
 1

Abstract—Safeguarding Intellectual Property on FPGAs

is a major challenge for FPGA manufacturers. The
challenge stems not from the fact that it is difficult to add
security features to the FPGA, but from the commercial
point of view. The main question is whether the entire user
base will be ready to pay for these added features. Also,
there is no consensus among various manufactures as to
which security features are absolutely essential for FPGA
security. This paper addresses some security scenarios in
FPGAs, and tries to point out why currently existing
security features are inadequate. The concept of bit stream
authentication is introduced and different authentication
options are compared. Finally a comparative analysis of
hardware implementations of the authentication
algorithms is provided for FPGA as well as ASIC
implementations.

Index Terms—Bitstream Authentication, FPGA
Security, HMAC, Secure Hash Algorithm

1. Introduction

Over the past few years there have been growing
concerns over the security of FPGA designs. Is it
possible to steal Intellectual Property (IP) from the
FPGA? Can someone reverse engineer or even clone a
design should someone capture the corresponding
bitstream [7]? These are all valid concerns, and most
FPGA manufacturers have incorporated some security
features on their FPGAs. Xilinx pioneered with a Triple
DES decryption engine on the Virtex II Pro family of
FPGAs. The most recent Xilinx family of FPGAs,
Virtex-4 uses Advanced Encryption Standard (AES)
with a 256-bit key for bit-stream encryption. This key is
stored in a battery-backed dedicated RAM. This takes
care of some security issues, but there are quite a few
issues which cannot be handled only by confidentiality
of the bitstream. This paper lists out various factors
which have prompted FPGA manufacturers and the
research community to look at factors other than bit-
stream encryption, especially bit-stream authentication
and bit-stream integrity.

1.1 Overview of FPGA Security Issues

 This research project was undertaken for Xilinx Inc, CA and

continued as a semester-long project for ECE 646 (Cryptography and
Network Security) at George Mason University, Fairfax, VA.

A survey of various attack scenarios on FPGAs
provides an insight into the need to incorporate security
features on FPGAs [12]. Concentrating mainly on
remotely reconfigurable FPGAs (since they are most
susceptible to spoofing, hacking etc.) let us look at a few
attack scenarios in which a design on an FPGA could be
compromised.
 The simplest passive attack on an FPGA design is
eavesdropping. When an unencrypted bitstream is being
transmitted to a remote FPGA, the attacker can simply
read the bitstream if he has access to the link between
the sender and the receiving FPGA. This attack scenario
is shown in Fig. 1.

Figure 1: Attack Scenario on FPGAs

(Eavesdropping)

If an attacker can get his hands on a complete
unencrypted bitstream, cloning the design would be a
trivial task, although reverse-engineering might not be so
straightforward. Most FPGAs today are equipped to
thwart this kind of passive security threat [7]. The
solution is to encrypt the bitstream before transmitting it
to the remote FPGA. This encryption functionality is an
integral part of the vendor-specific tools available for the
FPGA designing process. The FPGA has an on-chip
decryption engine which allows it to decrypt the
incoming bitstream. The keys used for
encryption/decryption can be chosen by the user. If a
vendor does not provide the ability for a user to select
his own keys, beware!! The key is stored on the FPGA
in a dedicated battery-backed RAM. Read access to this
RAM is disabled once the key is validated and stored
into the RAM. The pros and cons of using a battery
backed RAM to store decryption keys is a fiercely
debated topic. Any attempt to read the contents of the
keys on the FPGA causes the contents of the FPGA to be
erased. Generally the remote FPGAs are enclosed in
some kind of a tamper-proof casing which prevents any
physical spoofing attacks. A concern voiced

FPGA Security – Bitstream Authentication
Milind M. Parelkar, George Mason University, Fairfax, VA

 2

by some FPGA users is that a tamper proof enclosing
still doesn’t prevent an attacker from damaging the
FPGA. Physically damaging an FPGA (hitting it with a
hammer!!!) would possibly lead to Denial of Service
(DoS), but that is preferable to the loss of IP in almost
all cases.

Passive attacks can be effectively thwarted by bit-
stream encryption as shown in Fig. 2. A class of active
attacks exist which cannot be handled using bitstream
encryption alone. This is where bitstream authentication
comes into focus.

The most important thing to note here is that
encryption doesn’t necessarily provide authentication
[1]. A tampered or a fabricated bitstream would decrypt
to gibberish. Although this decrypted gibberish would
not implement any functionality on the FPGA, it has the
potential to damage the FPGA. Damage to the FPGA
can result from increased power consumption, swapping
input/output modes of I/O pins etc. Some research
papers on FPGA Viruses describe particular bitstream
combinations which might be potentially harmful to the
FPGA [8].

Figure 2: FPGA Bitstream Encryption

In an ideal security scenario, the FPGA should accept

only bitstreams from an authenticated source. This
would prevent an active attacker from destroying the
FPGA remotely using certain malicious bit-stream
combinations. If the IP which is currently present on the
FPGA is assumed to be the authentic one, then this
authentic IP could be used to authenticate all future
incoming bit-streams. In order to incorporate this
feature, the FPGA would need to have an authentication
engine on the chip. Various implementations of such
engines have been suggested. One possible
implementation would be to have the engine in the fabric
of the FPGA itself, a concept similar to the currently
existing decryption engines. Other suggested
implementations include incorporating the authentication
engine on FPGA resources (like Configurable Logic
Blocks, Block RAMs etc.) or using a soft-core
microprocessor (like Xilinx MicroBlaze) to implement
the engine.

Implementation of authentication engine using FPGA
resources would allow users to add authentication
functionality to older families of FPGAs, with obvious

trade-offs. Implementation using a soft-core
microprocessor (or even an embedded processor like
PowerPC) on an FPGA would be an interesting option as
it would require fixed resources for implementation of
any authentication algorithm, but with a possible speed
trade-off. In this paper, we will look at implementation
aspects for an ASIC as well as an FPGA implementation
of authentication engine.

2. Bitstream Authentication – An overview

Authentication involves some kind of digital signature
or a hash function which can prove the authenticity of
the source of a particular message [1]. A hash function
by itself does not provide complete authentication, since
it does not have a secret key associated with it[1][2]. As
long as there is no secret parameter between the sender
and the receiver, complete authentication is impossible.
Hence, a hash function is always used along with a
Message Authentication Code, like an HMAC, in which
the message digest is a function of the hash function as
well as a secret key.

Let us look at a scenario in which only a hash function
is used to sign a bit-stream. The hash of the bit-stream
would be calculated and appended to the bit-stream
before it is transmitted to the remote FPGA. The
authentication engine on the FPGA would calculate the
hash of the incoming bit-stream and compare it to the
hash value appended to the bit-stream. The goal would
be to preserve message integrity and also authenticate
the source of the bit-stream. It is quite straightforward to
see that this scheme would not work very well. It serves
to preserve message integrity, but does not really prevent
an attacker from putting his functionality on the FPGA.
The attacker could simply fabricate a message, compute
its hash and transmit it. The FPGA would accept it as
being authentic, since the hash value would be valid.
Here, the attacker only needs to know the algorithm used
for hashing. It is generally not considered feasible to
keep the algorithm secret. Fig. 3 shows the inherent flaw
in such a scheme.

Figure 3: Standalone Hash Functions for

Authentication - A Security Flaw

 3

The solution to the attack described above is to use a
MAC instead of a simple hash function. Message digest
in the case of a MAC is a function of the message as
well as a secret key. The secret key is also stored on the
FPGA. The authentication engine computes the MAC of
the incoming bit-stream and verifies the signature. In this
scheme, an attacker cannot fabricate a message and
expect it to be authenticated, since he cannot compute
the proper MAC without knowledge of the secret key.

3. Authentication Techniques

This section discusses various authentication
techniques available and provides a detailed explanation
of the options implemented in the course of this project.
It would be useful to mention the available options, so as
to facilitate a comparative analysis of various
techniques. There are a variety of authentication
algorithms approved by NIST which are worth
comparing with regards to performance.

1. HASH Functions - Secure Hash Algorithms
(SHA) – SHA-1, SHA-256, SHA-384, SHA-512

2. Message Authentication Codes (MACs)
3. Message Digest Algorithms (MD5 etc.)
4. AES – OCB (Offset Code Book)

This paper focuses on the first 2 options mentioned in
the above list. A brief mention of possible
implementation issues with remaining options seems
appropriate at this point. Message Digest Algorithms
such as MD5 are designed to be fast in software.
Hardware implementation of MD5 is extremely
inefficient in terms of both timing as well as circuit area.
AES-OCB is quite appealing. Simple analysis is
presented to reinforce the appeal presented by the OCB
mode. As mentioned earlier, a large number of recently
developed FPGA families which have the capability for
bitstream encryption use 3DES or AES. It would be a
fair assumption to say that in the near future, all
manufacturers would prefer replacing the existing
encryption algorithms with AES. AES-OCB builds
around the AES block cipher. Since, the block cipher
engine would already be present on the FPGA; it would
be extremely efficient to just add the OCB wrapper to it.
The only argument against the use of OCB is that it is
patented and that NIST has not yet approved it as an
authentication standard.

3.1 Hash Functions
Hash function is a compression function which takes an
input of arbitrary length and compresses it into a
message digest or a fingerprint of a fixed length [1][2].
In this paper, the words ‘message digest’ and
‘fingerprint’ are used interchangeably. Another
important property is that it is a one-way function. See
Fig. 4 below. HASH functions are also referred to as

‘trap-door functions’ because of this property. One-way
property implies that it is computationally easy to
calculate the message digest from the original message,
but to do the reverse procedure is computationally
infeasible. The one way property implies that it is
computationally infeasible to fine the original message
from the message digest [2].

Figure 4: One-way Property of Hash Functions

FIPS 180-2 standard [5] specifies four secure hash

algorithms, also known as SHA functions. These are
SHA-1, SHA-256, SHA-384 and SHA-512. All the four
functions are iterative hash functions which produce a
compressed fingerprint from the original message. These
functions enable the determination of message integrity
since any change in the message, will with a very high
probability, produce a different message digest. This
property is useful in the generation of Message
Authentication Codes (MACs). Secure Hash Algorithms
(SHA-1 and SHA-512) have been used to implement
HMACs.

3.2 Message Authentication Codes (MACs)
 Providing a way to check integrity of information
transmitted over an unreliable medium is the prime
necessity in the world of open networking and
computing. Mechanisms which provide such integrity
checks based on a secret key are called Message
Authentication Codes (MACs). The FIPS 198 standard
[6] defines a MAC which uses a secret key in
conjunction with an approved hash function. This
generalized mechanism is called an HMAC (Keyed-
Hash Message Authentication Code).

HMACs are similar to hash functions in the sense that
both are compression functions. The main difference
between HMACs and hash functions is the use of a
secret key. In case of hash functions, the output is a
function of only the message, whereas in case of
HMACs, the output is a function of both the message as
well as a secret key. The output of these compression
functions is referred to as message digest or fingerprint.
The key limits the authentication process somewhat in
the sense that only a receiver with the knowledge of the
secret key can verify the hash. But, the presence of the

 4

key also provides a form of non-repudiation, since only a
person in possession of the secret key could have
produced the fingerprint in the first place.

3.2.1 Cryptographic Keys used with HMACs
The FIPS 198 standard specifies the following criteria
with respect to the size of the key for HMACs – “The
size of the key, K, shall be equal to or greater than L/2,
where L is the size of the hash function output. Note that
keys greater than L bytes do not significantly increase
the function strength. Applications that use keys longer
than B-bytes shall first hash the key using H and then
use the resultant L-byte string as the HMAC key, K.” [6]
This paper focuses on an implementation of HMAC with
SHA-512 used as the hash function. The length of the
message digest produced by SHA-512 is 512 bits.
Hence, the smallest size of key approved according to
the FIPS 198 standard for the implementation under
consideration is 256 bits.

3.2.2. Computations in HMACs
Mathematically computations in HMAC can be
expressed as

MAC(text) = HMAC(K,text)
 = H((K0⊕opad)|| H((K0⊕ipad)||text))

In the above equation H(x) denotes the hash operation on
message x. ipad and opad are constant padding stings.
The acronyms stand for ‘input pad’ and ‘output pad’
respectively. The length of these padding strings is equal
to the length of the derived key K0. The value of ipad is
repetitions 0x36 while that of opad is repetitions of
0x5A. K0 is derived from the user key K by computing
the hash of the user key K. Compression of the key is
done only when the length of the key supplied by the
user is larger than the size of the key which can be
handled by the HMAC. For all other cases, K0 is the
same as K.

The dataflow diagram for HMAC is shown in the Fig.
6. As can be seen from the diagram, the hash operation is
performed twice. The initial hash operation uses the
concatenation of message and the key K0 xored with
ipad as input. The hash operation produces a message
digest of a fixed length depending upon the hash
function used. In the case of SHA-512, a 512-bit hash
value is generated. This hash value is then used as the
input to the next hash operation after concatenation with
K0⊕opad. An important aspect to note here is that the
first hash operation takes an arbitrary length message as
input, but the length of the input to the second hashing
operation is constant for a given hash function and
length of the key. This observation is the basis of some
of the implementation aspects of HMACs.

Figure 5: Dataflow Diagram for HMAC

4. Hardware Implementation Issues

The basis for this research project was a continuation
of the work started by Tim Grembowski during his
Master’s Thesis at GMU[3]. His implementation of
SHA-512 was used as the starting point. The VHDL
implementation was platform specific in the sense that it
targeted Xilinx VirtexII FPGAs. Some pre-defined
components from the Xilinx UNISIM library were used
in order to optimize hardware for the target family. The
code was fully revised to further optimize it for an
FPGA implementation and it was also made platform
independent. Details about code revisions are given in
the section for SHA-512 Implementation.

The first undertaking was to build a HMAC wrapper
around the revised code for SHA-512. The other task
was to implement a different hash function (SHA-1)
which could replace the existing SHA-512 core inside
the same HMAC wrapper. At this juncture, it is
important to specify the factors which influenced the
design of the other hash function.

The broader issue is the implementation of HMACs.
Secure Hash Algorithms are just sub-entities inside the
top-level HMAC entity. The structure of the HMAC
remains the same irrespective of the hash function used.
Hence, the idea here is to create a general top-level
HMAC which can support any Secure Hash Algorithm.
In order to realize this, it is important, that the Secure
Hash Algorithms should be exactly same when viewed
as black-boxes i.e. they should have similar port
configurations. Hence, the main design criterion in
developing the SHA-1 core was to match the design
functionality of SHA-512. This task was a little more
involved since it meant ensuring pin compatibility of the

 5

new design with the already existing design in addition
to ensuring similar functionality.

A couple of alternative designs of SHA-1 were
implemented – one targeting Xilinx VirtexII FPGAs and
the other platform independent. Synthesis results for all
designs were obtained for both FPGA as well as ASIC
implementations.

4.1 FPGA Implementation
An overview of the tools used for synthesis and
implementation is given here.

• VHDL Design Entry/Compiler: Aldec Active
HDL v6.2

• Synthesis Tool: Synplicity Synplify Pro 7.6.1,
Xilinx XST v6.1

• Implementation Tool: Xilinx ISE v6.1
The main design criterion was implementation with

minimum circuit area. Since, bit-stream authentication is
a kind of an added service for security a large overhead
with regards to circuit area would not be favorable.
Devices from the Xilinx Virtex II family were targeted.
As far as possible, implementations were performed
targeting the smallest device which could accommodate
the designs. It is non-trivial to note the importance of the
latter design criterion. Larger FPGAs with more logic as
well as routing resources invariably give better
performance results than smaller devices. An example
would be helpful in understanding this phenomenon.

Assume that a certain design occupies about 90% of
logic resources on a particular FPGA. It is a safe
assumption that it would occupy about the same
percentage of routing resources on the FPGA. An
analysis of routing resources on the FPGA reveals that
there are a comparatively small percentage of fast nets.
Critical signals, if constrained properly generally use
these fast nets. There will always be a case wherein, a
critical signal might not find a free fast net. This affects
timing adversely. There is also routing congestion to
take into consideration. Routing congestion occurs if
there are a large number of interconnects between CLBs.
Interconnects between adjacent CLBs can be handled
efficiently, but if the interconnects are long and run
across the length of the chip, then it might lead to
localized routing congestions. In the most extreme cases,
the design might not be completely routed. It follows
from the above analysis that if designs occupy only a
small fraction of the chip, then it gives much better
performance estimates.

4.2 ASIC Synthesis
 For ASIC Synthesis, Synopsys Design Compiler was
used. The GUI mode of Design Compiler (also known as
Design Analyzer) was the primary tool interface which
was used. Here it is important to note that, due to

unavailability of some DesignWare licenses, memories
(RAM, ROM) could not be synthesized. Hence, all
ASIC Synthesis results for area are without the use of
memories. Timing results can be safely assumed to be
accurate, since memories are not in the critical path in
any of the designs. Hence, absence of memories should
not affect the timing results in any way.
 Baseline results for 90nm as well as 130nm
technology are provided in this paper. Synthesis was
performed using NCCOM (Normal Case Commercial)
operating conditions [14]. A wireload model was used
for estimates about interconnect delays. The concept of
wireload model is beyond the scope of this paper.

5. Implementation of Secure Hash Algorithm–SHA-1

All Secure Hash Algorithms have similar structure and
hence their implementation is also similar in most
aspects. In this paper, the design methodology for SHA-
1 is presented. Secure Hash Algorithms can be divided
into 2 main modules – Message Scheduler and Message
Digest Unit. Implementation aspects of both these
functional units are described.

5.1 Implementation of Message Scheduler

Message Scheduler takes as input the incoming
message stream, performs necessary computations and
outputs a single word Wt per clock cycle. This word is
used by the message digest unit to compute the hash
value. The diagram for message scheduler unit of SHA-1
is shown in Fig. 7. The data path is 32 bits wide, and the
unit consists of 16 registers. Hence, the block size which
can be handled by the algorithm is 32*16=512 bits. The
multiplexer selects between the incoming message words
and the words computed by the message scheduler unit.
For the first 16 rounds, the multiplexer selects the
message word as the input to the register bank. In the
remaining rounds, the internally generated words are fed
back to the register bank. Accordingly proper control
signal is generated for the multiplexer by the control unit
depending upon the round number. The generation of the
feedback word uses an XOR gaterotation is realized
using fixed connections (i.e. rotation operation does not
require any combinational logic to implement in
hardware).

An interesting optimization is possible in the message
scheduler unit for an FPGA implementation targeting
Xilinx devices [3] [4]. The register bank in Fig. 7 can be
viewed as a series of four shift registers as shown in the
right hand portion of the same figure. Instead of using
Flip-flops to implement registers; the FPGA
implementation uses Lookup Tables (LUTs) to
implement the shift register. Xilinx UNISIM library
includes an interesting implementation of a variable
length shift register (SRL16) using LUTs.

 6

Figure 6: Message Scheduler Unit for SHA-1

The variable length concept is useful in this

implementation, since all the four shift registers used
have different lengths. Comparative analysis of an
FPGA implementation using SRL16s and traditional FFs
reveals the disparity between the two approaches. It is
worthwhile to mention a few concepts of FPGA
architecture in order to appreciate the optimality of
implementation using SRL16s.

Logic elements are placed on FPGAs inside
Configurable Logic Blocks(CLBs) [15]. Each CLB is
further broken down into multiple CLB Slices. Generally
there are 2 or 4 CLB Slices per CLB. Programmable
routing inside CLBs is much faster as compared to
routing between different CLBs. Each CLB Slice
includes 2 LUTs and 2 FFs. This implies that the
maximum number of FFs inside a CLB, considering 4
CLB slices per CLB, is 4*2=8. So, only 8 FFs can be
connected by dedicated fast routing resources. If more
than 8 FFs have to be interconnected, then they have to
be connected using inter-CLB routing. Although there
are some fast routing resources for interconnections
between CLBs, these are generally used by critical
signals. For the register bank shown in figure, we would
need 512 FFs. This would lead to a large number of
programmable interconnects, thereby increasing the
routing delay.

A large routing delay would lead to a longer critical
path and reduced clock frequency. Using SRL16s helps
because, the implementation tool handles interconnects
between SRL16 blocks using faster routing resources.
Also, there are a less number of nets to route for the
synthesis tool. Hence, overall timing efficiency is
increased due to this optimization.

ASIC implementation of this module uses traditional
shift registers. Since, the HDL code for registers
contains generics; this is handled differently by
Synopsys. Specific commands were used to force Design

Compiler to read the code containing generics and save
it as a template [13]. This template is later pulled up by
the tool during the linking phase and proper values of
generics are substituted in the template.

5.2 Implementation of Message Digest Unit
The main components of the Message Digest Unit are
the 5 working registers, a, b, c, d and e. Each of these
registers is 32 bits wide. The final value of these
registers is the message digest. Hence, in case of SHA-1,
the size of message digest is 5*32=160 bits. In every
round, the contents of the working registers are updated.
The computations performed in each round are explained
in [5]. A brief overview of implementation aspects for
FPGAs is presented here.

The rotation left operation (ROTL) is performed using
fixed connections. The round dependent logic function
ft(b,c,d) uses 3 different combinational logic blocks, Ch,
Maj, and Parity, and a 4-to-1 multiplexer to select the
output of a particular block depending on the round
number. Wt is the output of the Message Scheduler Unit.
Kt is a round dependent constant. Kt takes one of 4
possible values depending upon the round number. A
simple implementation is to hardwire these constant
values to the inputs of a 4-to-1 multiplexer, and use a
bit-slice of the round counter output to select a particular
constant.

Figure 7: Message Digest Unit for SHA-1

All the operations in the message digest unit mentioned
so far do not provide much scope for optimization. The
only
components which can be optimized to some extent are
the adders used in the module. Let us first consider the
string of adders connected to register e (see Fig. 8).
Intuitively, it can be seen that the critical path of the
circuit is the one which covers all the adders.
Minimizing the length of the critical path is an important
design criterion. In this case, there are 5 operands to be
added. Various implementations of adders were studied
[9], and a comparative analysis influenced the decision
to use ripple carry adders. An interesting alternative is to

 7

use a carry save adder tree in order to reduce the number
of operands to be added from 5 to 3. 3 operands can then
be reduced to 2 by using another carry save adder. To
add 2 operands, some kind of fast adder like Brent-Kung
or Kogge-Stone could be used. Implementation results
show that there is not much gain by using this scheme.
Also,
the use of fast adders to improve timing results in an
increase in circuit area. Although, timing is critical in
this application, it is more important that the circuit be as
small as possible. Hence, in order to minimize area,
ripple carry adders were used.

In case of an FPGA implementation, the use of ripple
carry adders provides an added advantage. It may again
be worthwhile to note that there are dedicated FPGA
resources for performing fast additions [15]. These
include carry chain logic and a dedicated AND gate per
CLB slice for performing fast additions. The synthesis
tool can recognize certain VHDL constructs as adders,
and it uses carry chain logic in order to speed up the
ripple addition. This ultimately leads to a tolerable delay
of the critical path, albeit a little more than the delay
when carry-save adders are used. On the other hand, the
circuit area required for ripple carry adders is much less
than that required by the scheme using carry save adders.

Another interesting design consideration was the
placement of adders required to find the final hash [4].
Please refer to the last set of equations in the hash
computation round in [5]. This placement provides a
trade-off between number of clock cycles required to
compute the output and the period of each clock cycle. If
these adders are placed outside the loop, then they are
used for addition after 80 rounds have been completed.
In this case, the entire iteration of computing the hash
takes 81 clock cycles. The number of clock cycles can be
reduced to 80 if the adders are placed inside the loop. A
control circuit is required with forces one of the inputs of
the adders to a zero for all but the last cycle. The length
of the critical path increases only slightly in this case.
The control circuit uses up a little more area than the
first option. Both the options are comparable in terms of
performance, and it was arbitrarily chosen to use the
adders outside the loop.

5.3 Implementation of other units in SHA-1

Other major units of SHA-1 are the control unit and
the preprocessor. The preprocessor was implemented so
as to match the features of this implementation with the
already available implementation for SHA-512. The
input message is passed to the preprocessor, which takes
care of proper padding and length field appending. The
design of the preprocessor is such that it expects the first
word after reset to be the length of the message to be
processed. Using this length field, the preprocessor’s

control unit produces appropriate control signals for
internal registers and multiplexers. The implementation
of the preprocessor was borrowed from the SHA-512
implementation. Implementation details are explained in
[3].

Control unit is implemented as a Finite State Machine.
Almost all components of the FSM are implemented as a
Mealy machine. For an FPGA implementation, one-hot
state encoding was used. General experience shows that
one-hot encoding results in a much lesser combinational
logic area, since a decoding circuit is not required. Since
there are a large number of FFs available on FPGAs,
one-hot encoding is favorable. For an ASIC
implementation, the encoding scheme could not be
forced on Synopsys Design Compiler.

6. Implementation of Secure Hash Algorithm –
SHA-512

As stated earlier, already available VHDL code for
SHA-512 was used as a starting point in this
implementation. The available code was platform
specific – targeting Xilinx VirtexII family of FPGAs[3].
In this project two kinds of revisions were made using
the existing code. The first revision included further
optimization of the VHDL code in order to improve
performance. Some portions of the code were written at
a very low level of abstraction i.e. using components
from FPGA vendor specific libraries. This is an oft used
programming practice to describe very small portions of
circuits because it allows the programmer to better
constrain critical portions of the design. An example
here would make the explanation more clear.

Let’s say, the circuit is a 2 bit counter with an output
for terminal count. It would be favorable if the FFs are
placed in the same CLB Slice and the dedicated AND
gate is used to detect the condition that the counter has
reached “11”. It might be useful if the counter is
structurally described in HDL using library components
which can later be constrained during floor planning.
(Floor planning in case of FPGAs deals with the
placement of certain logic components in particular
locations on the chip). Although it is clearly
advantageous in case of small circuits to describe them
at a low-level and floor plan them, it is not such a good
idea to use the same concept for larger circuits. Floor
planning is a tedious and a complex process and might
adversely affect the final outcome if not done correctly.
Hence, it is always recommended that the HDL code be
written at the RTL level. This is the level of abstraction
which can be well understood by all synthesis tools.

Also, when the code is written at a higher level of
abstraction, there is still some chance for the synthesis
tool to perform optimizations like resource sharing,
pruning unwanted logic, replicating driver logic for high

 8

fan-out nets etc. If everything is explicitly specified by
the user, then there is very little the synthesis tool can do
to optimize the design. Hence, portions of the code
which were written at a lower level of abstraction were
revised to RTL level. Also, control logic was simplified
a little in order to reduce combinational logic area by a
very small margin.

The second code revision was necessary for an ASIC
implementation of the circuit. Using components from
vendor libraries makes the code unsuitable for
transporting to other environments. Hence, all library
specific components were replaced using platform
independent coding technique. Shift registers
implemented using LUTs were revised to the traditional
form. All other components like FFs etc. were written
using behavioral RTL code. It is most interesting to note
that when the platform independent code was
synthesized using FPGA synthesis tool (Synplify Pro) it
was intelligent enough to infer the original components
from the behavioral code. The only components which
were different from the original code were the shift
registers. The RTL netlist showed them as being
implemented using FFs rather than LUTs.

7. Implementation of HMAC with SHA-512

The top level entity for HMAC SHA-512 is shown in
Fig. 9. The table describes the functions and bus widths
of all the ports.

Figure 8: HMAC with SHA-512 - Top Level Entity

Port Name Widt

h
Mode Function

Key 64 IN Secret Key is input
through this port 64 bits
at a time. Key sizes are
limited to multiples of 64
bits.

Key
Available

1 IN Signal is asserted when
Secret key is available
for reading from the
Input Key FIFO.

Key Read 1 OUT Signal is asserted when
the HMAC core reads 64
bit portion of the Secret
Key.

Message 64 IN Message whose MAC is
to be computed is input
through this port in
blocks of 64 bits.

FIFO
Empty

1 IN Signal is asserted when
the Input FIFO is empty
and does not have any
new data to input to the
HMAC.

FIFO Read 1 OUT Signal is asserted when
the HMAC core reads a
64 bit block of message.

Clock 1 IN Master Clock signal to
the HMAC core.

Reset 1 IN Master Reset signal to
the HMAC core.

Start 1 IN This signal is set to
HIGH in order to start the
MAC computation. It
should be asserted only
after the secret key has
been loaded into the core.

HMAC
Output

512 OUT HMAC computed from
the message is output on
this port.

Output
Valid

1 OUT Signal indicates that the
HMAC Output available
is valid when asserted.

FIFO Write 1 OUT Signal is asserted when
the HMAC Output is
valid and Output FIFO is
ready to accept data.

FIFO Full 1 IN Signal is asserted when
Output FIFO is full and
cannot accept further
data.

Table 1: HMAC-SHA-512 - Pin Functions

A block diagram of the internal features of the top-
level entity is as shown in Fig. 10. In this case, the
HMAC-SHA-512 has been designed to support a key
size of 256 bits. It can be extended to support sizes of
512 and 1024 bits with minor changes in the HDL code.
The 256 bit
key is read in terms of 64 bit words. This is done in
order to minimize the number of I/O pins on the top-
level entity. Minimization of I/O pins is useful,
especially in the case of FPGA implementations. A study
of available FPGA packages reveals that only FPGAs

 9

with large areas (i.e. large amount of resources) have
more number of I/O pins. It would be a waste of FPGA
resources to utilize a larger chip just to accommodate a
large number of I/O pins. Also, cost of these devices is
proportional to the size, and hence cost would also
increase for larger devices.

The key is internally stored in a 256 bit register. 4
clock cycles are required to fill the 256 bit register, since
only 64 bits are read at a time. A modulo 4 counter is
used to enable one out of 4 register slices during each
clock cycle. After the key is read into the core, the
HMAC Calculation begins only when the START input
is asserted. As long as START is de-asserted, the HMAC
operation is stalled. Padding signals are generated by
XORing the 256-bit key with the 256-bit value of ipad
and opad. ipad and opad signals are repetitions of the
string 0x5C and 0x36 respectively. Both these operations
are performed in parallel.

After the padding operation is performed, there is a
particular order in which the data words should be input
to the SHA-512 core. Here, it is worthwhile to look at
the way in which the SHA-512 core accepts data. The
SHA-512 core is designed to accept input data in terms
of 64-bit words. The first 64-bit word accepted by the
SHA-512 core after reset indicates the length of the
message. This data word triggers internal control circuit
to generate proper control signals to perform message
padding without user intervention. The method of
padding messages in Secure Hash Algorithms is
described in [5].

Since, the SHA-512 core is expecting the length of the
message as the first word, the HMAC wrapper should be
designed to provide the length to the SHA-512 core. It
follows from the earlier discussion about HMACs that
the hashing operation has to be performed twice. The
first hashing operation is performed on the concatenation
of the incoming message and ipad xored with the key
K0, whereas the second hashing operation is performed
on the concatenation of the hash produced by the first
operation and opad xored with the key K0. Hence, for
the first operation, the length of the message to be
hashed is equal to sum of the length of the incoming
message and the length of ipad. As stated earlier, ipad
has a length of 256 bits or 32 bytes, because of the 256-
bit key. Hence, the first word sent to the SHA-512 core
is the length of the message in bytes plus 32. In the
second case, the length of the message to be hashed is
equal to the 512 bits (64 bytes) of the first hash
operation plus 256 bits (32 bytes) of padding due to
opad. After the length has been input to the SHA-512
core, the padding strings are the next in line. Since, the
padding strings are 256 bits wide and the input data path
of the SHA-512 core is only 64 bits wide, it takes the
next 4 clock cycles to input the padding string into the

SHA-512 core. After the padding string, message is sent
to the SHA-512 core. This is done using the multiplexers
shown in the figure. Specifically note the order of inputs
for the multiplexers. The select lines for the multiplexers
are outputs of separate counters. Let’s look at the
multiplexer to which the combination of ipad and key is
connected. The length is input through the input 0 (the
topmost input) of the multiplexer. Inputs 1 through 4 are
used to input the padding string. Input 5 is used to input
the message. The counter which controls the select lines
of this multiplexer is designed as an up-counter which
counts from 0 to 5 and then stalls till it is reset again.
Differences in the design of the second multiplexer-
counter module are trivial. There is another multiplexer
in the input data-path to the SHA-512 core which selects
the proper message stream depending on whether it is
the first hash operation or the second.

Figure 9: Implementation Aspects of HMAC with SHA-

512

Here, it is worthwhile to reiterate some specifics about
the functionality of the SHA-512 core. The core reads
input data from an input FIFO and writes results to the
output FIFO. Since, the HMAC wrapper covers the
SHA-512 core, it no longer has direct access to the input
FIFO. Hence, a single word FIFO is simulated by
introducing a register in the data-path. This serves
another useful purpose of breaking up the critical path,
thereby improving timing.

Since, input FIFO was just mentioned, let us look at
how some of the handshaking signals for the core are
derived. Out of the 2 hash operations, the first operation
gets data from outside the entity, but the second hash
operation utilizes internally generated data for
performing computations. It follows that the
FIFO_EMPTY for the first operation is replicated from
the FIFO_EMPTY signal which is input to the HMAC.
For the second hash operation, since all data to be
processed is already available, the FIFO_EMPTY signal

 10

is redundant. Hence, the FIFO_EMPTY signal is set to
‘0’ for the second hash operation.

The output of the SHA-512 core is stored in a register,
the output of which is fed back to the second
multiplexer-counter module.

The most important part of the HMAC wrapper is the
control unit. It is extremely involved since it has to
handshake with the control unit of the SHA-512 core.
Separate parts of the control unit generate control signals
for the multiplexers and enables for registers. Another
part controls the interface with the SHA-512 core. Still
another generates the output handshaking signals for
writing to the output FIFO and indicating the end of
operation.

8. Implementation Results
This section explains the results obtained for FPGA
implementation as well as ASIC synthesis.

8.1 Results of FPGA Implementation
In this section, results of FPGA implementation of all
the designs will be presented. A comparative study of
results of platform specific designs and platform
independent designs is provided. Platform specific
designs are those targeting the Xilinx VirtexII family of
devices.

8.1.1 FPGA Implementation results for SHA-1

Design Version
FPGA

Specific
Platform

Independent
Target Device 2v250fg456 2v250fg456
Occupied CLB Slices 509 482
Occupied LUTs 806 774
Occupied FFs 239 396
Minimum Clock Period 11.373 ns 11.864 ns
Maximum Clock
Frequency

87.92 MHz 84.28 MHz

8.1.2 FPGA Implementation results for SHA-512

Design Version
FPGA

Specific
Platform

Independent
Target Device 2v250fg456 2v250fg456
Occupied CLB Slices 1534 1534
Occupied LUTs 2693 2916
Occupied FFs 2424 2435
Minimum Clock Period 14.839 ns 15.216 ns
Maximum Clock
Frequency

67.38 MHz 65.72 MHz

8.1.3 FPGA Implementation results for HMAC SHA-
512

Design Version
FPGA

Specific
Platform

Independent
Target Device 2v500fg456 2v500fg456
Occupied CLB Slices 3070 3070
Occupied LUTs 4317 4521
Occupied FFs 3737 3747
Minimum Clock Period 14.643 ns 14.382 ns
Maximum Clock
Frequency

68.29 MHz 69.53 MHz

 Performance results are compared using graphs later
in this section. It is interesting to note here, that Platform
independent design is actually a little smaller than the
FPGA specific design in the table in Section 8.1.1. An
analysis of the synthesis results revealed that the tool
used the resource sharing principle to share some logic
and then pruned the redundant combinational logic.

Figure 10: Comparison of Maximum Clock Frequency for

FPGA Implementations

 An interesting observation from the above tables
reiterates the fact explained earlier about coding at the
RTL level rather than at a low-level of abstraction for
sizeable circuits. Table in section 8.1.3 shows an
extreme kind of result wherein, both the implemented
versions have exactly the same resource utilization in
terms of occupied CLB Slices, but the platform
independent version is slightly faster than the FPGA
specific one. A simple explanation for this is that the
FPGA synthesis tool has much more scope of optimizing
the circuit when it is platform independent than when it
is described at a low-level of abstraction.

 11

 A thorough analysis reveals that the synthesis tool has
performed logic replication on high fan-out nets, thereby
increasing the number of LUTs used. This leads to better
timing performance as can be seen from the table in
section 8.1.3.

Figure 11: Comparison of Resource Utilization for FPGA

Implementations

8.1.4 Throughput
 Throughput is the amount of data processed per clock
cycle. The units of throughput are Gbps.

Throughput
= (Block Size/No. of Clock Cycles) * Clock Frequency
Block Size for SHA-1 is 512 bits and for SHA-512 and
HMAC-SHA-512 it is 1024 bits. This gives a throughput
of about 0.5 Gbps for SHA-1 and HMAC-SHA-512 and
about 0.9 Gbps for SHA-512.
 The results are graphically represented in Fig. 12
below.

Figure 12: Throughput for FPGA Implementation

8.2 Results of ASIC Synthesis

8.2.1 Synopsys Synthesis results for SHA-1

Target Technology
90 nm 130 nm

Combinational Area 9707 19935
Non-Combinational Area 18659 41824
Total Cell Area 28366 61759
Clock Period Requested 10 ns 10 ns
Clock Period Obtained 7.49 ns 10 ns

 In all results related to Synopsys Synthesis, the units
for area are square microns.

8.2.2 Synopsys Synthesis results for SHA-512

Target Technology
90 nm 130 nm

Combinational Area 33459 82828
Non-Combinational Area 62145 127072
Total Cell Area 95604 209905
Clock Period Requested 10 ns 10 ns
Clock Period Obtained 6.86 ns 7.87 ns

8.2.3 Synopsys Synthesis results for HMAC with SHA-
512

Target Technology
90 nm 130 nm

Combinational Area 45337 108988
Non-Combinational Area 93521 187772
Total Cell Area 138860 296758
Clock Period Requested 10 ns 10 ns
Clock Period Obtained 9.88 ns 9.98 ns

 Tables in sections 8.2.1 and 8.2.2 show the
relationship between resource utilization and amount of
security of a particular hash function. Considering
results for 90 nm technology for SHA-1 and SHA-512,
we find that the ratio of resource utilization (Total Cell
Area) is approximately equal to the ratio of the amount
of security of the 2 functions. The ratio of total cell areas
is about 0.29, while the ratio of amount of security is
160/512≈0.3.
 Another interesting feature about Synopsys relates to
meeting the user timing requirements. Presenting
numerical values here would confuse the matter. Hence,
only the gist of the matter is explained. In all the above
tables, the requested clock frequency is 10 ns. For a
comparative analysis, it is only fair that all the designs
be synthesized under similar conditions. But the tool has
the ability to meet any reasonable timing estimates.

 12

 Synthesis was performed after decreasing the
requested clock period to 7.5 ns. Interestingly enough,
the synthesis tool could match that timing with a slightly
increased cell area. The increase in cell area occurs
because of pipelining and replication of logic with high
fan-out nets in order to decrease the load on drivers,
thereby decreasing point-to-point delays.
 Even more interesting was the fact that when
requested clock frequency was set to 20 ns, the tool tried
to match it with a small reduction in circuit area.

Figure 13: Comparison of Maximum Clock Frequency for

ASIC Synthesis

Figure 14: Comparison of Resource Utilization for ASIC

Synthesis

8.2.4. Throughput
 Throughput results after ASIC Synthesis are much higher
than those of FPGA Implementations. The values are
calculated using the formula stated in section 8.1.4.

 The results are shown graphically in Fig. 15.

Figure 15: Throughput for ASIC Synthesis

9. Conclusion
 The overall analysis of implementation results
indicates that an authentication engine can be
implemented on FPGAs with a reasonable overhead.
Implementations using FPGA resources with minimal
overheads can be used to add security features to already
existing devices. ASIC synthesis results show that a
possible addition to the FPGA fabric for future families
would not increase the cost by a large margin.
Implementation on the FPGA fabric would be
recommended since, it is the only implementation which
is really secure. In case of implementation using FPGA
resources or soft-core processors, the integrity of the
authentication core cannot be guaranteed. Hence, it is
not advisable for high-security applications. Also, ASIC
implementations have a very high throughput (≈ 1 Gbps)
which would prevent the authentication engine from
being a bottleneck in the system.

10. Acknowledgment

I would like to thank Tim Grembowski for giving me
access to VHDL codes developed by him during the
course of his Master’s Thesis at GMU and also for
patiently explaining his design methodology.

11. References
[1] Cryptography and Network Security: Principles and

Practice, 3rd ed., William Stallings, Prentice Hall
[2] Applied Cryptography – Protocols, Algorithms and

Source Codes in C, Bruce Schneier, John Wiley and Sons
pp. 429 – One Way Hash Functions

[3] T. Grembowski, R. Lien, K. Gaj, N. Nguyen, P. Bellows,
J.Flidr, T. Lehman, B. Schott, "Comparative Analysis of
the Hardware Implementations of Hash Functions SHA-1
and SHA-512" Proc. Information Security Conference,
Sao Paulo, Brazil

[4] FPGA implementation of SHA-1 Secure Hash standard,
Roar Lien – Master’s Thesis, GMU

[5] FIPS 180-2 Secure Hash Standard – Specifications of
SHA functions and source of test vectors -

 13

http://csrc.nist.gov/publications/fips/fips180-2/fips180-
2.pdf

[6] FIPS 198, The Keyed-Hash Message Authentication
Code (HMAC) Standard, Crypto ToolKit,
http://csrc.nist.gov/CryptoToolkit/tkmsgauth.html

[7] Is Your FPGA Design Secure? – XCell Journal Online -
http://www.xilinx.com/publications/xcellonline/xcell_47/x
c_secure47.htm

[8] FPGA Viruses - Ilija Hadzic, Sanjay Udani and Jonathan
M Smith - Distributed Systems Laboratory, University of
Pennsylvania - ww.cis.upenn.edu/~boosters/fpgavirus.ps

[9] Computer Arithmetic, B. Parhami. Oxford University
Press, 2000.

[10] Comparison of the Hardware Performance of the AES
Candidates Using Reconfigurable Hardware, Pawel
Chodowiec, MS CpE Candidate, Master's Thesis, March
2002, GMU

[11] Security Scenarios, Actel Corporation
www.actel.com/documents/SecurityScenarios.pdf

[12] Synopsys Documentation available at
http://cpe02.gmu.edu/synopsysdocs/

[13] TSMC Library Documentation available at
http://cpe02.gmu.edu/synopsysdocs/tsmc/

[14] Virtex Datasheet - available at
http://direct.xilinx.com/bvdocs/publications/ds003.pdf

