unpredictable behavior. During the tests, the
consumption of the FPGA spiked after a while, the device
heated up and the configuration process effectively stopped:
we proceeded no further in order to avoid damage to the
device. These findings let us suggest that the configuration
information is written to the SRAM memory of the configu-



ration fabric instantly upon reception of each configuration
block, even before the actual boot command is given and
before the CRC checksum is properly verified.

The first step in the detection of the time period in which
the decryption takes place was done through recording power
traces during the loading of 64 bits of the bitstream. Two
long traces have been collected: one from an encrypted bit-
stream and the other one from a plain bitstream.

(a) Not encrypted

(b) Encrypted

Figure 3: Raw measurements of the power consump-
tion at V CCINT during the time period of the de-
cryption

Through comparison we spotted the key difference in power
consumption after the second bit of the 64-bit block is clocked
in. Fig. 3 depicts the power consumption of the FPGA for
the case of an encrypted bitstream (at the bottom) and its
unencrypted counterpart (at the top), revealing a clear in-
crement in the dynamic power consumption occurring at this
time instant only if the bitstream encryption feature is used.

Filtering the Measurements.
A strong oscillating signal with a frequency of 295 MHz

can be noticed in both traces. Being present also in the
unencrypted bitstream trace we followed the intuition that
it is not related to the decryption engine and tried to remove
it by means of a band block filter. The latter is realized in
the digital domain and suppresses the components of the
signal at 295 MHz, employing a narrow Chebyshev type 2
window in order to minimize the effects of the aliasing on
other harmonic components. The results of the filtering are
depicted in Fig. 4: it is now possible to clearly distinguish
the shape of the three DES executions, followed by the same
peak in power consumption regarding what we suppose is the
writeback operation of the 64-bit word into the configuration
fabric.

In order to confirm that we did not discard any informa-
tion relevant for further power analysis, we computed the
variance of both the filtered measurements and also the part
of the measurements that has been discarded by the filter,

WB

(a) Not encrypted

DES-D DES-DDES-E WB

(b) Encrypted

Figure 4: Filtered power consumption measured at
V CCINT during the time period of the decryption.

i.e., containing the frequency components that have been
blocked by the band block filter. We recall that, since dif-
ferential power analysis relies on exploiting the differences
in the power consumption caused by different inputs, the
time-wise variance computed over a significant number of
traces is a reasonable index of the information contained in
the signal.

Figure 5 presents the computed variances for the time win-
dow pertaining the decryption-encryption-decryption opera-
tions, based on processing 50, 000 different inputs. As we can
see, the variance of the part of the signal kept by the filter
features three distinct peaks at the beginning of each DES
execution and is higher during the encryption process, with
respect to the lower values assumed before and after. In con-
trast, the variance of the discarded signal is practically flat,
suggesting that no information relevant to the decryption
process has been omitted. Therefore it is conceivable that
the oscillating power consumption is actually the power pro-
file of the PowerPC 401 core embedded in the FPGA. The
core has a reference working frequency of 300 MHz which
seems compatible with our measurements.

The analysis suggests the presence of a large buffer em-
ployed to store the result of a whole DES decryption (or
encryption) operation, due to the high variance at the be-
ginning of every DES computation. It is also possible to
infer the duration of a single DES round from the variance
figure by simply computing the distance between the peaks:
exactly one DES execution is encompassed between them.
Through calculating this distance we obtain a computation
time for the DES of 217 ns, corresponding to 651 ns for the
execution of three full DES computations. This figure is well
within the maximum bounds enforced by the JTAG input
rate calculated in Sect. 3.1 which mandates the triple DES
to be faster than 1.94µs. The peak to peak amplitude of the
decryption signal is roughly 2.8 mV, thus the measurement



(a) Kept by the filter

(b) Discarded by the filter

Figure 5: Variance of the power consumption for the
part of the signal kept and discarded by the filter

setup should have enough sensitivity to capture the differ-
ences in the consumptions of the decryptions of different
plaintexts.

3.3.1 Power-Profiling the Decryption Engine
Performing a power analysis attack requires to know the

architecture of the target device to select a power model
which matches to its power consumption characteristics. This
information is missing when attacking a black box. Having
identified the point in time where the triple DES decryption
is performed by the device we thus proceed with investigat-
ing the correct model for the power consumption. During
this profiling phase, that aims at determining the underlying
hardware structure of the decryption engine, the secret keys
used for the 3DES are known. Accordingly, we are able to
fully compute the intermediate results of the cipher in every
encryption/decryption round.

We selected three different keys in the Xilinx ISE tools
and generated the corresponding key file and an encrypted
bitstream. After configuring the keys into the FPGA us-
ing a Xilinx programming device we collected 50, 000 power
traces for the same number of ciphertexts (64-bit blocks)1

while sending the encrypted bitstream to the target device
by means of our customized configuration module. In the
following, in order to perform a power analysis of the ac-
quired measurements one needs to align them. For this pur-
pose we applied the cross correlation alignment explained in
Sect. 2.3.1 on the whole trace, band block filter.

Section 3.3 pinpoints the relevant part of the configura-
tion process, i.e., when the second bit of a 64-bit ciphertext
packet is sent to the FPGA. The acquired power traces must
hence be related to one of the previous ciphertexts (depend-
ing on the size of the internal buffer of the device). In order
to determine which ciphertext belongs to which power trace
we calculated the intermediate values of every DES round,

1Configuring this FPGA, a maximum of around 70, 000 ci-
phertexts are available.

Figure 6: Correlation for hypothesizing the HD be-
tween the output of the first two rounds of each DES
module

Figure 7: Correlation peaks for HD between the
outputs of all the 16 rounds of the second DES

considering the first ciphertext block in the bitstream and
the known key as inputs.

The power consumption model for the analysis was chosen
based on an assumption about the internal DES hardware,
i.e, the common design choice that the state of the cipher is
saved in a buffer in every round. Consequently, we computed
the correlation coefficient between the processed measure-
ments and the HD of two consecutive round outputs of the
first DES decryption, which is a typical hypothetical power
model when attacking hardware. We supposed different re-
lations between the ciphertexts and power traces. For the
hypothesis that the previously sent ciphertext is processed
when sending the current 64-bit packet a strong correlation
appears right after the trigger point (see Fig. 6). As a result,
we could deduce that a 64 bit ciphertext block is processed
two clock cycles after it is fully input into the device. To
gain further insights into the hardware architecture we re-
peated the same for the input of the second and the third
DES executions. The results are shown in Fig. 6: clearly,
the correlation corresponding to each of the three DES runs
can be spotted.

In order to further confirm the presence of a buffer be-
tween every round of the DES cipher, we ran a series of
power analyses, this time hypothesizing the HD between the
input and the output of every DES round. Fig.7 depicts the
correlation related to the 16 rounds at hand of the second
DES execution. The correlation peak for the inner buffers is
clearly present and the position of the peak shifts forward in
time, increasing with the number of the hypothesized round.

An important point here is the role of the initial permu-
tation (IP) of DES. By trial-and-error we found that re-
liable correlation results are obtained when excluding IP
and IP−1 in the hypothesis. A self-evident hypothetical
power model for attacking the first round of the first DES
is HD = HW(IP(C) ⊕ Round(IP(C),K)), where C is a 64-
bit ciphertext, “Round” represents the 64-bit DES round
function, and K is the last 48-bit subkey of the first DES.



Accordingly, all the correlation results shown above base on
this hypothetical power model.

Observing that the features of the correlation figures do
not sport any high frequency features, we tried a more re-
strictive filtering strategy: an additional low-pass filter with
a cut-off frequency of 50 MHz was applied to all the collected
traces and the HD-based correlation analysis was repeated.
The results did not show any significant change in the shape
and the amplitude of the correlations, thus we proceed in
the actual attack with low-pass filtered traces.

3.4 The V2 DES Engine Internals
We conclude the profiling with some assumptions about

the hardware implementation of the 3DES engine inside the
Virtex-II Pro. It is conceivable that it employs a round func-
tion executing a round of the cipher per clock cycle, since
DES employs 8 different S-boxes that cannot be shared dur-
ing a round computation. The correlation peaks in Fig. 7
moving forward in time with the targeted round of DES
supports this assumption. The corresponding hypothetical
architecture is depicted in Fig. 8. Due to the Feistel struc-
ture of the cipher, the encryption and decryption can be
realized by 48 successive rounds, supplying the subkeys in
the correct order, and applying the IP before the start of
the first round and IP−1 after the last round.

64 64

64 64

48

64 -1 64

64

CLKstart

Figure 8: Our hypothetical architecture of the in-
ternal triple DES module of Virtex-II Pro FPGA

3.5 Extracting Keys from the Virtex-II
After choosing the proper information leakage model in

the previous section, we now proceed to perform the attack
in a real-world scenario: this time, an FPGA with an un-
known set of keys is attacked. During a normal power-up of
the target device, the adversary measures the power traces
and collects the corresponding ciphertexts contained in the
bitstream. Since the bitstream is encrypted with a secure
cipher, even the simplest design results in the ciphertexts
being uniformly distributed. This allows the attacker to
measure the encryption operation of a whole codebook of
plaintexts for each reasonably sized key hypothesis.

In the case of DES, each subkey of length 48-bit can be
divided into 6-bit parts, since the value of a single bit of the
output of a DES round is influenced by 6 key bits added to
the input of the S-box computing it, because of the input
width of the DES S-boxes. This allowed us to choose a 6-
bit wide key hypothesis, thus, to reveal the first round key
the attack therefore has to be repeated eight times, once for
each key portion considered in the attack. After the first
48 bits of the round key have been recovered, the remaining
6 bits of the 56-bit DES key are exposed by attacking the

second round of the DES operation. We performed a full
key recovery involving 50, 000 traces by hypothesizing the
HD between a single bit of the output from a DES round
and the previous value being stored in the round buffer (for
simplicity consider a bit of the round buffer in Fig. 8). Once
the 56-bit key for the first DES decryption is known the
input for the subsequent DES encryption is computed and
its 56-bit key (and finally that of the last DES decryption)
is revealed similarly.

To quantify the minimum sampling frequency required for
a successful key recovery, we further investigated the fact
that the attacks still works if the traces are sampled at a
sensibly lower frequency. Following the fact that we applied
a lowpass filter at 50 MHz, we applied a 100 times decima-
tion to the traces, i.e., use only every hundredth sampling
point and discard the rest, and repeated all the attacks in
order to see if the reduced traces are still containing enough
information. As a result, all the attacks mentioned up to
now are repeatable on the decimated traces, thus yielding a
significant speedup in the required computation time and a
reduction in the memory footprint.

It is possible to recover a 6-bit DES subkey in less than 4
seconds of computation time on a common desktop PC, with
a memory footprint smaller than 20 MB. The whole 112-bit
key of a 2-key triple DES is hence revealed by our attack in
roughly two minutes and the 168-bit key of a 3-key triple
DES in three minutes. The trace decimation also impacts
on the minimum sampling frequency required for the digital
oscilloscope: since the decimated traces are now sampled at
a rate of 100 MS/s this can be regarded as a new lower bound
for the required sampling frequency of the oscilloscope.

3.5.1 Practical Results

Figure 9: Results of the DPA attack on 50, 000 traces
employing non decimated lowpass traces targeting
the (a) first (b) second (c) third DES execution (cor-
rect key guess in black, the others in gray)



So far, the same set of 50, 000 power traces (acquired from
loading a single bitstream into the FPGA) was used to pro-
file the power consumption characteristics of the device and
to perform the actual attacks. To determine the minimum
number of traces required to reveal the complete triple DES
key we have examined all subkeys of all three DES execu-
tions accordingly. As illustrated in Fig. 9 the power con-
sumption right after the trigger signal is disturbed by the
I/O activity, causing that a key-recovery attack on the first
DES execution is harder than the others. The result of the
attack over the number of traces for the worst case is shown
by Fig. 10 indicating that with the current attack setup a
minimum of 25, 000 measurements is required for the cor-
rect hypothesis to emerge, albeit the statistical confidence
margin is not high.

The minimum number of required traces is largely af-
fected by the measurement setup and environmental noise.
Depending on these parameters therefore the attacker may
need more traces. Our target FPGA, i.e., XC2VP7, is one
of the smallest variants on the market. Still, the size of its
configuration bitstream (independent of the size of the de-
sign) suffices to acquire more than 70, 000 measurements of
different ciphertexts being encrypted by the 3DES engine.
Hence, loading of a single bitstream into our target FPGA
during a power-up suffices to acquire close to two times more
measurements than required for a successful recovery of the
full secret key — this indicates that our attack can be con-
ducted on real-world products even in a very noisy mea-
surement environment, and while large scale ASIC compo-
nents are embedded in the FPGA chip. Note, that repeating
the measurements for more power-ups does not increase the
number of different ciphertexts — still averaging over the
power-ups allows to reduce the noise level.

4. IMPLICATIONS
In the previous section we have shown that the bitstream

encryption feature aiming to provide IP protection can be
circumvented by extracting the secret keys used for the en-
cryption via power analysis. The complete content of any
Virtex-II Pro protected with bitstream encryption can fall
into the hands of a competitor or criminal — this may im-
ply system-wide damage, if IP such as encryption schemes
and keys programmed into the FPGA, or similar secrets,
are misused or become public. The attacks hence have a
devastating impact on the security of products employing
bitstream encryption in the real-world.

For performing our key-recovery, an attacker needs knowl-
edge about side-channel cryptanalysis, a basic lab measure-
ment setup and physical access to the target device in which

Figure 10: Result of the DPA attacks targeting the
first DES as a function of number of traces (correct
key guess in black, the others in gray)

the Virtex-II Pro FPGA is embedded. The only modifica-
tion required to be performed on the product to be attacked
is removing the capacitances which have negative effect on
power measurements. Also, the lithium battery must remain
connected to the FPGA to ensure that the secret keys are
not zeroed. The adversary connects her measurement equip-
ment and powers up the product-under-attack once, while
monitoring the loading of the encrypted bitstream. Finally,
she performs the statistical evaluation on a standard PC to
recover the full secret key of the 3DES. Applying the meth-
ods described in this paper, the keys used for the bitstream
encryption can be recovered with modest efforts in less than
one hour, using the measurements of only one single config-
uration process.

After the key recovery the attacker can decrypt the pro-
tected bitstream from the Virtex-II Pro FPGA, and hence
possesses its complete content. As a consequence, she can
produce a clone of the original FPGA on the basis of an
empty device by simply configuring it with the extracted
bitstream, even without using the encryption feature, for
example to replicate the product of a competitor.

Furthermore, by reverse-engineering the internal wiring of
the FPGA from the bitstream a stolen design can be ana-
lyzed, the internal secrets extracted and used for malicious
purposes. The stolen design could even be improved and dis-
guised as an own product that outrivals the original. While
Xilinx tries to establish security by obscurity by keeping the
exact mapping of the bitstream to the internal circuitry of
their product confidential, there already exist methods to re-
cover the original design of an FPGA from a bitstream [24,
30].

In addition to lost IP, in a security-critical environment re-
programming the attacked FPGA with an ill-intended mod-
ified code, e.g., to accomplish malfunctioning or to unno-
ticedly implement a hardware trojan [21], is a particularly
damaging option. In the following we illustrate possible im-
plications that our attacks may have at hand of two exam-
ples from the commercial sector2, without naming manufac-
turers.

4.1 Real-World Example 1: Set Top Box
Set-top boxes are widely used in the field for receiving dig-

ital TV and radio programmes, pay-per-view special events,
allow to watch recent movies on a subscription basis and
enable video on demand, i.e., remotely renting a video in-
cluding the ability to pause, rewind, and fast forward. A
set-top box is an ideal candidate for using FPGAs with
bitstream encryption: In addition to the computationally
highly demanding demodulating and decompressing algo-
rithms for descrambling the transmitted TV and radio pro-
grammes, the manufacturers often employ their proprietary
encryption schemes, e.g., for the above mentioned applica-
tions. The secure bitstream encryption feature enables to
regularly update and improve the firmware running on the
set-top boxes in the households, for example by cable or a
satellite link, and establish corresponding business models
without disclosing the descrambling schemes or secret keys
to potential attackers.

Our key-recovery attack puts set-top boxes relying on the
investigated or similar FPGAs using bitstream encryption
at a high risk: an attacker extracting the firmware of a set-

2for obvious reasons we do not cover military applications
here.



top box knows amongst others the scrambling scheme and
secret keys, can gain access to all digital content without
paying and is thus able to circumvent the above mentioned
business models. A criminal can make high financial gain
(and cause high financial losses for the service provider) by
producing new set-top boxes or modifying the firmware of
existing set-top boxes to enable the usage of the services free
of cost by the customers.

4.2 Real-World Example 2: Router
Network routers redirect data traffic with a speed of hun-

dreds of Gigabits per second in local networks and often con-
stitute the interface to the outside world, e.g., the Internet,
for companies, government agencies and private households.
In addition to routing data, an FPGA in common products
often realizes security-relevant functions such as a firewall
to separate private local networks from other insecure ones.
In case of a bug in the firmware or if a security fix is re-
quired, some routers can be updated remotely — again, the
bitstream encryption is the basis for establishing this func-
tionality. Assuming a router that is based on a Virtex-II
Pro, an attacker having one-time physical access to it can
perform our key-recovery attack. From there on, she can
remotely initiate firmware updates, e.g., via the Internet,
to modify the functionality of the router according to her
demands.

A denial-of-service attack, aiming at malfunctioning or
to destroy the device or other connected equipment is one
option. More likely, a modified firmware can be used to
open a covered channel allowing the adversary to spy out
and access data from the internally connected computers
and other devices, e.g., by implementing a trojan horse that
secretly forwards all internal traffic to the adversary. The
user typically has no means to verify whether his firmware
has been manipulated or if it is original, hence — depending
on the location where the manipulated router is used —
a modified firmware can have a devastating impact on the
privacy and security, and even the safety, of the attacked
individual or company.

4.3 Scope of our Findings
As researchers of a university with this paper we intend to

inform about possible vulnerabilities when using bitstream
encryption and warn the end-users of products incorporat-
ing this feature from possible damage. We believe there can
be fairly severe real-world implications (depending on the
commercial devices in which Virtex-II Pro FPGAs are used)
due to our findings. Furthermore, it seems highly likely that
certain determined attackers, e.g., foreign intelligence ser-
vices, are already capable of extracting and altering FPGA
designs using power analysis techniques. Since the success
of a power analysis attack in general does not depend on
the cipher employed, it is conceivable that similar attacks
can be applied to newer generations of FPGAs from differ-
ent manufacturers, employing different ciphers, such as the
Virtex 4 family or Altera products using AES-256 in their
bit encryption schemes [7, 29].

5. CONCLUSION
We presented the first attacks targeting the bitstream en-

cryption of FPGAs in the literature. By profiling the power
consumption of the target FPGA we reverse-engineered all
relevant details of the security feature and pinpointed the

time instant when the decryption of the ciphertext blocks
of the bitstream is performed by a dedicated hardware con-
tained in the FPGA. We identified the appropriate power
model for attacking the triple DES engine by means of power
analysis and deduced the internal architecture of the hard-
ware. Our proposed techniques for the digital signal pro-
cessing of the power measurements enable a highly efficient
power analysis attack that allows the full secret key of the
triple DES to be extracted in only 3 minutes of computa-
tion time from only 25, 000 measurements, obtainable with
a single boot up of the device. Our findings indicate that
the attacks are possible using a low-cost oscilloscope with a
sample rate as little as 100 MS/s.

In particular, we have successfully exemplified our at-
tack at hand of the bitstream decryption of a Virtex-II Pro
XC2CP7 FPGA manufactured by the market leader Xilinx.
We are able to recover all three different keys used by its
triple DES module from a single power-up of the device in a
real-world scenario. The lithium battery for the key storage,
providing extra security according to Xilinx, does not have
to be removed for the attack. It is highly conceivable that
similar attacks can be applied to other series of FPGAs, e.g.,
from other manufacturers.

Besides the obscurity that emerges from Xilinx keeping
the details of their bitstream files secret we encountered no
countermeasures against side-channel analysis — an alarm-
ing fact considering the protection of many devices deployed
in the field: an attacker knowing the secret key used for the
encryption of the bitstream can obtain all secrets and in-
tellectual property contained in commercial products, e.g.,
proprietary encryption schemes or processing algorithms.

As a consequence of our attacks, cloning of the prod-
ucts protected by the bitstream encryption scheme becomes
straightforward. After reverse engineering the content of
the FPGA from the bitstream, improved products could be
marketed by a competitor that outrival the original. Much
worse, the content of commercial products can be updated
remotely, e.g., via Internet, with a maliciously modified new
firmware. This poses a severe threat to the reliability of the
products, puts the privacy of individuals and companies at
a high risk and further enables to infect the devices with
embedded malware.

6. REFERENCES
[1] Defense Science Board.

http://www.acq.osd.mil/dsb/.

[2] Side-channel Attack Standard Evaluation Board
(SASEBO). Further information are available via
http://www.rcis.aist.go.jp/special/SASEBO/.

[3] Xilinx ISE Design Suite.
http://www.xilinx.com/tools/designtools.htm.

[4] IEEE Standard Test Access Port and Boundary-Scan
Architecture. IEEE Std 1149.1-2001, pages i –200,
2001.

[5] D. Abraham, G. Dolan, G. Double, and J. Stevens.
Transaction Security System. In IBM Systems Journal
30, pages 206–229, 1991.

[6] G. Agosta, A. Barenghi, F. D. Santis, and G. Pelosi.
Record Setting Software Implementation of DES
Using CUDA. Information Technology: New
Generations, Third International Conference on, pages
748–755, 2010.



[7] ALTERA. Using the Design Security Feature in
Stratix II and Stratix II GX Devices (AN 341 version
2.3). Technical report, August 2009.
http://www.altera.com/literature/an/an341.pdf.

[8] ATK. XM25 Counter Defilade Target Engagement
System. http://www.atk.com/customer_solutions_
missionsystems/documents/sw_iw_xm25.pdf, May
2009. Post “FPGAs in interesting places – the XM25
Airburst Weapon System” by Saar Drimer on
www.fpgasecurity.com.

[9] A. Barenghi, G. Pelosi, and Y. Teglia. Improving first
order differential power attacks through digital signal
processing. In ACM-SIGSAC International Conference
on Security of Information and Networks, pages
124–133. ACM, 2010.

[10] A. Barenghi, G. Pelosi, and Y. Teglia. Information
leakage discovery techniques to enhance secure chip
design. In C. A. Ardagna and J. Zhou, editors,
WISTP, volume 6633 of Lecture Notes in Computer
Science, pages 128–143. Springer, 2011.

[11] E. Brier, C. Clavier, and F. Olivier. Correlation Power
Analysis with a Leakage Model. In CHES 2004,
volume 3156 of LNCS, pages 16–29. Springer, 2004.

[12] W. J. Broad, J. Markoff, and D. E. Sanger. Israeli
Test on Worm Called Crucial in Iran Nuclear Delay.
Technical report, New York Times, January 2011.
http://www.nytimes.com/2011/01/16/world/

middleeast/16stuxnet.html.

[13] O. Coudert. Why FPGA startups keep failing, 2009.
FPGA market shares according to Gartner Inc, 2008.

[14] S. Drimer. Security for volatile FPGAs. Technical
Report UCAM-CL-TR-763, University of Cambridge,
Computer Laboratory, Novembre 2009. ISSN
1476-2986 http://www.cl.cam.ac.uk/techreports/

UCAM-CL-TR-763.pdf.

[15] T. Eisenbarth, T. Kasper, A. Moradi, C. Paar,
M. Salmasizadeh, and M. T. M. Shalmani. On the
Power of Power Analysis in the Real World: A
Complete Break of the KeeLoq Code Hopping
Scheme. In CRYPTO 2008, volume 5157 of LNCS,
pages 203–220. Springer.

[16] Eric Peeters and François-Xavier Standaert and
Jean-Jacques Quisquater. Power and Electromagnetic
Analysis: Improved Model, Consequences and
Comparisons. Integr. VLSI J., 40(1):52–60, 2007.

[17] T. Güneysu, T. Kasper, M. Novotný, C. Paar, and
A. Rupp. Cryptanalysis with COPACOBANA. IEEE
Transactions on Computers, 57(11):1498–1513, 2008.

[18] P. Kocher, J. Jaffe, and B. Jun. Differential Power
Analysis. In CRYPTO 99, volume 1666 of LNCS,
pages 388–397. Springer, 1999.

[19] R. Krueger. Application Note XAPP766: Using High
Security Features in Virtex-II Series FPGAs.
Technical report, XILINX, 2004.
http://www.xilinx.com/support/documentation/

application_notes/xapp766.pdf.

[20] A. Lesea. IP Security in FPGAs, White Paper WP
261. Technical report, XILINX, February 2007.

[21] L. Lin, M. Kasper, T. Güneysu, C. Paar, and
W. Burleson. Trojan Side-Channels: Lightweight
Hardware Trojans through Side-Channel Engineering.

In CHES, volume 5747 of LNCS, pages 382–395.
Springer, 2009.

[22] A. Menezes, P. C. van Oorschot, and S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1996.

[23] NIST. FIPS-46-3: Data Encryption Standard (DES),
1999.

[24] J.-B. Note and É. Rannaud. From the bitstream to
the netlist. In M. Hutton and P. Chow, editors, 16th
International Symposium on Field Programmable Gate
Arrays, FPGA 2008. ACM, 2008.

[25] S. B. Örs, E. Oswald, and B. Preneel. Power-Analysis
Attacks on an FPGA - First Experimental Results. In
CHES 2003, volume 2779 of LNCS, pages 35–50.
Springer, 2003.

[26] Recurity Labs. Embedded Analysis. 27th Chaos
Communication Congress, Dec. 2010. http://events.
ccc.de/congress/2010/wiki/Embedded_Analysis.

[27] F.-X. Standaert, S. B. Örs, J.-J. Quisquater, and
B. Preneel. Power Analysis Attacks Against FPGA
Implementations of the DES. In FPL 2004, volume
3203 of LNCS, pages 84–94. Springer, 2004.

[28] A. Telikepalli. Is Your FPGA Design Secure? XCell
Journal, XILINX, Fall 2003.

[29] C. W. Tseng. Lock Your Designs with the Virtex-4
Security Solution. XCell Journal, XILINX, Spring
2005.

[30] T. J. Wollinger, J. Guajardo, and C. Paar. Security on
FPGAs: State-of-the-art implementations and attacks.
ACM Transactions in Embedded Computing Systems
(TECS), 3(3):534–574, 2004.

[31] XILINX. Virtex-2 Platform FPGA User Guide
(UG002 version 2.2). Technical report, November
2007. http://www.xilinx.com/support/
documentation/user_guides/ug002.pdf.

[32] XILINX. Virtex-II Pro and Virtex-II Pro X FPGA
User Guide. Technical report, 2007.
http://www.xilinx.com/support/documentation/

user_guides/ug012.pdf.

[33] XILINX. Virtex-II Pro Platform FPGAs: Complete
Data Sheet (DS 083 version 4.7). Technical report,
November 2007. http://www.xilinx.com/support/
documentation/data_sheets/ds083.pdf.


