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ABSTRACT 
Using FPGAs, a designer can separate the design process from the 
manufacturing flow. Therefore, the owner of a sensitive design 
need not expose the design to possible theft and tampering during 
its manufacture, dramatically simplifying the process of assuring 
trust in that design.  Modern FPGAs include bitstream security 
features that turn the fielded design trust problem into an 
information security problem, with well-known cryptographic 
information security solutions.  The generic nature of the FPGA 
base array allows the validation expense to be amortized over all 
designs targeted to that base array.   Even the task of checking 
design tools is simplified by using non-destructive checks of the 
FPGA design. 
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1. INTRODUCTION 
Since their invention, FPGAs have grown in popularity with 
designers because they eliminate the lengthy IC manufacturing 
cycle, thereby shrinking up-front NRE costs and manufacturing-
cycle delays.  FPGA designers have also exploited the 
reprogrammable capabilities of SRAM FPGAs, delivering high-
performance programmable solutions to demanding signal-
processing and computing problems, including cryptographic 
applications [5].  Designs that address these demanding problems 
are valuable, either intrinsically in their intellectual property, or 
due to their deployment in sensitive government applications. 
Designers of sensitive government systems wish to use 
Commercial Off-The-Shelf (COTS) devices to gain access to the 
latest technology and lowest costs.  Increasingly, the 
manufacturing technology for these devices is spread around the 
world, giving rise to the concern that a design may be stolen or 

altered by an adversary during the manufacturing process. 
Designers would like a guarantee that the design that is 
manufactured performs exactly the intended function.  This 
problem is related to the test problem, though more complicated 
because traditional testing does not assume an active adversary, 
nor does it typically detect added functionality. 

2. IC MANUFACTURING FLOW 
A significant security drawback of the traditional IC 
manufacturing flow is that the functionality of the design is 
exposed during the manufacturing process.  Although design and 
final test can be controlled and assumed to be correct, the entire 
manufacturing process is open to attack.  An adversary may exist 
in the mask-making company, the wafer fabricator, the packaging 
company or in any of the shipping facilities in between them. An 
adversary with access to the manufacturing flow has tremendous 
opportunity to copy, reverse-engineer and tamper with a design.  
The challenge of trusted design in an IC design flow is to secure 
the design through all phases of mask making, wafer fabrication, 
wafer sort and packaging.   

3. FPGA MANUFACTURING FLOW 
Figure 1 shows a “manufacturing” flow for an FPGA design with 
two phases of security concern: during manufacture of the base 
array and during deployment of the fielded system.  The base 
array manufacturing is the same as the IC manufacturing flow 
outlined above, and all those steps are all collected in the “Non-
Secure Manufacturing” box. The FPGA bitstream can be 
developed and loaded in a “Secure Design Facility” after the base 
array is manufactured and 
tested. The secret 
programming is never 
exposed to potential 
adversaries at the various 
manufacturing sites.  Thus, 
the design in the FPGA 
need not be protected 
against theft or tampering 
until it is released into a 
possibly-hostile “Non-
Secure Environment” in its 
deployed system.  System-
level protections can be 
applied to thwart 
adversaries in this phase, 
though such system-level 
protections are not part of 
this paper.  
This separation of 
manufacturing from 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 

DAC 2007, June 4–8, 2007, San Diego, California, USA 

Copyright 2007 ACM 978-1-59593-627-1/07/0006…5.00 

Add Secret  
Bitstream 

Secure Design Facility

Non-Secure Manufacturing 

Non-Secure Environment

Figure 1.  FPGA Component Flow 

Design 

Generic FPGA Base Array 

5

1.2



programming is identical to the separation one sees with 
computers and computer programs.  While the computer may be 
subject to tampering during its manufacture, the program that runs 
on the computer is not present during the computer’s manufacture.  
Although the computer must still be analyzed for malicious 
tampering, the program need not be.  This tradeoff brings 
significant advantages. The program is the valuable part of the 
application.  It embodies the critical behavior and may be vastly 
more complex than the computer on which it executes, so it is 
important to save time and effort checking the program. 

4. SECURING FPGA SYSTEMS IN THE 
FIELD 
Since an SRAM FPGA’s bitstream is an electronic message, 
methods of information security can be applied to assure the 
integrity and privacy of the bitstream.  These methods are well-
understood and tested.  This section describes methods that have 
been deployed in FPGAs in sensitive systems.   
In this discussion, it is assumed that an adversary has physical 
access to the FPGA.  If the adversary does not have physical 
access to the FPGA, the problem of FPGA security becomes the 
solved problem of message authentication and privacy [12] and 
we can stop now.  If the adversary has physical access to the 
FPGA, denial-of-service attacks on the configuration are 
irrelevant: a trivial denial-of-service method would be to 
physically damage the device. Of more concern are unauthorized 
copy of a design, theft of the design and reverse-engineering. 

4.1 Reliance on Bitstream Encoding 
FPGA manufacturers do not typically release the coding of their 
bitstream, though they do give a considerable amount of 
information about the bitstream in tools and in various documents 
[2].  Despite the availability of this information, there is no report 
of successful reverse-engineering of an FPGA bitstream.  In 
particular, contrary to one report [5], in the 1990s, according to 
the principals involved, the NeoCad company reverse-engineered 
Xilinx’s bitstream generation software, not the bitstream itself [4].  
Recognizing the complexity of the reverse-engineering task, most 
FPGA users, like computer programmers, disregard the risk of 
design theft by reverse-engineering. Of course, both groups suffer 
from design piracy.   
FPGA vendors promote simple, low-cost anti-piracy solutions that 
may use external devices [6][9].  These solutions increase the 
difficulty of copying the design but still rely on the difficulty of 
reverse-engineering the bitstream for their security. These 
solutions are often considered strong enough for commercial 
applications, but for security-conscious applications, reliance on 
the tedium and complexity of bitstream reverse-engineering seems 
risky. 

4.2 Load-Once 
A simple method to secure the FPGA bitstream is to program the 
FPGA once at a secure facility, and retain power to the device 
constantly in the field [10].  Since all programmable logic devices 
have privacy settings to prevent readback of the program, and 
since the bitstream is never exposed outside the device, this 
method assures that the bitstream running inside the FPGA is both 
secure and un-modified.  This is precisely the same level of 
security achieved by anti-fuse and other non-volatile FPGAs. The 

drawback of this method is, of course, the requirement that the 
system be powered constantly. 

4.3 Bitstream Encryption 
In 2001, Xilinx introduced bitstream encryption in Virtex-II 
devices [8][7][11].  Since that time, many FPGA vendors have 
added the capability to their high-end devices. Although it thwarts 
reverse-engineering, the goal of bitstream encryption is primarily 
to prevent unauthorized copy. Large FPGA designs can contain 
significant intellectual property, and bitstream encryption prevents 
a competitor from simply copying that intellectual property. The 
feature also can provide trust assurance by limiting access to the 
FPGA only to designs constructed with the proper key.   
The security implementation and protocols are critical to the 
security of the design in the FGPA.  This section describes the 
security protocols used in the Virtex family of FPGA. 
Virtex FPGAs have a dedicated on-chip decryptor and dedicated 
key storage memory.  The FPGA bitstream contains unencrypted 
commands for startup and encrypted configuration data [2]. 
Internal logic in the FPGA restricts access to configuration and 
key data when bitstream encryption is used in order to eliminate 
potential security problems.  Some of the restrictions are: 

• When loading an encrypted bitstream, only a single, 
full-chip configuration is permitted.  Configuration must 
start at frame 0.  Partial configuration and re-
configuration are disabled. To re-program, one must 
shut down the power or issue the JTAG JPROGRAM 
command, to clear all configuration and data. 

• After loading an encrypted bitstream, readback is 
disabled.  This is not a bitstream option, but part of the 
configuration control. 

• An attempt read or write the key data clears all keys and 
all configuration data. 

• The decrypted bitstream must pass data integrity checks 
before it starts operating. 

• The decryptor is not available for encrypting or 
decrypting user’s data after configuration 

The security restrictions limit the usable modes of the FPGA, but 
also eliminate simple attacks on the bitstream.  As a result, an 
adversary may instead attempt to steal a key from the FPGA.  The 
Virtex keys are stored in battery-backed RAM, which vanish 
when power is cut.  To steal the key, an adversary would need to 
de-cap the FPGA and mill away many levels of metal, then scan 
the bits with a SEM.  This attack must be performed while 
keeping clean power to the key memory.  This is the type of attack 
required to extract the entire configuration directly from the 
FPGA SRAM cells, so no bitstream encryption method is 
qualitatively stronger. This attack is considered to be beyond the 
capabilities of most adversaries. 

4.4 Checking Designs in the Field 
Virtex-4 devices introduced the Internal Configuration Access 
Port (ICAP) (figure 2).  ICAP permits logic inside the FPGA to 
read and write its own bitstream enabling self-reconfiguration for 
programming and self-test.  Potential applications include 
bitstream decompression, authentication and decryption of 
bitstreams with a custom encryption algorithm. 
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Jones [1] describes the SEU Controller, an application in which 
the FPGA reads its own bitstream internally to check and correct 
configuration errors.  The SEU Controller is intended to detect 
and correct errors in a high-reliability environment, but it can be 
used to detect tampering with the FPGA in the field. 

5. SECURING THE BASE ARRAY 
In the FPGA flow, the FPGA base array is still manufactured 
using a standard IC manufacturing flow, and is still subject to 
attacks during manufacture.  Since the sensitive design is not 
present during manufacture, it cannot be stolen.  However, an 
adversary may attempt to tamper with the base array in a way that 
will affect the final design after it is loaded into the FPGA.  An 
adversary cannot directly attack the actual design, because he 
doesn’t know where to insert malicious logic, so the attack is a 
probabilistic one, attempting to improve the chances that the 
configured design will be affected by the change. 
A designer can use clever design to make the adversary’s problem 
arbitrarily difficult with arbitrarily low probability of success.  For 
example, a designer may implement critical parts of the design 
with triple modular redundancy (TMR).  Since each part is placed 
in a different part of the FPGA, an adversary would need to 
construct a modification of the base array that would affect two of 
the three modules implemented in FPGA fabric in the same way. 
A potentially more-fruitful attack would be to attack the FPGA’s 
security features, with the expectation that the weakness in the 
FPGAs security can be exploited by the system in the field.  
Defeating this potential attack requires that the bitstream security 
functions be fully verified.  This may sound difficult, but the 
bitstream security functions comprise a very small fraction of the 
overall device, so that verification task is much simpler than the 
task of verifying an entire chip.  Further, since a single trusted 
FPGA base array can be used for any number of trusted designs, 
the cost of verification of a single FPGA base array can be 
amortized over all trusted designs built on that base array.   
COTS FPGAs have further advantages in manufacturing.  Since 
an adversary doesn’t know which devices to attack, potential 
tampering affects all FPGAs. Most FPGAs are used in 

commercial applications, so there are thousands of non-secure 
uses that could potentially expose the tampering.  IC 
manufacturers are fastidious about the quality of their product.  
Any returned devices are carefully inspected for defects.  
Deliberate tampering could be detected in returned commercial 
devices. 
In addition, since the manufacturing volume of FPGAs is large, 
large numbers of commercial FPGAs can be (destructively) tested 
to search for inserted logic or environmental sensitivities.  Again, 
the cost of this testing can be amortized over all designs that use 
the same base array. 

6. DETECTING TAMPERING IN TOOLS 
Thompson [3] gives an insightful description of the subtlety with 
which an expert can tamper with tools.  As Thompson showed, an 
adversary could add additional functionality to expose sensitive 
information, or provide unauthorized access to stored data. A tool 
that modifies or eliminates intended functionality will be detected 
by testing.  But, classical testing only verifies the presence of 
wanted logic.  It does not verify the absence of unwanted logic.   
In order to properly close the loop on tools and manufacturing, 
one must formally compare the manufactured design to the 
original.  In an ASIC model, this can be done by reverse-
engineering the manufactured design: de-capping the part, and 
repeatedly photographing the die and stripping away layers until 
all the physical layers are reproduced. Then one extracts the 
transistor network from the physical layout and performs a 
network equivalence check of the extracted network against the 
original design. Many die can be analyzed to gain (statistical) 
assurance that the remainder can also be trusted. Not only is this 
process time-consuming, but the process is necessarily 
destructive.  There is no guarantee that the fielded system is 
identical to the tested one. 
In contrast, FPGA designs can be checked non-destructively, so 
equivalence between the implemented design and the original 
design guarantees correctness of the operating design.  This check 
is also relatively simple and quick.  The FPGA design system 
retains logical information through physical design, so the final 
implementation can be compared to the original design 
specification without complex reverse-engineering.  Layout-
versus-schematic (LVS) comparison tools compare two netlists, 
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and are commonly used to compare a schematic with an extracted 
manually-generated layout.  LVS tools not only identify missing 
logic, but also identify added logic and added connections that 
would be expected from a clever adversary.  They can be 
employed to compare the original design to the implemented 
FPGA design to identify unwanted logic added by tools or 
libraries. 

7. Conclusion 
The FPGA design and implementation flow allows us to separate 
the manufacturing process from the design process.  In the FPGA 
flow, the sensitive design is not exposed to theft and tampering 
through the manufacturing process. Only the base array must be 
verified through manufacture.  That verification can be 
significantly simplified because the adversary does not know the 
design to attack.  Systemic advantages also accrue from the broad 
commercial uses of the same base array that may be deployed in 
sensitive applications.  FPGA flows permit non-destructive 
detection of tampering inserted by tools. The security of the 
FPGA design during deployment is assured by an application of 
well-known information-security methods.   
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