
An FPGA Configuration Scheme for Bitstream
Protection

Masaki Nakanishi

Graduate School of Information Science, Nara Institute of Science and Technology
Takayama, Ikoma, Nara 630-0101, Japan

m-naka@is.naist.jp

Abstract. FPGAs are widely used recently, and security on configura-
tion bitstreams is of concern to both users and suppliers of configuration
bitstreams (e.g., intellectual property vendors). In order to protect con-
figuration bitstreams against the threats such as FPGA viruses, piracy
and reverse engineering, configuration bitstreams need to be encrypted
and authenticated before loaded into FPGAs. In this paper, we propose
a new FPGA configuration scheme that can authenticate and/or decrypt
a bitstream. The proposed scheme has flexibility in choosing authentica-
tion and/or decryption algorithms and causes only a small area overhead
since it utilizes programmable logic blocks to implement authentication
and/or decryption circuits.

Keywords: FPGA configuration, bitstream protection, bitstream
encryption, bitstream authentication.

1 Introduction

FPGAs are widely used recently, and security on configuration bitstreams is of
concern to both users and suppliers of configuration bitstreams (e.g., intellec-
tual property vendors). Configuration bitstreams are exposed to the threats of
piracy, reverse engineering and code theft. Moreover, a tampered configuration
bitstream can be an FPGA virus [4], which is a hardware analogue of a computer
virus. In order to defend against such threats, we need encryption/decryption
and authentication of bitstreams at configuration. Some commercial FPGAs have
a cryptographic circuit in it [1,8]. Also various methods that protect bitstream
security have been proposed [2,3,5,6,7]. Most of them equip dedicated decryp-
tion and/or authentication circuits in an FPGA. This causes a hardware over-
head. Note that circuits for asymmetric cryptography need large area. Because
of the overhead, dedicated decryption and/or authentication circuits equipped
in an FPGA are limited to symmetric key cryptography. On the other hand, a
method that utilizes reconfigurable logic blocks to implement a decryption cir-
cuit was proposed [2]. This might solve the area overhead problem. However,
the whole circuit cannot be encrypted because at the end of a configuration, the
decryption circuit is replaced with a part of the target circuit whose bitstream
is a plain text. This limits the size of the decryption circuit to be implemented

R. Woods et al. (Eds.): ARC 2008, LNCS 4943, pp. 330–335, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An FPGA Configuration Scheme for Bitstream Protection 331

since a large part of the target circuit cannot be encrypted if we implement a
large decryption circuit. In addition, it needs a dedicated authentication circuit
in order to authenticate the bitstreams of the decryption circuit, causing an area
overhead.

In this paper, we propose a new configuration scheme such that the whole
circuit can be encrypted while the proposed scheme causes only a small area
overhead. In our scheme, a decryption circuit is implemented using reconfigurable
logic blocks, and a bitstream of (a part of) the target circuit is decrypted using
the decryption circuit. At the end of a configuration, the decryption circuit is
replaced with the remaining part of the target circuit whose bitstream is one-
time padded. Thus, the whole circuit can be securely downloaded into an FPGA.
To do this, we use a part of the target circuit as a one-time pad for the bitstream
to be loaded in the last phase of the configuration.

Since the proposed scheme can use a large reconfigurable area to implement a
decryption circuit, it can handle computationally demanding cryptography such
as public key cryptography.

This paper is organized as follows. In Sect. 2, we describe the proposed scheme.
In Sect. 3, we discuss the security of the proposed scheme. In Sect. 4, we show
how to enhance security and flexibility of the proposed scheme. In Sect. 5, we
describe architecture requirements for realization of the proposed scheme. And
Section 6 concludes the paper.

2 The Proposed Scheme

Our concern is to protect designs from piracy, reverse engineering and code theft.
So we focus on encryption/decryption of bitstreams in this section, although our
enhanced scheme can be used to authenticate bitstreams as we will describe
later. That is, a bitstream supplier encrypts the bitstream of a circuit, then
send it to a user. The user’s FPGA (not the user!) decrypts the bitstream and
the decrypted bitstream is stored in the configuration memory. The important
point is decryption is completed within an FPGA, i.e., a user cannot access to
the decrypted bitstream. To do this securely, only an authenticated (or built-in)
decryption circuit should be implemented in an FPGA. We describe the proposed
scheme in the following.

We divide Configurable Logic Blocks (CLBs) into two sets; One is the set
that consists of CLBs chosen regularly skipping several blocks, and the other
consists of the remaining CLBs. (See Fig. 1.) We also divide a bitstream into
three bitstreams. The first one is a bitstream for configuring CLBs in set A, the
second one is for CLBs in set B, and the third one is for the routing information.

Our main idea is as follows. We first implement a decryption circuit using
CLBs in set A, decrypt a bitstream for set B and configure CLBs in set B by
loading the decrypted bitstream. Then the decryption circuit is replaced with
the remaining part of the target circuit by reconfiguring CLBs in set A. The
bitstream used in the reconfiguration of CLBs in set A is one-time padded,
and the decrypted bitstream for set B is used as the one-time pad. So we need

332 M. Nakanishi

CLB in A

CLB in B

Fig. 1. Grouping CLBs

(3) Replacing the decryption circuit
with the remaining part of the
target circuit.

(1) Implementing a decryption
circuit using A.

(2) Loading a part of the target circuit into B.

Loading a routing information.

Fig. 2. Configuration flow

no decryption circuit for reconfiguration of CLBs in set A; just XORing the
encrypted bitstream and the one-time pad is enough to decrypt it. After finishing
configuration of CLBs, routing information is loaded. The configuration flow is
illustrated in Fig. 2.

In the following, we describe the configuration scheme in detail.
Phase 1: Implementation of a decryption circuit - Configuration of A
The configuration memory of each CLB in set A has initial values, which are
fixed during manufacturing. It is initialized by the initial values at start-up of a
configuration. This initial configuration implements the decryption circuit. Sim-
ilarly, the routing configuration memory has initial values, and is also configured
by initializing them.
Phase 2: Decryption of a bitstream for B - Configuration of B
An encrypted bitstream is passed to the decryption circuit. And then, the de-
crypted bitstream is loaded into CLBs in B, which implements (a part of) the
target circuit.

An FPGA Configuration Scheme for Bitstream Protection 333

Phase 3: Implementation of the remaining part of the circuit - Recon-
figuration of A and reconfiguration of routing information
A configuration bitstream, which is encrypted by one-time pad, is loaded into
CLBs in set A. Each CLB loads the configuration data by XORing them with
the configuration data of the neighboring CLB, i.e., using the values stored in
the configuration memory of the neighboring CLB as a one-time pad. And then,
routing information, which is a plain text, is loaded.

Note that we can use large reconfigurable area in an FPGA to implement a
decryption circuit, so that we can implement a large circuit such as public key
cryptography.

3 Security of the Proposed Scheme

In this section, we discuss the security of the proposed scheme.
Confidentiality of the target circuit
The confidentiality of part B of the target circuit is guaranteed since its bit-
stream is encrypted. As for the confidentiality of part A of the target circuit, the
one-time pad might be weak since it is not a random bit string but the configu-
ration data of the neighboring CLBs. However, we can enhance the randomness
of the one-time pad as we will describe later. The routing information is not
encrypted in the above scheme. This is because for an evil user, obtaining the
routing information alone makes no sense. However, for higher security, it can
be encrypted as we will describe later.
Security of the embedded secret key
Our FPGA architecture has an embedded secret key, which is used by the de-
cryption circuit in Phase 2. Only the decryption circuit in Phase 2 can access to
the embedded secret key; After Phase 2, the connection port to the secret key is
disabled. Note that the decryption circuit is fixed during manufacturing. Thus,
the embedded secret key is securely managed.

4 Enhancing Security and Flexibility

In this section, we describe how the security of the bitstream for part A and the
routing information can be enhanced. We also describe an enhanced configura-
tion scheme that can implement an arbitrary decryption and/or authentication
circuit instead of the built-in decryption circuit.

4.1 Encryption of the Bitstream for A and the Routing Information

As we described in Sect. 2, the secret key (the one-time pad) for the encryption
of the bitstream for A is not a random bit string but a configuration bitstream
stored in a neighboring CLB. However, we can enhance the randomness of the key
by generating a key by bitwise XORing the bit strings stored in the neighboring
four CLBs instead of using a single bit string in a neighboring CLB as a key.

334 M. Nakanishi

Routing information can also be encrypted similarly by using configuration data
stored in CLBs that are placed around the routing configuration memory in
order to create a one-time pad.

4.2 Enhancing Flexibility of Decryption Algorithms

In the configuration scheme described in Sect. 2, we can use only the built-in
decryption circuit in Phase 2. However, we can enhance the configuration scheme
so that the authorized suppliers of configuration bitstreams (e.g., the authorized
intellectual property vendors) can distribute arbitrary decryption circuits for
the use of the decryption in Phase 2. Moreover, a circuit to be implemented in
Phase 2 is not limited to a decryption circuit. We can implement an arbitrary
cryptographic circuit such as an authentication circuit. We describe the enhanced
configuration scheme below.

We divide CLBs into two sets, A and B, as in Sect. 2. We also divide set
B into two sets, A′ and B′, similarly. Then, we replace Phase 1 with Phase 1′

below.
Phase 1′: Implementation of an authenticated decryption circuit
First, we implement an authentication circuit using CLBs in A′. Similarly to
the case of the decryption circuit described in Sect. 2, the authentication circuit
is built-in, and is configured just by initializing the configuration memory. The
authentication keys that are generated by the authorized suppliers of configu-
ration bitstreams are also embedded, i.e., they are fixed during manufacturing.
Then it loads an arbitrary decryption and/or authentication circuit into A while
verifying the MAC for the bitstream of it. Thus only the decryption and/or au-
thentication circuits authorized by the suppliers of configuration bitstreams can
be implemented.

The remaining phases are the same as in the configuration scheme described
in Sect. 2. The configuration flow is illustrated in Fig. 3.

(3) Replacing the cryptographic circuit with the
remaining part of the target circuit.

(1) Implementing an authentication
circuit using CLBs in A’.

(2) Loading a portion of the target circuit into B (= A’ U B’).

Loading a routing information.

X

X

X

X

X

X

X X

X

X

X

X

X

X

Implementing a decryption and/or
an authentication circuit using CLBs in A.

Fig. 3. Enhanced configuration scheme

An FPGA Configuration Scheme for Bitstream Protection 335

5 Architecture Requirements

In this section, we describe architecture requirements for realization of the pro-
posed configuration scheme. In order to configure A, A′, B and routing informa-
tion, four configuration systems (chains of configuration memories) are needed.
Each configuration memory of a CLB in A′ has its initial value, and can be ini-
tialized at the start-up of a configuration. A memory controller for dealing with
this initialization is needed. As for the management of the embedded secret keys,
a connection port to the embedded secret keys can be disabled after finishing
Phase 2.

All the above features together with a controller that manages the whole con-
figuration procedure realizes the proposed configuration scheme. All the above
features are easy to implement, and the area overhead is very small.

6 Conclusion

We proposed a configuration scheme that can securely download a bitstream
into an FPGA. By using the proposed scheme, we can encrypt the whole circuit
with only a small area overhead. Also the proposed scheme has flexibility; An
arbitrary cryptographic circuit can be implemented.

References

1. Altera Corp., http://www.altera.com/
2. Bossuet, L., Gogniat, G., Burleson, W.: Dynamically configurable security for SRAM

FPGA bitstreams. International Journal of Embedded Systems 2(1/2), 73–85 (2006)
3. Drimer, S.: Authentication of FPGA Bitstreams: why and how. In: Diniz, P.C.,

Marques, E., Bertels, K., Fernandes, M.M., Cardoso, J.M.P. (eds.) ARCS 2007.
LNCS, vol. 4419, pp. 73–84. Springer, Heidelberg (2007)

4. Hadžić, I., Udani, S., Smith, J.M.: FPGA viruses. In: Lysaght, P., Irvine, J., Harten-
stein, R.W. (eds.) FPL 1999. LNCS, vol. 1673, pp. 291–300. Springer, Heidelberg
(1999)

5. Kean, T.: Secure configuration of field programmable gate arrays. In: Proc.
of 9th IEEE Symposium on Field Programmable Custom Computing Machines
(FCCM2001), pp. 259–260 (2001)

6. Kean, T.: Secure configuration of field programmable gate arrays. In: Brebner, G.,
Woods, R. (eds.) FPL 2001. LNCS, vol. 2147, Springer, Heidelberg (2001)

7. Parelkar, M.M., Gaj, K.: Implementation of EAX mode of operation for FPGA
bitstream encryption and authentication. In: Proc. of IEEE International Conference
on Field-Programmable Technology, pp. 335–336 (2005)

8. Xilinx Inc., http://www.xilinx.com/

http://www.altera.com/
http://www.xilinx.com/

	An FPGA Configuration Scheme for Bitstream Protection
	Introduction
	The Proposed Scheme
	Security of the Proposed Scheme
	Enhancing Security and Flexibility
	Encryption of the Bitstream for A and the Routing Information
	Enhancing Flexibility of Decryption Algorithms

	Architecture Requirements
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

