
Trusted Design in FPGAs
Steve Trimberger

Xilinx
2100 Logic Dr.

San Jose, CA 95124
1-408-879-5061

steve.trimberger@xilinx.com

ABSTRACT
Using FPGAs, a designer can separate the design process from the
manufacturing flow. Therefore, the owner of a sensitive design
need not expose the design to possible theft and tampering during
its manufacture, dramatically simplifying the process of assuring
trust in that design. Modern FPGAs include bitstream security
features that turn the fielded design trust problem into an
information security problem, with well-known cryptographic
information security solutions. The generic nature of the FPGA
base array allows the validation expense to be amortized over all
designs targeted to that base array. Even the task of checking
design tools is simplified by using non-destructive checks of the
FPGA design.

Categories and Subject Descriptors
B.7.1. Integrated Circuits, Types and Design Styles. FPGA

General Terms
Design, Security

Keywords
FPGA, Trusted Design, Cryptography.

1. INTRODUCTION
Since their invention, FPGAs have grown in popularity with
designers because they eliminate the lengthy IC manufacturing
cycle, thereby shrinking up-front NRE costs and manufacturing-
cycle delays. FPGA designers have also exploited the
reprogrammable capabilities of SRAM FPGAs, delivering high-
performance programmable solutions to demanding signal-
processing and computing problems, including cryptographic
applications [5]. Designs that address these demanding problems
are valuable, either intrinsically in their intellectual property, or
due to their deployment in sensitive government applications.
Designers of sensitive government systems wish to use
Commercial Off-The-Shelf (COTS) devices to gain access to the
latest technology and lowest costs. Increasingly, the
manufacturing technology for these devices is spread around the
world, giving rise to the concern that a design may be stolen or

altered by an adversary during the manufacturing process.
Designers would like a guarantee that the design that is
manufactured performs exactly the intended function. This
problem is related to the test problem, though more complicated
because traditional testing does not assume an active adversary,
nor does it typically detect added functionality.

2. IC MANUFACTURING FLOW
A significant security drawback of the traditional IC
manufacturing flow is that the functionality of the design is
exposed during the manufacturing process. Although design and
final test can be controlled and assumed to be correct, the entire
manufacturing process is open to attack. An adversary may exist
in the mask-making company, the wafer fabricator, the packaging
company or in any of the shipping facilities in between them. An
adversary with access to the manufacturing flow has tremendous
opportunity to copy, reverse-engineer and tamper with a design.
The challenge of trusted design in an IC design flow is to secure
the design through all phases of mask making, wafer fabrication,
wafer sort and packaging.

3. FPGA MANUFACTURING FLOW
Figure 1 shows a “manufacturing” flow for an FPGA design with
two phases of security concern: during manufacture of the base
array and during deployment of the fielded system. The base
array manufacturing is the same as the IC manufacturing flow
outlined above, and all those steps are all collected in the “Non-
Secure Manufacturing” box. The FPGA bitstream can be
developed and loaded in a “Secure Design Facility” after the base
array is manufactured and
tested. The secret
programming is never
exposed to potential
adversaries at the various
manufacturing sites. Thus,
the design in the FPGA
need not be protected
against theft or tampering
until it is released into a
possibly-hostile “Non-
Secure Environment” in its
deployed system. System-
level protections can be
applied to thwart
adversaries in this phase,
though such system-level
protections are not part of
this paper.
This separation of
manufacturing from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC 2007, June 4–8, 2007, San Diego, California, USA

Copyright 2007 ACM 978-1-59593-627-1/07/0006…5.00

Add Secret
Bitstream

Secure Design Facility

Non-Secure Manufacturing

Non-Secure Environment

Figure 1. FPGA Component Flow

Design

Generic FPGA Base Array

5

1.2

programming is identical to the separation one sees with
computers and computer programs. While the computer may be
subject to tampering during its manufacture, the program that runs
on the computer is not present during the computer’s manufacture.
Although the computer must still be analyzed for malicious
tampering, the program need not be. This tradeoff brings
significant advantages. The program is the valuable part of the
application. It embodies the critical behavior and may be vastly
more complex than the computer on which it executes, so it is
important to save time and effort checking the program.

4. SECURING FPGA SYSTEMS IN THE
FIELD
Since an SRAM FPGA’s bitstream is an electronic message,
methods of information security can be applied to assure the
integrity and privacy of the bitstream. These methods are well-
understood and tested. This section describes methods that have
been deployed in FPGAs in sensitive systems.
In this discussion, it is assumed that an adversary has physical
access to the FPGA. If the adversary does not have physical
access to the FPGA, the problem of FPGA security becomes the
solved problem of message authentication and privacy [12] and
we can stop now. If the adversary has physical access to the
FPGA, denial-of-service attacks on the configuration are
irrelevant: a trivial denial-of-service method would be to
physically damage the device. Of more concern are unauthorized
copy of a design, theft of the design and reverse-engineering.

4.1 Reliance on Bitstream Encoding
FPGA manufacturers do not typically release the coding of their
bitstream, though they do give a considerable amount of
information about the bitstream in tools and in various documents
[2]. Despite the availability of this information, there is no report
of successful reverse-engineering of an FPGA bitstream. In
particular, contrary to one report [5], in the 1990s, according to
the principals involved, the NeoCad company reverse-engineered
Xilinx’s bitstream generation software, not the bitstream itself [4].
Recognizing the complexity of the reverse-engineering task, most
FPGA users, like computer programmers, disregard the risk of
design theft by reverse-engineering. Of course, both groups suffer
from design piracy.
FPGA vendors promote simple, low-cost anti-piracy solutions that
may use external devices [6][9]. These solutions increase the
difficulty of copying the design but still rely on the difficulty of
reverse-engineering the bitstream for their security. These
solutions are often considered strong enough for commercial
applications, but for security-conscious applications, reliance on
the tedium and complexity of bitstream reverse-engineering seems
risky.

4.2 Load-Once
A simple method to secure the FPGA bitstream is to program the
FPGA once at a secure facility, and retain power to the device
constantly in the field [10]. Since all programmable logic devices
have privacy settings to prevent readback of the program, and
since the bitstream is never exposed outside the device, this
method assures that the bitstream running inside the FPGA is both
secure and un-modified. This is precisely the same level of
security achieved by anti-fuse and other non-volatile FPGAs. The

drawback of this method is, of course, the requirement that the
system be powered constantly.

4.3 Bitstream Encryption
In 2001, Xilinx introduced bitstream encryption in Virtex-II
devices [8][7][11]. Since that time, many FPGA vendors have
added the capability to their high-end devices. Although it thwarts
reverse-engineering, the goal of bitstream encryption is primarily
to prevent unauthorized copy. Large FPGA designs can contain
significant intellectual property, and bitstream encryption prevents
a competitor from simply copying that intellectual property. The
feature also can provide trust assurance by limiting access to the
FPGA only to designs constructed with the proper key.
The security implementation and protocols are critical to the
security of the design in the FGPA. This section describes the
security protocols used in the Virtex family of FPGA.
Virtex FPGAs have a dedicated on-chip decryptor and dedicated
key storage memory. The FPGA bitstream contains unencrypted
commands for startup and encrypted configuration data [2].
Internal logic in the FPGA restricts access to configuration and
key data when bitstream encryption is used in order to eliminate
potential security problems. Some of the restrictions are:

• When loading an encrypted bitstream, only a single,
full-chip configuration is permitted. Configuration must
start at frame 0. Partial configuration and re-
configuration are disabled. To re-program, one must
shut down the power or issue the JTAG JPROGRAM
command, to clear all configuration and data.

• After loading an encrypted bitstream, readback is
disabled. This is not a bitstream option, but part of the
configuration control.

• An attempt read or write the key data clears all keys and
all configuration data.

• The decrypted bitstream must pass data integrity checks
before it starts operating.

• The decryptor is not available for encrypting or
decrypting user’s data after configuration

The security restrictions limit the usable modes of the FPGA, but
also eliminate simple attacks on the bitstream. As a result, an
adversary may instead attempt to steal a key from the FPGA. The
Virtex keys are stored in battery-backed RAM, which vanish
when power is cut. To steal the key, an adversary would need to
de-cap the FPGA and mill away many levels of metal, then scan
the bits with a SEM. This attack must be performed while
keeping clean power to the key memory. This is the type of attack
required to extract the entire configuration directly from the
FPGA SRAM cells, so no bitstream encryption method is
qualitatively stronger. This attack is considered to be beyond the
capabilities of most adversaries.

4.4 Checking Designs in the Field
Virtex-4 devices introduced the Internal Configuration Access
Port (ICAP) (figure 2). ICAP permits logic inside the FPGA to
read and write its own bitstream enabling self-reconfiguration for
programming and self-test. Potential applications include
bitstream decompression, authentication and decryption of
bitstreams with a custom encryption algorithm.

6

Jones [1] describes the SEU Controller, an application in which
the FPGA reads its own bitstream internally to check and correct
configuration errors. The SEU Controller is intended to detect
and correct errors in a high-reliability environment, but it can be
used to detect tampering with the FPGA in the field.

5. SECURING THE BASE ARRAY
In the FPGA flow, the FPGA base array is still manufactured
using a standard IC manufacturing flow, and is still subject to
attacks during manufacture. Since the sensitive design is not
present during manufacture, it cannot be stolen. However, an
adversary may attempt to tamper with the base array in a way that
will affect the final design after it is loaded into the FPGA. An
adversary cannot directly attack the actual design, because he
doesn’t know where to insert malicious logic, so the attack is a
probabilistic one, attempting to improve the chances that the
configured design will be affected by the change.
A designer can use clever design to make the adversary’s problem
arbitrarily difficult with arbitrarily low probability of success. For
example, a designer may implement critical parts of the design
with triple modular redundancy (TMR). Since each part is placed
in a different part of the FPGA, an adversary would need to
construct a modification of the base array that would affect two of
the three modules implemented in FPGA fabric in the same way.
A potentially more-fruitful attack would be to attack the FPGA’s
security features, with the expectation that the weakness in the
FPGAs security can be exploited by the system in the field.
Defeating this potential attack requires that the bitstream security
functions be fully verified. This may sound difficult, but the
bitstream security functions comprise a very small fraction of the
overall device, so that verification task is much simpler than the
task of verifying an entire chip. Further, since a single trusted
FPGA base array can be used for any number of trusted designs,
the cost of verification of a single FPGA base array can be
amortized over all trusted designs built on that base array.
COTS FPGAs have further advantages in manufacturing. Since
an adversary doesn’t know which devices to attack, potential
tampering affects all FPGAs. Most FPGAs are used in

commercial applications, so there are thousands of non-secure
uses that could potentially expose the tampering. IC
manufacturers are fastidious about the quality of their product.
Any returned devices are carefully inspected for defects.
Deliberate tampering could be detected in returned commercial
devices.
In addition, since the manufacturing volume of FPGAs is large,
large numbers of commercial FPGAs can be (destructively) tested
to search for inserted logic or environmental sensitivities. Again,
the cost of this testing can be amortized over all designs that use
the same base array.

6. DETECTING TAMPERING IN TOOLS
Thompson [3] gives an insightful description of the subtlety with
which an expert can tamper with tools. As Thompson showed, an
adversary could add additional functionality to expose sensitive
information, or provide unauthorized access to stored data. A tool
that modifies or eliminates intended functionality will be detected
by testing. But, classical testing only verifies the presence of
wanted logic. It does not verify the absence of unwanted logic.
In order to properly close the loop on tools and manufacturing,
one must formally compare the manufactured design to the
original. In an ASIC model, this can be done by reverse-
engineering the manufactured design: de-capping the part, and
repeatedly photographing the die and stripping away layers until
all the physical layers are reproduced. Then one extracts the
transistor network from the physical layout and performs a
network equivalence check of the extracted network against the
original design. Many die can be analyzed to gain (statistical)
assurance that the remainder can also be trusted. Not only is this
process time-consuming, but the process is necessarily
destructive. There is no guarantee that the fielded system is
identical to the tested one.
In contrast, FPGA designs can be checked non-destructively, so
equivalence between the implemented design and the original
design guarantees correctness of the operating design. This check
is also relatively simple and quick. The FPGA design system
retains logical information through physical design, so the final
implementation can be compared to the original design
specification without complex reverse-engineering. Layout-
versus-schematic (LVS) comparison tools compare two netlists,

Design

Synthesis, Place
and Route

Extract netlist Compare

Merge IP Libraries

Figure 3. FPGA Design Validation Flow

ICAP

Figure 2. Virtex-4 FPGA with Internal Configuration
Access Port

PPC
PPC

Logic and Mem
ory

Input / Output

Input / Output

Configuration

Logic and Mem
ory

7

and are commonly used to compare a schematic with an extracted
manually-generated layout. LVS tools not only identify missing
logic, but also identify added logic and added connections that
would be expected from a clever adversary. They can be
employed to compare the original design to the implemented
FPGA design to identify unwanted logic added by tools or
libraries.

7. Conclusion
The FPGA design and implementation flow allows us to separate
the manufacturing process from the design process. In the FPGA
flow, the sensitive design is not exposed to theft and tampering
through the manufacturing process. Only the base array must be
verified through manufacture. That verification can be
significantly simplified because the adversary does not know the
design to attack. Systemic advantages also accrue from the broad
commercial uses of the same base array that may be deployed in
sensitive applications. FPGA flows permit non-destructive
detection of tampering inserted by tools. The security of the
FPGA design during deployment is assured by an application of
well-known information-security methods.

8. References
[1] Jones, L., “Single Event Upset (SEU) Detection and

Correction Using Virtex-4 Devices”, Xilinx Application
Note #714, 2007,
http://www.xilinx.com/bvdocs/appnotes/xapp714.pdf

[2] Xilinx Virtex-4 Configuration Users Guide, v1.5, UG 071
2007, http://www.xilinx.com/bvdocs/userguides/ug071.pdf

[3] Thompson, K., “Reflections on Trusting Trust”,
Communications of the ACM, Vol. 27, No. 8, August 1984,
http://www.acm.org/classics/sep95/

[4] Bennett, D., Private communication.
[5] Wollinger, T. and Parr, C. “How Secure are FPGAs in

Cryptographic Applications”, 13th International Conference
on Field Programmable Logic and Applications, FPL 2003,
P.Y.K. Cheung, G.A. Constantinides, J.T.de Sousa, eds.,
LNCS 2887, Springer, 2003.

[6] Feng, J. and Seely, J.A., “Design Security with Waveforms”,
http://www.altera.com/literature/cp/cp_sdr_design_security.p
df

[7] Lesea, A., “IP Security in FPGAs”, Xilinx
http://direct.xilinx.com/bvdocs/whitepapers/wp261.pdf

[8] Teliknepalli, A., “Is Your FPGA Design Secure?”, XCell
Journal, 2003,
http://www.xilinx.com/publications/xcellonline/xcell_47/xc_
pdf/xc_secure47.pdf

[9] Baetoniu, C. and Sheth S., “FPGA IFF Copy Protection
Using Dallas Semiconductor/Maxim DS2432 Secure
EEPROMs”, Xilinx Application Note XAPP 780, Xilinx
2005.

[10] Trimberger, S., FPGA Technology, Kluwer Academic Press,
1994.

[11] Trimberger, S. “Method and apparatus for protecting
proprietary configuration data for programmable logic
devices”, US Patent 6654889, 2003.

[12] Schneier, B., Applied Cryptography Second Edition, Wiley,
1996.

8

