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Methods for Securing the Integrity of FPGA Configurations

James Braxton Webb

(ABSTRACT)

As Field Programmable Gate Arrays (FPGAs) continue to become integral parts of em-

bedded systems, it is imperative to consider their security. While much of the research in this

field is oriented toward the protection of the intellectual property contained in the FPGA’s

configuration, the protection of the design’s integrity from malicious attack against the con-

figuration is critical to the operation of the system. Methods for attacking the configuration

are semi-invasive attacks, such as fault injection, and data tampering of incoming partial

bitstreams.

This thesis introduces methods for securing the integrity of an FPGA’s configuration.

The design and implementation is discussed for a system that consists of three parts. The

first subsystem monitors the running configuration. The second subsystem authenticates

partial bistreams that may be used for repairing the configuration from malicious alterations

during run-time. The third subsystem indicates if the system itself succumbs to a malicious

attack. The system is implemented on-chip, allowing the FPGA to effectively secure itself

from attack.
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Chapter 1

Introduction

1.1 Motivation

Since the introduction of the first Field Programmable Gate Arrays (FPGAs) in the 1980s,

the use of FPGAs has expanded from implementing only glue logic to the implementation

of entire System-on-Chip (SoC) designs. As a result, FPGAs have become integral parts of

embedded systems for both research and commercial products. Consequently, the security

of the FPGA is critical to the systems that use them.

The majority of research in this field has focused on the issues of mapping various well

known algorithms to reconfigurable hardware [1,2,3], device technology [4,5], reconfigurable

advantages [6,7,8,9], hardware-software co-design [10,11,12], compilation [13,14], and simu-

lation and debugging [15,16]. Research regarding FPGA security, however, has only recently

been of interest. It has primarily focused on the use of FPGAs for software security [17]

or protecting the intellectual property contained in a device’s configuration, rather than the

security and integrity of the system itself [18,19,20,21,22,23]. Furthermore, vendors assume

that by keeping the architectural details and the format of the configuration data of their

devices proprietary, the design contained in the configuration data is secure [24]. Research

1
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has shown that properties of FPGAs can be exploited and that neither the implemented

system nor intellectual property is protected by proprietary-based obscurity [20,25,26].

1.2 Contribution

Presented in this thesis are methods for securing the integrity of the running configuration of

FPGAs. To accomplish this, a system consisting of three parts is designed and implemented.

Each subsystem is created to run on-chip in user logic.

The first subsystem monitors the FPGA’s configuration. This subsystem detects if the

configuration is altered by an attacker. Also presented are attacks that threaten the con-

figuration as well as techniques an attacker may use. The second subsystem is a partial

bitstream authenticator that verifies that an incoming partial is from a trusted source and

has not been altered. The partial bitstreams may be reconfiguring the FPGA for another

functionality or repairing the configuration from malicious alterations detected by the config-

uration integrity checker. The third subsystem is a challenge-response protocol that allows

an entity external to the FPGA to verify that the security system has not been compromised.

All of the subsystems achieve their aspect of protection using schemes that involve a hash

function.

The security system is tested using simulations of the attacks that it aims to defend

against. Also presented is an analysis of how these attacks may compromise the system.

Additionally, the feasibility of the implemented system based on its size and speed of oper-

ation is provided.

1.3 Thesis Organization

This thesis is organized into six major chapters. Chapter 1 presents the motivation and con-

tributions of this work. Chapter 2 discusses background information and related published
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work focusing on the areas of dynamic partial reconfiguration, bitstream manipulation, and

FPGA security. Design considerations that were made before the implementation of the

proposed systems are covered in Chapter 3. Chapter 4 describes the implementation details

of the configuration integrity checker, partial authenticator, and challenge-response proto-

col. Results, such as device utilization, timing analysis, operation verification, and post

implementation security analysis are given in Chapter 5. Finally, Chapter 6 summarizes the

research performed and discusses future work.



Chapter 2

Literature Review

This chapter covers background topics and related work that pertain to this thesis. It

begins with a general discussion of FPGAs, and follows with dynamic partial reconfiguration,

bitstream manipulation, and related security issues.

2.1 FPGAs

FPGAs are semiconductor devices containing both programmable logic and programmable

interconnects. Unlike ASIC (Application Specific Integrated Circuit) devices, an FPGA’s

function is not known at the time of manufacturing. Furthermore, the function defined by

the FPGA’s configuration can be changed as many times as desired. Though generally slower

than ASICs because of their reconfigurability, FPGAs have several advantages including

shorter time to market, reusability, rapid prototyping and debugging on the target hardware,

and in-field updates [27]. Moreover, FPGAs offer the advantages of dynamic and partial

reconfiguration [28].

4
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2.2 Dynamic Partial Reconfiguration

Reconfiguration can be divided into two sub-categories, static and dynamic [29]. Static

reconfiguration implies that a device is configured once at the outset, after which it does

not change during the execution of the task at hand. Dynamic reconfiguration allows the

device’s configuration to change at any moment, enabling the device to adapt within changing

environments. Furthermore, dynamic partial reconfiguration allows for only a portion of

the configuration to change. Recent applications such as [30] demonstrate that dynamic

partial reconfiguration offers the advantage of reduced silicon utilization by allowing the

device to only be configured with the appropriate functionality for the current conditions.

Two other areas of interest made possible by dynamic partial reconfiguration are evolvable

hardware [31,32] and fault-tolerance [33].

The following sections develop the concept of dynamic partial reconfiguration in stages.

First discussed are the advantages run-time reconfiguration provides. The second section

addresses partial reconfiguration and its difficulties. The final section introduces the concept

of self-reconfigurability.

2.2.1 Run-time reconfiguration Advantages

Run-time reconfiguration (RTR) is the process of reconfiguring the FPGA while it is oper-

ating. The main advantage RTR offers is the ability to reduce both software and hardware

complexity. An example is given in [8] in which a hardware-software interface is optimized

using RTR. Software drivers interfacing with register-level hardware are replaced with only

static registers in the hardware whose values are altered by reconfiguring the device. Also

discussed is the possibility of folding the register values into the design and optimizing the

hardware for the given value of the registers. In [8], it is demonstrated that run-time re-

configuration can remove the software-hardware interface as well as reduce the amount of

silicon needed to implement the design. This methodology can be further expanded to large
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SoC designs, in which entire systems are replaced during operation using run-time reconfig-

uration.

2.2.2 Partial Reconfiguration

Partial reconfiguration further promotes optimization by offering the ability to modify only

a portion of the design. By altering distinct parts of the design, a system implemented on an

FPGA can have sections still operating while others are being replaced; however, achieving

this functionality has proven to be complex, as partial reconfiguration is a difficult task [34].

Since the 1990s, partial reconfiguration has been of interest to researchers who have

demonstrated its usefulness [6, 7, 9]. Early systems such as the JERC [35] utilize the recon-

figurable array of logic cells available on the Xilinx 6200 series devices [4]. These devices

allow each logic cell to be individually accessed much like normal computer memory. Un-

fortunately, the overhead associated with this type of device does not allow for the FPGAs

to have large configuration densities. The Xilinx Virtex series of FPGAs supports partial

reconfiguration and provides sufficient capacity for implementing or prototyping complete

configurable systems [36]. Unlike the 6200 series, the smallest addressable unit on the Virtex

FPGAs is a frame. Each frame may contain configurable logic blocks (CLBs), input-output

blocks (IOBs), block RAMs (BRAMs), clock resources, programmable routing, and config-

uration circuitry [37]. The FPGAs are configured using a bitstream that contains the data

for each frame. Partial reconfiguration requires the creation of partial bitstreams that work

with the frame-based architecture.

Several contributions have been made toward refining the procedure of partial bitstream

creation. In the application of JRTR [38], a host computer controls the reconfiguration pro-

cess. The configuration is altered in a Java application, which ultimately uses JBits [39] to

manipulate the original configuration bitstream and create a partial bitstream. Due to the

low-level at which JBits operates, other solutions have been developed that provide abstrac-

tion for the designer. In the implementation of Dynamic Hardware Plugins (DHP) [40], the
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PARBIT tool [34] is used to alter the configuration. Though still operating at the bitstream

level, the PARBIT tool extracts the configuration bits related to an area defined by the user

in order to create the partial bitstream. This allows the user to define the configuration

changes at a higher level of abstraction.

Further experimentation has been conducted so that the designer may create partial

bitstreams at the modular level. Designs specified behaviorally–by functionality as opposed

to a specific hardware structure–are often broken up into modules. Each module can describe

various functioning segments of the design. Partial creation at the modular level often allows

for modules to be specified as static or dynamic. The compilation tools in [13] evaluate a

design and distinguish reconfigurable regions. The regions are identified when two or more

modules drive the same output. The tools not only provide partial bitstream development

at the modular level, but also work toward making it an automated process.

Xilinx has also increased its software tool support for partial reconfiguration. Xilinx offers

two partial reconfiguration flows as part of their build sequence [41]. The module-based flow

is more applicable when large blocks are to be reconfigured. It allows for modules to be

constrained to specific areas of an FPGA. The specific area can be partially reconfigured,

effectively changing the functionality of the constrained module. This also allows a designer

to know what functionality is being manipulated when reading back or modifying a particular

section of the design. Mastering module-based flows is an area of current research, as recent

works [42,43] have sought new ways of simplifying the process.

The second flow, the difference based flow, allows a designer to make small changes to

the design, usually in FPGA Editor [44], and generate a partial bitstream based on the

differences between the two designs [45]. In this thesis, this method is used to create the

partial bitstreams that test the system by simulating a fault injection attack. This method is

preferred in this thesis because the small changes resemble the bit manipulations an attacker

might make to the currently running functionality rather than completely loading a new

functionality as is usually done in module-based partial reconfiguration.
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2.2.3 Self-Reconfiguration

The manner in which an FPGA is configured with a partial bitstream is another important

area of research. Oftentimes, configuration is done off-chip using a host processor. As

dynamic partial reconfiguration becomes more feasible for real world applications, area and

cost factors make the dependency on a host computer an unattractive consideration. Self-

reconfiguration allows configuration control protocols to be implemented in user logic. This

enables a module that determines what configuration should be implemented as well as the

configuration controller to be within an FPGA; it allows the device to be in control of its

own functionality.

An application of partial self-reconfiguration is developed in [46]. A Xilinx Virtex-II

FPGA is reconfigured through the Internal Configuration Access Port (ICAP) using bit-

streams stored in the FPGA’s Block RAM (BRAM). The implementation demonstrates

many benefits of self-reconfiguration, including flexibility in both configuration methods and

media sources as well as security considerations. Partial self-reconfiguration could be used

to help an FPGA defend itself from malicious attacks. The system presented in this thesis

will be running on the FPGA that is susceptible to attack. Should the FPGA configu-

ration become corrupted, the system will detect the alteration and the FPGA itself will

know that it has been compromised. As will be discussed in Section 5.5, the system could

also request partial bitstreams to reconfigure and repair the altered area. Partial run-time

self-reconfiguration can allow the system to defend itself in the event of an attack.

2.3 Bitstream Manipulation

As described earlier, bitstream manipulation can be used for partial bistream generation.

Due to its tedious nature, the usefulness of bitstream manipulation compared to other meth-

ods of partial bitstream creation may be questioned; however, its low-level access can be

appealing because the regular tool chain may be bypassed entirely, allowing for faster gen-
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eration of partial bitstreams.

Mentioned previously, JBits [39] is one of the better known bitstream manipulation tools.

It is a set of Java classes that provide an Application Programming Interface (API) to

manipulate Xilinx configuration bitstreams. JBits can be used to quickly alter details as

minute as look-up table (LUT) contents. Its features can also be used to check the state

of elements using configurations readback from the FPGA. Additionally, other applications

such as REPLICA [47] have found different and sometimes quicker methods. REPLICA is

an extension of PARBIT [34]. Acting like a filter, it reduces the overhead of PARBIT by

allocating the bits for a dynamic area while programming the target FPGA.

Knowledge of the configuration at the bit-level is also important for security considera-

tions. As will be discussed in the Section 2.4, certain attacks and thus their corresponding

protection strategies can utilize bit manipulation of the configuration. Unfortunately, de-

signing a system that will use bitstream manipulation is difficult. The challenges arise from

a lack of information about the structure of the bitstream. In order to protect intellectual

property and to hypothetically enhance configuration security, FPGA manufacturers are

reluctant to release information pertaining to the architecture of the bitstream.

The necessity of this information is shown by the Alternate Wire Database (ADB) [48] tool

in which Xilinx proprietary files, as well as information from JBits, are required. ADB is an

application that can interface with JBits to provide routing, unrouting, and tracing services.

Its wiring services are helpful when exhaustive wiring support is needed [48]. Though some

details needed to do such a task can be derived from Xilinx’s documentation on the Virtex

Series Configuration Architecture [37], this information is primarily intended for reading

and manipulating BRAM and LUT contents and is therefore insufficient for general logic

and routing configuration [27]. Furthermore, information pertaining to or applications using

bitstream manipulation have not targeted newer families such as the Virtex-4 and Virtex-5.
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2.4 FPGA Security

It is imperative to consider FPGA security as FPGAs continue to become integral parts of

embedded systems [25]. To ensure security, system components and their interaction with

the FPGA must be examined [25]. This thesis, however, focuses on the security aspects

of FPGA devices themselves. The following sections cover types of attacks on FPGAs and

corresponding protection mechanisms. First introduced are some classifications that can be

used to evaluate FPGA security systems.

2.4.1 Security Classifications

Before developing methods to protect a system, the objective of an attacker must be known.

When attempting to gain access to the design implemented on an FPGA the objective of an

attacker is most likely one of the following.

• The attacker is attempting to clone the design. Cloning allows the attacker to make

an exact copy of the design.

• The attacker is attempting to reverse-engineer the design. An attacker reverse-engineers

a design by reconstructing a “schematic” representation. In this process, the attacker

understands how the design works and how to improve it or modify it with malicious

intent.

• The attacker is attempting to alter the functionality of the design. The attacker does

not aim to steal the design and implement it on another FPGA. Instead, the attacker

wants to alter the design so that it has a different functionlity on the FPGA that it is

currently running.

Furthermore, the level of an attacker’s expertise should also be considered. Researchers at

IBM [49] categorize attackers into three levels, depending on their expected skill and attack

strength.
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Clever outsider – These attackers are often very intelligent, but may have limited knowl-

edge of the system. They may have access to only moderately sophisticated equipment.

They often try to take advantage of an existing weakness in the system, rather than

try to create one.

Knowledgeable insiders – These attackers have substantial specialized technical educa-

tion and experience. They have varying degrees of understanding for different parts

of the system, but potential access to most of it. They often have access to highly

sophisticated tools and instruments for analysis.

Funded organizations – These attackers are able to assemble teams of specialists with

related and complementary skills, backed by great funding resources. They are capable

of performing an in-depth analysis of the system, designing sophisticated attacks, and

using the most sophisticated analysis tools.

Security levels are also described. Divided into six stages, the security definitions rank the

strength of an attack required to overcome a given security implementation.

ZERO – No special security features are added to the system.

LOW – Some security features are in place. They are relatively easily defeated with com-

mon laboratory or shop tools such as pliers, soldering iron, or small microscope.

MODL – More expensive tools are required, as well as some special skills and knowledge.

MOD – Special tools and equipment are required, as well as some special skill and knowl-

edge. The tools and equipment can be much more expensive than for MODL. The

attack may become time-consuming, but will eventually be successful.

MODH – Equipment is required, but is expensive to buy and operate. Equipment will

more than likely be much more expensive than that required for MOD. Special skills

and knowledge are required to utilize the equipment. More than one operation may be
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required so that several adversaries with complementary skills would have to work on

the attack sequence. The attack could be unsuccessful.

HIGH – All known attacks have been unsuccessful. Some research by a team of specialists

is necessary. Highly specialized equipment is necessary, some of which might have to

be designed and built. Total costs of the attack could be in the millions of dollars.

The success of the attack is uncertain.

Using the above information, the strength of a security system created to protect an FPGA’s

design can be classified; however, the true level of security can only be determined through

testing.

2.4.2 Attacks and Protection

FPGA attacks can be split into three categories: non-invasive, invasive, and semi-invasive [26].

Each category is discussed in this section. Also provided are some example attacks, protec-

tion methods against such attacks, and published works relating to the attacks and preven-

tions.

Non-Invasive Attacks

Non-invasive attacks do not physically harm the FPGA. Using external means, the design

can be cloned or reverse-engineered by the attacker.

Blackbox Attack

Using the blackbox attack, the attacker inputs all possible combinations and records the

corresponding output. The attacker is then able to re-create the FPGA design using the

gathered data. The growing complexity of FPGA designs renders this attack infeasible in

modern applications [25].

Bitstream Interception or Readback Attack
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In this attack, the configuration is either stolen during its transmission to the FPGA or

during an external readback of the configuration. Then, the attacker has the ability to

program his or her own FPGA or create a schematic of the design using the bitstream. To

protect against the configuration being stolen through readback, many FPGAs allow for

readback to be disabled. External configuration on the otherhand is often a necessity. A

common solution is encryption of the configuration bitstream.

Xilinx offers bitstream encryption based on a triple DES scheme for its Virtex-II and

Virtex-II Pro [50,51] devices, and an AES scheme for its Virtex-4 and Virtex-5 [52,53] devices.

The Xilinx bitstream encryption scheme is effective because without the correct encryption

key it is not possible to configure other FPGAs with the encrypted bitstreams; however,

when using Xilinx’s bitstream encryption, neither partial reconfiguration nor readback is

permitted on the Virtex-II, Virtex-II Pro, or Virtex-4 LX/SX/FX12 devices. Moreover,

these operations can only be performed internally, via ICAP, on the Virtex-4 FX20-FX140

or Virtex-5 devices. Yet another limitation is that the key is stored in internal, dedicated

RAM, which requires a supply battery.

To overcome these limitations, other methods have been proposed and implemented. One

method uses a key that is laser cut into the die [21]. During the first configuration, bitstreams

would pass through the FPGA where they would be encrypted and then loaded into external

memory. Then, the FPGA would simply decrypt the bitstream during normal programing

operations. The use of the laser cut key would obviate the need for a battery backup.

Moreover, this methodology removes the encryption process from the tool flow.

The method proposed in [21] still requires encryption and decryption circuits in the hard-

ware, which increases the required FPGA silicon area. To eliminate these hardware require-

ments, a solution that uses dynamic configuration is proposed in [22]. First, the FPGA is

configured with the necessary encryption circuitry and the bitstream is encrypted using the

FPGA. Then the encrypted bitstream is loaded into external memory and the encryption

circuitry is removed. Also loaded into external memory is the necessary decryption circuitry.
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When the FPGA needs to be reconfigured, it is first loaded with the decryption circuitry,

then decrypts the encrypted bitstream and reconfigures itself accordingly. This method still

relies on a key inside the FPGA, and thus a laser cut key or a key stored in battery powered

RAM would have to be used. Due to the encryption and decryption circuitry not being

static, this method also allows for different encryption methods for different parts of the

configuration. The method in [22] was implemented in [23] for partial reconfiguration. In

this implementation, an on-chip processor connected to the ICAP was used to load the cor-

rect decryption circuitry, decrypt a partial bitstream, and partially reconfigure the housing

FPGA.

In the scope of this thesis, the integrity of a partial bitstream during the configuration of

the FPGA is of interest. A man-in-the-middle attack in which the partial bitstream is not

stolen, but altered on the way to configure the device, is possible. The encryption methods

described in this section protect configuration confidentiality, but do not necessarily protect

the configuration’s integrity as malicious alteration could occur during the transmission.

Side-Channel Attacks

The physical nature of FPGAs might provide a side-channel that leaks information. Ex-

amples of side-channels include power consumption, timing behavior, and electromagnetic

radiation [25]. Power analysis has proven to be a practical threat [54]. Proposed counter

measures include hardware alterations, such as noise addition, and software alterations, such

as design obfuscation. In this thesis, side-channel attacks could allow an attacker to gain

knowledge of the protected design and security system. Such knowledge would allow the

attacker to develop a more effective attack.

Invasive Attacks

Invasive attacks physically damage the FPGA. They require opening the device to have

access to the underlying hardware. Normally, invasive attacks are used as an initial step to
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understand the chip functionality and then develop cheaper and faster non-invasive attacks.

This attack is often expensive and difficult because it takes advanced measures due to FPGA

complexity [25,26]. As these attacks leave the FPGA inoperative, they are not discussed in

detail in this thesis.

Semi-Invasive Attacks

A newer group of attacks called semi-invasive attacks have recently been classified [26]. Like

invasive attacks, semi-invasive attacks require access to the FPGA’s surface; however, the

FPGA will remain functional after the attack. Furthermore, unlike invasive attacks, semi-

invasive attacks do not require expensive equipment or a lot of expertise to perform. Two

prominent methods of attack in this category are active photon probing and fault injection.

Active Photon Probing

Semiconductor transistors are sensitive to ionizing radition. In active photon probing, a

scanned photon beam interacts with an integrated ciurcuit (IC). Using instruments such as

laser scanning microsopes, the state of transitors in an IC can be read. In light-induced

voltage alteration (LIVA), a laser is scanned across an FPGA’s surface while the voltage

changes of the power supply are observed [26]. From these observations images can be

created that illustrate the structure of the chip. Furthermore, by aiming the laser beam at a

specific transitor, it is possible to distinguish between two different memory states. In [26],

it is demonstrated that the state of SRAM cells can be observed. If the top portion contains

more voltage, then the cell is in a ‘1’ state. If the bottom portion contains more voltage,

then the cell is in a ‘0’ state. Active photon probing can allow an attacker to gain knowledge

of the design implemented on the FPGA.

Fault Injection

Also demonstrated in [26], SRAM cell alteration is possible. Fault injection can be used to

modify the contents of SRAM and change the state of any transistor inside the chip. In [26],
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fault injection is accomplished using both an inexpensive photoflash lamp and a laser pointer.

The attack could control whether or not an SRAM cell was a ‘0’ or a ‘1’. Fault injection can

allow an attacker to maliciously alter an FPGA’s configuration at the bit-level.

Research has been conducted to protect against faults caused by naturally occurring

radiation. Such bit upsets, referred to as single-event upsets (SEUs), are often a concern in

space applications due to the radiation present in low-earth orbit [55]. In [56] the capabilities

of dynamic reconfiguration are used to compensate for SEUs. In the application, readback

was used to constantly compute a cyclic redundancy check (CRC) for each frame in the

FPGA. If an SEU occurred, the CRC for the frame in which the upset corresponds would

have a different CRC result. The system then partially reconfigured the device to correct

the altered frame. Xilinx offers its own SEU detection and correction device [57]. Operating

similarly to the implementation in [56], the device will detect and notify user logic if an

SEU occurs. If operating in correction mode, the device can correct SEUs; however, if a

multiple-event upset occurs, the device cannot correct the configuration.

Nevertheless, these methodologies are not meant to protect against fault injection at-

tacks that aim to maliciously alter an FPGA’s configuration. As described in Section 2.3,

such attacks seems difficult because they require knowledge of bitstream composition as well

as SRAM cell layout; however, it is possible to deduce the architectural details necessary

for constructing a malicious configuration without knowledge of any proprietary informa-

tion [20]. A discussion in [20] explains that by exploiting the ability to alter the SRAM cells

of an FPGA and observe the power consumption changes, an attacker can alter the logic

enough to cause unpredictable behavior in the implemented design.



Chapter 3

Design Considerations

As described in the motivation of this thesis, the focus of this work lies in ensuring the

integrity of the FPGA’s running configuration and achieving this protection on-chip. First

discussed in this chapter are assumptions of the security system and possible attacks in

this problem space. Also provided is a classification of attackers given the types of attacks

possible. Finally, a design of the security system is outlined.

3.1 Security Assumptions and Types of Attacks

Before a design of the security system can be proposed, it is important to consider assump-

tions of the system and the types of potential attacks the system aims to protect against.

There are two assumptions that further clarify the security claims of the system described in

this thesis. These assumptions hold true throughout the design and implementation of the

system. The first assumption is that design privacy is not of concern. The security system

presented is only intended to protect configuration integrity and not configuration privacy.

If privacy needs to be assured, then other methods could be used in conjunction with this

application. The second assumption is that only static configuration data will be protected.

17
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Dynamic data, such as the state of flip-flops or BRAM, will not be protected by this system.

The static portion pertains to aspects of the configuration that are set at build time and do

not change during operation.

The objective of the security system described in this thesis is to protect a running FPGA

configuration as well as reconfigured versions of it. Many of the attacks discussed in Section

2.4.2 intend to clone or reverse-engineer the design implemented on an FPGA, but do not

attempt to alter it. The primary attacks that this security system aims to protect against

are the following:

1. Fault injection: The attacker is able to physically set or clear the state of a bit or bits

of the configuration using a device. As outlined in Section 2.4.2, an attacker could use

a photoflash lamp or a laser pointer to alter the SRAM cells of the FPGA.

2. Partial tampering: The attacker can send a partial bitstream or alter an incoming

partial bitstream to change the configuration. An attacker can achieve this attack by

first observing on which pins of the FPGA partial bitstreams are transferred and then

connecting stimuli to these pins to enter a partial bitstream.

Despite the fact that other attacks might not alter the configuration, they still could aid

an attacker in developing an effective attack. If the attacker cannot observe the state of the

bits of the configuration, then the attacker has no knowledge of what bits to alter. From

Section 2.4.2, some examples of attacks that could aid an attacker in gaining knowledge of

the design are the following:

1. Side-channel attacks: A side-channel attack, such as power analysis, could allow an

attacker to determine what parts of the FPGA are functioning.

2. Active Photon Probing: Semi-invasive observation, such as LIVA, could allow an at-

tacker to view the state of bits on the FPGA. If used in conjunction with a fault

injection attack, the attacker could observe the state of any bit on the FPGA before

and after an alteration.
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3. External pin monitoring: By connecting a logic analyzer to the pins that transfer a

partial bitstream to the FPGA, an attacker could build a database of configuration

information and piece together the design. If the system were to utilize run-time repair,

as will be discussed in Section 5.5, and the attacker is using fault injection, the attacker

could capture every bit of configuration data by storing the partial bitstreams sent to

repair the altered area. The attacker would then have complete knowledge of the design

at the bit-level.

3.2 Attacker Classification

The following attacker classification is focused on the first attack, fault injection. The

second type of attack, partial bitstream tampering, would be an attempt to bypass basic

cryptographic authentication schemes and will be discussed in Section 3.3.

The capability of an attacker attempting fault injection can be divided into categories

based upon two criteria. Each criterion can be further broken down into ability levels.

1. Observation Capability

None The attacker does not have enough observation ability to gain knowledge of

functioning areas or the design at the bit-level.

Unfocused The attacker has enough observation ability to gain knowledge of areas

that contain functional aspects of the design, but not the design at the bit-level.

Such observation ability could come from a power analysis attack.

Specific The attacker has enough observation ability to gain knowledge of the de-

sign at the bit-level. Examples attacks are active photon probing or monitoring

incoming partial bitstreams.

2. Attack Capability
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Weak The attacker can only alter bits of configuration data at random. The attacker

might be using a photoflash lamp to achieve fault injection, but cannot focus the

lamp at specific bits or even a specific area of the FPGA.

Medium The attacker can alter bits in a specific area, but not specific bits. The

attacker might be using a photoflash lamp with only enough focus to target a

specific area or a laser with a control mechanism that cannot accurately pinpoint

locations as small as an SRAM cell.

Strong The attacker can alter any desired bit. The attacker might be using a focused

photoflash lamp or a laser pointer, both of which would have a precision control

mechanism.

Based on these two criteria, an attacker can be classified in a 3x3 matrix that is shown in

Table 3.1.

Table 3.1: An attack matrix indicating the observation and attack capability of an attacker.

Light gray is the least effective attack and dark gray is the most effective attack.

The matrix entries, referred to as cases, fall into three classes that are defined as follows.

Class 1 The light gray entries indicate attacks that are the least threatening. For all cases

in the first column, the attacker’s observation capability does not matter, because the

attacker cannot control the placement of the attack. Thus, all cases in the first column
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have an identical chance of success. Attacks from the first column might be using a

photoflash lamp that cannot be directed to a specific bit. With strong observation

capability the attacker has gained knowledge of the entire design by collecting partial

bitstreams that have been sent to repair the alterations; however, because the attacker

cannot direct the attacks, the knowledge cannot be effectively used.

Similarly, all the attacks in the first row have an identical chance of success. In these

cases, the attacker has no ability to observe changes to the design or gain knowledge

of the design, so the attack capability is inconsequential. An attacker from the first

row might have a laser mounted on a base that can accurately pinpoint any SRAM

cell. Though the attacker can alter any bit, the lack of observation capability prevents

gaining any knowledge about the design and thus, the attacker does not know what

SRAM cells to target. All attacks that fall in Class 1 would manifest as random errors

in the design, similar to SEUs.

Class 2 The medium-gray entries indicate mid-strength attacks. In Case 5, the attacker

only has enough observation and attack capability to direct an attack to a function-

ing area and not specific bits. This attack would appear analogous to an SEU only

occurring in a specific region of the FPGA. The attacker might be using a photoflash

lamp that cannot focus to a specific bit, but is accurate enough to focus at a specific

area of SRAM cells. The attacker could also be using power analysis to gain knowl-

edge of which areas of the FPGA are functioning; however, the attacker is not able to

determine what these areas do.

In Case 6, the attacker has enough observation ability to eventually know the design

at the bit-level, but does not have the means to target specific bits. This attacker

could have the same photoflash lamp as Case 5, but has also gathered information

from partial bitstreams sent to repair the alterations and has reverse-engineered the

design. In Case 8, the attacker has the capability to target specific bits, but does not

have enough observation capability to learn which specific bits to target. The attacker
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could be using power analysis comparable to Case 5, but also has an accurate laser for

altering SRAM cells. Both Case 6 and Case 8 would only be as effective as Case 5.

Class 3 Class 3 is the most effective set of attacks. The only entry falling in this class is

Case 9. In this case, the attacker can change any bit desired and has enough observa-

tion capability to determine which bits should be targeted for an effective attack. The

attacker will most likely be using a precision laser on an accurate mechanical control

base, which allows the attacker to alter any desired SRAM cell on the FPGA. The

attacker has determined on which pins a partial bitstream is transfered and has con-

nected a logic analyzer to these pins. By attacking various SRAM cells on the FPGA,

the attacker has collected all partial bitstreams sent to repair the device. The attacker

has also learned which SRAM cells correspond to which frames of configuration data.

The design maybe reverse-engineered from the partial bitstreams, yielding knowledge

of both the protected design and the security system.

3.3 Proposed Design

A three part design is presented in this section. First presented is a configuration integrity

checker intended to protect the security of the running configuration. Discussed second is

a partial authenticator, which aims to ensure that incoming partial bitstreams have not

been altered. Third, a challenge-response protocol is developed that will signal whether the

system has been compromised. All three solutions are intended to be implemented on-chip

in user logic. This section concludes with a discussion of the keys needed for the partial

authenticator and challenge-response protocol.
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3.3.1 Configuration Integrity Checker

Configuration integrity is often checked after an FPGA has been fully configured. Readback

is performed external to the chip in order to verify that the configuration on the chip is what

was intended in the bitstream. To achieve this end, a comparison file and a corresponding

mask file are needed from BitGen [52]. The mask file determines whether a bit should be

ignored or not. Then, the masked bit is compared to the comparison file to check integrity.

Using this same method on chip would require storing these files, which would occupy

significant space. Furthermore, if the configuration were changed using a partial bitstream,

then a new mask file and comparison file would have to be provided. Nevertheless, readback

of the configuration is a necessity. The checker must monitor the configuration constantly

and to retrieve the configuration data, readback must be used. Because the files provided

by BitGen will not be used to observe changes in the configuration, it is proposed that the

design use a hash function. Hash functions output a digital “fingerprint” of their input,

which can be data of any size. The output, known as the hash value, should be different if

even a single bit is changed [58]. Thus, it is proposed that the configuration be read back

and sent through a hash function as shown in Figure 3.1. The input to the hash function

will be a window of length n that slides through the configuration at increments of n. The

length of n will have to be defined in the implementation as the chosen hash function may

be a determining factor.

If a malicious agent were to alter the configuration, as shown in Figure 3.2, the output

of the hash function would change after the window passes over the modified section. The

modification of even a bit of configuration data would change the hash function’s output1.

The checker will only monitor the CLB component of the configuration, which corresponds

to the static portion. As will be discussed in the implementation section, there is still some

1There is some chance that a collision would occur and the hash output actually does not change though
the configuration is altered. A collision occurs when two different messages have the same hash output. The
probability of a collision occurring depends on the hash function used. An analysis of collisions are discussed
in Chapter 5 for the hash function that is chosen in the implementation of this system.
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Figure 3.1: This figure illustrates the configuration integrity checker scanning the CLB

section of the configuration. The hash function has an input window of length n. The

output of the hash function is dependent upon the previous input and begins with an initial

value (IV).
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Figure 3.2: This figure illustrates a malicious alteration of the configuration changing the

output of the hash function as calculated in Figure 3.1
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dynamic configuration data spread throughout the CLB section, and this data will also have

to be ignored.

The checker could be configured to create an output for the entire CLB section as shown in

Figure 3.1. Another option is to have multiple hash values for different divisions of the CLB

section. These divisions should be based on frames because they are the smallest addressable

unit. The number of outputs and the division level, or checking granularity, can be chosen in

the implementation phase and is further discussed in Sections 4.2.5 and 5.5. The only design

dependencies resulting from this decision are that the number of outputs remain constant

and that after every computation, each output is compared with the corresponding original

value. Also, the checker does not have to monitor the entire CLB section. As long as the

chosen protected area remains constant, the checker can monitor any subsection of the CLB

data. If the checker does not protect the entire CLB section, the checker must be included

in whatever region is chosen to be protected. If the checker is outside the protected area, an

attacker can render it inoperable.

3.3.2 Partial Authenticator

The security system presented in this thesis is intended to protect the running configuration

of a design that may require partial reconfiguration in order to operate. As will be discussed

further in Section 5.5, partial reconfiguration could be used to repair the system should the

integrity checker encounter an error in the configuration. If partial reconfiguration occurs,

the running configuration will be altered. To ensure that these alterations are non-malicious,

a partial bitstream must be authenticated to have originated from a trusted source. Origin

authentication by definition includes data integrity. As stated in [58], data that has been

altered effectively has a new source. If no source can be determined, then the question of

alteration cannot be settled without a reference to the source. Thus, origin authentication

mechanisms implicitly provide data integrity, and vice versa.

Two common ways of ensuring data integrity are illustrated in Figures 3.3 and 3.4. The
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Figure 3.3: Data authentication using a hash function and an encryption algorithm

first method, Figure 3.3, involves the use of a hash function and an encryption scheme. Many

methods discussed in Chapter 2 utilize encryption of bitstreams, but encryption alone does

not guarantee data integrity [58]. Thus, to implement this scheme, both a decryption unit

and a hash function unit would be needed in hardware. The receiver of the message must

decrypt both the message and the attached hash value and then recompute the hash value

of the message to ensure that the message has not been altered. The encryption proves the

source of the message is trusted because knowledge of a secret key is required. The hash

function validates message integrity. Without the decryption key the hash value is unknown

because it is included in the encryption.

The second method, shown in Figure 3.4, only requires a hash function in implementation.

In this method, the message that must be authenticated is either prepended or appended

with a secret key. The only agents that would know the secret key are the trusted source

and receiver of the message. After being sent through the hash function, the secret key is

part of the resulting hash value. Even if a malicious third party knows the hash function

being used for authentication, without the secret key, the agent cannot claim to be a trusted

source of a message. In this case, the hash function validates the source of the message and

the message integrity.
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Figure 3.4: Data authentication using only a hash function

Due to privacy not being a concern in this system, as stated in the assumptions in Section

3.1, the second method is more appealing because only a hash function will be needed in

hardware. Furthermore, a hash function will be used to implement the configuration integrity

checker, as discussed in Section 3.3.1. If the two designs share a common hash function unit,

resource utilization will be reduced during implementation. The choice of the exact hash

function will be elaborated upon in Chapter 4. The checker could use error detecting hash

functions such as CRC if it only needed to defend against Class 1 or possibly Class 2 attacks.

Partial bitstreams in transit to the FPGA, however, are easily observable and alterable and

the use of an error detecting hash function would compromise the security of the partial

authenticator. Therefore, the use of a cryptographic hash function is proposed.

3.3.3 Challenge-Response Protocol

Should the security system become compromised in any way, there must be a method of

notifying external parties, i.e. entities outside of the FPGA. The system is compromised if

the integrity checker or partial authenticator ceases to operate correctly. Challenge-response

protocols require one entity, the claimant, to prove its identity to another entity, the ver-
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ifier [58]. This is done by having the claimant demonstrate knowledge of a secret that is

known only to itself and the verifier. Furthermore, the secret should not be revealed during

the protocol.

There are many ways of achieving challenge-response [58], but for this proposed system,

using the same hash function from the previous two sections would be optimal. It is proposed

that the system utilize the protocol illustrated in Figure 3.5. The protocol is based on keyed

(a) Transmission of random message to claimant (b) Transmission of hash value back to verifier

Figure 3.5: Challenge-response protocol using a hash function and a secret key.

hash functions, similar to the authentication device. The verifier transmits a message to

the claimant, which is the security system, and the system must reply with a hash of the

message appended with a secret key. In many challenge-response protocols, both entities

participating want to validate the identity of the other; however, in this system, the purpose

of the challenge-response is to simply indicate if the system is not working and thus, the

identity of the verifier is not of concern.

The maximum number of times the system should be queried is once for every run of

the configuration integrity checker. Querying more frequently than that would not not be

helpful as the system would not know if it had been compromised until the checker attempts

to monitor the configuration again. The minimum number of times would depend on the

desired confidence level of the system’s state of operation. It is proposed that the system

be queried the maximum number of times possible, which is once after every scan of the

configuration integrity checker.

The message for the challenge-response query should be random. This is so an attacker

cannot use a replay attack by storing the output for a set response and posing as the system.

Furthermore, to ensure that messages are not repeated, a time stamp should be included
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in the message. Lastly, because the challenge-response protocol will be queried no more

than once per scan of the checker, it should not be created to respond more often than this.

Thus, if an attacker does query the system, the verifier will know because the system will

not respond to the verifier’s query.

3.3.4 Partial Authenticator and Challenge-Response Protocol Keys

Both the partial authenticator and the challenge-response protocol will require keys for

operation. The key used for the challenge-response should not just be an alpha-numeric

sequence stored in the hardware. Instead, the key should be based on a dynamic parameter

that would change if the system is compromised. Furthermore, the key should be recomputed

each time it is needed so that it does not have to be stored. Thus, it is proposed that the

key be a hash of all hash values computed by the integrity checker after each scan of the

configuration. This way, even if an attacker is able to render the checker inoperable, alter

the configuration, and still force the challenge-response system to operate, the key would not

be correct. This is due to the altered configuration changing the key. Thus, the verification

entity would know that the system has been compromised because the hash value of the

reply would be incorrect due to the different key. The verification entity would be using a

hash of all hash values from the known trusted configuration. If the system is secure, then

the hash value of the challenge-response protocol will be the same between the two entities.

It is also proposed that the key for the partial bitstreams be comprised of the configura-

tion data; however, this key should not change after every scan of the hardware. Should the

configuration be altered, and partial reconfiguration be used to repair the system, then the

authentication key must agree with the entity which will transmit the partial bitstreams to

the FPGA. This entity will be using the hash of the hash values from the trusted configura-

tion, and thus, so should the partial authenticator.

The hash values of the trusted configuration are an initial condition of the security system.

Therefore, the hash of these hash values which produces the key for the challenge-response
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protocol and partial authenticator is the same. How this initial condition is met is imple-

mentation dependent and is discussed in Chapter 4.



Chapter 4

Implementation

This chapter discusses the implementation of the design proposed in Chapter 3. First,

the platform used is introduced. Then, the implementations of the configuration integrity

checker, partial authenticator, and challenge-response protocol are examined.

4.1 Platform

The security system is implemented on a Memec Virtex-4 MB Development Kit [59]. The

platform consists of a Xilinx Virtex-4 LX 25 FPGA, 64MB of DDR SRAM, 4MB flash, 16-bit

LVDS transceivers, USB-RS232 bridge, 10/100 Ethernet PHY, 100MHz clock source, and an

RS-232 port. The LX 25 is the second smallest part offered for the Virtex-4 LX platform.

A summary of its resources from [60] is given in Table 4.1.

Configurable Logic Blocks (CLBs) Block RAM
Max

Array Distributed 18 Kb Max Block
Row x Col Logic Cells Slices RAM (Kb) Blocks RAM (Kb)

96 x 28 24,192 10,752 168 72 1,296

Table 4.1: Resources available on the Virtex-4 LX 25

31
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4.2 On-chip Configuration Integrity Checker

4.2.1 Xilinx SEU

Before discussing the implementation of the checker, the reasons for not using the Virtex-4

SEU controller mentioned in Section 2.4.2 are stated. The SEU controller contains function-

ality similar to that desired by the checker because it monitors the FPGA’s configuration

on-chip. The controller, however, is designed mainly for the detection of single-bit soft errors

that could occur due to volatile environments such as those found in outer space. The SEU

controller module can correct single bit upsets caused by such environments, but lacks suffi-

cient functionality to correct multiple bit upsets. The SEU uses the Frame Error Correction

Code (ECC) logic available on the Virtex-4 [52]. The Frame ECC uses a Hamming code

parity rather than a cryptographic hash function, making the system more susceptible to

malicious attacks. Furthermore, the SEU controller module has a predetermined checking

granularity of a single frame. The SEU must store the frame it is checking in BRAM. While

the frame is being stored, it is vulnerable to alterations by the attacker. The alterations

could revert an attacker’s previous changes so that the frame appears as though it has not

been modified.

4.2.2 Overall Checker Structure

The on-chip configuration integrity checker is implemented as a finite state machine (FSM)

that pulls in data from a readback controller, masks the data appropriately, and computes

the hash function of the data. After each output of the hash function, the computed value

is compared against the corresponding trusted hash value. If the values do not match, the

checker raises a failure flag and outputs a number corresponding to which section of the

configuration has failed. A block diagram of the checker is given in Figure 4.1. Each block

of the checker is discussed in the following subsections.
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Figure 4.1: Block diagram of Configuration Integrity Checker

4.2.3 ICAP Readback Controller

The configuration data required by the configuration integrity checker must be produced

from the readback process. Readback allows the configuration memory to be read from the

JTAG, SelectMAP, or ICAP interface. Due to the configuration integrity checker operating

on-chip inside user logic, the only available on-chip interface is the ICAP [52].

The ICAP interface allows for both programming and readback of the FPGA’s configura-

tion. In this design, a readback controller FSM is created to control readback. A high-level

flow chart of the state machine is provided in Figure 4.2. The FSM first sends all necessary

commands to the ICAP, preparing the ICAP to readback the data. These commands include

the starting frame address and the number of frames to be read. After initializing the ICAP

for readback, the controller transfers the ICAP into read mode. The state machine then

clocks out the configuration bytes and sends them back to the checker state machine.
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Figure 4.2: Flow Chart of ICAP Readback Controller State Machine
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4.2.4 Dynamic Data Mask Controller – Ignoring Dynamic Data

Readback returns the state of all configuration data, both static and dynamic. Static data

pertains to resources such as wires that are set at build time and do not change during

the operation of the device. Dynamic data, such as flip-flops, changes while the device is

operating. A single bit change in the readback configuration would change the computed

hash value; thus, the dynamic data must be ignored. The readback controller is to read only

the CLB section and consequently, the I/O and BRAM resources are ignored. Therefore, in

normal operation, the only dynamic data that needs to be ignored is the flip-flop data. There

are other modes that a CLB can operate in such as RAM; however, for this implementation,

it is assumed that the only dynamic data that is necessary to filter out is the state of the flip-

flops. If it was desired to handle CLBs that are configured as RAM, the configuration bit(s)

that indicate that the CLB is being used in an alternate mode would have to be monitored.

If the checker were to find a CLB in an alternate mode, the frames that consist of dynamic

data while in this mode would have to be ignored.

The mask file available from BitGen used when verifying the configuration off-chip could

serve the purpose of masking out dynamic data. Again, due to the space that this mask file

would consume, this option is not desired on-chip. Furthermore, even a look-up table of all

flip-flop locations in the configuration is not desired, because there are 21,504 flip-flops on

this particular FPGA (10,752 slices * 2 flip-flop per slice). Consequently, a pattern of all

flip-flop locations must be discerned to minimize the amount of resources needed to mask

out the flip-flop bits.

To determine the location of all of the flip-flops, the Logic Allocation File (extension “.ll”),

a file generated from BitGen, is used. The logic allocation file gives the frame address, bit

offset within a frame, and bit offset within the bitstream of resources used in the design. As

stated in Chapter 2, a frame is the smallest addressable unit of the configuration. A separate

design is made that utilizes all flip-flops in one column of the FPGA. The logic allocation

file for this design contains the location information for all flip-flops in that column. The
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frame address and bit offset within the frame are used to determine the pattern of flip-flop

bits. Using this information, both Table 4.2 and Table 4.3 can be generated.

Each entry in Table 4.2 corresponds to frames that contain flip-flops. Unlike the Virtex-II

and Virtex-II Pro, a frame in the Virtex-4 only spans 16 CLBs in height [52]. As illustrated

in Figure 4.3, each CLB contains four slices and each slice contains two flip-flops. Thus, each

frame contains 128 flip-flops. Given that there are a total of 10,752 slices on the V4LX25, as

given in Table 4.1, then there are a total of 2,688 CLBs and 168 blocks of 16 CLBs. These

168 blocks are broken into six segments using the frame address as shown in Table 4.2.

The frame address in Table 4.2 is decomposed based on the frame address register descrip-

tion from [52]. A summary of the register description is given in Table 4.4. The “Unknown”

column in Table 4.2 comes from bits 6 through 8, which are not represented in Table 4.4. It

is unknown if the documentation is incorrect or if Xilinx omitted these bits for proprietary

reasons, but no explanation of these bits was found in Virtex-4 documentation. Notice that

although there are 28 sets of CLBs for each of the six segments, the actual column address

only increments after the first seven CLBs, the second seven CLBs, and then the following

six CLBs. Thus, all of the frame addresses for these groups would be the same except for the

bits in the Unknown column, which change throughout a group. Therefore, bits 6 through

8 are important in the frame address for determining exactly which block of 16 CLBs that

frame pertains to.

Table 4.3 shows the offset of each of the 128 flip-flop bits that are located in each frame

listed in Table 4.2. Table 4.3 is the same for each frame from Table 4.2, so the pattern

for each flip-flop bit only has to be deduced once and then replicated for each frame that

contains flip-flops. In Table 4.3, each bit from a column alternates between spanning 22

and 12 bits apart except for at the division in the middle of the pattern where the flip-flop

bits are 44 bits apart. This pattern can be reduced by considering the CLB as a whole and

noting that every two flip-flop bits are a distance of 27 or 11 bits apart, except for in the

middle where the pair of bits are 43 bits apart.
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Column Two Column
5 6 Difference Difference
33 34 28 27
45 46 12 11
73 74 28 27
85 86 12 11

113 114 28 27
125 126 12 11
153 154 28 27
165 166 12 11
193 194 28 27
205 206 12 11
233 234 28 27
245 246 12 11
273 274 28 27
285 286 12 11
313 314 28 27
325 326 12 11
353 354 28 27
365 366 12 11
393 394 28 27
405 406 12 11
433 434 28 27
445 446 12 11
473 474 28 27
485 486 12 11
513 514 28 27
525 526 12 11
553 554 28 27
565 566 12 11
593 594 28 27
605 606 12 11
633 634 28 27
677 678 44 43
705 706 28 27
717 718 12 11
745 746 28 27
757 758 12 11
785 786 28 27
797 798 12 11
825 826 28 27
837 838 12 11
865 866 28 27
893 894 28 27
905 906 12 11
933 934 28 27
945 946 12 11
973 974 28 27
985 986 12 11
1013 1014 28 27
1025 1026 12 11
1053 1054 28 27
1065 1066 12 11
1093 1094 28 27
1105 1106 12 11
1133 1134 28 27
1145 1146 12 11
1173 1174 28 27
1185 1186 12 11
1213 1214 28 27
1225 1226 12 11
1253 1254 28 27
1265 1266 12 11
1293 1294 28 27
1305 1306 12 11

Flip-Flop Bit Locations

Table 4.3: Offset of flip-flop bits within each frame from Table 4.2
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Figure 4.3: This figure illustrates a frame that contains flip-flops. It spans 16 CLBs in height
and contains 128 flip-flops.
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Address Type Bit Index Description
Top/Bottom Bit 22 Select Between top-half rows (0) and bottom-half rows (1).
Block Type 21:19 Block types are. CLB/IO/CLK (000),

block RAM Interconnect (001), block RAM content (010).
Row Address 18:14 Selects a row of frames. Rows are 16 CLBs in height,

with an HCLK in the middle. The row addresses increase
away from the middle (in both top and bottom).

Column Address 13:9 Selects a column of CLBs. Column addresses start at 0 on
the left and increase to the right.

Minor Address 5:0 Selects a memory-cell address line within a column.

Table 4.4: Frame Address Register Description

Next, a pattern is needed for the frames in Table 4.2. This information cannot easily be

deduced using the frame addresses, because they do not necessarily increment by one when

going from one block of 16 CLBs to the next. Instead, the bit offset within the bitstream

from the logic allocation file is used. Using the offset from the last flip-flop bit in a frame to

the first flip-flop bit in the next frame, the number of bits residing between the two flip-flop

can be determined. From [52] it is known that the number of bytes in a frame is 164. Thus,

the number of frames per 16 CLBs can be determined as given in Equation 4.1.

number of frames per 16 CLB block =
CLBn, flip-flop1 bit offset− CLBn−1, flip-flop128 bit offset

164 ∗ 8
(4.1)

By assigning a simple numeric count to each frame, Table 4.5 is created. It can be deduced

from Table 4.5 that for the V4LX25 there are 22 frames in-between each frame containing flip-

flops, except for two locations in which there are 43 and 55 frames respectively1. Therefore,

it can be concluded that there are 22 frames per block of 16 CLBs.

The only element left in determining where the flip-flop bits reside is an initial condition.

This condition is where the CLB configuration data begins. Because each frame address that

contains flip-flop bits has a minor address of 20, and because it can be deduced that each

1The pattern of frames was also determined for the V4LX40 and V4LX60 devices. In these patterns, the
number of exceptions (two) for the jumps in the frame addresses were no different than for the V4LX25.
If more exceptions occur in larger devices, the size of the hardware needed to implement the dynamic data
mask controller would increase.
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Section
Column 1 2 3 4 5 6 Column Difference

X0/X1 50 782 1514 2246 2978 3710
X2/X3 72 804 1536 2268 3000 3732 22
X4/X5 94 826 1558 2290 3022 3754 22
X6/X7 116 848 1580 2312 3044 3776 22
X8/X9 138 870 1602 2334 3066 3798 22

X10/X11 160 892 1624 2356 3088 3820 22
X12/X13 182 914 1646 2378 3110 3842 22
X14/X15 204 936 1668 2400 3132 3864 22
X16/X17 247 979 1711 2443 3175 3907 43
X18/X19 269 1001 1733 2465 3197 3929 22
X20/X21 291 1023 1755 2487 3219 3951 22
X22/X23 313 1045 1777 2509 3241 3973 22
X24/X25 335 1067 1799 2531 3263 3995 22
X26/X27 357 1089 1821 2553 3285 4017 22
X28/X29 412 1144 1876 2608 3340 4072 55
X30/X31 434 1166 1898 2630 3362 4094 22
X32/X33 456 1188 1920 2652 3384 4116 22
X34/X35 478 1210 1942 2674 3406 4138 22
X36/X37 500 1232 1964 2696 3428 4160 22
X38/X39 522 1254 1986 2718 3450 4182 22
X40/X41 544 1276 2008 2740 3472 4204 22
X42/X43 566 1298 2030 2762 3494 4226 22
X44/X45 588 1320 2052 2784 3516 4248 22
X46/X47 610 1342 2074 2806 3538 4270 22
X48/X49 632 1364 2096 2828 3560 4292 22
X50/X51 654 1386 2118 2850 3582 4314 22
X52/X53 676 1408 2140 2872 3604 4336 22
X54/X55 698 1430 2162 2894 3626 4358 22
Section Difference 83 83 83 83 83

Table 4.5: Numeric representation of frames containing flip-flop bits
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A 6022 Total number of configuration frames
B 3360 Total number of frames used in hash function

(28 column pairs * 6 rows * 20 frames/ column-pair-rows)
B/A 55.80% Percentage of frames used in hash function

C 336 Total number of frames ignored within the CLB section
(28 column pairs * 6 rows * 2 frames/ column-pair-rows)

C/A 5.58% Percentage of frames ignored within the CLB section
D=B+C 3696 Total number of frames in CLB section

D/A 61.37% Percentage of frames in CLB section
E=A-(D)=A-(B+C) 2326 Total number of frames ignored outside CLB section

E/A 38.63% Percentage of frames ignored outside of CLB section
F=C+E 2662 Total number of frames ignored

F/A 44.20% Percentage of frames ignored

Table 4.6: Statistics of frames used and ignored by the configuration integrity checker

block of 16 CLBs contains 22 frames, it can be determined that the frame that contains flip-

flops is the twenty-first frame in each block of 16 CLBs. The first frame address containing

flip-flops is 0x54. Subtracting 20, or 0x14, from this value to get the first frame of CLB

data, results in a frame address of 0x40. Therein, it is assumed that all frames between

frame addresses 0x0 and 0x40 are not CLB data and must be ignored. Thus, the readback

controller starts readback at frame address 0x40. Determining where CLB data ends is not

as difficult, considering that the total number of 16 CLB blocks are known, as shown in

Table 4.5.

Despite ignoring the flip-flops, there is still some dynamic data in the CLB section. This

was determined by testing readback on the device with the flip-flop bits masked out and

noting that the data is not static. To solve this problem, the number of frames that are

readback per 16 CLB block are reduced from 22 to 20 by ignoring the first and last frame.

In the end, 3,360 frames are used in the hash computation out of 6,022 total configuration

frames. Table 4.6 summarizes this information.



43

4.2.5 MD5 Hash Function Controller

Choice of Hash Function – MD5

As stated in Chapter 3, because the partial authentication and challenge-response protocol

both require a cryptographic hash function, the configuration integrity checker should use

the same hash function to reduce resource utilization.

If the configuration integrity checker only needed to defend against Class 1 or Class 2

attacks, an error detection hash function such as a CRC calculation would probably suffice.

These techniques provide protection against non-malicious error [58] which, in essence, is

how Class 1 and Class 2 attacks manifest themselves.

For Class 3 attacks, more security is desired. A CRC or checksum calculation is not

intended for cryptographic use because an attacker may be able to determine certain alter-

ations that produce a desired output value [58]. Cryptographic hash functions are specifically

designed to prevent undetectable intentional modification [58]. Because a Class 3 attacker

could alter any desired bit and has significant knowledge of the design, the attacker may be

able to produce a desired output.

The cryptographic hash chosen is MD5. MD5 is a commonly used hash function [58] that

produces a 128-bit hash value. It is designed to be suitable for high-speed software applica-

tions by being based on a simple set of bit manipulations operating on 32-bit operands [61].

MD5 processes the input in 512-bit blocks. For a detailed description of the MD5 algorithm

refer to [58] and [61].

To implement the MD5 algorithm, a core from Opencores.org is used [62]. The core

receives the 512-bit inputs in four 128-bit blocks. Whenever the core must be reset so that

the initial chaining variables of the MD5 algorithm are used, a newtext signal is asserted for

one clock cycle. Until this signal is asserted, the MD5 core uses the previous hash results for

the current computation. The core does not begin computation until an entire 512-bit block

is given. Furthermore, it cannot receive a new block until it has finished the computation
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for the current block.

Choice of Input Window and Checking Granularity

The input window of length n, shown in Figure 3.1, must be 512 bits because the MD5

algorithm takes inputs in 512-bit blocks. If the input data is smaller than 512 bits, padding

can be used; however, this does not imply that a hash value should be computed for sections

less than 512 bits. Calculating a hash value for every byte or word of configuration data

would produce an impractical number of output values to manage. The smallest practical

checking granularity would most likely be a frame because it is the smallest addressable unit

in the configuration. The largest granularity would be the entire configuration. For this

implementation, the checking granularity is chosen to be the 20 frames that are static in a

block of 16 CLBs. This granularity is chosen because it produces a reasonable number of

hash values to manage while still allowing flexibility for run-time repair considerations. This

reasoning is further reinforced after examination in Section 5.5. Thus, the MD5 function

will process 3,280 bytes per output. This corresponds to 52 512-bit blocks after padding is

included in the 52nd block. Because there are 168 blocks of 16 CLBs, this granularity results

in 168 128-bit hash values that must be stored and compared.

Controller Operation

A flow chart of the MD5 controller state machine is given in Figure 4.4. The controller

buffers 16 bytes of data for the 128-bit input to the MD5 core. The data is a byte of

configuration data from the readback controller masked with a byte from the dynamic data

mask controller. When the MD5 core is ready and is not performing any computations, the

128-bit input is loaded into the MD5 core. After the 20 frames in a block of 16 CLBs that

are going to be computed are sent to the MD5 core, the controller waits for the final hash

output and then sends this result to the hash comparator.
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Figure 4.4: Flow Chart of MD5 Hash Function Controller State Machine
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4.2.6 Hash Comparator

The hash comparator component checks to see if the hash value computed has changed from

the trusted value. To obtain the initial values necessary for comparison, another assumption

is made for this implementation. It is assumed that the first full configuration of the FPGA

and the first scan of the configuration is safe and the checker can build a database of trusted

hash values. Other methods of obtaining the initial hash values are discussed in Section

6.2. The checker also calculates the key for the partial authenticator and the verifier of the

challenge-response protocol.

If the calculated hash value is different from the stored hash value, the checker raises a

failure flag and outputs the number of the failed section. The numbering scheme starts at

zero for the first block of 16 CLBs and increments by one for a total of 168 blocks.

4.3 Partial Authentication and Reconfiguration

4.3.1 Xilinx Encryption

Before discussing the implementation of the partial authenticator, the reasons for not using

the Virtex-4 encryption capabilities should be stated. The Virtex-4 offers AES encryption

of the bitstream, as was mentioned in Section 2.4.2. The encryption is applied during the

bitstream generation process using BitGen. As was described in Chapter 2, when using

Xilinx’s encryption method, readback and partial reconfiguration are not allowed on Virtex-

4 LX FPGAs. These requirements are necessary to the system.

4.3.2 Authentication Method

As was stated in Section 3.3.2, the method of choice for partial authentication is a hash

signature with a secret key prepended to the input message. For a high level diagram of this

protocol see Figure 3.4. Because MD5 is used in the configuration integrity checker, it is also
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used in the partial authenticator to reduce the amount of hardware consumed. The secret

key is the MD5 hash value of all other hash values computed by the configuration integrity

checker. The secret key is assumed to be an initial condition that can be calculated and

sent off-chip to the entity that will be delivering the partial bitstreams to the FPGA. In this

implementation, this process is done by hand; however, other methods of achieving this key

distribution are discussed in Section 6.2.

4.3.3 Software Preparation of Partial Bitstream

Before sending a partial bitstream to the board, it must be prepared for the authentication

process. A software program has been created to execute the preparation procedure and is

illustrated in Figure 4.5. The program first reads in the partial bitstream and prepends it

with the secret key. The program then computes the MD5 hash value of the bitstream and

key. Next, the partial bitstream is prepended with the computed hash value. The program

then appends the necessary padding to the end of the partial bitstream as required by the

MD5 algorithm. Finally, the bitstream is prepended with its size in bytes. The size includes

the length of the padding, but not the prepended hash value. The bitstream is then ready to

be sent over an unsecured channel to the partial authenticator on the FPGA. The padding

is applied in software to reduce the resources the hardware authenticator would consume if

it were to perform the padding.

4.3.4 Authentication Hardware

Before reconfiguring the FPGA with the partial bitstream, the bitstream must be authenti-

cated by verifying its source and its integrity. An illustration of the authentication hardware

is shown in Figure 4.6. The authentication hardware first reads in the hash value that has

been prepended to the partial bitstream and stores it for comparison. It also reads in the

size of the partial bitstream, including the padding, so that it knows how many bytes must

be input into the hash function. It then reads in the partial bitstream and inputs it into the
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Figure 4.5: Illustration of partial bitstream preparation software

MD5 core in 16 byte segments. The padding does not need to be calculated in hardware,

because it was precomputed in software. After the entire bitstream has been hashed, the

value is taken and compared to the original hash value sent with the bitstream. If the hash

values are the same, the authentication state machine proceeds to reconfigure the device.

4.3.5 Partial Reconfiguration

After authenticating the partial bitstream, the state machine reconfigures the FPGA. As with

readback, reconfiguration is accomplished using the ICAP. The partial bitstream contains all

commands needed for reconfiguration. Thus, the state machine does not need to first send

the ICAP a stored set of initial instructions. Instead, it just clocks each value of the partial

bitstream into the ICAP.
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Figure 4.6: Illustration of partial authentication hardware

4.4 Challenge-Response Protocol

4.4.1 Challenge from Verifier

The challenge-response protocol, illustrated in Figure 3.5, is implemented as proposed in

Section 3.3.3. The verifier sends the security system a random message and the size of

the random message, as shown in Figure 4.7. Also included in the message is any padding

necessary for the MD5 algorithm. This method is chosen to help the message be resistant to

repetition because the message size does not have to be repeated. The padding is included

to reduce hardware utilization in the claimant implementation.

As stated in Section 3.3.3, the verifier should be an entity external to the FPGA. Though

this entity is not implemented, it is assumed that it would be impervious to the attacks

outlined in Chapter 3. The entity could be an ASIC because the hardware layout is static

and not susceptible to fault injection. The entity could also be separate from the system

and challenges could be issued remotely so that the attacker does not have physical access
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Figure 4.7: Illustration of challenge-response hardware

to the entity issuing the queries.

4.4.2 Claimant Response

The security system acts as the claimant in the challenge-response protocol. As illustrated

in Figure 4.7, the hardware first reads the length of the message. It then computes the MD5

hash of the message, padding, and secret key. The calculated hash value is then sent back

to the verifier. The secret key is comprised of the hash of all hash values computed by the

checker after each scan of the configuration. If the configuration ever changes, the key will

also change. Thus, the only time the claimant can be truly verified is when the configuration

has not been maliciously altered. Otherwise, the verifier will get an incorrect hash value as

it is using the key computed from the initial conditions of the hash values. If the design

being protected requires partial reconfiguration in order to operate, then a new key will be

computed from new trusted hash values. Similar to the initial condition already stated, it is

assumed that the verifier would be able to generate the new key as well. Should the verifier

get the incorrect hash value or not get a hash value at all, then it is assumed that the security

system has been compromised.



Chapter 5

Results and Analysis

This chapter presents the results and analysis of the system implemented in Chapter 4.

First, a description of how the operation of the system was verified is provided. Then, issues

relating to device utilization are discussed. Next, a timing analysis and security analysis of

the system are given. Lastly, a projected performance and analysis of how run-time repair

could be included with the system is discussed.

5.1 Operation Verification

To test how the system responds to malicious alterations of the configuration, partial bit-

streams were created to simulate a fault injection attack. The partial bitstreams were created

using the difference-based flow provided by Xilinx, as discussed in Section 2.2.2. The par-

tial bitstreams made alterations to the configuration that would affect the operation of a

protected design. The goal of the experiment was to ensure that the configuration integrity

checker detects changes in the configuration.

The protected design was an implementation of the Lucas-Lehmer test for Mersenne

numbers. The Lucas-Lehmer test is an efficient deterministic primality test for determining

if a Mersenne number Mn is prime [63]. A Mersenne number has the form Mn = 2n−1. The

test uses the recurrence equation Sn =
(
S2

n−1 − 2
)

mod Mn with S0 = 4. Mn is prime if

51



52

and only if Sn−2 = 0. The value Sn−2 is called the residue for n. For example, the sequence

obtained for n = 7 is given by 4, 14, 67, 42, 111, 0, so M7 = 127 is a prime. The protected

design tested for n = 3, 4, 5, 6, and 7, which was defined by a 3-bit input on the board’s dip

switches. The design calculated all S0 through Sn−2 and determined if Mn was a Mersenne

prime. As illustrated in Figure 5.1, if Mn was a Mersenne prime, a yes signal was set, which

was routed through a flip-flop to an LED. If Mn was not a Mersenne prime, a no signal was

set, which was routed to another LED. The protected design resided in the upper left corner

of the FPGA and used approximately 7% of the FPGA’s resources by consuming 744 slices.

The first experiment swapped the routes from the yes and no signals to their correspond-

ing LEDs, as illustrated in Figure 5.2. If the flags were being sent to an external module

that made decisions based on these values, then an attacker would have switched the corre-

spondence between inputs and outputs. The change only affected a total of 24 frames in four

blocks of 16 CLBs. After reconfiguring the device with the partial bitstream, the checker

successfully detected the changes in all four blocks. The second experiment involved the

inversion of the yes and no signals, as illustrated in Figure 5.3. The effect on the LEDs is

the same as for the previous experiment. An attacker would switch the input-output cor-

respondence. The alterations only affect two frames, one frame in two blocks of 16 CLBs.

To perform the inversion, only six bits of configuration data need to be changed for each

inverter. The checker successfully detected the changes in both blocks of data. The third

experiment involved changing the contents of a LUT in one of the slices for the computation

of Sn. The change affected only one frame of configuration data. The checker detected the

change for the block of 16 CLBs that contained the frame.

The three experiments validated the operation of the checker. Successful authentication

by the partial authenticator was also verified during these experiments, because the partial

bitstream had to be prepared and authenticated before reconfiguring the device. To prove

that an altered partial bitstream would not be authenticated, one of the partial bitstreams

was modified after the software preparation process. When attempting to reconfigure the

FPGA, the authenticator determined that the hash value of the bitstream differed from the
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Figure 5.1: The design protected by the security system is an implementation of the Lucas-
Lehmer test for Mersenne Primes.

Figure 5.2: The first verification experiment swapped the routes to the two LEDs.
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Figure 5.3: The second verification experiment inverted the outputs of the Lucas-Lehmer
test.

hash value sent with it and did not reconfigure the FPGA. To verify the challenge-response

protocol, challenge questions were submitted to the system. Each question was submitted

continuously, and thus the system responded once for every run of the configuration integrity

checker. After observing the response for each question, the hash value was correct because

the configuration was not altered. When the configuration was altered by one of the partial

bitstreams, the hash value was incorrect.

5.2 Device Utilization

A general overview of the resources used by the system as a whole are given in Table 5.1.

As can be seen from Table 5.1, 69% of the hardware logic of the V4LX25 was used. Thus,

the system would probably not be acceptable on a chip of this size, because only about 30%

of the logic could be used for the actual design that is to be protected. The V4LX25 is the

Resource Amount Used Percentage
ICAPs 1 of 2 50%
RAMB16s 4 of 72 6%
Slices 7509 of 10752 69%

Table 5.1: Overview of the resources utilized by the system as a whole
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Resource Amt. Used Percentage
ICAP 1 of 2 50%
RAMB16s 8 of 160 5%
Slices 7509 of 26624 28%

(a) V4LX60

Resource Amt. Used Percentage
ICAP 1 of 2 50%
RAMB16s 16 of 336 5%
Slices 7509 of 89088 8%

(b) V4LX200

Table 5.2: Overview of the resources utilized by the system on larger devices available in the
Virtex-4 LX platform

second smallest part available in the Virtex-4 LX platform. If implemented on a mid-sized

LX chip, such as the V4LX60, the resulting utilization would be more acceptable as shown

in Table 5.2(a). This allows for over 70% of the hardware logic to be used for the protected

design. On the largest chip, the V4LX200, there would be over 90% of the hardware logic

resources available for the protected design as shown in Table 5.2(b).

By averaging the sequential logic and combinational logic usage percentages from the

synthesis area usage report, the resources consumed by each individual system can be ap-

proximated. The result is the statistics shown in Figure 5.4. Due to the MD5 core being

shared by each system, it has been separated out. If a different hash function were chosen,

then this segment’s percentage would change, and the size of the system as a whole would

change accordingly. The largest segment is the checker system. Its size is due to the fact

that not only is it a large FSM itself, but it also contains a large FSM for the readback

controller and another FSM for the dynamic data mask controller.

5.3 Timing Analysis

5.3.1 Clock Frequency

The system was run at a clock frequency of 50MHz. This frequency was chosen to accom-

modate the operation of the MD5 core. The MD5 core contains a critical path at the point

where it computes the output of a round in a single clock cycle. The diagram in Figure 5.5
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Configuration Integrity Checker − 70%

MD5 − 16%

Design Utilization Percentage by Subsystem

Partial Authenticator − 8%

Challenge−Response − 6%

Figure 5.4: Resource utilization percentage of each subsystem in the security system

illustrates the operations that must execute in combinational logic.

To correct this problem, the MD5 core could be pipelined such that each of these functions

would have its own clock cycle for computation. Though this would require more clock cycles

for the MD5 core to finish generating a hash value, it would allow for the entire system to

operate at a faster frequency and thus improve the overall timing.

5.3.2 Execution Time

The number of clock cycles necessary for each subsystem to fully complete its task was

computed. Each subsystem is individually analyzed in this section.

Configuration Integrity Checker

For the checker, the number of clock cycles necessary to compute the hash value of a single

block of data was calculated. Also, the number of cycles required to skip a single frame

was determined. These values were used to extrapolate the number of clock cycles required
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Figure 5.5: Illustration of operations that must execute in the critical timing path of the
MD5 core



58

168 − LX25 288 − LX40 416 − LX60 560 − LX80 768 − LX100 1,056 − LX160 1,392 − LX200
0  

100

200

300

400

500

600

700

Number of 16−CLB blocks

T
im

e 
 (

m
s)

Amount of Time to Scan and Reconfigure Entire CLB Section

 

 
Checker
Partial Authenticator

Figure 5.6: This figure presents a graph of the amount of time it takes for the configura-
tion integrity checker to scan the entire CLB section and for the partial authenticator to
reconfigure the entire CLB section for each part available for in the Virtex-4 LX platform.

to hash all of the blocks and the total number of frames skipped, respectively. Each block

took 4,006 clock cycles to compute. Thus, all 168 blocks took a total of 673,008 clock cycles

to finish. At 50MHz, this corresponds to 80.12µs per block and 13.46ms for all 168 blocks.

Each frame that was skipped between blocks took 492 clock cycles or 9.84µs to complete.

Recalling from Table 4.6 that 336 frames were skipped, the total number of clock cycles

required to skip all frames was 165,312, which at 50MHz is 3.306ms. Therefore, the time it

took to scan the entire CLB section was 838,320 clock cycles or 16.77ms at 50MHz. The time

it takes to scan the entire CLB section for each part available in the Virtex-4 LX platform

is given in Figure 5.6.

As a bench mark for the speed of operation, if the MD5 hash function is replaced with

only an XOR operation, the system could run at 122MHz. At this frequency, the checker

would only take 6.87ms to scan the entire configuration. If the MD5 core could be made to

operate at 122MHz, the system would be close to this bench mark.
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Partial Authenticator

The partial authenticator’s execution time is dependent upon the size of the partial bitstream.

The number of clock cycles required for the authentication process as a function of the

number of bytes in a partial bitstream is given in Equation 5.1.

number of clock cycles for authentication = 1070 + 209×
(

numbytes

64

)
(5.1)

The constants correspond to the number of clock cycles required for the authenticator’s

FSM to operate. The 64 in the divisor converts the number bytes in the partial bitstream,

shown as numbytes, to the number of 512-bit blocks in the partial bitstream. If the partial

bitstream is authenticated, the number of clock cycles required to feed the partial bitstream

to the ICAP is shown in Equation 5.2.

number of clock cycles to reconfigure = 2× numbytes (5.2)

After determining the number of bytes in the partial bitstream, multiplying the computed

number of clock cycles by 1/50MHz, or 20ns, would give the number of seconds required for

execution as shown in Equations 5.3 and 5.4.

execution time if authenticated =

[
1070 + 337×

(
numbytes

64

)]
× 20ns (5.3)

execution time if not authenticated =

[
1070 + 209×

(
numbytes

64

)]
× 20ns (5.4)

The size of the three partial bitstreams used in the verification tests were 7,474 bytes, 1,250

bytes, and 906 bytes. The execution times of the partial authenticator given these three

partial bitstreams were 812µs, 157µs, and 125µs respectively. The time it would take to

reconfigure the entire CLB section for each part available in the Virtex-4 platform is given

in Figure 5.6. Also, using the bench mark of an XOR operation and running the system at

122MHz, the three partials would take 332µs, 63.8µs, and 50.7µs respectively.
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Challenge-Response Protocol

The execution time of the challenge-response protocol is dependent upon the size of the

challenge question. The total number of clock cycles required for the response process is

given in Equation 5.5.

number of clock cycles = 943 + 209×
(

numbytes

64

)
(5.5)

The constants correspond to the number of clock cycles required for the challenge-response’s

FSM to operate. The 64 in the divisor converts the number bytes in the query, shown as

numbytes, to the number of 512-bit blocks in the query. After the number of bytes in the

question is known, the number of clock cycles can be multiplied by 20ns to determine the

execution time as shown in Equation 5.6.

execution time =

[
943 + 209×

(
numbytes

64

)]
× 20ns (5.6)

A query size of 512 bytes was used. A query of this size causes the challenge-response to

take 52.3µs to execute. Using the bench mark of an XOR operation and running the system

at 122MHz, a query of this size would only take the challenge-response system 20.9µs to

operate.

5.4 Security Analysis

Having verified the implementation of the system, the extent to which it protects the in-

tegrity of the configuration against the three classes of attacks outlined in Section 3.2 can be

determined. Also, the defense strength, as was discussed in Section 2.4.1, can be classified.

5.4.1 MD5 Collision Considerations — Brute Force Attack

The MD5 algorithm is susceptible to collisions, as are all hash functions. A collision occurs

when two different messages hash to the same value [61]. Without considering the presence
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of an attacker, there is a chance that two random messages hash to the same value. The

Birthday Attack, resulting from the Birthday Paradox, states that for for an n-bit hash

function, only 2
n
2 hashes must be calculated before there is more than a 50% chance that a

collision is found [58].

On the other hand, in this system, the attacker is given an initial message and an initial

hash value. MD5 is a widely accepted hash function that is secure in its one-wayness [58].

In other words, it is difficult to reconstruct the input based upon the output. Thus, to find

a second preimage of the hash value for a given message, the attacker has to resort to an

exhaustive search where 2128 alterations are possible. The exponent value of 128 correlates

to the size of the hash value which is 128-bits. The probability of an attacker finding a

second preimage is given in Equation 5.7.

p(n) = 1−
(

2128 − 1

2128

)n

(5.7)

Solving Equation 5.7 for the number of iterations n with a probability of 50% results in

2.36× 1038 iterations. The amount of time it would take an attacker to achieve this number

iterations is given in Equation 5.8.

time to achieve brute force attack =
(
2.36× 1038

)
∗ t (5.8)

If an attacker is exhausting all possibilities by making alterations using fault injection and

then observing the changes from the configuration integrity checker’s computations, t would

be equal to 16.77ms as was derived in Section 5.3.2. Consequently, the amount of time it

would take the attacker to find a second preimage is 1.25× 1029 years. This is an extremely

long time and it can be assumed that the system would no longer be in use by the time

the attacker would find a second preimage. Referring to the classes of attackers defined in

Section 3.2, a Class 3 attacker has the highest likelihood of achieving a brute-force attack

on the system. Unlike Class 1 and Class 2 attackers, the Class 3 attacker can control the

attacks well enough not to replicate an alteration. Still, unless a Class 3 attacker is on an

extremely low budget, it should be assumed that this method will not be used for a brute

force attack.
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Suppose an attacker has a budget exceeding $10 million. From [64] it is explained that

such a budget could buy a machine that has found an MD5 collision using the Birthday

Attack in as little as 24 days. Using this as a computational benchmark, suppose the

attacker can afford a machine of this speed for a brute force attack on the security system.

Further, suppose the attacker is of Class 3 and, using the observational attacks given in

Section 3.1, has reproduced the entire design at the bit-level. This reproduction has allowed

the attacker to reverse-engineer the design. Thus, the attacker knows how all aspects of

the design operate, including the security system. With this knowledge the attacker has

determined what hash function is being used and what frames are being checked. Now the

attacker can make changes to the design and observe the changes in the attacker’s own

supercomputing system, which relieves the attacker from the time constraints of the security

system. The amount of time it would take to find a second preimage is 8.41× 1017 years.

5.4.2 Design-Based Attacks

The amount of time it would take for a brute-force attack makes it an unlikely choice for an

attacker and it would behoove a Class 3 attacker to attempt a different strategy. Attacks

against the security system’s design could compromise the system such that it would not

be aware that the configuration has been modified. Due to the fact that a Class 3 attacker

has knowledge of the design at the bit-level, it may be possible for the attacker to find

important registers in the design that correspond to the FSM for each system. Furthermore,

the attacker could also learn the details of the state numbering scheme and what operations

occur for each state. Such knowledge would allow the attacker to stop the configuration

integrity checker from operating by forcing it to an unknown state. Then, alterations to

the configuration could be made without changing the hash values stored. Moreover, if the

attacker also controlled the partial authenticator FSM, malicious partial bitstreams could

be loaded by bypassing the authentication step. The challenge-response protocol would

provide some resistance because it acts in response to the checker operating successfully;

however, because the attacker knows the state numbering scheme, the attacker could force
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the challenge-response system to operate. The attacker would also have to stop the challenge-

response system from erasing the BRAM of stored hash values used to create the key. The

key would prove to be correct because the checker is not operating and cannot change the

hash values. The challenge-response system would then successfully respond and the system

would appear as though it has not been compromised.

Another vulnerable point in the system is the BRAMs used to store the hash values com-

puted by the configuration integrity checker. As was stated in Section 3.1, the BRAMs are

not protected because they contain dynamic data. If an attacker modifies the configuration,

the attacker could attack both the failure flag and the block failure number sent from the

configuration integrity checker to prevent any corrections to the configuration from occur-

ring. The attacker could also modify the BRAMs used to store the hash values that the

challenge-response key is computed from to make it the correct hash value. Also, the at-

tacker could store partial bitstreams sent to change the configuration in BRAM and compute

the correct hash values from the partial bitstreams.

The system is also exposed between scans of the configuration integrity checker. At the

speed of operation determined in Section 5.3.2 of 16.77ms, any bit of configuration data is

vulnerable to attack for 16.77ms after it is scanned. If the operation of the design being

protected is sensitive to attacks that may occur in this time window, then the attacker could

successfully affect the design’s operation without having to compromise the security system.

5.4.3 Defense Strength

From this security analysis, the defense strength of the system can be classified. Class 1

and Class 2 attackers would not be able to achieve either a brute force or design-based

attack of the system. As outlined in Section 3.2, a Class 1 attacker at best has strong

observation capability or attack capability, but not both. These deficiencies hinder a Class

1 attacker from having an effective attack and the modifications would appear similar to

SEUs as opposed to malicious alterations. Such an attack does not have a high probability
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of creating a collision based on the discussion in 5.4.1. The attacker also would not be able

to succeed at the design-based attack. As discussed in Section 3.2, a Class 2 attacker can

target a specific area of the FPGA; however, does not have either the observation capability

or attack capability to succeed at targeting specific bits. Such an attacker also does not

have a high probability of succeeding at a brute for attack or a design-based attack. It

can therefore be concluded that the system can defend against both Class 1 and Class 2

attackers.

A Class 3 attacker might be successful at a design-based attack; however, doing so would

require some expertise. An attack on the design would require great knowledge of the

bitstream composition if the attacker reconstructed the design from a collection of run-time

repair partial bitstreams as discussed in Section 3.1. Furthermore, to force the FSMs to

certain states, the attacker would have to make multiple alterations every clock cycle. This

would require either a fault injection device that could flash multiple times every 20ns or

multiple injection devices. Moreover, the devices would have to be precise enough to attack

within the 20ns clock cycle window. If the frequency of operation was increased, all design-

based attacks would be even more difficult.

These results can be used to classify the attacker and the defense strength of the system

using IBM’s model, as discussed in Section 2.4.1. A Class 3 attacker that could accomplish

the design-based attack would be a “knowledgeable insider”, because substantial knowledge

of the system would be required as well as some specialized tools. The defense level of the

system would be “MOD”, again, because of the specialized knowledge and tools required to

compromise the system.

5.5 Run-time Repair and Checking Granularity Con-

siderations

As has been stated throughout this thesis, the security system discussed is not only intended

to signal if the configuration has been altered, but is also intended to aid in the implemen-
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tation of a system that repairs the configuration. Should the configuration integrity checker

find a malicious change in the configuration, it can notify a system that obtains the correct

partial bitstreams for the altered area. The size of these partial bitstreams and the time it

takes to reconfigure depends upon the checking granularity chosen for the checker.

As was stated in Section 4.2.5, the smallest practical checking granularity would be a

frame because it is the smallest addressable unit in the FPGA’s bitstream architecture.

This granularity was not chosen in the implementation because of how many output values

it would produce (3,360); however, with run-time repair, such a granularity would allow for

fast reconfiguration times because only the frames that were altered would be reconfigured.

On the other extreme, a checking granularity of the entire configuration would allow for

minimal storage space, but not for quick run-time repair times. In this scenerio, the entire

configuration would have to be reprogrammed should an alteration occur. Thus, a space-time

tradeoff can be inferred where an appropriate tradeoff between the two should be selected.

A graph of the number of hash outputs from the checker versus the time to reconfigure is

given in Figure 5.7. The graph is only plotted for a window of 300µs versus 200kbit. As can

be seen on the graph, there is a knee where an intermediate value between the extremes can

be found.

In this design, it was decided to calculate a hash value for every 20 frames in a block of

16 CLBs for a total of 168 hashes. This point is indicated on the graph in Figure 5.7. If

any alterations occur, a minimum of 20 frames would be required to repair the corruption.

This decision is reasonable because the run-time repair would have a minimum resolution of

a CLB.

Reconfiguring a block of 16 CLBs takes 401µs. This time reinforces the acceptability of

the granularity as it only takes 2.3% of the amount of time the checker takes to detect an

alteration. The 168 hash values only consume about 21.5kbit of storage space on the chip.

As can be seen from Table 5.1, this uses a small percentage of the storage space available

and reinforces the chosen granularity from a space utilization perspective.
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Chapter 6

Conclusion

6.1 Summary

The primary goal of this thesis was to develop methods for securing the integrity of an ex-

ecuting FPGA configuration as well as reconfigured versions of it. These methods were all

achieved on-chip. A system was designed and implemented that consists of three parts. An

illustration of the system is provided in Figure 6.1. The first part of the system consists

of a configuration integrity checker that monitors the configuration for malicious alterations

that could be caused by fault injection or by altering incoming partial bitstreams. The sys-

tem retrieves the configuration data via readback through the Internal Configuration Access

Port (ICAP) and successfully masks out dynamic data to only monitor the static part of

the configuration. An MD5 core is used to create a digital “fingerprint” for blocks of the

configuration such that if a bit of configuration data is altered, the hash value is changed and

the checker will know that the design has been corrupted. The second part of the system

involves a partial authenticator that ensures that incoming partial bitstreams are trusted.

These partial bitstreams could be reconfiguring the FPGA for another functionality or re-

pairing the configuration from malicious alterations detected by the configuration integrity

checker. The third part of the system pertains to a challenge-response protocol that would

allow an entity external to the FPGA to verify that the security system has not been compro-
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Figure 6.1: Block Diagram of Security System

mised. Both the partial authenticator and the challenge-response protocol utilize the same

MD5 core used by the configuration integrity checker and use a secret key that is comprised

of the hashes of the configuration.

The system was implemented on a Virtex-4 LX25 FPGA and consumed 69% of the

available slices. The system would probably not be acceptable on a chip of this size, because

only about 30% of the logic could be used for the actual design that is to be protected. The

V4LX25 is the second smallest part available in the Virtex-4 LX platform. If implemented on

a mid-sized LX chip, such as the V4LX60, the resulting utilization would be more acceptable,

allowing 70% of the hardware logic to be used for the protected design. On the largest chip,

the V4LX200, there would be over 90% of the hardware logic resources available for the

protected design. The system was set to operate at a frequency of 50MHz, but with some

modifications to the MD5 hardware, the system could run faster. The system proved to

successfully detect malicious alterations through partial bitstreams that were created to

simulate a fault injection attack. Furthermore, the operations of the partial authenticator

and challenge-response protocol were verified using both trusted and non-trusted partial

bitstreams and challenge queries, respectively.

Through a security analysis, three classes of attackers were defined. Each class increased
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the attack capability and the observation capability of a malicious adversary. The observa-

tion capability affects an attacker’s ability to gain knowledge of the design. By collecting

partial bitstreams sent to repair the device or using an active photon probing technique, the

attacker can reverse-engineer both the protected design and the security system. The more

an attacker can learn about the design, the more effective the alterations the attacker can

make. The attack capability depends on the attacker’s ability to target specific bits in the

FPGA configuration architecture. The effectiveness of an attack decreases if the attacker

cannot target particular bits for modification. A Class 1 attacker was defined as having

either no observation capability or weak attack strength. A Class 2 attacker was defined as

being restricted to only observing a specific area of the configuration or only being able to

attack a specific area. A Class 3 attacker was defined as having enough observation capabil-

ity to gain knowledge of the design at the bit-level and enough attack capability to target

any desired bit for alteration.

The system was shown to be secure against both Class 1 and Class 2 attackers. The

fact that a Class 3 attacker could be successful at specific attacks on the security system

was discussed. Such an attacker would need enough knowledge of bitstream composition to

reverse-engineer the security system and would require enough attack capability to direct

precise and frequent fault injections.

6.2 Future Work

There are a few areas where further work could improve the system. The first area of

improvement involves the initial conditions necessary for the operation of the system. The

initial trusted hash values as well as the key that is computed from these hash values for the

partial authenticator and challenge-response protocol should be computed off-chip. Doing

so would require masking out all flip-flop data in the full bitstream and computing the hash

value. The location of the first frame of CLB data would need to be determined. The location

could be ascertained by determining the number of frames that occur prior to the CLB
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section. Another method involves creating bitstreams that only change the configuration in

the first CLB and through comparison, finding the offset from the beginning of the bitstream.

Also, any commands that occur with the configuration data would need to be taken into

account. Some commands might specify that multiple frames are the same and thus, only

the data for one frame is placed in the bitstream to reduce the bitstream size. Furthermore,

if the system is to protect designs that will use dynamic partial run-time reconfiguration for

operation, the keys necessary for the challenge-response protocol will need to be computed

off-chip for the reconfigured versions of the design.

Another area of future work concerns the frequency of operation. As discussed in Section

5.3, the system is run at 50MHz due to a critical path in the MD5 core. The core could be

pipelined so that more clock cycles are given for the operations in the critical path. Doing so

would allow for the entire system to operate at a faster frequency and thus improve overall

timing.

The system could also be made more parameterizable, allowing for it to be easily im-

plemented on different platforms and possibly different families of Xilinx FPGA devices.

This would involve finding the pattern of dynamic data in other chips by either building a

database manually or creating a program that executed an algorithm of the steps described

in Section 4.2.4. The algorithm can be created because the Logic Allocation File provides

the numerical data necessary to determine a pattern.
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