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ABSTRACT
In order to protect FPGA designs against IP theft and re-
lated issues such as product cloning, all major FPGA man-
ufacturers offer a mechanism to encrypt the bitstream used
to configure the FPGA. From a mathematical point of view,
the employed encryption algorithms, e.g., AES or 3DES, are
highly secure. However, recently it has been shown that the
bitstream encryption feature of several FPGA product lines
is susceptible to side-channel attacks that monitor the power
consumption of the cryptographic module. In this paper, we
present the first successful attack on the bitstream encryp-
tion of the Altera Stratix II FPGA. To this end, we reverse-
engineered the details of the proprietary and unpublished
Stratix II bitstream encryption scheme from the Quartus II
software. Using this knowledge, we demonstrate that the full
128-bit AES key of a Stratix II can be recovered by means
of side-channel analysis with 30,000 measurements, which
can be acquired in less than three hours. The complete bit-
stream of a Stratix II that is (seemingly) protected by the
bitstream encryption feature can hence fall into the hands of
a competitor or criminal — possibly implying system-wide
damage if confidential information such as proprietary en-
cryption schemes or keys programmed into the FPGA are
extracted. In addition to lost IP, reprogramming the at-
tacked FPGA with modified code, for instance, to secretly
plant a hardware trojan, is a particularly dangerous scenario
for many security-critical applications.
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1. INTRODUCTION
Ubiquitous computing has become reality and has began

to shape almost all aspects of our life, ranging from social
interaction to the way we do business. Virtually all ubiqui-
tous devices are based on embedded digital technology. As

.

part of this development, the security of embedded systems
has become an increasingly important issue. For instance,
digital systems can often be cloned relatively easily or In-
tellectual Property (IP) can be extracted. Also, ill-intended
malfunctions of the device or the circumvention of business
models based on the electronic content — which is regularly
happening in the pay-TV sector — are also possible. An-
other flavor of malicious manipulation of digital systems was
described in a 2005 report by the US Defense Science Board,
where the clandestine introduction of hardware trojans was
underlined as a serious threat [1]. In order to prevent these
and other forms of abuse, it is often highly desirable to in-
troduce security mechanisms into embedded systems which
prevent reverse-engineering and manipulation of designs.

In the field of digital design, FPGAs close the gap between
powerful but inflexible Application Specific Integrated Cir-
cuits (ASICs) and highly flexible but performance-limited
microcontroller (µC) solutions. FPGAs combine some ad-
vantages of software (fast development, low non-recurring
engineering costs) with those of hardware (performance, rel-
ative power efficiency). These advantages have made FP-
GAs an important fixture in embedded system design, es-
pecially for applications that require heavy processing, e.g.,
for routing, signal processing, or encryption.

Most of today’s FPGAs are (re)configured with bitstreams,
which is the equivalent of software program code for FPGAs.
The bitstream determines the complete functionality of the
device. In most cases, FPGAs produced by the dominant
vendors use volatile memory, e.g., SRAM to store the bit-
stream. This implies that the FPGA must be reconfigured
after each power-up. The bitstream is stored in an external
Non-Volatile Memory (NVM), e.g., EEPROM or Flash, and
is transferred to the FPGA on each power-up.

One of the disadvantages of FPGAs, especially with re-
spect to custom hardware such as ASICs, is that an attacker
who has access to the external NVM can easily read out the
bitstream and clone the system, or extract the IP of the de-
sign. The solution that industry has given for this issue is a
security feature called bitstream encryption. This scheme is
based on symmetric cryptography in order to provide con-
fidentiality of the bitstream data. After generating the bit-
stream, the designer encrypts it with a secure symmetric ci-
pher such as the Advanced Encryption Standard (AES), us-
ing a secret key kdesign. The encrypted bitstream can now be
safely stored in the external NVM. The FPGA possesses an
internal decryption engine and uses the previously stored se-
cret key kFPGA to decrypt the bitstream before configuring



the internal circuitry. The configuration is successful if and
only if the secret keys used for the encryption and decryption
of the bitstream are identical, i.e., kdesign = kFPGA. Now,
wire-tapping the data bus or dumping the content of the
external NVM containing the encrypted bitstream does not
yield useful information for cloning or reverse-engineering
the device, given the adversary does not know the secret
key.

The cryptographic scheme used by Xilinx FPGAs start-
ing from the old and discontinued Virtex-II family to the re-
cent 7 series is Triple-DES (3DES) or AES in Cipher Block
Chaining (CBC) mode [12, 21]. Recent findings reported
in [14] and [15] show the vulnerability of these schemes to
state-of-the-art Side-Channel Analysis (SCA). Indeed, it
has been shown that a side-channel adversary can recover
the secret key stored in the target FPGA and use it for de-
crypting the bitstream. More recently, similar findings have
been reported for bitstream security feature of a family of
flash-based Actel FPGAs of Microsemi [20].

Side-channel attacks exploit physical information leakage
of an implementation in order to extract the cryptographic
key. In the particular case of power analysis, the current
consumption of the cryptographic device is used as a side
channel for key extraction. The underlying principle is a
divide-and-conquer approach, i.e., small parts of the key,
e.g., 8 bit, are guessed, and the according hypotheses are
verified. This process is repeated until the whole key has
been revealed [9, 11].

In this work, we analyze the bitstream protection mecha-
nism of Altera’s Stratix II FPGA families called design se-
curity. A detailed description of this real-world attack illus-
trating the steps required to perform a black-box analysis
of a mostly undocumented target, i.e., the design security
feature of the targeted FPGA family, is given. Similar to
the attacks on the bitstream encryption of Xilinx and Actel
FPGAs, our attack on the targeted Altera FPGA makes use
of the physical leakage of the embedded decryption mod-
ule. However, a detailed specification of the design security
scheme is not publicly available. By reverse-engineering the
Quartus II software application, we recovered all details and
proprietary algorithms used for the design security scheme.
Our results show the vulnerability of the bitstream encryp-
tion feature of Altera’s Stratix II FPGAs to power analysis
attacks, leading to a complete break of the security feature
and the anti-counterfeiting mechanism.

The remainder of this paper is organized as follows. In
Section 2, we describe the steps needed to reverse-engineer
the Quartus II application in order to reveal the details of
the design security scheme. Also, basic security problems
of the according scheme are illustrated. The details of our
side-channel attacks are presented in Section 3 and Section 4.
Finally, in Section 5, we conclude, summing up our research
results.

2. REVERSE-ENGINEERING – DESIGN SE-
CURITY SCHEME

For a side-channel analysis, all details of the bitstream
encryption scheme are required. However, this information
cannot be found in the public documents published by Al-
tera. In this section, we thus illustrate the method we fol-
lowed to reveal the essential information, including the pro-
prietary algorithms used for the key derivation and the en-

cryption scheme.

2.1 Preliminaries
The main design software for Altera FPGAs is called“Quar-

tus II”. To generate a bitstream for an FPGA, the Hardware
Description Language (HDL) sources are first translated into
a so called .SOF file. In turn, this file can then be converted
into several file types that are used to actually configure the
FPGA, cf. Table 1.

For the purposes of reverse-engineering the bitstream for-
mat, we selected the .RBF type, i.e., a raw binary output
file. This format has the advantage that it can be used with
our custom programmer, cf. Section 3.1.

File extension Type
.HexOut Hexdecimal Output

.POF Programmer Object File
.RBF Raw Binary File
.TTF Tabular Text File
.RPD Raw Programming Data
.JIC JTAG Indirect Configuration

Table 1: Bitstream file formats generated by Quar-
tus II

For transferring the bitstream to the FPGA, Altera pro-
vides several different configuration schemes [4, p.131-132].
Table 2 gives an overview on the different available schemes.
For our purposes, we used the Passive Serial (PS) config-
uration scheme, because it supports bitstream encryption
and moreover, because the configuration clock signal is con-
trolled by the configuration device.

Mode Bitstream Enc.
Fast Passive Parallel (FPP) Yes
Active Serial (AS) Yes
Passive Serial (PS) Yes
Passive Parallel Asynch. (PPA) No
JTAG No

Table 2: Configuration modes for the Stratix II

Regarding the actual realization of the bitstream encryp-
tion, relatively little information is known. In the public
documents [5] it is stated that Stratix II uses the AES with
128-bit key. Furthermore, a key derivation scheme is out-
lined that generates the actual encryption key given two
user-supplied 128-bit keys. Apart from that, no information
on the file format, mode of operation used for the encryption,
etc. was initially available to us. Thus, in the following, we
analyze the functional blocks of Quartus II and completely
describe the mechanisms used for bitstream encryption on
the Stratix II.

2.2 RBF File Format
In order to understand the file structure of an .RBF file,

we generated both the encrypted and the unencrypted .RBF
files for an example design and compared the results. We
found that the file can be divided into a header and a body
section. Comparing the encrypted and the unencrypted
.RBF files, we figured out that only a few bytes vary in
the header. In contrast, the bodies containing the – possi-
bly encrypted – actual bitstream are completely different.



The unencrypted file’s body contains mainly zero, while the
encrypted file consists of seemingly random bytes.

We encrypted the same input (.SOF file) twice, using the
same key both times. It turned out that the resulting en-
crypted bitstreams are completely different, with differences
in some header bytes and the complete body. Thus, the
encryption process appears to be randomized in some way.
Experimentally, we found that this randomization is based
on the current PC clock only. Using a small batch script,
we fixed the PC clock to a particular value and again gen-
erated two encrypted .RBF files. The resulting files were
completely identical, confirming the conjecture that the PC
clock is used as an Initialization Vector (IV) for the bit-
stream encryption.

To gain further insight into the internals of the file for-
mat, we used the reverse-engineering tool Hex-Rays IDA
Pro [2]. Amongst others, this program allows analyzing the
assembly code of an executable program (i.e., in our case the
Quartus II bitstream tool) and run a debugger (i.e., display
register values etc. ) while the target program is running.
Using IDA Pro, we obtained the file structure depicted in
Figure 1 (for the specific FPGA fabric EP2S15F484C5N).
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Figure 1: Structure of an unencrypted and an en-
crypted .RBF file

Both the unencrypted and encrypted .RBF files start with
a fixed 33-byte “pre-header”. The following 40 bytes include
the IV used for the encryption. For the unencrypted file,
the IV is always set to 0xFF...FF, while for the encrypted
file the first (left) 32-bit half is randomized (using the PC
clock). The right 32-bit half is set to a fixed value. However,
the IV is not directly stored in plain; rather, the single bits
of the IV are distributed over several bytes of the header.
Using IDA Pro, we determined the byte (and bit) positions
in the header at which a particular IV bit is stored.

Table 3 shows the resulting IV bit positions. The notation
YbitX refers to bit X (big endian, X ∈ [0, 7]) of the byte at
position Y in the .RBF file. Note that the byte positions
are counted starting from the beginning of the .RBF file,
i.e., including the fixed 33-byte pre-header.

Only the third and fourth bit of a byte is used to store
the IV bits. The other bits of the header are constant and

IV bit 63 62 61 60 59 58 57 56
Position 49bit3 48bit3 47bit3 46bit3 45bit3 44bit3 43bit3 42bit3

IV bit 55 54 53 52 51 50 49 48
Position 57bit3 56bit3 55bit3 54bit3 53bit3 52bit3 51bit3 50bit3

IV bit 47 46 45 44 43 42 41 40
Position 65bit3 64bit3 63bit3 62bit3 61bit3 60bit3 59bit3 58bit3

IV bit 39 38 37 36 35 34 33 32
Position 33bit4 72bit3 71bit3 70bit3 69bit3 68bit3 67bit3 66bit3

IV bit 31 30 29 28 27 26 25 24
Position 41bit4 40bit4 39bit4 38bit4 37bit4 36bit4 35bit4 34bit4

IV bit 23 22 21 20 19 18 17 16
Position 49bit4 48bit4 47bit4 46bit4 45bit4 44bit4 43bit4 42bit4

IV bit 15 14 13 12 11 10 9 8
Position 57bit4 56bit4 55bit4 54bit4 53bit4 52bit4 51bit4 50bit4

IV bit 7 6 5 4 3 2 1 0
Position 65bit4 64bit4 63bit4 62bit4 61bit4 60bit4 59bit4 58bit4

Table 3: Mapping between the IV bits and the
header bytes

independent of the IV. We assume that these bits store con-
figuration options, e.g., whether the bitstream is encrypted.
The header is followed by a two-byte Modbus CRC-16 [3]
computed over the preceding 40 header bytes for integrity
check purposes.

The body starts with a 21050-byte block that is equal for
both encrypted and unencrypted files. This block is followed
by the actual bitstream (in encrypted or unencrypted form).
The unencrypted bitstream has a length of 569068 bytes.
For the encrypted bitstream, 17 additional bytes are added.
This is due to the fact that for the encrypted format several
padding bytes are added. For the purposes of our work, the
details of this padding are irrelevant, as the additional block
does not carry data belonging to the actual bitstream.

2.3 AES Key Derivation
In the publicly available documents it is stated that the

128-bit AES key used for the bitstream encryption is not
directly programmed into the Stratix II. Rather, two 128-
bit keys denoted as KEY1 and KEY2 are sent to the FPGA
during the key programming. These keys are then passed
through a key derivation function that generates the actual
“real key” used to decrypt the bitstream. The idea behind
this approach is that if an adversary obtains the real key
(e.g., by means of a side-channel attack), he should still be
unable to use the same (encrypted) bitstream to program
another Stratix II (e.g., to create a perfect clone of a prod-
uct). Since the real key (of the second Stratix II) can only
be set given KEY1 and KEY2, an adversary would have to
invert the key derivation function, which is supposed to be
hard. We further comment on the security of this approach
in the case of the Stratix II in Section 2.3.2.

Initially, the details of the key derivation were hidden in
the Quartus II software, i.e., the software appears as a com-
plete black-box. As depicted in Figure 2, Quartus II pro-
duces a key file (in our case Keyfile.ekp) that stores the
specified KEY1 and KEY2. This key file is later passed to
the FPGA, e.g., via the Joint Test Action Group (JTAG)
port using a suitable programmer.

However, the key derivation function obviously has to also
be implemented in Quartus II because the real key is needed
to finally encrypt the bitstream. Hence, we again reverse-
engineered the corresponding scheme from the executable
program. Most of the cryptographic functions are imple-
mented in the DLL file pgm_pgio_nv_aes.dll. Apparently,



Quartus II Blackbox 
with AES-128 engine

KEY1 
128 Bit

KEY2 
128 Bit

User Design
.SOF FILE

encrypted.rbf

  

Keyfile.ekp
(stores KEY1/KEY2)

 
 

 

JTAG

One-time KEY
Programming 

 

EEP  

Configure 
encrypted.rbf

Insecure 
Channel

PC Software

Figure 2: Quartus II black-box generating en-
crypted Stratix II bitstreams

the developers of Quartus II did not remove the debugging
information from the binary executable; hence the original
function names are still present in the DLL.

Figure 3 shows the corresponding function calls for the
key derivation and the bitstream encryption. First, we focus
on the key derivation, i.e., the upper part of Figure 3. Note
that due to the available debugging information, all function
names are exactly those chosen by the Altera developers.

do_something() make_key() encrypt()key_init()

key_init()encrypt()make_encrypted_bitstream()

Bitstream Encryption

loop

Key function(KEY1,KEY2)

Loop end

Start

Figure 3: Quartus II call sequence during the bit-
stream encryption

First, the do_something() function checks the used key
length. Then, the make_key() function copies the bytes of
KEY1 to a particular memory location. The key_init()

function then implements the key schedule algorithm of the
AES, generating 160 bytes of round keys in total. encrypt()
then encrypts KEY2 with KEY1. Hence, the – previously
unknown – key derivation function is given as

Real Key := AES128KEY1(KEY2),

where KEY1 and KEY2 are those specified in the Quartus II

application.

2.3.1 Worked Example
In order to further illustrate the details of the key deriva-

tion function, in the following we give the inputs and outputs
for the chosen KEY1 and KEY2 we used for our analysis.

KEY1 (Quartus input, little endian)
0x0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00

KEY2 (Quartus input, little endian)
0x32 00 31 C9 FD 4F 69 8C 51 9D 68 C6 86 A2 43 7C

Real Key = AES128KEY1(KEY2) (big endian)
0x2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C

2.3.2 Security of the Key Derivation Function
At first glance, the approach of deriving the real key within

the device appears to be a reasonable countermeasure to
prevent cloning of products even if the real key has been
discovered. Yet, it should be taken into account that an
adversary knowing the real key is still able to decrypt the
bitstream and re-encrypt it with a different key for which
he has chosen KEY1 and KEY2. Nevertheless, a product
cloned in such a way could be still identified, because the
re-encrypted bitstream will differ from the original one.

However, the way the AES is used for the key derivation
in the case of the Stratix II does not add to the protection
against product cloning in any way: a secure key derivation
scheme requires the utilized function to be one-way, i.e., very
hard to invert. For the Stratix II scheme, this is not the case.
An adversary can pick any KEY1 and then decrypt the –
previously recovered – real key using this KEY1. The result-
ing KEY2 together with KEY1 then forms one of 2128 pairs
that lead to the same (desired) real key when programmed
into a blank Stratix II. The device will thus still accept the
original (encrypted) bitstream, and the clone cannot be iden-
tified as such because KEY1 and KEY2 are never stored in
the FPGA by design.

2.4 AES Encryption Mode
Having revealed the key derivation scheme, we focus on

the details of the actual AES encryption, i.e., analyze the
lower part of Figure 3. First, the key_init function is exe-
cuted in order to generate the round keys for the (previously
derived) real key. Then, encrypt() is invoked repeatedly in
a loop. Using the debugger functionality of IDA Pro, we
exemplary observed the following sequence of inputs to en-

crypt():

0xB4 52 19 50 76 08 93 F1 B4 52 19 50 76 08 93 F1

0xB5 52 19 50 76 08 93 F1 B5 52 19 50 76 08 93 F1

0xB6 52 19 50 76 08 93 F1 B6 52 19 50 76 08 93 F1

...

Note that the first and the second eight bytes of each AES
input are equal. Moreover, this 64-bit value is incremented
for each encryption, yielding (in this case) the sequence B4,
B5, B6 for the first byte. Apparently, the AES is not used to
directly encrypt the bitstream. Rather, it seems that the so-
called Counter (CTR) mode [17] is applied. Figure 4 shows
the corresponding block diagram.
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In CTR mode, an IV is encrypted using the specified key
(in our case the real key). The output (i.e., ciphertext) of
the AES is then XORed with the 16-byte data block to per-
form the encryption (of the bitstream blocks for the case of
Stratix II). For each block, the IV is incremented to generate
a new ciphertext to be XORed with the corresponding data
block. The XOR operation is implemented in the function
make_encrypted_bitstream().

As mentioned in Section 2.2, the IV is generated based on
the PC clock. Indeed, we found that the first four bytes of
the IV correspond to the number of seconds elapsed since
January 1, 1970. More concretely, the (little endian) value
0xB4 52 19 50 represents the date 2012.08.01 18:00:52.
The remaining four bytes are constant. The overall struc-
ture of the IV is thus:

0x B4 52 19 50︸ ︷︷ ︸
Timestamp

76 08 93 F1︸ ︷︷ ︸
Fixed bytes

B4 52 19 50︸ ︷︷ ︸
Timestamp

76 08 93 F1︸ ︷︷ ︸
Fixed bytes

.

Having figured out the details of the AES key derivation
and encryption, we implemented the aforementioned func-
tions to decrypt a given encrypted bitstream. Given the
correct real key and IV, we successfully decrypted the bit-
stream of an encrypted .RBF file. Figure 5 summarizes the
details of the bitstream encryption process of Stratix II.

3. SIDE-CHANNEL PROFILING
With the knowledge of the bitstream encryption process

presented in Section 2, we are able to analyze the Stratix II
from a side-channel point of view. To this end, in this sec-
tion we first describe the measurement setup and scenario.
Then, as a prerequisite to the according key extraction at-
tack (Section 4), we apply SCA to find out the point in time
at which the AES operations are executed. In the follow-
ing, we refer to the used Stratix II FPGA as Device Under
Test (DUT). Also, we call – following the conventions in
the side-channel literature – the current consumption curves
during the configuration process (power) traces.

3.1 Measurement Setup
Our DUT, a Stratix II FPGA (EP2S15F484C5N), is sol-

dered onto a SASEBO-B board [6] specifically designed for
SCA purposes. The SASEBO-B board provides a JTAG
port that allows one-time programing KEY1 and KEY2 into
the DUT. For our experiments we set the real key to 0x2B

7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C, cf. Sec-
tion 2.3.1.

We directly configure the DUT using the passive serial
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Figure 5: Overview of the bitstream encryption pro-
cess for the Stratix II FPGAs

mode. For this purpose, we built an adapter that is con-
formant to [4, p.599]. We developed a custom programmer
based on an ATmega256 µC. Thus, we have precise control
over the configuration process and are additionally able to
set a trigger signal for starting the measurement process.
This helps to record well-aligned power traces. Finally, our
µC also provides the configuration clock signal to avoid (un-
wanted) internal clock effects that could e.g., lead to clock
jitter and therefore to misaligned traces.

Osc. LeCroy WavePro 715zi
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 USB
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GND

Programmer with
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PINProbe

 USB

DC 
Blocker
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Hard Drive 
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Figure 6: Measurement setup for SCA

According to [4, p.148], the DUT has three different sup-
ply voltage lines: VCCINT (internal logic, 1.15V-1.255V),
VCCIO (input and output buffers, 3.00V-3.60V) and VCCPD

(pre-drivers, configuration, and JTAG buffers, 3.135V-3.465V).



For our analysis, we recorded the power consumption dur-
ing the configuration of the DUT by inserting a small shunt
resistor into the VCCINT path and measuring the (amplified,
AC-coupled) voltage drop using a LeCroy WavePro 715Zi
Digital Storage Oscilloscope (DSO) as depicted in Figure 6.
We acquired 840,000 traces with 225,000 data points each
at a sampling rate of 500 MS/s. The respective (encrypted)
bitstreams were generated on the PC built into the DSO
and then sent to the DUT via the µC. The measurement
process was triggered using a dedicated µC pin providing a
rising edge shortly before the first bitstream block is sent.

During the decryption process of the encrypted bitstream,
the AES is used in CTR mode. Hence, it might be possible
that the DUT performs the first AES encryption when the
header is being sent because from that time onwards, the
DUT knows the IV (first AES input). Therefore, we decided
to perform a new power-up of the FPGA for each power trace
that we measured. The corresponding steps are described
in more detail in Algorithm 1.

Algorithm 1 Measurement steps

for i=1 to numberOfTraces do
[µC] Perform DUT reset
[µC] Transfer fixed 33-byte pre-header to DUT
[PC] myIV[0..7]← rand
[PC] myHeader[]← Get header from .RBF file
[PC] Code myIV[] into myHeader[] (Table 3)
[PC] Compute CRC-16 over coded header
[PC] Send coded header with CRC-16 (42 bytes) to µC
[µC] Transfer coded header (42 bytes) to DUT
[µC] Transfer fixed body part (21050 bytes) to DUT
[PC] Bitstream[0..47]← rand
[PC] Send Bitstream[] (48 bytes) to µC
[µC] Set trigger. Transfer bitstream (48 bytes) to DUT
[DSO] Record power trace of the DUT
[PC] Store trace i
[PC] Store myIV[]

end for

3.2 Difference between Unencrypted and En-
crypted Bitstream

Using our measurement script, we recorded 10,000 power
traces for the time range that includes the transmission of
48 fixed, encrypted bitstream bytes. The FPGA decryp-
tor hence each time has the same input. In addition to
that, we performed the same measurements while sending
48 bytes of unencrypted bitstream. Finally, we computed
the average power consumption over the set of our measured
power traces, once for the unencrypted and once for the en-
crypted bitstream. Figure 7 illustrates the corresponding
mean traces.

As it is clearly visible in Figure 7, there is a significant dif-
ference in the average power consumption between the pro-
cessing of the unencrypted bitstream and the encrypted bit-
stream. While the FPGA processes an encrypted bitstream,
it consumes more energy compared to the processing of an
unencrypted bitstream. A difference is already visible at the
point where the first bitstream block is being transferred to
the DUT. Thus, we assume that the AES encryption engine
processes the first AES input (IV) while the programmer
transfers the first encrypted bitstream block to the DUT.
We further conjecture that while the programmer sends the
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Figure 7: Average power consumption (10k traces)
while sending an unencrypted (solid) and an en-
crypted (dashed) bitstream. Zoom on one byte.

second encrypted bitstream block, the DUT computes the
XOR of the first AES output with the encrypted bitstream
and configures the corresponding FPGA blocks.

3.3 Locating the AES Encryption
To verify our assumption on the correct time instance of

the first AES encryption, we recorded another set of mea-
surements and measured 840,000 power traces, this time ex-
actly as described in Algorithm 1. Then, for our profiling,
we used the known key to compute all intermediate AES
values for each IV challenge/trace.

For a Correlation Power Analysis (CPA), [8], we used
this set of power traces to compute the correlation curves of
about 220 different prediction models, e.g., each S-box bit of
the first AES round, several Hamming Distance (HD) mod-
els with different predicted register sizes, and several Ham-
ming Weight (HW) models for the intermediate AES states.
As a result, the majority of our power models revealed a
data dependency between the predicted power models and
the measured power traces. Hence, the FPGA evidently
leaks sensitive information. Figure 8 shows nine of the cor-
relation curves for the states after each AES round.

The first correlation curve (black) that exhibits a peak up
to an approximate value of 0.05 between 30 and 65 microsec-
onds is for the HW model of the 128-bit state after the first

Figure 8: Correlation coefficient for one full
AddRoundKey 128-bit state (one curve for each
round). Utilized models: 1st curve ↔ HW of round
1, 2nd curve ↔ HW of round 2, etc.



round of the first AES encryption. The second correlation
curve (red) is almost the same prediction model as before,
but this time for the second round, etc. . Each round of the
first AES encryption leaks and therefore, the correct time
instance of the first AES encryption is located between 30
and 160µs.

In Figure 8, one can also spot the processing of the second
AES encryption (starts at 180µs). Due to the fact that only
two bytes of the IV are incremented each time, for the second
AES encryption, the first output state (128 bits) is similar to
that of the first AES encryption. Therefore, the prediction
of the first state of the first AES encryption automatically
fits to the second encryption as well. Thus, the same leakage
(black curve in Figure 8) appears for both the first and sec-
ond AES encryption. Even the states after round 2 of both
encryptions are slightly similar, and the leakage peak (red
curve) appears for both encryption runs. Since the states
(starting from round 3) are completely different for both en-
cryptions, the predicted state of round ≥ 3 does not leak for
the second encryption anymore.

4. SIDE-CHANNEL KEY EXTRACTION
As shown in Section 3, the DUT exhibits a clear relation-

ship between the power consumption and the internal states
during the AES operation. In this section, we show how
this side-channel leakage can be utilized to extract the full
128-bit AES key from a Stratix II with approximately three
hours of measurements and a few hours of offline computa-
tion.

4.1 Digital Pre-Processing
As commonly encountered in SCA, the effect of the AES

encryption on the overall power consumption is rather small
(cf. Section 3). Hence, digital pre-processing of the traces
to isolate the signal of interest (and thus reduce the Signal-
to-Noise Ratio (SNR)) is often suggested in the literature in
order to reduce the number of required measurements [7]. In
the case of the Stratix II, we experimentally determined a
set of pre-processing steps before performing the actual key
extraction.

First, the trace is band-pass filtered with a passband from
500 kHz to 100 MHz. Then, the signal is subdivided into win-
dows of 750 sample points (i.e., 1.5µs at the sampling rate
of 500 MHz), with an overlap of 50 percent between adjacent
windows. Each window is zero-padded to a length of 7000
points. Then, the Discrete Fourier Transform (DFT) of each
window is computed, and the absolute value of the resulting
complex coefficients is used as the input to the CPA. Note
that we found the frequency with the maximum leakage to
be around 2 MHz, hence, we left out all frequencies above
8 MHz to reduce the number of data points as well as the
computational complexity of the CPA. Hence, each window
(0 . . . 8 MHz) has a length of 112 points.

This approach was first proposed in [10] under the name
of Differential Frequency Analysis (DFA). Since then, sev-
eral practical side-channel attacks successfully applied this
method to improve the signal quality, cf. for instance [18,
19].

4.2 Hypothetical Architecture
For a side-channel attack to succeed, an adequate model

for the dependency between the internal architecture and
the measured power consumption is needed. Common mod-

els include the HW, which states that the consumed power
depends on the number of set bits in a register, and the HD,
which predicts the power consumption to be proportional to
the number of switching bits in a register.

In the case of the Stratix II, the internal realization of
the AES was initially unknown. Hence, we experimentally
tested many (common) different models, as mentioned in
Section 3.3. As a result, it turned out that the leakage
present in the traces is best modeled by the HD within the
AES state after the ShiftRows step [16]. More precisely, it
appears that each column of the AES state is processed in
one step, and that the result is shifted into a register, over-
writing the previous column (that in turn is shifted one step
to the right). The corresponding hypothetical architecture
is depicted in Figure 9.
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Figure 9: Hypothetical architecture of the AES im-
plementation.

For the key extraction in Section 4.3, we thus use for in-
stance the HD byte 0→ 4 (after ShiftRows in the first AES
round) to recover the first key byte, byte 1 → 5 to recover
the second key byte, and so on. As common in SCA, each
key byte can be recovered separately from the remaining
bytes, i.e., in principle 16 × 28 instead of 2128 key guesses
for an exhaustive search have to be tested.

Note that, however, the initial state (i.e., the column over-
written with byte 0 . . . 3) is unknown. Hence, we consider
each row of the first two columns together and recover the
key bytes 0 and 4, 1 and 5, 2 and 6, and 3 and 7 together,
corresponding to 216 key candidates each. After that, the
remaining eight key bytes 8 . . . 15 yield 8 × 28 candidates
in total because the previous (overwritten) column values
are known. The total number of key candidates is thus
8 × 28 + 4 × 216 = 264, 192 for which the CPA can be con-
ducted within a few hours using standard hardware.

4.3 Results
Using the described power model, we computed the cor-

relation coefficient for the respective (byte-wise) HD of the
AES states. Figure 10 shows the result for the first S-box,
i.e., the HD between byte 0 and 4. Evidently, the correct
key candidate 0x2B (black curve) exhibits a maximum cor-
relation of approximately 0.05 after 400, 000 traces, clearly
exceeding the “noise level” of 4/

√
#traces = 0.006 [13].

All other (but one) key candidates stay below the noise
level. However, a second key candidate 0xAB (red curve) also
results in a significant peak at a different point in time. This
is due to the fact that, as explained in Section 2, the first 64-
bit half of the plaintext (i.e., the IV) equals the second half.
Hence, a second key candidate (from the second 64-bit half)
also exhibits a significant correlation. Indeed, the second



Figure 10: Correlation coefficient for the first S-box
after 400k traces using DFT pre-processing. Correct
key candidate 0x2B: black curve.

peak (red one) belongs to the correct key candidate 0xAB

for the corresponding key byte 8 in the second 64-bit half.
As expected, due to the serial nature of the hypothetical
architecture, the correlation occurs at a later point in time.

We conducted the CPA for all 16 AES S-boxes and ob-
tained a minimal correlation coefficient (determining the re-
quired number of traces) of ρmin = 0.031 for the fourth
S-box. Hence, according to the estimation given in [13], the
minimal number of traces to extract the full AES key is
approximately 28/ρ2min = 29, 136.

Figure 11: Correlation coefficient for the first S-box
after 400k traces without DFT pre-processing. Cor-
rect key candidate 0x2B: black curve.

Figure 11 depicts the according correlation coefficient for
the first S-box when leaving out the DFT pre-processing
step. In general, the results are similar to those of Figure 10,
however, the observed correlation is halved compared to the
CPA with the DFT pre-processing. Overall, we obtained
a ρmin = 0.021, i.e., 63,492 traces would be needed when
leaving out the DFT pre-processing.

Using our current measurement setup, 10,000 traces can
be recorded in approximately 55 min. Note that the speed
of the data acquisition is currently limited by the µC; thus,
this time could be reduced with further engineering efforts.
Nevertheless, the amount of traces required to perform a
full-key recovery can be collected in less than three hours.

5. IMPLICATIONS – FUTURE WORKS
After reverse-engineering the relevant functions of the Quar-

tus II program, all details of the bitstream encryption, in-
cluding the proprietary algorithms of the design security
scheme have been revealed. Using this knowledge, a side-
channel adversary can mount a successful key recovery at-
tack on the dedicated decryption hardware. As a conse-
quence of our attacks, cloning of products employing Altera
Stratix II FPGAs for which the bitstream encryption feature
is enabled becomes straightforward. Moreover, an attacker
can not only extract and reverse-engineer the bitstream, but
might also modify it or create a completely new one that
would be accepted by the device. This fact is especially sen-
sitive in military applications, but could also have a major
impact in other cases, e.g., surveillance and trojan hardware
scenarios. Furthermore, an unencrypted bitstream allows an
adversary to read out secret keys from security modules or
to recover classified security primitives.

Since the Stratix II family belongs to an older genera-
tions of Altera FPGAs, the fact that SCA countermeasures
have been ignored during the development appears likely.
However, recent families like Stratix V or Arria II proba-
bly feature an only slightly different scheme for bitstream
encryption. At least, these FPGAs are supposed to pro-
vide 256-bit security compared to the 128-bit security of
Stratix II. Therefore, analyzing the security of the more re-
cent Altera FPGAs from an SCA point of view is interesting
for future work.
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