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Abstract—Safeguarding Intellectual Property on FPGAs 

is a major challenge for FPGA manufacturers. The 
challenge stems not from the fact that it is difficult to add 
security features to the FPGA, but from the commercial 
point of view. The main question is whether the entire user 
base will be ready to pay for these added features. Also, 
there is no consensus among various manufactures as to 
which security features are absolutely essential for FPGA 
security. This paper addresses some security scenarios in 
FPGAs, and tries to point out why currently existing 
security features are inadequate. The concept of bit stream 
authentication is introduced and different authentication 
options are compared. Finally a comparative analysis of 
hardware implementations of the authentication 
algorithms is provided for FPGA as well as ASIC 
implementations.  
 

Index Terms—Bitstream Authentication, FPGA 
Security, HMAC, Secure Hash Algorithm 
 
1. Introduction 

Over the past few years there have been growing 
concerns over the security of FPGA designs. Is it 
possible to steal Intellectual Property (IP) from the 
FPGA? Can someone reverse engineer or even clone a 
design should someone capture the corresponding 
bitstream [7]? These are all valid concerns, and most 
FPGA manufacturers have incorporated some security 
features on their FPGAs. Xilinx pioneered with a Triple 
DES decryption engine on the Virtex II Pro family of 
FPGAs. The most recent Xilinx family of FPGAs, 
Virtex-4 uses Advanced Encryption Standard (AES) 
with a 256-bit key for bit-stream encryption. This key is 
stored in a battery-backed dedicated RAM. This takes 
care of some security issues, but there are quite a few 
issues which cannot be handled only by confidentiality 
of the bitstream. This paper lists out various factors 
which have prompted FPGA manufacturers and the 
research community to look at factors other than bit-
stream encryption, especially bit-stream authentication 
and bit-stream integrity.  

 
1.1 Overview of FPGA Security Issues 

 
 This research project was undertaken for Xilinx Inc, CA and 

continued as a semester-long project for ECE 646 (Cryptography and 
Network Security) at George Mason University, Fairfax, VA. 

A survey of various attack scenarios on FPGAs 
provides an insight into the need to incorporate security 
features on FPGAs [12]. Concentrating mainly on 
remotely reconfigurable FPGAs (since they are most 
susceptible to spoofing, hacking etc.) let us look at a few 
attack scenarios in which a design on an FPGA could be 
compromised.  
 The simplest passive attack on an FPGA design is 
eavesdropping. When an unencrypted bitstream is being 
transmitted to a remote FPGA, the attacker can simply 
read the bitstream if he has access to the link between 
the sender and the receiving FPGA. This attack scenario 
is shown in Fig. 1.  
 

 
Figure 1: Attack Scenario on FPGAs 

(Eavesdropping) 
 

If an attacker can get his hands on a complete 
unencrypted bitstream, cloning the design would be a 
trivial task, although reverse-engineering might not be so 
straightforward. Most FPGAs today are equipped to 
thwart this kind of passive security threat [7]. The 
solution is to encrypt the bitstream before transmitting it 
to the remote FPGA. This encryption functionality is an 
integral part of the vendor-specific tools available for the 
FPGA designing process. The FPGA has an on-chip 
decryption engine which allows it to decrypt the 
incoming bitstream. The keys used for 
encryption/decryption can be chosen by the user. If a 
vendor does not provide the ability for a user to select 
his own keys, beware!! The key is stored on the FPGA 
in a dedicated battery-backed RAM. Read access to this 
RAM is disabled once the key is validated and stored 
into the RAM. The pros and cons of using a battery 
backed RAM to store decryption keys is a fiercely 
debated topic. Any attempt to read the contents of the 
keys on the FPGA causes the contents of the FPGA to be 
erased. Generally the remote FPGAs are enclosed in 
some kind of a tamper-proof casing which prevents any 
physical spoofing attacks. A concern voiced 
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by some FPGA users is that a tamper proof enclosing 
still doesn’t prevent an attacker from damaging the 
FPGA. Physically damaging an FPGA (hitting it with a 
hammer!!!) would possibly lead to Denial of Service 
(DoS), but that is preferable to the loss of IP in almost 
all cases.   

Passive attacks can be effectively thwarted by bit-
stream encryption as shown in Fig. 2. A class of active 
attacks exist which cannot be handled using bitstream 
encryption alone. This is where bitstream authentication 
comes into focus.  

The most important thing to note here is that 
encryption doesn’t necessarily provide authentication 
[1]. A tampered or a fabricated bitstream would decrypt 
to gibberish. Although this decrypted gibberish would 
not implement any functionality on the FPGA, it has the 
potential to damage the FPGA. Damage to the FPGA 
can result from increased power consumption, swapping 
input/output modes of I/O pins etc. Some research 
papers on FPGA Viruses describe particular bitstream 
combinations which might be potentially harmful to the 
FPGA [8].  
 

 
Figure 2: FPGA Bitstream Encryption 

 
In an ideal security scenario, the FPGA should accept 

only bitstreams from an authenticated source. This 
would prevent an active attacker from destroying the 
FPGA remotely using certain malicious bit-stream 
combinations. If the IP which is currently present on the 
FPGA is assumed to be the authentic one, then this 
authentic IP could be used to authenticate all future 
incoming bit-streams. In order to incorporate this 
feature, the FPGA would need to have an authentication 
engine on the chip. Various implementations of such 
engines have been suggested. One possible 
implementation would be to have the engine in the fabric 
of the FPGA itself, a concept similar to the currently 
existing decryption engines. Other suggested 
implementations include incorporating the authentication 
engine on FPGA resources (like Configurable Logic 
Blocks, Block RAMs etc.) or using a soft-core 
microprocessor (like Xilinx MicroBlaze) to implement 
the engine.  

Implementation of authentication engine using FPGA 
resources would allow users to add authentication 
functionality to older families of FPGAs, with obvious 

trade-offs. Implementation using a soft-core 
microprocessor (or even an embedded processor like 
PowerPC) on an FPGA would be an interesting option as 
it would require fixed resources for implementation of 
any authentication algorithm, but with a possible speed 
trade-off. In this paper, we will look at implementation 
aspects for an ASIC as well as an FPGA implementation 
of authentication engine.  
 
2. Bitstream Authentication – An overview 

Authentication involves some kind of digital signature 
or a hash function which can prove the authenticity of 
the source of a particular message [1]. A hash function 
by itself does not provide complete authentication, since 
it does not have a secret key associated with it[1][2]. As 
long as there is no secret parameter between the sender 
and the receiver, complete authentication is impossible. 
Hence, a hash function is always used along with a 
Message Authentication Code, like an HMAC, in which 
the message digest is a function of the hash function as 
well as a secret key.   

Let us look at a scenario in which only a hash function 
is used to sign a bit-stream. The hash of the bit-stream 
would be calculated and appended to the bit-stream 
before it is transmitted to the remote FPGA. The 
authentication engine on the FPGA would calculate the 
hash of the incoming bit-stream and compare it to the 
hash value appended to the bit-stream. The goal would 
be to preserve message integrity and also authenticate 
the source of the bit-stream. It is quite straightforward to 
see that this scheme would not work very well. It serves 
to preserve message integrity, but does not really prevent 
an attacker from putting his functionality on the FPGA. 
The attacker could simply fabricate a message, compute 
its hash and transmit it. The FPGA would accept it as 
being authentic, since the hash value would be valid. 
Here, the attacker only needs to know the algorithm used 
for hashing. It is generally not considered feasible to 
keep the algorithm secret. Fig. 3 shows the inherent flaw 
in such a scheme.  

 
 

 
Figure 3: Standalone Hash Functions for 

Authentication - A Security Flaw 
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The solution to the attack described above is to use a 
MAC instead of a simple hash function. Message digest 
in the case of a MAC is a function of the message as 
well as a secret key. The secret key is also stored on the 
FPGA. The authentication engine computes the MAC of 
the incoming bit-stream and verifies the signature. In this 
scheme, an attacker cannot fabricate a message and 
expect it to be authenticated, since he cannot compute 
the proper MAC without knowledge of the secret key.  
 
3. Authentication Techniques 

This section discusses various authentication 
techniques available and provides a detailed explanation 
of the options implemented in the course of this project. 
It would be useful to mention the available options, so as 
to facilitate a comparative analysis of various 
techniques. There are a variety of authentication 
algorithms approved by NIST which are worth 
comparing with regards to performance. 

1. HASH Functions - Secure  Hash Algorithms 
(SHA) – SHA-1, SHA-256, SHA-384, SHA-512 

2. Message Authentication Codes (MACs) 
3. Message Digest Algorithms (MD5 etc.) 
4. AES – OCB (Offset Code Book) 

This paper focuses on the first 2 options mentioned in 
the above list. A brief mention of possible 
implementation issues with remaining options seems 
appropriate at this point. Message Digest Algorithms 
such as MD5 are designed to be fast in software. 
Hardware implementation of MD5 is extremely 
inefficient in terms of both timing as well as circuit area. 
AES-OCB is quite appealing. Simple analysis is 
presented to reinforce the appeal presented by the OCB 
mode. As mentioned earlier, a large number of recently 
developed FPGA families which have the capability for 
bitstream encryption use 3DES or AES. It would be a 
fair assumption to say that in the near future, all 
manufacturers would prefer replacing the existing 
encryption algorithms with AES. AES-OCB builds 
around the AES block cipher. Since, the block cipher 
engine would already be present on the FPGA; it would 
be extremely efficient to just add the OCB wrapper to it. 
The only argument against the use of OCB is that it is 
patented and that NIST has not yet approved it as an 
authentication standard.  
 
3.1 Hash Functions 
Hash function is a compression function  which takes an 
input of arbitrary length and compresses it into a 
message digest or a fingerprint of a fixed length [1][2]. 
In this paper, the words ‘message digest’ and 
‘fingerprint’ are used interchangeably. Another 
important property is that it is a one-way function. See 
Fig. 4 below. HASH functions are also referred to as 

‘trap-door functions’ because of this property. One-way 
property implies that it is computationally easy to 
calculate the message digest from the original message, 
but to do the reverse procedure is computationally 
infeasible. The one way property implies that it is 
computationally infeasible to fine the original message 
from the message digest [2]. 
 

 
Figure 4: One-way Property of Hash Functions 

 
FIPS 180-2 standard [5] specifies four secure hash 

algorithms, also known as SHA functions. These are 
SHA-1, SHA-256, SHA-384 and SHA-512. All the four 
functions are iterative hash functions which produce a 
compressed fingerprint from the original message. These 
functions enable the determination of message integrity 
since any change in the message, will with a very high 
probability, produce a different message digest. This 
property is useful in the generation of Message 
Authentication Codes (MACs). Secure Hash Algorithms 
(SHA-1 and SHA-512) have been used to implement 
HMACs.  
 
3.2 Message Authentication Codes (MACs) 
 Providing a way to check integrity of information 
transmitted over an unreliable medium is the prime 
necessity in the world of open networking and 
computing. Mechanisms which provide such integrity 
checks based on a secret key are called Message 
Authentication Codes (MACs). The FIPS 198 standard 
[6] defines a MAC which uses a secret key in 
conjunction with an approved hash function. This 
generalized mechanism is called an HMAC (Keyed-
Hash Message Authentication Code).  

HMACs are similar to hash functions in the sense that 
both are compression functions. The main difference 
between HMACs and hash functions is the use of a 
secret key. In case of hash functions, the output is a 
function of only the message, whereas in case of 
HMACs, the output is a function of both the message as 
well as a secret key. The output of these compression 
functions is referred to as message digest or fingerprint. 
The key limits the authentication process somewhat in 
the sense that only a receiver with the knowledge of the 
secret key can verify the hash. But, the presence of the 
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key also provides a form of non-repudiation, since only a 
person in possession of the secret key could have 
produced the fingerprint in the first place.  
 
3.2.1 Cryptographic Keys used with HMACs 
The FIPS 198 standard specifies the following criteria 
with respect to the size of the key for HMACs – “The 
size of the key, K, shall be equal to or greater than L/2, 
where L is the size of the hash function output. Note that 
keys greater than L bytes do not significantly increase 
the function strength. Applications that use keys longer 
than B-bytes shall first hash the key using H and then 
use the resultant L-byte string as the HMAC key, K.” [6] 
This paper focuses on an implementation of HMAC with  
SHA-512 used as the hash function. The length of the 
message digest produced by SHA-512 is 512 bits. 
Hence, the smallest size of key approved according to 
the FIPS 198 standard for the implementation under 
consideration is 256 bits.  
 
3.2.2. Computations in HMACs 
Mathematically computations in HMAC can be 
expressed as  
 
MAC(text) = HMAC(K,text) 
          = H((K0⊕opad)|| H((K0⊕ipad)||text)) 
 
In the above equation H(x) denotes the hash operation on 
message x. ipad and opad are constant padding stings. 
The acronyms stand for ‘input pad’ and ‘output pad’ 
respectively. The length of these padding strings is equal 
to the length of the derived key K0. The value of ipad is 
repetitions 0x36 while that of opad is repetitions of 
0x5A. K0 is derived from the user key K by computing 
the hash of the user key K. Compression of the key is 
done only when the length of the key supplied by the 
user is larger than the size of the key which can be 
handled by the HMAC. For all other cases,  K0 is the 
same as K. 

The dataflow diagram for HMAC is shown in the Fig. 
6. As can be seen from the diagram, the hash operation is 
performed twice. The initial hash operation uses the 
concatenation of message and the key K0 xored with 
ipad as input. The hash operation produces a message 
digest of a fixed length depending upon the hash 
function used. In the case of SHA-512, a 512-bit hash 
value is generated. This hash value is then used as the 
input to the next hash operation after concatenation with 
K0⊕opad. An important aspect to note here is that the 
first hash operation takes an arbitrary length message as 
input, but the length of the input to the second hashing 
operation is constant for a given hash function and 
length of the key. This observation is the basis of some 
of the implementation aspects of HMACs.  

 
Figure 5: Dataflow Diagram for HMAC 

 
4. Hardware Implementation Issues 

The basis for this research project was a continuation 
of the work started by Tim Grembowski during his 
Master’s Thesis at GMU[3]. His implementation of 
SHA-512 was used as the starting point. The VHDL 
implementation was platform specific in the sense that it 
targeted Xilinx VirtexII FPGAs. Some pre-defined 
components from the Xilinx UNISIM library were used 
in order to optimize hardware for the target family. The 
code was fully revised to further optimize it for an 
FPGA implementation and it was also made platform 
independent. Details about code revisions are given in 
the section for SHA-512 Implementation. 

The first undertaking was to build a HMAC wrapper 
around the revised code for SHA-512. The other task 
was to implement a different hash function (SHA-1) 
which could replace the existing SHA-512 core inside 
the same HMAC wrapper. At this juncture, it is 
important to specify the factors which influenced the 
design of the other hash function.  

The broader issue is the implementation of HMACs. 
Secure Hash Algorithms are just sub-entities inside the 
top-level HMAC entity. The structure of the HMAC 
remains the same irrespective of the hash function used. 
Hence, the idea here is to create a general top-level 
HMAC which can support any Secure Hash Algorithm. 
In order to realize this, it is important, that the Secure 
Hash Algorithms should be exactly same when viewed 
as black-boxes i.e. they should have similar port 
configurations. Hence, the main design criterion in 
developing the SHA-1 core was to match the design 
functionality of SHA-512.  This task was a little more 
involved since it meant ensuring pin compatibility of the 
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new design with the already existing design in addition 
to ensuring similar functionality.  

A couple of alternative designs of SHA-1 were 
implemented – one targeting Xilinx VirtexII FPGAs and 
the other platform independent. Synthesis results for all 
designs were obtained for both FPGA as well as ASIC 
implementations.  
 
4.1 FPGA Implementation 
An overview of the tools used for synthesis and 
implementation is given here.  

• VHDL Design Entry/Compiler: Aldec Active 
HDL v6.2 

• Synthesis Tool: Synplicity Synplify Pro 7.6.1, 
Xilinx XST v6.1 

• Implementation Tool: Xilinx ISE v6.1 
The main design criterion was implementation with 

minimum circuit area. Since, bit-stream authentication is 
a kind of an added service for security a large overhead 
with regards to circuit area would not be favorable. 
Devices from the Xilinx Virtex II family were targeted. 
As far as possible, implementations were performed 
targeting the smallest device which could accommodate 
the designs. It is non-trivial to note the importance of the 
latter design criterion. Larger FPGAs with more logic as 
well as routing resources invariably give better 
performance results than smaller devices. An example 
would be helpful in understanding this phenomenon.  

Assume that a certain design occupies about 90% of 
logic resources on a particular FPGA. It is a safe 
assumption that it would occupy about the same 
percentage of routing resources on the FPGA. An 
analysis of routing resources on the FPGA reveals that 
there are a comparatively small percentage of fast nets. 
Critical signals, if constrained properly generally use 
these fast nets. There will always be a case wherein, a 
critical signal might not find a free fast net. This affects 
timing adversely. There is also routing congestion to 
take into consideration. Routing congestion occurs if 
there are a large number of interconnects between CLBs. 
Interconnects between adjacent CLBs can be handled 
efficiently, but if the interconnects are long and run 
across the length of the chip, then it might lead to 
localized routing congestions. In the most extreme cases, 
the design might not be completely routed. It follows 
from the above analysis that if designs occupy only a 
small fraction of the chip, then it gives much better 
performance estimates.  
 
4.2 ASIC Synthesis 
 For ASIC Synthesis, Synopsys Design Compiler was 
used. The GUI mode of Design Compiler (also known as 
Design Analyzer) was the primary tool interface which 
was used. Here it is important to note that, due to 

unavailability of some DesignWare licenses, memories 
(RAM, ROM) could not be synthesized. Hence, all 
ASIC Synthesis results for area are without the use of 
memories. Timing results can be safely assumed to be 
accurate, since memories are not in the critical path in 
any of the designs. Hence, absence of memories should 
not affect the timing results in any way.  
 Baseline results for 90nm as well as 130nm 
technology are provided in this paper. Synthesis was 
performed using NCCOM (Normal Case Commercial) 
operating conditions [14]. A wireload model was used 
for estimates about interconnect delays. The concept of 
wireload model is beyond the scope of this paper.  
 
5. Implementation of Secure Hash Algorithm–SHA-1  

All Secure Hash Algorithms have similar structure and 
hence their implementation is also similar in most 
aspects. In this paper, the design methodology for SHA-
1 is presented. Secure Hash Algorithms can be divided 
into 2 main modules – Message Scheduler and Message 
Digest Unit. Implementation aspects of both these 
functional units are described. 

 
5.1 Implementation of Message Scheduler 

Message Scheduler takes as input the incoming 
message stream, performs necessary computations and 
outputs a single word Wt per clock cycle. This word is 
used by the message digest unit to compute the hash 
value. The diagram for message scheduler unit of SHA-1 
is shown in Fig. 7. The data path is 32 bits wide, and the 
unit consists of 16 registers. Hence, the block size which 
can be handled by the algorithm is 32*16=512 bits. The 
multiplexer selects between the incoming message words 
and the words computed by the message scheduler unit. 
For the first 16 rounds, the multiplexer selects the 
message word as the input to the register bank. In the 
remaining rounds, the internally generated words are fed 
back to the register bank. Accordingly proper control 
signal is generated for the multiplexer by the control unit 
depending upon the round number. The generation of the 
feedback word uses an XOR gaterotation is realized 
using fixed connections (i.e. rotation operation does not 
require any combinational logic to implement in 
hardware).  

An interesting optimization is possible in the message 
scheduler unit for an FPGA implementation targeting 
Xilinx devices [3] [4]. The register bank in Fig. 7 can be 
viewed as a series of four shift registers as shown in the 
right hand portion of the same figure. Instead of using 
Flip-flops to implement registers; the FPGA 
implementation uses Lookup Tables (LUTs) to 
implement the shift register. Xilinx UNISIM library 
includes an interesting implementation of a variable 
length shift register (SRL16) using LUTs. 
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Figure 6: Message Scheduler Unit for SHA-1 

 
The variable length concept is useful in this 

implementation, since all the four shift registers used 
have different lengths. Comparative analysis of an 
FPGA implementation using SRL16s and traditional FFs 
reveals the disparity between the two approaches. It is 
worthwhile to mention a few concepts of FPGA 
architecture in order to appreciate the optimality of 
implementation using SRL16s.  

Logic elements are placed on FPGAs inside 
Configurable Logic Blocks(CLBs) [15]. Each CLB is 
further broken down into multiple CLB Slices. Generally 
there are 2 or 4 CLB Slices per CLB. Programmable 
routing inside CLBs is much faster as compared to 
routing between different CLBs. Each CLB Slice 
includes 2 LUTs and 2 FFs. This implies that the 
maximum number of FFs inside a CLB, considering 4 
CLB slices per CLB, is 4*2=8. So, only 8 FFs can be 
connected by dedicated fast routing resources. If more 
than 8 FFs have to be interconnected, then they have to 
be connected using inter-CLB routing. Although there 
are some fast routing resources for interconnections 
between CLBs, these are generally used by critical 
signals. For the register bank shown in figure, we would 
need 512 FFs. This would lead to a large number of 
programmable interconnects, thereby increasing the 
routing delay.  

A large routing delay would lead to a longer critical 
path and reduced clock frequency. Using SRL16s helps 
because, the implementation tool handles interconnects 
between SRL16 blocks using faster routing resources. 
Also, there are a less number of nets to route for the 
synthesis tool. Hence, overall timing efficiency is 
increased due to this optimization.  

ASIC implementation of this module uses traditional 
shift registers. Since, the HDL code for registers 
contains generics; this is handled differently by 
Synopsys. Specific commands were used to force Design 

Compiler to read the code containing generics and save 
it as a template [13]. This template is later pulled up by 
the  tool during the linking phase and proper values of 
generics are substituted in the template.  

 
5.2 Implementation of Message Digest Unit  
The main components of the Message Digest Unit are 
the 5 working registers, a, b, c, d and e. Each of these 
registers is 32 bits wide. The final value of these 
registers is the message digest. Hence, in case of SHA-1, 
the size of message digest is 5*32=160 bits. In every 
round, the contents of the working registers are updated. 
The computations performed in each round are explained 
in [5]. A brief overview of implementation aspects for 
FPGAs is presented here.  

The rotation left operation (ROTL) is performed using 
fixed connections. The round dependent logic function 
ft(b,c,d) uses 3 different combinational logic blocks, Ch, 
Maj, and Parity, and a 4-to-1 multiplexer to select the 
output of a particular block depending on the round 
number. Wt is the output of the Message Scheduler Unit. 
Kt is a round dependent constant. Kt takes one of 4 
possible values depending upon the round number. A 
simple implementation is to hardwire these constant 
values to the inputs of a 4-to-1 multiplexer, and use a 
bit-slice of the round counter output to select a particular 
constant.  
 

 
Figure 7: Message Digest Unit for SHA-1 

 
All the operations in the message digest unit mentioned 
so far do not provide much scope for optimization. The 
only  
components which can be optimized to some extent are 
the adders used in the module. Let us first consider the 
string of adders connected to register e (see Fig. 8). 
Intuitively, it can be seen that the critical path of the 
circuit is the one which covers all the adders. 
Minimizing the length of the critical path is an important 
design criterion. In this case, there are 5 operands to be 
added. Various implementations of adders were studied 
[9], and a comparative analysis influenced the decision 
to use ripple carry adders. An interesting alternative is to 
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use a carry save adder tree in order to reduce the number 
of operands to be added from 5 to 3. 3 operands can then 
be reduced to 2 by using another carry save adder. To 
add 2 operands, some kind of fast adder like Brent-Kung 
or Kogge-Stone could be used. Implementation results 
show that there is not much gain by using this scheme. 
Also, 
the use of fast adders to improve timing results in an 
increase in circuit area. Although, timing is critical in 
this application, it is more important that the circuit be as 
small as possible. Hence, in order to minimize area, 
ripple carry adders were used.  

In case of an FPGA implementation, the use of ripple 
carry adders provides an added advantage. It may again 
be worthwhile to note that there are dedicated FPGA 
resources for performing fast additions [15]. These 
include carry chain logic and a dedicated AND gate per 
CLB slice for performing fast additions. The synthesis 
tool can recognize certain VHDL constructs as adders, 
and it uses carry chain logic in order to speed up the 
ripple addition. This ultimately leads to a tolerable delay 
of the critical path, albeit a little more than the delay 
when carry-save adders are used. On the other hand, the 
circuit area required for ripple carry adders is much less 
than that required by the scheme using carry save adders. 

Another interesting design consideration was the 
placement of adders required to find the final hash [4]. 
Please refer to the last set of equations in the hash 
computation round in [5]. This placement provides a 
trade-off between number of clock cycles required to 
compute the output and the period of each clock cycle. If 
these adders are placed outside the loop, then they are 
used for addition after 80 rounds have been completed. 
In this case, the entire iteration of computing the hash 
takes 81 clock cycles. The number of clock cycles can be 
reduced to 80 if the adders are placed inside the loop. A 
control circuit is required with forces one of the inputs of 
the adders to a zero for all but the last cycle. The length 
of the critical path increases only slightly in this case. 
The control circuit uses up a little more area than the 
first option. Both the options are comparable in terms of 
performance, and it was arbitrarily chosen to use the 
adders outside the loop. 

 
5.3 Implementation of other units in SHA-1 

Other major units of SHA-1 are the control unit and 
the preprocessor. The preprocessor was implemented so 
as to match the features of this implementation with the 
already available implementation for SHA-512. The 
input message is passed to the preprocessor, which takes 
care of proper padding and length field appending. The 
design of the preprocessor is such that it expects the first 
word after reset to be the length of the message to be 
processed. Using this length field, the preprocessor’s 

control unit produces appropriate control signals for 
internal registers and multiplexers. The implementation 
of the preprocessor was borrowed from the SHA-512 
implementation. Implementation details are explained in 
[3]. 

Control unit is implemented as a Finite State Machine. 
Almost all components of the FSM are implemented as a 
Mealy machine. For an FPGA implementation, one-hot 
state encoding was used. General experience shows that 
one-hot encoding results in a much lesser combinational 
logic area, since a decoding circuit is not required. Since 
there are a large number of FFs available on FPGAs, 
one-hot encoding is favorable. For an ASIC 
implementation, the encoding scheme could not be 
forced on Synopsys Design Compiler.  

 
6. Implementation of Secure Hash Algorithm –    
SHA-512 

As stated earlier, already available VHDL code for 
SHA-512 was used as a starting point in this 
implementation. The available code was platform 
specific – targeting Xilinx VirtexII family of FPGAs[3]. 
In this project two kinds of revisions were made using 
the existing code. The first revision included further 
optimization of the VHDL code in order to improve 
performance. Some portions of the code were written at 
a very low level of abstraction i.e. using components 
from FPGA vendor specific libraries. This is an oft used 
programming practice to describe very small portions of 
circuits because it allows the programmer to better 
constrain critical portions of the design. An example 
here would make the explanation more clear.  

Let’s say, the circuit is a 2 bit counter with an output 
for terminal count. It would be favorable if the FFs are 
placed in the same CLB Slice and the dedicated AND 
gate is used to detect the condition that the counter has 
reached “11”. It might be useful if the counter is 
structurally described in HDL using library components 
which can later be constrained during floor planning. 
(Floor planning in case of FPGAs deals with the 
placement of certain logic components in particular 
locations on the chip). Although it is clearly 
advantageous in case of small circuits to describe them 
at a low-level and floor plan them, it is not such a good 
idea to use the same concept for larger circuits. Floor 
planning is a tedious and a complex process and might 
adversely affect the final outcome if not done correctly. 
Hence, it is always recommended that the HDL code be 
written at the RTL level. This is the level of abstraction 
which can be well understood by all synthesis tools.  

Also, when the code is written at a higher level of 
abstraction, there is still some chance for the synthesis 
tool to perform optimizations like resource sharing, 
pruning unwanted logic, replicating driver logic for high 
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fan-out nets etc. If everything is explicitly specified by  
the user, then there is very little the synthesis tool can do 
to optimize the design. Hence, portions of the code 
which were written at a lower level of abstraction were 
revised to RTL level. Also, control logic was simplified 
a little in order to reduce combinational logic area by a 
very small margin.  

The second code revision was necessary for an ASIC 
implementation of the circuit. Using components from 
vendor libraries makes the code unsuitable for 
transporting to other environments. Hence, all library 
specific components were replaced using platform 
independent coding technique. Shift registers 
implemented using LUTs were revised to the traditional 
form. All other components like FFs etc. were written 
using behavioral RTL code. It is most interesting to note 
that when the platform independent code was 
synthesized using FPGA synthesis tool (Synplify Pro) it 
was intelligent enough to infer the original components 
from the behavioral code. The only components which 
were different from the original code were the shift 
registers. The RTL netlist showed them as being 
implemented using FFs rather than LUTs.   
  
7. Implementation of HMAC with SHA-512 

The top level entity for HMAC SHA-512 is shown in 
Fig. 9. The table describes the functions and bus widths 
of all the ports. 

 
Figure 8: HMAC with SHA-512 - Top Level Entity 

 
Port Name Widt

h 
Mode Function 

Key 64 IN Secret Key is input 
through this port 64 bits 
at a time. Key sizes are 
limited to multiples of 64 
bits.  

Key 
Available 

1 IN Signal is asserted when 
Secret key is available 
for reading from the 
Input Key FIFO.  

Key Read 1 OUT Signal is asserted when 
the HMAC core reads 64 
bit portion of the Secret 
Key.  

Message 64 IN Message whose MAC is 
to be computed is input 
through this port in 
blocks of 64 bits.  

FIFO 
Empty 

1 IN Signal is asserted when 
the Input FIFO is empty 
and does not have any 
new data to input to the 
HMAC. 

FIFO Read 1 OUT Signal is asserted when 
the HMAC core reads a 
64 bit block of message. 

Clock 1 IN Master Clock signal to 
the HMAC core. 

Reset 1 IN Master Reset signal to 
the HMAC core. 

Start 1 IN This signal is set to 
HIGH in order to start the 
MAC computation. It 
should be asserted only 
after the secret key has 
been loaded into the core. 

HMAC 
Output 

512 OUT HMAC computed from 
the message is output on 
this port.  

Output 
Valid 

1 OUT Signal indicates that the 
HMAC Output available 
is valid when asserted. 

FIFO Write 1  OUT Signal is asserted when 
the HMAC Output is 
valid and Output FIFO is 
ready to accept data. 

FIFO Full 1 IN Signal is asserted when 
Output FIFO is full and 
cannot accept further 
data.  

Table 1: HMAC-SHA-512 - Pin Functions 
  

A block diagram of the internal features of the top-
level entity is as shown in Fig. 10. In this case, the 
HMAC-SHA-512 has been designed to support a key 
size of 256 bits. It can be extended to support sizes of 
512 and 1024 bits with minor changes in the HDL code. 
The 256 bit 
key is read in terms of 64 bit words. This is done in 
order to minimize the number of I/O pins on the top-
level entity. Minimization of I/O pins is useful, 
especially in the case of FPGA implementations. A study 
of available FPGA packages reveals that only FPGAs 
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with large areas (i.e. large amount of resources) have 
more number of I/O pins. It would be a waste of FPGA 
resources to utilize a larger chip just to accommodate a 
large number of I/O pins. Also, cost of these devices is 
proportional to the size, and hence cost would also 
increase for larger devices.  

The key is internally stored in a 256 bit register. 4 
clock cycles are required to fill the 256 bit register, since 
only 64 bits are read at a time. A modulo 4 counter is 
used to enable one out of 4 register slices during each 
clock cycle. After the key is read into the core, the 
HMAC Calculation begins only when the START input 
is asserted. As long as START is de-asserted, the HMAC 
operation is stalled. Padding signals are generated by 
XORing the 256-bit key with the 256-bit value of ipad 
and opad. ipad and opad signals are repetitions of the 
string 0x5C and 0x36 respectively. Both these operations 
are performed in parallel. 

After the padding operation is performed, there is a 
particular order in which the data words should be input 
to the SHA-512 core. Here, it is worthwhile to look at 
the way in which the SHA-512 core accepts data. The 
SHA-512 core is designed to accept input data in terms 
of 64-bit words. The first 64-bit word accepted by the 
SHA-512 core after reset indicates the length of the 
message. This data word triggers internal control circuit 
to generate proper control signals to perform message 
padding without user intervention. The method of 
padding messages in Secure Hash Algorithms is 
described in [5]. 

Since, the SHA-512 core is expecting the length of the 
message as the first word, the HMAC wrapper should be 
designed to provide the length to the SHA-512 core. It 
follows from the earlier discussion about HMACs that 
the hashing operation has to be performed twice. The 
first hashing operation is performed on the concatenation 
of the incoming message and ipad xored with the key 
K0, whereas the second hashing operation is performed 
on the concatenation of the hash produced by the first 
operation and opad xored with the key K0. Hence, for 
the first operation, the length of the message to be 
hashed is equal to sum of the length of the incoming 
message and the length of ipad. As stated earlier, ipad 
has a length of 256 bits or 32 bytes, because of the 256-
bit key. Hence, the first word sent to the SHA-512 core 
is the length of the message in bytes plus 32. In the 
second case, the length of the message to be hashed is 
equal to the 512 bits (64 bytes) of the first hash 
operation plus 256 bits (32 bytes) of padding due to 
opad. After the length has been input to the SHA-512 
core, the padding strings are the next in line. Since, the 
padding strings are 256 bits wide and the input data path 
of the SHA-512 core is only 64 bits wide, it takes the 
next 4 clock cycles to input the padding string into the 

SHA-512 core. After the padding string, message is sent 
to the SHA-512 core. This is done using the multiplexers 
shown in the figure. Specifically note the order of inputs 
for the multiplexers. The select lines for the multiplexers 
are outputs of separate counters. Let’s look at the 
multiplexer to which the combination of ipad and key is 
connected. The length is input through the input 0 (the 
topmost input) of the multiplexer. Inputs 1 through 4 are 
used to input the padding string. Input 5 is used to input 
the message. The counter which controls the select lines 
of this multiplexer is designed as an up-counter which 
counts from 0 to 5 and then stalls till it is reset again. 
Differences in the design of the second multiplexer-
counter module are trivial. There is another multiplexer 
in the input data-path to the SHA-512 core which selects 
the proper message stream depending on whether it is 
the first hash operation or the second.  

 
 

 
Figure 9: Implementation Aspects of HMAC with    SHA-

512 
 

Here, it is worthwhile to reiterate some specifics about 
the functionality of the SHA-512 core. The core reads 
input data from an input FIFO and writes results to the 
output FIFO. Since, the HMAC wrapper covers the 
SHA-512 core, it no longer has direct access to the input 
FIFO. Hence, a single word FIFO is simulated by 
introducing a register in the data-path. This serves 
another useful purpose of breaking up the critical path, 
thereby improving timing.  

Since, input FIFO was just mentioned, let us look at 
how some of the handshaking signals for the core are 
derived. Out of the 2 hash operations, the first operation  
gets data from outside the entity, but the second hash 
operation utilizes internally generated data for 
performing computations. It follows that the 
FIFO_EMPTY for the first operation is replicated from 
the FIFO_EMPTY signal which is input to the HMAC. 
For the second hash operation, since all data to be 
processed is already available, the FIFO_EMPTY signal 
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is redundant. Hence, the FIFO_EMPTY signal is set to 
‘0’ for the second hash operation. 

The output of the SHA-512 core is stored in a register, 
the output of which is fed back to the second 
multiplexer-counter module.  

The most important part of the HMAC wrapper is the 
control unit. It is extremely involved since it has to 
handshake with the control unit of the SHA-512 core. 
Separate parts of the control unit generate control signals 
for the multiplexers and enables for registers. Another 
part controls the interface with the SHA-512 core. Still 
another generates the output handshaking signals for 
writing to the output FIFO and indicating the end of 
operation.  
 
8. Implementation Results 
This section explains the results obtained for FPGA 
implementation as well as ASIC synthesis.  
 
8.1 Results of FPGA Implementation 
In this section, results of FPGA implementation of all 
the designs will be presented. A comparative study of 
results of platform specific designs and platform 
independent designs is provided. Platform specific 
designs are those targeting the Xilinx VirtexII family of 
devices.  
 
8.1.1 FPGA Implementation results for SHA-1 

Design Version  
FPGA 

Specific 
Platform 

Independent 
Target Device 2v250fg456 2v250fg456 
Occupied CLB Slices 509 482 
Occupied LUTs 806 774 
Occupied FFs 239 396 
Minimum Clock Period 11.373 ns 11.864 ns 
Maximum Clock 
Frequency 

87.92 MHz 84.28 MHz 

 
8.1.2 FPGA Implementation results for SHA-512 

Design Version  
FPGA 

Specific 
Platform 

Independent 
Target Device 2v250fg456 2v250fg456 
Occupied CLB Slices 1534 1534 
Occupied LUTs 2693 2916 
Occupied FFs 2424 2435 
Minimum Clock Period 14.839 ns 15.216 ns 
Maximum Clock 
Frequency 

67.38 MHz 65.72 MHz 

 

8.1.3 FPGA Implementation results for HMAC SHA-
512 

Design Version  
FPGA 

Specific 
Platform 

Independent 
Target Device 2v500fg456 2v500fg456 
Occupied CLB Slices 3070 3070 
Occupied LUTs 4317 4521 
Occupied FFs 3737 3747 
Minimum Clock Period 14.643 ns 14.382 ns 
Maximum Clock 
Frequency 

68.29 MHz 69.53 MHz 

 
 Performance results are compared using graphs later 
in this section. It is interesting to note here, that Platform 
independent design is actually a little smaller than the 
FPGA specific design in the table in Section 8.1.1. An 
analysis of the synthesis results revealed that the tool 
used the resource sharing principle to share some logic 
and then pruned the redundant combinational logic.  
  

 
Figure 10: Comparison of Maximum Clock Frequency for 

FPGA Implementations 
 
 An interesting observation from the above tables 
reiterates the fact explained earlier about coding at the 
RTL level rather than at a low-level of abstraction for 
sizeable circuits. Table in section 8.1.3 shows an 
extreme kind of result wherein, both the implemented 
versions have exactly the same resource utilization in 
terms of occupied CLB Slices, but the platform 
independent version is slightly faster than the FPGA 
specific one. A simple explanation for this is that the 
FPGA synthesis tool has much more scope of optimizing 
the circuit when it is platform independent than when it 
is described at a low-level of abstraction.  
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 A thorough analysis reveals that the synthesis tool has 
performed logic replication on high fan-out nets, thereby 
increasing the number of LUTs used. This leads to better 
timing performance as can be seen from the table in 
section 8.1.3. 
 

 
Figure 11: Comparison of Resource Utilization for FPGA 

Implementations 
 
8.1.4 Throughput 
 Throughput is the amount of data processed per clock 
cycle. The units of throughput are Gbps.  
 
Throughput 
= (Block Size/No. of Clock Cycles) * Clock Frequency 
Block Size for SHA-1 is 512 bits and for SHA-512 and 
HMAC-SHA-512 it is 1024 bits. This gives a throughput 
of about 0.5 Gbps for SHA-1 and HMAC-SHA-512 and 
about 0.9 Gbps for SHA-512.  
 The results are graphically represented in Fig. 12 
below. 
 

 
Figure 12: Throughput for FPGA Implementation 

 

8.2 Results of ASIC Synthesis 
 
8.2.1 Synopsys Synthesis results for SHA-1 

Target Technology  
90 nm 130 nm 

Combinational Area 9707 19935 
Non-Combinational Area 18659 41824 
Total Cell Area 28366 61759 
Clock Period Requested 10 ns 10 ns 
Clock Period Obtained 7.49 ns 10 ns 

 
 In all results related to Synopsys Synthesis, the units 
for area are square microns. 
 
8.2.2 Synopsys Synthesis results for SHA-512 

Target Technology  
90 nm 130 nm 

Combinational Area 33459 82828 
Non-Combinational Area 62145 127072 
Total Cell Area 95604 209905 
Clock Period Requested 10 ns 10 ns 
Clock Period Obtained 6.86 ns 7.87 ns 

 
 
8.2.3 Synopsys Synthesis results for HMAC with SHA-
512 

Target Technology  
90 nm 130 nm 

Combinational Area 45337 108988 
Non-Combinational Area 93521 187772 
Total Cell Area 138860 296758 
Clock Period Requested 10 ns 10 ns 
Clock Period Obtained 9.88 ns 9.98 ns 

 
  
 Tables in sections 8.2.1 and 8.2.2 show the 
relationship between resource utilization and amount of 
security of a particular hash function. Considering 
results for 90 nm technology for SHA-1 and SHA-512, 
we find that the ratio of resource utilization (Total Cell 
Area) is approximately equal to the ratio of the amount 
of security of the 2 functions. The ratio of total cell areas 
is about 0.29, while the ratio of amount of security is 
160/512≈0.3.  
 Another interesting feature about Synopsys relates to 
meeting the user timing requirements. Presenting 
numerical values here would confuse the matter. Hence, 
only the gist of the matter is explained. In all the above 
tables, the requested clock frequency is 10 ns. For a 
comparative analysis, it is only fair that all the designs 
be synthesized under similar conditions. But the tool has 
the ability to meet any reasonable timing estimates.  
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 Synthesis was performed after decreasing the 
requested clock period to 7.5 ns. Interestingly enough, 
the synthesis tool could match that timing with a slightly 
increased cell area. The increase in cell area occurs 
because of pipelining and replication of logic with high 
fan-out nets in order to decrease the load on drivers, 
thereby decreasing point-to-point delays.   
 Even more interesting was the fact that when 
requested clock frequency was set to 20 ns, the tool tried 
to match it with a small reduction in circuit area.  
 

 
Figure 13: Comparison of Maximum Clock Frequency for 

ASIC Synthesis 
 
 

 
Figure 14: Comparison of Resource Utilization for ASIC 

Synthesis 
 
 
8.2.4. Throughput 
 Throughput results after ASIC Synthesis are much higher 
than those of FPGA Implementations. The values are 
calculated using the formula stated in section 8.1.4.  

 The results are shown graphically in Fig. 15. 

 
Figure 15: Throughput for ASIC Synthesis 

 
9. Conclusion 
 The overall analysis of implementation results 
indicates that an authentication engine can be 
implemented on FPGAs with a reasonable overhead. 
Implementations using FPGA resources with minimal 
overheads can be used to add security features to already 
existing devices. ASIC synthesis results show that a 
possible addition to the FPGA fabric for future families 
would not increase the cost by a large margin. 
Implementation on the FPGA fabric would be 
recommended since, it is the only implementation which 
is really secure. In case of implementation using FPGA 
resources or soft-core processors, the integrity of the 
authentication core cannot be guaranteed. Hence, it is 
not advisable for high-security applications. Also, ASIC 
implementations have a very high throughput (≈ 1 Gbps) 
which would prevent the authentication engine from 
being a bottleneck in the system.  
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