
Security on FPGAs: State of the Art
Implementations and Attacks

THOMAS WOLLINGER

Communication Security Group (COSY) - Ruhr-Universität Bochum

JORGE GUAJARDO

Infineon Technologies AG, Secure Mobile Solutions Division

and

CHRISTOF PAAR

Communication Security Group (COSY) - Ruhr-Universität Bochum

In the last decade, it has become aparent that embedded systems are integral parts of our every
day lives. The wireless nature of many embedded applications as well as their omnipresence has
made the need for security and privacy preserving mechanisms particularly important. Thus, as
FPGAs become integral parts of embedded systems, it is imperative to consider their security as
a whole. This contribution provides a state-of-the-art description of security issues on FPGAs,
both from the system and implementation perspectives. We discuss the advantages of reconfig-
urable hardware for cryptographic applications, show potential security problems of FPGAs, and
provide a list of open research problems. Moreover, we summarize both public and symmetric-key
algorithm implementations on FPGAs.

Categories and Subject Descriptors: B.2.4 [Arithmetic and Logic Structures]: High-Speed
Arithmetic—Algorithms; Cost/performance; B.7.1 [Logic Design]: Types and Design Styles—
Algorithms implemented in hardware; Gate arrays; C.3 [Special-purpose and Application-
based Systems]: Real-time and embedded systems; E.3 [Data Encryption]: Code breaking;
Data encryption standard (DES); Public key cryptosystems

General Terms: Algorithms, Design, Performance, Security

Additional Key Words and Phrases: cryptography, security, attacks, reconfigurable hardware,
FPGA, cryptographic applications, reverse engineering

This research was partially sponsored by the German Federal Office for Information Security
(BSI).
Thomas Wollinger and Christof Paar are at the Department of Electrical Engineering and Infor-
mation Sciences, Ruhr-Universität Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany.
Email: {wollinger,cpaar}@crypto.rub.de
Jorge Guajardo is at Infineon Technologies AG, Secure Mobile Solutions, St.-Martin Strasse 76,
81609 Munich, Germany. Email: Jorge.Guajardo@infineon.com

This work was partly done while the second author was at the COSY group.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 1999 ACM 0164-0925/99/0100-0111 $00.75

ACM Special Issue Security and Embedded Systems Vol. No. March 2003, Pages

2 · Thomas Wollinger et al.

1. MOTIVATION

Traditionally, in the design of embedded systems ASICs have been common com-
ponents by providing the high performance and/or low power budget that many
systems require at the expense of long and difficult design cycles. In the 1980s the
use of reprogrammable components, in particular FPGAs, was introduced. FPGAs
allowed for faster design cycles because they enabled early functionality testing.
Nonetheless, the performance and size of FPGAs did not permit them to substi-
tute ASICs in most applications and thus, they were mainly used to prototype
embedded chips small enough to fit in the FPGA. In recent years, however, FPGAs
manufacturers have come closer to filling the performance gap between FPGAs
and ASICs, enabling them, not only to serve as fast prototyping tools but, also to
become active players as components in embedded systems [Wong et al. 2002].

The trend in both industry (see for example [Altera Corporation 2000; 2002a;
2002b; Chameleon Systems Inc. ; Triscend Corporation ; Xilinx Inc. 2002; 2003])
and academia (see [Bondalapati and Prasanna 2002; Hauser and Wawrzynek 1997])
is to develop chips which include either embedded components in them such as
memory, I/O controllers, and multiplier blocks, or both system reconfigurable com-
ponents and programmable cores. The resulting processors/chips, which are not
anymore a single part of an embedded system but rather can be used to develop
the whole system, are known by various names ranging from hybrid architectures
to Systems-on-Chip (SoC), Configurable System-on-Chip (CSoC), Reconfigurable
Systems-on-Chip (RSoC), and Systems on Programmable Chip (SoPC), among
others [Bondalapati and Prasanna 2002]. Thus, FPGAs and in particular reconfig-
urable devices are integral parts in embedded system design. This fact is exemplified
by the great number of research publications in the area of FPGAs and applications
such as image processing [Athanas and Abbott 1995], computer vision [Bondalapati
and Prasanna 2002], solution of pattern recognition problems, e.g., text searching,
fingerprinting matching, etc. [Buell et al. 1996], solution of boolean satisfiabil-
ity problems [Rashid et al. 1998], digital signal processing [Tessier and Burleson
2000], and many others [Vuillemin et al. 1996]. For state-of-the-art surveys on re-
configurable computing and applications we refer the reader to [Bondalapati and
Prasanna 2002; Compton and Hauck 2002; Schaumont et al. 2001]. However, to
the authors’ knowledge, there has not been a comprehensive treatment of security
on FPGAs, both algorithmic and system issues, in the literature, even though there
have been many articles looking at the implementation of a specific cryptographic
algorithm on a specific FPGA over the last five years.

As FPGAs are becoming integral parts of embedded systems and many embed-
ded applications require security mechanisms because of their very nature, it is
imperative to consider security on FPGAs as a whole. As an example of this need,
notice that a large share of all embedded applications are and will be wireless and
will include sensing and actuation functions [Borriello and Want 2000], making the
need for security and privacy preserving mechanisms obvious1.

In actual cryptographic devices, FPGAs are rarely used as stand-alone compo-
nent, especially SRAM-FPGAs. Very often, the FPGA will communicate with an

1In wireless applications the communication channel is easy to eavesdrop and to create profiles of
persons, thus it is desirable to use cryptographic primitives [Davies and Gellersen 2002].

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

Cryptography on FPGAs: State of the Art Implementations and Attacks · 3

(embedded) microprocessor and/or an ASIC. In order to assure security for the
over-all system, the other components and their interaction with the FPGA must
also be considered. This is, however, beyond the scope of this contribution, which
focuses on the security aspects of FPGA devices themselves. We would like to men-
tion, that FPGAs are attractive for executing the actual cryptographic algorithms
and are, thus, of particular importance from a security point of view.

1.1 Our Contributions

The reconfigurability of FPGAs offers major advantages when using them for cryp-
tographic applications. Despite the vastness of the research literature on FPGA
cryptographic implementations, there has been hardly any work regarding the suit-
ability of FPGAs for security applications from a systems point of view. In par-
ticular, very little work has been done on the resistance of FPGAs to physical or
system attacks, which, in practice, pose far a greater danger than algorithmic at-
tacks. Thus, the first part of this paper is devoted to studying FPGAs from a
systems security perspective. We do this by looking at attacks documented in the
literature against FPGAs as well as attacks that have been performed against other
hardware platforms and by adapting them and their solutions to FPGAs. Further-
more, we provide a list of open problems regarding system security of FPGAs.

As mentioned before, there has been a large amount of work done dealing with
the algorithmic and computer architecture aspects of cryptographic schemes imple-
mented on FPGAs over the last five years (see, e.g., relevant articles in [Koç and
Paar 1999; 2000; Koç et al. 2001; Kaliski, Jr. et al. 2002]), often focusing on high-
performance implementations. Nevertheless the works are scattered throughout the
literature. Thus, the second part of this work, makes an attempt to organize the
vast literature on FPGA cryptographic algorithm implementation according to the
different hard mathematical problems on which the cryptographic primitives are
based. In addition, taking performance (both area and throughput) as a measure
of different implementations reported in the literature, we make recommendations
as to which methods are best suited to implement cryptographic algorithms on
FPGAs at the current state of technology. It should be noted that although we
have tried to include the most up to date performance numbers available in the
literature, some citations are a few years old. It can be assumed that due to the
rapid progress in speed and integration density of commercial FPGAs, the speed
and area numbers given in some of the references can be improved if implemented in
state-of-the-art FPGAs. We would also like to stress that this work is not based on
practical experiments, but on a careful analysis of available publications in the lit-
erature and on our experience implementing cryptographic algorithms. Given these
facts, we hope that the contribution at hand is of interest to readers in academia,
industry, and government sectors.

The remainder of this paper is organized as follows. Section 2 summarizes some
of the advantages of FPGAs for cryptographic applications. Section 3 and 4 give an
overview of the security shortcomings of FPGAs by sketching possible attacks and
presenting possible countermeasures against the attacks. In Section 5 we discuss
possible metrics to be used to compare the FPGA algorithm implementations that
we survey in Sections 6 and Section 7. We end this contribution with a list of
open problems regarding security applications in which FPGAs are used and some

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

4 · Thomas Wollinger et al.

conclusions. We have also included a brief overview of cryptography in Appendix A
as well as some of the characteristics of the most common FPGA families quoted
in our literature survey in Appendix B.

2. SYSTEM ADVANTAGES OF FPGAS FOR CRYPTOGRAPHIC APPLICATIONS

In this section we list potential advantages of reconfigurable hardware (RCHW) in
cryptographic applications. Some of the ideas are taken from our earlier work in
[Elbirt et al. 2001] and further extended.

Algorithm Agility:. This term refers to the switching of cryptographic algorithms
during operation of the targeted application. One can observe, that the majority
of modern security protocols, such as SSL or IPsec, are algorithm independent and
allow for multiple encryption algorithms. The encryption algorithm is negotiated
on a per-session basis and a wide variety may be required; e.g., IPsec allows among
others DES, 3DES, Blowfish, CAST, IDEA, RC4, and RC6 as algorithms, and
future extensions are possible. Advantages of algorithm independent protocols are:
1) ability to delete broken algorithms 2) choose algorithms according to certain (e.g.
personal) preferences 3) ability to add new algorithms. Whereas algorithm agility
is costly with traditional hardware, FPGAs can be reprogrammed on-the-fly.

Algorithm Upload:. It is perceivable that fielded devices are upgraded with a new
encryption algorithm. A reason for this could be that the product has to be compat-
ible to new applications. From a cryptographical point of view, algorithm upload
can be necessary because a current algorithm was broken (e.g., Data Encryption
Standard - DES [Federal Information Processing Standards 1977]), a standard ex-
pired (e.g. DES), a new standard was created (e.g. Advanced Encryption Standard
- AES [U.S. Department of Commerce/National Institute of Standard and Technol-
ogy 2001a]), and/or that the list of ciphers in an algorithm independent protocol
was extended. Assuming there is some kind of (temporary) connection to a net-
work such as the Internet, FPGA-equipped encryption devices can upload the new
configuration code. Notice that the upgrade of ASIC-implemented algorithms is
practically infeasible if many devices are affected or if the systems are not easily
accessible, for instance in satellites.

Architecture Efficiency:. In certain cases a hardware architecture can be much
more efficient if it is designed for a specific set of parameters. Parameters for cryp-
tographic algorithms can be for example the key, the underlying finite field, the
coefficient used (e.g., the specific curve of an ECC system), and so on. Generally
speaking, the more specific an algorithm is implemented the more efficient it can
become. An efficient parameter-specific implementation of the symmetric cipher
IDEA [Lai and Massey 1990; Lai et al. 1991] was presented in [Taylor and Gold-
stein 1999]. With fixed keys, the main operation in the IDEA degenerates into
a constant multiplication which is far more efficient than a general modular mul-
tiplication. In the case of IDEA a general modular shift-and-add multiplication
requires 16 partial multiplications and only eight for a fixed key. Another exam-
ple taken from asymmetric cryptography is the arithmetic architectures for Galois
fields. These architectures tend to be (far) more efficient if the field order and irre-
ducible polynomial are fixed. Squaring in GF (2m) takes m/2 cycles with a general
architecture, but only one cycle if the architecture is compiled for a fixed field [Wu
ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

Cryptography on FPGAs: State of the Art Implementations and Attacks · 5

1999]. Notice that squaring in GF (2m) is one of the most common operations when
implementing elliptic curve cryptosystems defined over fields of characteristic two.
FPGAs allow this type of design and optimization with specific parameter set. Due
to the nature of FPGAs, the application can be changed totally or partially.

Resource Efficiency:. The majority of security protocols are hybrid protocols, e.g.
IPSec [Kent and Atkinson 1998], SSL [Freier et al. 1996], TLS [Dierks and Allen
1999]. This implies, that a public-key algorithm is used to transmit the session key.
After the key was established a private-key algorithm is needed for data encryption.
Since the algorithms are not used simultaneously, the same FPGA device can be
used for both through run-time reconfiguration.

Algorithm Modification:. There are applications which require modification of
standardized cryptographic algorithms, e.g., by using proprietary S-boxes or per-
mutations. Such modifications are easily made with RCHW. One example, where
a standardized algorithm was slightly changed, is the UNIX password encryption
[Menezes et al. 1997] where DES is used 25 times in a row and a 12-bit salt modi-
fies the expansion mapping (the Unix password encryption has been standardized
[ANSI 1981]). It is also attractive to customize block cipher such as DES or AES
with proprietary S-boxes for certain applications. Furthermore, in many occasions
cryptographic primitives or their modes of operation have to be modified according
to the application.

Throughput:. General-purpose CPUs are not optimized for fast execution espe-
cially in the case of public-key algorithms. Mainly because they lack instructions for
modular arithmetic operations on long operands. Modular arithmetic operations
include for example exponentiation for RSA [Rivest et al. 1978] and multiplication,
squaring, inversion, and addition for elliptic curve cryptosystems (ECC) [Koblitz
1987; Miller 1986a]. Although typically slower than ASIC implementations, FPGA
implementations have the potential of running substantially faster than software
implementations. The block cipher AES, exemplarily, reaches a data rate of 112,3
Mbit/s and 718,4 Mbit/s on a DSP TI TMS320C6201 [Wollinger et al. 2000] and
Pentium III [Lipmaa 2002], respectively. In comparison, the FPGA implementa-
tion of the same algorithm on a Virtex XCV-1000BG560-6 achieved 12 GBit/s using
12,600 slices and 80 RAMs [Gaj and Chodowiec 2001]. On the other hand, an ASIC
encrypts at about double the speed of the FPGA, e.g. Amphion CS5240TK reaches
25.6 Gbit/s at 200MHz [Amphion].

Cost Efficiency:. There are two cost factors, that have to be taken into consid-
eration, when analyzing the cost efficiency of FPGAs: cost of development and
unit prices. The costs to develop an FPGA implementation of a given algorithm
are much lower than for an ASIC implementation, because one is actually able to
use the given structure of the FPGA (e.g. look-up table) and one can test the re-
configured chip endless times without any further costs. This results in a shorter
time-to-market period, which is nowadays an important cost factor. The unit prices
are not so significant when comparing them with the development costs. However,
for high-volume applications, ASIC solutions usually become the more cost-efficient
choice.

We would like to stress that the advantages above are not necessarily restricted
to cryptographic applications. They can also be exploited in different contexts.

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

6 · Thomas Wollinger et al.

For example, the remote upload of a configuration can be used to fix bugs in
fielded devices, or to upgrade existing devices to make them compatible with new
standards. However, some of the cryptographic advantages, such as replacement of
a broken algorithm, may carry more weight for a system design than advantages in
different application domains.

Note that the listed potential advantages of FPGAs for cryptographic applica-
tions can only be exploited if the following questions pertaining to the security
properties of FPGAs have been addressed:

—Are there any shortcomings in terms of security using FPGAs (e.g. reverse-
engineering of the bitstream)?

—Are physical (active) attacks possible? If so, how much effort is involved com-
pared to attacking an ASIC?

—Do manufactures add features that may lower the security of the FPGA?
—What kind of known attacks can be applied to FPGA implementations?

3. SECURITY SHORTCOMINGS OF FPGAS

This section summarizes security problems produced by attacks against given FPGA
implementations. First we would like to state what the possible goals of such attacks
are.

3.1 Objectives of an Attacker

The most common threat against an implementation of a cryptographic algorithm
is to learn a confidential cryptographic key, that is, either a symmetric key or the
private key of an asymmetric algorithm. Given that the algorithms applied are
publicly known in most commercial applications, knowledge of the key enables the
attacker to decrypt future (assuming the attack has not been detected and coun-
termeasures have not been taken) and, often more harming, past communications
which had been encrypted. Another threat is the one-to-one copy, or “cloning”, of
a cryptographic algorithm together with its key. In some cases it can be enough to
run the cloned application in decryption mode to decipher past and future com-
munications. In other cases, execution of a certain cryptographic operation with
a presumingly secret key is in most applications the sole criteria which authen-
ticates a communication party. An attacker who can perform the same function
can masquerade as the attacked communication party. Yet another threat is given
in applications where the cryptographic algorithms are proprietary. Even though
such an approach is not wide-spread, it is standard practice in applications such
as pay-TV and in government communications. In such scenarios it is already in-
teresting for an attacker to reverse-engineer the encryption algorithm itself. The
associated key might later be recovered by other methods (e.g., bribery or classical
cryptanalysis.) The discussion above assumes mostly that an attacker has physical
access to the encryption device. Whether that is the case or not depends heavily
on the application. However, we believe that in many scenarios such access can be
assumed, either through outsiders or through dishonest insiders.

In the following we discuss vulnerabilities of modern FPGAs against such attacks.
In areas were no attacks on FPGAs have been published, we tried to extrapolate
from attacks on other hardware platforms, mainly memory cell and chip cards.
ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

Cryptography on FPGAs: State of the Art Implementations and Attacks · 7

3.2 Black Box Attack

The classical method to reverse engineer a chip is the so called Black Box attack.
The attacker inputs all possible combinations, while saving the corresponding out-
puts. The intruder is then able to extract the inner logic of the FPGA, with the
help of the Karnaugh map or algorithms that simplify the resulting tables. This
attack is only feasible if a small FPGA with explicit inputs and outputs is attacked
and a lot of processor power is available. The reverse engineering effort grows and
it will become less feasible as the size and complexity of the FPGA increases. The
cost of the attack, furthermore, rises with the usage of state machines, LFSRs (Lin-
ear Feedback Shift Registers), integrated storage, and, if pins can be used, input
and output [Dipert 2000].

3.3 Readback Attack

Readback is a feature that is provided for most FPGA families. This feature allows
to read a configuration out of the FPGA for easy debugging. An overview of the
attack is given in [Dipert 2000]. The idea of the attack is to read the configuration
of the FPGA through the JTAG or programming interface in order to obtain secret
information (e.g. keys, proprietary algorithm). The readback functionality can be
prevented with a security bit. In some FPGA families, more than one bit is used
to disable different features, e.g., the JTAG boundary. In [Aplan et al. 1999], the
idea of using a security antifuse to prevent readout of information is patented.

However, it is conceivable, that an attacker can overcome these countermeasures
in FPGA with fault injection. This kind of attack was first introduced in [Boneh
et al. 1997]. The authors showed how to break public-key algorithms, such as the
RSA and Rabin signature schemes, by exploiting hardware faults. Furthermore,
they give a high level description of transient faults, latent faults, and induced
faults. This publication, was followed by [Biham and Shamir 1997], where the au-
thors introduced differential fault analysis, which can potentially be applied against
all symmetric algorithms in the open literature. Meanwhile there have been many
publications that show different techniques to insert faults, e.g., electro magnetic
radiation [Quisquater and Samyde 2001], infrared laser [Ajluni 1995], or even a flash
light [Skorobogatov and Anderson 2002]. It seems very likely that these attacks can
be easily applied to FPGAs, since they are not especially targeted to ASICs. There-
fore, one is able to deactivate security bits and/or the countermeasures, resulting in
the ability to read out the configuration of the FPGA [Kessner 2000; Dipert 2000].

Despite these attacks Actel Corporation [Actel Corporation 2002] claims that
after the programming phase, the cells of FPGAs cannot be read at all. On the
other hand Xilinx offers the users the software tool JBits [Guccione and Levi],
which provides an API to access the bitstream information and allows dynamic
reconfiguration for Xilinx Virtex FPGAs. JBits allows a simplified and automated
access to specific part of the bitstream, resulting in a extra advantage for the
attacker who performs a readback attack.

3.4 Cloning of SRAM FPGAs

The security implications that arise in a system that uses SRAM FPGAs are ob-
vious, if the configuration data is stored unprotected in the system but external to
the FPGA. In a standard scenario, the configuration data is stored externally in

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

8 · Thomas Wollinger et al.

nonvolatile memory (e.g., PROM) and is transmitted to the FPGA at power up
in order to configure the FPGA. An attacker could easily eavesdrop on the trans-
mission and get the configuration file. This attack is therefore feasible for large
organizations as well as for those with low budgets and modest sophistication.

3.5 Reverse-Engineering of the Bitstreams

The attacks described so far output the bitstream of the FPGA design. In order
to get the design of proprietary algorithms or the secret keys, one has to reverse-
engineer the bitstream. The condition to launch the attack is not only that the
attacker has to be in possession of the bitstream, but furthermore the bitstream
has to be in the clear, meaning it is not encrypted.

FPGA manufactures claim, that the security of the bitstream relies on the dis-
closure of the layout of the configuration data. This information will only be
made available if a non-disclosure agreement is signed, which is, from a crypto-
graphic point of view, an extremely insecure situation. This security-by-obscurity
approach was broken at least ten years ago when the CAD software company NEO-
Cad reverse-engineered a Xilinx FPGA. NEOCad was able to reconstruct the neces-
sary information about look-up tables, connections, and storage elements [Seamann
2000]. Hence, NEOCad was able to produce design software without signing non-
disclosure agreements with the FPGA manufacturer. Even though a big effort has
to be made to reverse engineer the bitstream, for large organizations it is quite
feasible. In terms of government organizations as attackers, it is also possible that
they will get the information of the design methodology directly from the vendors
or companies that signed NDAs.

3.6 Physical Attack

The aim of a physical attack is to investigate the chip design in order to get in-
formation about proprietary algorithms or to determine the secret keys by probing
points inside the chip. Hence, this attack targets parts of the FPGA, which are not
available through the normal I/O pins. This can potentially be achieved through
visual inspections and by using tools such as optical microscopes and mechanical
probes. However, FPGAs are becoming so complex that only with advanced meth-
ods, such as Focused Ion Beam (FIB) systems, one can launch such an attack. To
our knowledge, there are no countermeasures to protect FPGAs against this form
of physical threat. In the following, we will try to analyze the effort needed to
physically attack FPGAs manufactured with different underlying technologies.

3.6.1 SRAM FPGAs. Unfortunately, there are no publications available that
accomplished a physical attack against SRAM FPGAs. This kind of attack is only
treated very superficially in a few articles, e.g. [Richard 1998]. In the related area
of SRAM memory, however there has been a lot of effort by academia and industry
to exploit this kind of attack [Gutmann 1996; 2001; Anderson and Kuhn 1997;
Williams et al. 1996; Schroder 1998; Soden and Anderson 1993; Kommerling and
Kuhn 1999]. Due to the similarities in structure of the SRAM memory cell and the
internal structure of the SRAM FPGA, it is most likely that the attacks can be
employed in this setting.
ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

Cryptography on FPGAs: State of the Art Implementations and Attacks · 9

Contrary to common wisdom, the SRAM memory cells do not entirely loose the
contents when power is cut. The reason for these effects are rooted in the physical
properties of semiconductors (see [Gutmann 2001] for more details). The physical
changes are caused mainly by three effects: electromigration, hot carriers, and ionic
contamination.

In the published literature one can find several different techniques to determine
the changes in device operations. Most publications agree that device can be al-
tered, if 1) threshold voltage has changed by 100mV or 2) there is a 10% change
in transconductance, voltage or current. An extreme case of data recovery, was
described in [Anderson and Kuhn 1997]. The authors were able to extract a DES
master key from a module used by a bank, without any special techniques or equip-
ment on power-up. The reason being that the key was stored in same SRAM cells
over a long period of time. Hence, the key was ”burned” into the memory cells and
the key values were retained even after switching off the device.

”IDDQ testing” is one of the widely used methods and it is based on the analysis
of the current usage of the device. The idea is to execute a set of test vectors
until a given location is reached, at which point the device current is measured.
Hot carrier effects, cell charge, and transitions between different states can then
be detected at the abnormal IDDQ characteristic [Gutmann 2001; Williams et al.
1996]. In [Schroder 1998], the authors use the substrate current, the gate current,
and the current in the drain-substrate diode of a MOSFET to determine the level
and duration of stress applied.

When it becomes necessary to access internal portions of a device, there are
also alternative techniques available to do so, as described in [Soden and Anderson
1993]. Possibilities are to use the scan path that the IC manufacturers insert
for test purposes or techniques like bond pad probing [Gutmann 2001]. When it
becomes necessary to use access points that are not provided by the manufacturer,
the layers of the chip have to be removed. Mechanical probing with tungsten
wire with a radius of 0, 1 − 0, 2µm is the traditional way to discover the needed
information. These probes provide gigahertz bandwidth with 100fF capacitance
and 1MΩ resistance. Due to the complex structure and the multi layer production
of chips the mechanical testing is not sufficient enough. Focused Ion Beam (FIB)
workstations can expose buried conductors and deposit new probe points. The
functionality is similar to an electron microscope and one can inspect structures
down to 5nm [Kommerling and Kuhn 1999]. Electron-beam tester (EBT) is another
measurement method. An EBT is a special electron microscope that is able to speed
primary electrons up to 2.5 kV at 5nA. EBT measures the energy and amount of
secondary electrons that are reflected.

Resulting from the above discussion of attacks against SRAM memory cells, it
seems likely that a physical attack against SRAM FPGAs can be launched success-
fully, assuming that the described techniques can be transfered. However, the phys-
ical attacks are quite costly and having the structure and the size of state-of-the-art
FPGA in mind, the attack will probably only be possible for large organizations,
for example intelligence services.

3.6.2 Antifuse FPGAs. To discuss physical attacks against antifuse (AF) FP-
GAs, one has to first understand the programming process and the structure of

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

10 · Thomas Wollinger et al.

the cells. The basic structure of an AF node is a thin insulating layer (smaller
than 1µm2) between conductors that are programmed by applying a voltage. After
applying the voltage, the insulator becomes a low-resistance conductor and there
exists a connection (diameter about 100nm) between the conductors. The program-
ming function is permanent and the low-impedance state will persist indefinitely.

In order to be able to detect the existence or non-existence of the connection
one has to remove layer after layer, or/and use cross-sectioning. Unfortunately,
no details have been published regarding this type of attack. In [Dipert 2000], the
author states that a lot of trial-and-error is necessary to find the configuration of one
cell and that it is likely that the rest of the chip will be destroyed, while analyzing
one cell. The main problem with this analysis is that the isolation layer is much
smaller than the whole AF cell. One study estimates that about 800,000 chips with
the same configuration are necessary to explore the configuration file of an Actel
A54SX16 chip with 24,000 system gates [Dipert 2000]. Another aggravation of the
attack is that only about 2–5 % of all possible connections in an average design
are actually used. In [Richard 1998] a practical attack against AF FPGAs was
performed and it was possible to alter one cell in two months at a cost of $1000.
Based on these arguments some experts argue that physical attacks against AF
FPGAs are harder to perform than against ASICs [Actel Corporation 2002]. On
the other hand, we know that AF FPGAs can be easily attacked if not connected
to a power source. Hence, it is easier to drill holes to disconnect two connections
or to repair destroyed layers. Also, depending on the source, the estimated cost of
an attack and its complexity are lower [Richard 1998].

3.6.3 Flash FPGAs. The connections in flash FPGAs are realized through flash
transistors. That means the amount of electrons flowing through the gate changes
after configuration and there are no optical differences as in the case of AF FPGAs.
Thus, physical attacks performed via analysis of the FPGA cell material are not
possible. However, flash FPGAs can be analyzed by placing the chip in a vacuum
chamber and powering it up. The attacker can then use a secondary electron
microscope to detect and display emissions. The attacker has to get access to the
silicon die, by removing the packet, before he can start the attack [Dipert 2000].
However, experts are not certain about the complexity of such an attack and there is
some controversy regarding its practicality [Actel Corporation 2002; Richard 1998]

Other possible attacks against flash FPGAs can be found in the related area of
flash memory. The number of write/erase cycles are limited to 10,000 – 100,000,
because of the accumulation of electrons in the floating gate causing a gradual rise
of the transistors threshold voltage. This fact increases the programming time and
eventually disables the erasing of the cell [Gutmann 2001]. Another less common
failure is the programming disturbance in which unselected erased cells gain charge
when adjacent selected cells are written [Aritome et al. 1993]. This failure does
not change the read operations but it can be detected with special techniques
described in [Gutmann 2001]. Furthermore, there are long term retention issues,
like electron emission. The electrons in the floating gate migrate to the interface
with the underlying oxide from where they tunnel into the substrate. This emission
causes a net charge loss. The opposite occurs with erased cells where electrons are
injected [Papadas et al. 1991]. Ionic contamination takes place as well but the
ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

Cryptography on FPGAs: State of the Art Implementations and Attacks · 11

influence on the physical behavior is so small that it can not be measured. In
addition, hot carrier effects have a high influence, by building a tunnel between
the bands. This causes a change in the threshold voltage of erased cells and it is
especially significant for virgin cells [Haddad et al. 1989]. Another phenomenon
is overerasing, where an erase cycle is applied to an already-erased cell leaving
the floating gate positively charged. Thus, turning the memory transistor into a
depletion-mode transistor [Gutmann 2001].

All the described effects change in a more or less extensive way the cell threshold
voltage, gate voltage, or the characteristic of the cell. We remark that the stated
phenomenons apply for EEPROM memory and that due to the structure of the
FPGA cell these attacks can be simply adapted to attack flash/EEPROM FPGAs.

3.6.4 Conclusions on Physical Attacks. It is our position that due to the lack
of published physical attacks against FPGAs, it is very hard (if at all possible) to
predict the costs of such an attack. It is even more difficult to compare the effort
needed for such an attack to a similar attack against an ASIC as there is no publicly
available contribution which describes a physical attack against an FPGA that was
completely carried out. Nevertheless, it is possible to draw some conclusions from
our above discussion.

First, we notice that given the current size of state-of-the-art FPGAs, it seems
unfeasible, except perhaps for large government organizations and inteligent ser-
vices, to capture the whole bitstream of an FPGA. Having said that, we should
caution that in some cases, an attacker might not need to recover the whole bit-
stream information but rather a tiny part of it, e.g., the secret-key. This is enough
to break the system from a practical point of view and it might be feasible.

On the other hand, there are certain properties that might increase the effort
required for a physical attack against FPGAs when compared to ASICs. In the case
of SRAM-, Flash-, EPROM-, and EEPROM-FPGAs there is no printed circuit (as
in the case of ASICs) and therefore it is potentially harder to find the configuration
of the FPGA. The attacker has to look for characteristics that were changed on
the physical level during the programming phase. In the case of antifuse FPGAs
the effort for a physical attack might increase compared to ASICs because one has
to find a tiny connection with a diameter of about 100 nm in a 1 µm2 insulation
layer. Furthermore, only 2− 5% of all possible connections are used in an average
configuration.

3.7 Side channel attacks

Any physical implementation of a cryptographic system might provide a side chan-
nel that leaks unwanted information. Examples for side channels include in particu-
lar: power consumption, timing behavior, and electromagnet radiation. Obviously,
FPGA implementations are also vulnerable to these attacks. In [Kocher et al. 1999]
two practical attacks, Simple Power Analysis (SPA) and Differential Power Analysis
(DPA) were introduced. The power consumption of the device while performing a
cryptographic operation was analyzed in order to find the secret keys from a tamper
resistant device. The main idea of DPA is to detect regions in the power consump-
tion of a device which are correlated with the secret key. Moreover, in some cases
little or no information about the target implementation is required. Since their

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

12 · Thomas Wollinger et al.

introduction, there has been a lot of work improving the original power attacks
(see, e.g., relevant articles in [Koç and Paar 1999; 2000; Koç et al. 2001; Kaliski,
Jr. et al. 2002]). More recently the first successful attacks based on the analysis
of electromagnetic emissions have also been published [Agrawal et al. 2002]. Even
though most of the published attacks are not specific to a particular platform, there
has usually been an assumption that the underlying platform is either software or
an ASIC. There seems to be very little work at the time of writing addressing the
feasibility of actual side channel attacks against FPGAs. Very recently the first ex-
perimental results of simple power analysis on an ECC implementation on an FPGA
have been presented in [Örs et al. 2003] and on RSA and DES implementations in
[Standaert et al. 2003]. Somewhat related was the work presented in [Shang et al.
2002] which concludes that 60% of the power consumption in a XILINX Virtex-II
FPGA is due to the interconnects and 14% and 16% is due to clocking and logic,
respectively. These figures would seem to imply that and SPA type attack would be
harder to implement on an FPGA than on an ASIC. However, the results presented
in [Standaert et al. 2003; Örs et al. 2003] show that SPA attacks are feasible on
FPGAs and that they can be realized in practice.

4. HOW TO PREVENT THE POSSIBLE ATTACKS?

This section shortly summarizes possible countermeasures that can be provided to
minimize the effects of the attacks mentioned in the previous section. Most of them
have to be realized by design changes through the FPGA manufacturers, but some
could be applied during the programming phase of the FPGA.

4.1 Preventing the Black Box Attack

The Black Box Attack is not a real threat nowadays, due to the complexity of
the designs and the size of state-of-the-art FPGAs (see Section 3.2). Furthermore,
the nature of cryptographic algorithms prevents the attack as well. Cryptographic
algorithms can be segmented in two groups: symmetric-key and public-key algo-
rithms. Symmetric-key algorithms can be further divided into stream and block
ciphers. Today’s stream ciphers output a bit stream, with a period length of 128 bits
[Thomas et al. 2003]. Block ciphers, like AES, are designed with a block length of
128 bits and a minimum key length of 128 bits. Minimum length in the case of
public-key algorithms is 160 bits for ECC and 1024 bits for discrete logarithm and
RSA-based systems. It is widely believed, that it is infeasible to perform a brute
force attack and search a space with 280 possibilities. Hence, implementations of
this algorithms can not be attacked with the black box approach.

4.2 Preventing the Cloning of SRAM FPGAs

There are many suggestions to prevent the cloning of SRAM FPGAs, mainly moti-
vated by the desire to prevent reverse engineering of general, i.e., non-cryptographic,
FPGA designs. One solution would be to check the serial number before executing
the design and delete the circuit if it is not correct. This approach is not practical
because of the following reasons: 1) The whole chip, including the serial number
can be easily copied; 2) Every board would need a different configuration; 3) Lo-
gistic complexity to manage the serial numbers [Kessner 2000]. Another solution
would be to use dongles to protect the design [Kean 2001; Kessner 2000]. Dongles
ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

Cryptography on FPGAs: State of the Art Implementations and Attacks · 13

are based on security-by-obscurity, and therefore do not provide solid security, as
it can be seen from the software industry’s experience using dongles for their tools.
A more realistic solution would be to have the nonvolatile memory and the FPGA
in one chip or to combine both parts by covering them with epoxy. This reflects
also the trend in chip manufacturing to have different components combined, e.g.,
the FPSLIC from Atmel. However, it has to be guaranteed that an attacker is not
able to separate the parts.

Encryption of the configuration file is the most effective and practical counter-
measure against the cloning of SRAM FPGAs. There are several patents that
propose different scenarios related to the encryption of the configuration file: how
to encrypt, how to load the file into the FPGA, how to provide key management,
how to configure the encryption algorithms, and how to store the secret data [Jef-
frey 2002; Austin 1995; Erickson 1999; Sung and Wang 1999; Algotronix Ltd.]. In
[Yip and Ng 2000], the authors proposed that to partly decrypt the configuration
file, in order to increase the debugging effort during the reverse engineering. If an
attacker copies the partly decrypted file, the non-decrypted functionality is avail-
able, whereas the one decrypted is not. Thus, the attacker tries to find the errors in
the design not aware of the fact, that they are caused through the encrypted part of
the configuration. Most likely an attacker with little resources, would have dropped
the reverse engineering effort, when realizing that parts are decrypted (which he did
not do because he did not know). However, this approach adds hardly any extra
complexity to an attack if we assume that an attacker has a lot of resources. In
[Kelem and Burnham 2000] an advanced scenario is introduced where the different
parts of the configuration file are encrypted with different keys. The 60RS family
from Actel was the first attempt to have a key stored in the FPGA in order to
be able to encrypt the configuration file before transmitting it to the chip. The
problem was that every FPGA had the same key on board. This implies that if an
attacker has one key he can get the secret information from all FPGAs. In [Kean
2001], the author discusses some scenarios where depending on the manufacturing
cost, more than one key is stored in the FPGA.

An approach in a completely different direction would be to power the whole
SRAM FPGA with a battery, which would make transmission of the configuration
file after a power loss unnecessary. This solution does not appear practical, however,
because of the power consumption of FPGAs. Hence, a combination of encryption
and battery power provides a possible solution. Xilinx addresses this with an on-
chip 3DES decryption engine in its Virtex II [Xilinx Inc.] (see also [Pang et al.
2000]), where only the two keys are stored in the battery powered memory. Due
to the fact that the battery powers only a very small memory cells, the battery is
limited only by its own life span.

4.3 Preventing the Physical Attack

To prevent physical attacks, one has to make sure that the retention effects of the
cells are as small as possible, so that an attacker can not detect the status of the
cells. Already after storing a value in a SRAM memory cell for 100–500 seconds,
the access time and operation voltage will change [van der Pol and Koomen 1990].
Furthermore, the recovery process is heavily dependant on the temperature: 1.5
hours at 75◦C, 3 days at 50◦C, 2 month at 20◦C, and 3 years at 0◦C [Gutmann

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

14 · Thomas Wollinger et al.

2001]. The solution would be to invert the data stored periodically or to move the
data around in memory. Cryptographic applications cause also long-term retention
effects in SRAM memory cells by repeatedly feeding data through the same circuit.
One example is specialized hardware that uses always the same circuits to feed the
secret key to the arithmetic unit [Gutmann 2001]. Neutralization of this effect can
be achieved by applying an opposite current [Tao et al. 1993] or by inserting dummy
cycles into the circuit [Gutmann 2001]. In terms of FPGA application, it is very
costly or even impractical to provide solutions like inverting the bits or changing
the location for the whole configuration file. A possibility could be that this is done
only for the crucial part of the design, like the secret keys. Counter techniques such
as dummy cycles and opposite current approach can be carried forward to FPGA
applications.

In terms of flash/EEPROM memory cell, one has to consider that the first
write/erase cycles causes a larger shift in the cell threshold [San et al. 1995] and
that this effect will become less noticeably after ten write/erase cycles [Haddad
et al. 1989]. Thus, one should program the FPGA about 100 times with random
data, to avoid these effect (suggested for flash/EEPROM memory cells in [Gutmann
2001]). The phenomenon of overerasing flash/EEPROM cells can be minimized by
first programming all cells before deleting them.

4.4 Preventing the Readback Attack

The readback attack can be prevented with the security bits set, as provided by the
manufactures, see Section 3.3. If one wants to make sure that an attacker is not able
to apply fault injection, the FPGA has to be embedded into a secure environment,
where after detection of an interference the whole configuration is deleted or the
FPGA is destroyed.

4.5 Preventing the Side Channel Attack

In recent years, there has been a lot of work done to prevent side-channel attacks,
see for example [Kocher et al. 1999; Chari et al. 1999; Chari et al. 1999; Goubin
and Patarin 1999; Clavier et al. 2000; Clavier and Coron 2000; Shamir 2000].
The methods can generally be divide into software and hardware countermeasures,
with the majority of proposals dealing with software countermeasures. “Software”
countermeasures refer primarily to algorithmic changes, such as masking of secret
keys with random values, which are also applicable to implementations in custom
hardware or FPGA. Hardware countermeasures often deal either with some form of
power trace smoothing or with transistor-level changes of the logic. Neither seem to
be easily applicable to FPGAs without support from the manufacturers. However,
some proposals such as duplicated architectures might work on todays FPGAs.

5. A WORD REGARDING METRICS

After considering the suitability of FPGAs for security applications from a systems
perspective, we will try to give an overview of the state-of-the-art in cryptographic
algorithm implementations on FPGAs. To this end, we first consider the metrics
that we will use to measure performance in different implementations.

Traditionally, when evaluating the performance of cryptographic implementa-
tions emphasis has been made first on the throughput of the implementation and,
ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

Cryptography on FPGAs: State of the Art Implementations and Attacks · 15

second, on the amount of hardware resources consumed to achieve the previously
mentioned throughput. As pointed out in [Elbirt et al. 2001], there is not a widely
accepted metric to measure the hardware costs associated with a giving throughput
in an FPGA implementation. This is evident when one looks at the many variables
used in describing area results in many publications. Possibilities include: num-
ber of configurable logic blocks (CLBs), number of Look-Up Tables (LUTs) and
flip-flops (FFs); number of equivalent logic gates; and number of CLB slices. It is
important to point out that the number of equivalent logic gates does not provide
an accurate measure of the extent to which hardware resources have been used in
an FPGA. In particular, hardware resources within CLB slices may not be fully
utilized by the place and route tools to relieve routing congestion, resulting in an
increase in the number of CLB slices but not an equivalent increase in logic gates.
Thus, following the conventions in [Elbirt et al. 2001; Gaj and Chodowiec 2000;
2001; Preneel et al. 2003], we have tried to use CLB slices whenever the numbers
are available, and LUTs and FFs whenever CLB slices are not available.

In addition, since hardware costs are usually associated with area and throughput
is considered one of the most important characteristic in a cryptographic implemen-
tation, we have also included the Throughput Per CLB slice (TPS) metric, used in
[Elbirt et al. 2001; Preneel et al. 2003] and defined as:

TPS :=
Encryption Rate

CLB Slices Used

When appropriate, the TPS metric will be normalized and only used when the
number of CLB slices and the throughput are explicitly stated in the work being
cited. Therefore, the optimal implementation will achieve the highest throughput
in the least amount of area and, thus, the highest TPS, behaving inversely to the
more traditional time-area product used in VLSI implementations. At this point,
we must caution the reader against using the TPS to compare implementations
on different FPGA devices. Different FPGA devices, even within the same family,
yield different timing results as a function of available logic and routing resources,
both of which change based on the die size of a given FPGA. This is true to a
greater extent if one attempted to compare different FPGA devices since now, even
the architecture of the device is completely different. Nevertheless, we think the
TPS is useful to compare implementations of different algorithms on the same device
because this might shine some light into which algorithm is better suited for a given
device. In addition, the TPS is also useful to compare different implementation
methodologies of the same algorithm implemented on the same device because this
helps in deciding which are the best architectures for a given algorithm based on
the time-area cost of the implementation.

6. SYMMETRIC-KEY ALGORITHM IMPLEMENTATIONS ON FPGAS

We begin this section by describing DES implementations on FPGAs. Although sin-
gle DES expired as a federal standard in 1998 and it can only be used in legacy sys-
tems, it continues to be the most widely deployed symmetric-key algorithm, includ-
ing its variant triple-DES which coexists as a federal standard with the AES [Amer-
ican National Standards Institute 1998; U.S. Department of Commerce/National
Institute of Standards and Technology 1999].

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

16 · Thomas Wollinger et al.

6.1 DES on FPGAs

The first published implementation of DES on an FPGA achieved a throughput of
24 Mbits/sec [Leonard and Magione-Smith 1997]. However, this implementation re-
quired generation of key-specific circuitry for the target FPGA, a Xilinx XC4013-14,
requiring recompilation of the implementation for each key. Until recently, the best
performance in an FPGA implementation of DES has achieved is a throughput of
402.7 Mbits/sec when operating in ECB mode using a Xilinx XC4028EX-3 FPGA
[Kaps and Paar 1998; Kaps 1998; Kaps and Paar 1999]. This implementation took
advantage of pipeline design techniques to maximize the system clock frequency at
the cost of pipeline latency cycles. However, with the advent of run-time reconfigu-
ration and more technologically advanced FPGAs, implementations with through-
puts in the range of ASIC performance values has been achieved. The most recent
DES implementation employing run-time reconfiguration achieved a throughput of
10.752 Gbits/sec when operating in ECB mode using a Xilinx Virtex XCV150-6
FPGA [Patterson 2000b]. The use of the Xilinx run-time reconfiguration software
application JBitsTM allow for real time key-specific compilation of the bit-stream
used to program the FPGA, resulting in a smaller and faster design (which oper-
ated at 168 MHz) as compared to the design in [Kaps and Paar 1998; Kaps 1998;
Kaps and Paar 1999] (which operated at 25.19 MHz). However, the time required
for run-time reconfiguration (RTR) each time that the key needs to be changed
is in the order of tens of milliseconds. Most recently, there were two DES imple-
mentations which have achieved Gbit per second speeds for non-feedback modes
of operation. The Free-IP project offers DES VHDL-implementations for feedback
and non-feedback modes. They are capable of achieving 3 Gbit/sec encryption
rates in non-feedback modes and 130 Mbit/sec in feedback modes. The second
and by far the fastest FPGA implementation available in the literature (achieving
a 12 Gbit/sec throughput when operating in ECB mode using a Xilinx Virtex-E
XCV300E-8 FPGA) is the one described in [Trimberger et al. 2000]. This implemen-
tation did not make use of run-time reconfiguration –through careful optimization
of the DES datapath and the use of a 48-stage pipeline, the implementation was
able to achieve a clock frequency of 188.68 MHz, resulting in the improved perfor-
mance versus the implementation in [Patterson 2000b]. Tables I and II summarize
these results. Table I summarizes the performance of DES in feedback modes of
operation, where pipelining can not be used. From these results, it is easy to see
that one simple method to increase the throughput of an implementation is by
using loop unrolling. In Table I, we have used the results in [Kaps 1998] rather
than those in [Kaps and Paar 1998] because it allows us to compare the TPS metric
when loop unrolling is used and when it is not2. Interestingly, the results seem to
indicate that the price one pays for using loop unrollment increases at the same
rate as the final throughput of the implementation.

Table II summarizes available DES implementations in non-feedback modes. In
this case, one can easily use pipelining at the cost of additional area to improve
the throughput of a given implementation. Notice that pipelining allows one to

2We would like to point out that the original metric used in [Kaps 1998; Kaps and Paar 1998] was
CLBs. However, by looking at [Xilinx Inc. 1999] and [Xilinx Inc. 2001] one readily notices that
one slice in a Virtex XCV400 chip is exactly the same as a CLB in a chip of the XC4000E family.

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

Cryptography on FPGAs: State of the Art Implementations and Attacks · 17

Table I. DES Feedback Implementation Performance on FPGAs
Reference Chip Area Freq. Rate TPS Notes

(slices) (MHz) (Mbits
sec) (

Mbps
slices

)

Leonard and
Magione-Smith XC4025-4 938 4.9 20 0.02 Standard DES,
[1997] XC4025-4 640 6.0 24 0.04 Key Specific

Kaps XC4013E-3 262 23.9 91.2 0.35 Standard DES,
[1998] 16 iterations

XC4013E-3 443 18.5 141.3 0.32 Loop unrolled,
8 iterations

XC4028EX-3 722 11.5 176 — Loop unrolled,
4 iterations

[The Free-IP
Project] XCV400-6 731 32.5 130 —

Table II. DES Non-Feedback Mode Implementation Performance on FPGAs
Reference Chip Area Freq. Rate Notes

(MHz) (
Mbps
slices

)

Kaps and Paar XC4013E-3 433 23.0 183.8 2-stage
[1998] slices pipeline

XC4028EX-3 741 25.2 402.7 4-stage
slices pipeline

[The Free-IP XCV400-6 2528 47.7 3.1
Project] slices Gbit/sec

[Patterson 2000b] XCV150-6 1584 168 10.7 Requires Jbits
slices and RTR

Trimberger et al. XCV300-6 4216 LUTs, 10 6.4 16-stage
1943 FFs, Gbit/sec pipeline

XCV300-6 4216 LUTs, 158.7 10.1 48-stage
5573 FFs Gbit/sec pipeline

XCV300E-8 4216 LUTs, 132.0 8.4 16-stage
1943 FFs Gbit/sec pipeline

XCV300E-8 4216 LUTs, 188.7 12.0 48-stage
5573 FFs Gbit/sec pipeline

obtain performance comparable to that attained by ASIC implementations (See for
example [Wilcox et al. 1999] for a state-of-the-art DES ASIC implementation). In
addition, we notice that except for [Patterson 2000b], all the other implementations
implemented pipelined versions of DES and they did not require reconfiguration
when changing keys. Nevertheless, the other implementations achieve comparable
throughputs which allows us to conclude that it is not necessary to pay the price
of a key-dependant implementation to achieve ASIC speeds on FPGAs. Having
said that, one could envision key-specific FPGA implementations of DES [Leonard
and Magione-Smith 1997; Patterson 2000b] to be useful in applications where area
minimization is important (at the possible expense of throughput) and where large
amounts of data are encrypted with the same key for extended periods of time.

6.2 AES Candidates on FPGAs

Multiple FPGA implementation studies have been presented for the AES candidate
algorithm finalists [Dandalis et al. 2000a; 2000b; Elbirt et al. 2000; 2001; Gaj and

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

18 · Thomas Wollinger et al.

Chodowiec 2000; 2001; Weaver and Wawrzynek 2000], the results of which are
found in Table III, for feedback modes of operation3. A similar exercise can be
performed for non-feedback modes, but, we don’t think it would add anything to
this work. Note that [Elbirt et al. 2000] is a subset of the studied performed in
[Elbirt et al. 2001] and that no throughput results are presented in [Weaver and
Wawrzynek 2000]. The studies performed in [Elbirt et al. 2000; 2001; Gaj and
Chodowiec 2000] used a Xilinx Virtex XCV1000-4 as the target FPGA. The study
performed in [Dandalis et al. 2000a] used the Xilinx Virtex Family but did not
specified which FPGA was used as the target device, this makes comparison with
other implementations very hard, if not impossible.

Table III. AES Candidate Finalists FPGA Implementations in Feedback Mode of Operation.
Algorithm Reference Chip Area Freq. Rate TPS Notes

(slices) (MHz) (Mbits
sec) (Mbps

slices)
MARS Dandalis et al. Xilinx 6896 — 101.9 — incl. key schedule

[2000a] Virtex uses Block SelectRAM
Gaj and XCV1000-6 2744 — 61.0 0.02 iterative loop,
Chodowiec no key schedule,
[2001] incl. decryption &

encryption
RC6 Dandalis et al. Xilinx 2650 — 112.9 — incl. key schedule

[2000a] Virtex uses Block SelectRAM
Gaj and XCV1000-6 1137 — 142.7 0.13 iterative loop,
Chodowiec no key schedule,
[2001] incl. decryption &

encryption
Elbirt et al. XCV1000-4 3189 19.8 126.5 0.04 speed opt., PP-2,
[2001] no key-schedule

no Block SelectRAM
Gaj and XC4085 1222 7.2 43.1 — iterative loop,
Chodowiec (CLBs) no key schedule,
[2000]

Rijndael Dandalis et al. Xilinx 5673 — 353.0 — incl. key schedule
[2000a] Virtex uses Block SelectRAM
Gaj and XCV1000-6 2507 — 414.2 0.17 iterative loop,
Chodowiec no key schedule,
[2001] incl. decryption &

encryption
Elbirt et al. XCV1000-4 3528 25.3 294.2 0.08 speed opt., LU-1
[2001] no key schedule

no Block SelectRAM
Serpent Dandalis et al. Xilinx 2550 — 149.0 — incl. key schedule

[2000a] Virtex uses Block SelectRAM
Gaj and XCV1000-6 4507 — 431.4 0.1 iterative loop,
Chodowiec no key schedule,
[2001] incl. decryption &

encryption
Elbirt et al. XCV1000-4 7964 13.9 444.2 0.06 speed opt., LU-8
[2001] no key schedule

no Block SelectRAM
Twofish Dandalis et al. Xilinx 9363 — 173.1 — incl. key schedule

[2000a] Virtex uses Block SelectRAM
Gaj and XCV1000-6 1076 — 177.3 0.17 iterative loop,
Chodowiec no key schedule,
[2001] incl. decryption &

encryption
Elbirt et al. XCV1000-4 2695 16.0 127.7 0.05 area opt., LU-1
[2001] no key schedule

no Block SelectRAM
Gaj and XC4085 907 11.4 89.2 — iterative loop,
Chodowiec (CLBs) no key schedule,
[2000]

In Table III, PP-2, LU-1, and LU-8, correspond to partial pipelining with two
stages, one round loop unrolling, and eight rounds loop unrolling architectures,
respectively. In addition, notice that the implementation of a one stage partial
pipeline, an iterative looping architecture, a one round loop unrolled architecture
are all equivalent [Elbirt et al. 2001]. Also, we have only calculated the TPS ratio for

3In Table III, we have not always included the implementation corresponding to highest through-
put, but rather the one with the highest TPS ratio.

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

Cryptography on FPGAs: State of the Art Implementations and Attacks · 19

implementations which used the Xilinx Virtex XCV1000 as their hardware platform
because it is the most common platform among published works, thus making a
comparison somewhat reasonable. One can see that most implementations achieve
similar throughputs for the same algorithms. In addition, if one were to choose
algorithms based on their throughput all authors would agree that Serpent would
win followed closely by Rijndael, Twofish and RC6, and MARS at the end4. The
most interesting effect is that [Gaj and Chodowiec 2001] achieve similar performance
as other implementations at the cost of half the area, which is due, according to the
authors, to resource sharing. If we were to perform a similar exercise in terms of the
TPS ratio, then Rijndael would win followed by Serpent and Twofish, and finally,
RC6 and MARS. One reason for RC6 and MARS to have the poorest performance
when implemented on FPGAs is their use of a multiplier in their round function.
We refer to [Gaj and Chodowiec 2001; Elbirt et al. 2001; Nechvatal et al. 2000] for
more in depth architecture and performance comparisons of the AES candidates.

FPGA implementations of individual candidate algorithms (both finalists and
non-finalists) have also been performed. Implementations of CAST-256 achieved
throughputs of 11.03 Mbits/sec using a Xilinx Virtex XCV1000-4 [Elbirt 1999] and
13 Mbits/sec using a Xilinx XC4020XV-9 [Riaz and Heys 1999]. An RC6 imple-
mentation achieved a throughput of 37 Mbits/sec using a Xilinx XC402OXV-9
[Riaz and Heys 1999]. A Serpent implementation using a Xilinx Virtex XCV1000-4
achieved a throughput of 4.86 Gbits/sec [Elbirt and Paar 2000]. When targeted to
a Xilinx Virtex-E XCV400E-8, a Serpent implementation achieved a throughput
of 17.55 Gbits/sec through the use of the Xilinx run-time reconfiguration software
application JBitsTM which allowed for real time key-specific compilation of the
bit-stream used to program the FPGA [Patterson 2000a]. This run-time reconfig-
uration resulted in a smaller and faster design (which operated at 137.15 MHz)
as compared to the design in [Elbirt and Paar 2000] (which operated at 37.97
MHz). When implemented using an FPGA from the Altera Flex 10KA Family, the
Serpent algorithm achieved a maximum throughput of 301 Mbits/sec [Bora and
Czajka 1999], however, it is important to note that the implementation in [Bora
and Czajka 1999] implements 8 of the Serpent’s algorithm thirty two rounds while
the implementations in [Elbirt and Paar 2000] and [Patterson 2000a] implement all
the rounds of the Serpent algorithm. Note that all of the presented throughput
values are for non-feedback modes of operation.

Multiple implementations of Rijndael, the AES, have been presented using both
Xilinx and Altera FPGAs [Fischer and Drutarovsky 2001; McLoone and McCanny
2001]. The implementation in [McLoone and McCanny 2001] achieves a throughput
of 6.956 Gbits/sec using a Xilinx Virtex-E XCV3200E-8. Utilizing ROM to imple-
ment the Rijndael Byte-Sub operation resulted in a significant increase in through-
put and decrease in area as compared to implementations in [Dandalis et al. 2000a;
2000b; Elbirt et al. 2000; Elbirt and Paar 2001; Gaj and Chodowiec 2000], at the
expense of BRAM Blocks which the previous implementations did not use. When
targeting the more advanced Altera APEX20KE200-1, Rijndael implementations
achieved throughputs ranging from 570 Mbits/sec to 964 Mbits/sec depending on

4[Dandalis et al. 2000a] and [Gaj and Chodowiec 2001; Elbirt et al. 2001] would interchange the
placing of Rijndael and Serpent.

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

20 · Thomas Wollinger et al.

the implementation methodology [Fischer and Drutarovsky 2001]. Four recent im-
plementations are also worth mentioning. The implementations described in [Stan-
daert et al. 2003a; 2003b] and [Järvinen et al. 2003] achieve throughput rates of
11.8 and 17.8 Gbits/s, respectively. These throughputs are only achieved through
pipelining and thus are not suitable for feedback modes of operation. Notice that
[Järvinen et al. 2003] achieve such high throughputs for a 128-bit key Rijndael im-
plementation. The work presented in [Standaert et al. 2003a; 2003b] is also inter-
esting because it compares different implementation options (Look-up table based
implementations, RAM-based implementations, and composite field implementa-
tions) and proposed some heuristics to evaluate the hardware efficiency at different
steps of the design process which result on particularly efficient implementations.
Finally, we include the work presented in [Chodowiec and Gaj 2003] as its target
is the implementation of a resource efficient AES core on FPGAs. Such work has
not been considered extensively in the literature (usually designs are optimized for
speed rather than area when targeting FPGAs). In addition, they proposed a new
way of implementing the MixColumns and InvMixColumns transformations which
reduces area and might be interesting in its own right. The work in [Chodowiec and
Gaj 2003] achieves data streams of 150 Mbits/sec for encryption and decryption on
a low-cost Xilinx Spartan II FPGA using 222 slices and 3 BRAMs.

7. ASYMMETRIC-KEY ALGORITHM IMPLEMENTATIONS ON FPGAS

Most public–key schemes are based on modular exponentiation (RSA [Rivest et al.
1978] and Discrete Logarithm (DL) based systems [Diffie and Hellman 1976; U.S.
Department of Commerce/National Institute of Standard and Technology 2000b])
or point multiplication (Elliptic Curve Cryptosystems [Miller 1986b; Koblitz 1987;
Menezes and Johnson 1999; U.S. Department of Commerce/National Institute of
Standard and Technology 2000b]). Both operations are in their most basic forms
performed via the binary method for exponentiation or one of its variants [Gordon
1998]. The atomic operation in the binary method for exponentiation is either
modular multiplication, in the case of RSA and DL-based systems, or point ad-
dition, in the case of ECC, which in turn is performed through a combination of
multiplications and additions on the field of definition of the elliptic curve. Thus,
the first part of this section is mainly concerned with how to perform modular mul-
tiplication efficiently on FPGAs. The second part of this section treats the case of
elliptic curves.

7.1 Notation

We will refer to long numbers with capital letters and to their digits in radix-b
representation with lower-case letters. So for example, we would write an n-digit
number in base b as A =

∑n−1
i=0 aib

i with b ≥ 2 and 0 ≤ ai < b. Notice that unless
otherwise stated we always assume unsigned operands.

7.2 Modular Multiplication

The problem of modular multiplication and, more specifically, the problem of mod-
ular reduction has been extensively studied since it is a fundamental building block
of any cryptosystem. Among the algorithms that have been proposed we find:
ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

Cryptography on FPGAs: State of the Art Implementations and Attacks · 21

—Sedlak’s Modular Reduction. Originally introduced in Sedlak [1987], this algo-
rithm is used by Siemens, in the SLE44C200 and SLE44CR80S microprocessors,
to perform modular reduction [Naccache and M’Räıhi 1996]. Sedlak notices that
the algorithm improves the reduction complexity by an average factor of 1/3
when compared to the basic bit-by-bit reduction.

—Barret’s Modular Reduction. It was originally introduced in [Barrett 1986], in
the context of implementing RSA on a DSP processor. Suppose that you want
to compute X ≡ R mod M for some modulus M . Then, we can re-write X as
X = Q ·M +R with 0 ≤ R < M , which is a well known identity from the division
algorithm [Menezes et al. 1997, Definition 2.82]. Thus

R = X mod M = X −Q ·M (1)

Barret’s basic idea is that one can write Q in (1) as:

Q = bX/Mc =
⌊(

X/bn−1
) (

b2n/M
) (

1/bn+1
)⌋

. (2)

In particular, Q can be approximated by

Q̂ = Q3 =
⌊⌊(

X/bn−1
)⌋ (

b2n/M
) (

1/bn+1
)⌋

Notice that the quantity µ = b2n/M can be precomputed when performing many
modular reductions with the same modulus, as is the case in cryptographic al-
gorithms. Having precomputed µ, the expensive computations in the algorithm
are only divisions by powers of b, which are simply performed by right-shifts,
and modular reduction modulo bi, which is equivalent to truncation. We refer
to [Menezes et al. 1997, Section 14.3.3] for further discussion of implementation
issues regarding Barret reduction, and to [Dhem 1994; 1998] for improvements
over the original algorithm.

—Brickell’s Modular Reduction. Originally introduced in [Brickell 1982], is depen-
dent on the utilization of carry-delayed adders [Norris and Simmons 1981] and
combines a sign estimation technique (See for example [Koç and Hung 1991]) and
Omura’s modular reduction [Omura 1990].

—Quisquater’s Modular Reduction. Quisquater’s algorithm, originally presented at
[Quisquater ; 1992], can be thought of as an improved version of Barret’s reduc-
tion algorithm. [Benaloh and Dai ; Walter 1991] have proposed similar methods.
In addition, the method is used in the Phillips smart-card chips P83C852 and
P83C855, which use the CORSAIR crypto-coprocessor [D. De Waleffe and J.-J.
Quisquater 1990; Naccache and M’Räıhi 1996] and the P83C858 chip, which uses
the FAME crypto-coprocessor [Ferreira et al. 1996]. Quisquater’s algorithm, as
presented in [D. De Waleffe and J.-J. Quisquater 1990], is a combination of the
interleaved multiplication reduction method (basically, combine a normal mul-
tiprecision algorithm with modular reduction, making use of the distributivity
property of the modular operation) and a method that makes easier and more
accurate the estimation of the quotient Q in (1).

—Montgomery Modular Multiplication. The Montgomery algorithm, originally in-
troduced in [Montgomery 1985], is a technique that allows efficient implementa-
tion of the modular multiplication without explicitly carrying out the modular
reduction step. We discuss it in detail as it is the most widely used algorithm for
modular multiplication in the literature.

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

22 · Thomas Wollinger et al.

7.3 Montgomery Modular Multiplication

The idea behind Montgomery’s algorithm is to transform the integers in M -residues
and compute the multiplication with these M -residues. At the end, one transforms
back to the normal representation. As with Quisquater’s and Barret’s method, this
approach is only beneficial if we compute a series of multiplications in the transform
domain (e.g., modular exponentiation). The Montgomery reduction algorithm is
as follows: Given integers M and R with R > M and gcd(M, R) = 1, M ′ ≡
−M−1 mod R. Let T be an integer such that 0 ≤ T < MR. If Q ≡ TM ′ mod R,
then Z = (T + QM)/R is an integer and furthermore, Z ≡ TR−1 mod M . Notice
that our description is just the reduction step involved in a modular multiplication.
The multiplication step can be carried out via multi-precision multiplication (see for
example [Menezes et al. 1997, Chapter 14]). As with previous algorithms, one can
interleave multiplication and reduction steps. The result is shown in Algorithm 1.
In practice R is a multiple of the word size of the processor and a power of two. This

Algorithm 1 Montgomery Multiplication Algorithm

Require: X =
∑n−1

i=0 xib
i, Y =

∑n−1
i=0 yib

i, M =
∑n−1

i=0 mib
i, with 0 ≤ X, Y < M ,

b > 1, m′ = −m−1
0 mod b, R = bn, gcd(b,M) = 1

Ensure: Z = X · Y ·R−1 mod M
1: Z ← 0 {where Z =

∑n
i=0 zib

i}
2: for i = 0 to n− 1 do
3: Z ← (Z + xi · Y + qi ·M) /b
4: qi ← (z0 + xi · y0)m′ mod b
5: end for
6: if Z ≥ M then
7: Z ← Z −M
8: end if
9: Return(Z)

means that M , the modulus, has to be odd (because of the restriction gcd(M, R) =
1) but this does not represent a problem as M is a prime or the product of two
primes (RSA) in most practical cryptographic applications. In addition, choosing
R a power of 2, simplifies the computation of Q and Z as they become simply
truncation (modular reduction by R) and right shifting (division by R). Notice that
M ′ ≡ −M mod R. In [Dussé and Kaliski 1990] it is shown that if M =

∑n−1
i=0 mib

i,
for some radix b typically a power of two, and R = bn, then M ′ can be substituted
by m′

0 = −M−1 mod b. In [Eldridge and Walter 1993], the authors simplify the
combinatorial logic needed to implement Montgomery reduction.

The idea in [Eldridge and Walter 1993], is to shift Y by two digits (i.e., multiply
Y by b2) and thus, make qi in Step 4 of Algorithm 1 independent of Y . Notice
that one could have multiplied Y by b instead of b2 and have also obtained a qi

independent of Y . However, by multiplying Y by b2, one gets qi to be dependent
only on the partial product Z and on the lowest two digits of the multiple of M
(i.e. qi ·M). The price of such a modification is two extra iterations of the for-loop
for which the digits of X are zero. The architecture proposed by [Eldridge and
ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

Cryptography on FPGAs: State of the Art Implementations and Attacks · 23

Walter 1993] is only considered for the case b = 2 and estimated to be twice as fast
as previous modular multiplication architectures at the time of publication.

7.4 Higher Radix Montgomery Modular Multiplication

In [Vuillemin et al. 1996; Shand and Vuillemin 1993] modular exponentiation ar-
chitectures are implemented on an array of 16 Xilinx 3090 FPGAs. Their design
uses several speed-up methods [Shand and Vuillemin 1993] including the Chinese
remainder theorem, asynchronous carry completion adder, and a windowing expo-
nentiation method. Some of the improvements are:

—Avoid having to perform a subtraction after every modular product of the ex-
ponentiation algorithm by letting all intermediate results have two extra bits of
precision.[Shand and Vuillemin 1993] also show that even allowing for the two
extra bits of precision, one can always manage to work with intermediate results
no larger than n- digits if M < bn/4 and X, Y ≤ 2M .

—A second improvement is the use of a radix b = 22, which permits for a trivial
computation of the quotient qi in Step 4 of Algorithm 1 and it allows for the
use of Booth recoded multiplications (this doubles the multipliers performance
compared to b = 2 at an approximate 1.5 increase in hardware complexity).
Higher radices, which would offer better performance, were dismissed since they
involve too great of a hardware cost and the computation of the quotient digits
is no longer trivial.

—They re-write Montgomery’s Algorithm in a similar way to [Eldridge and Walter
1993], to allow for pipeline execution, basically getting rid off of the qi dependency
on the least significant digit of the partial product Z. The cost for d levels of
pipelining is d extra bits of precision and d more cycles in the computation of
the final product.

The result of all these speedup methods, is an RSA secret decryption rate of over
600 Kbits/sec for a 512-bit modulus and of 165 Kbits/sec for a 1024-bit modulus,
using the CRT. While the previous results make full use of the reconfigurability
of the FPGAs (reconfigurability is required to recombine the result of the CRT
computations), they derive a single gate-array specification whose size is estimated
under 100K gates and speed over 1Mbit/sec for RSA 512-bit keys.

The main obstacle to the use of higher radices in the Montgomery algorithm is
that of the quotient determination. In [Orup 1995], the author presents a method
which avoids quotient determination all together and thus makes higher-radix Mont-
gomery practical. The price to pay for avoiding quotient determination is more
precision and at most one more iteration in the main loop of the algorithm. The
final improvement in [Orup 1995] is the use of quotient pipelining. Unlike [Shand
and Vuillemin 1993], is able to achieve quotient pipelining only at the cost of extra
loop iterations and no extra precision.

As an example, Orup [1995] considers an architecture with 3 pipeline stages and
a radix b = 28. The author estimate the critical path of the architecture to be no
more than 5ns assuming 1995 CMOS technology. It is also assumed the use of a
redundant representation for the intermediate values of the Montgomery multiplier.
However, the outputs have to be converted back to non-redundant representation
using a carry-ripple adder with an asynchronous carry completions detection circuit

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

24 · Thomas Wollinger et al.

as proposed in [Shand and Vuillemin 1993]. With these techniques, the author
estimates the time of one 512-bit modular multiplication at 415 nsec. Using the
left-to-right binary method for exponentiation, one 512-bit exponentiation would
take 319 µsec which corresponds to a 1.6 Mbit/sec throughput. If instead, one uses
the right-to-left binary exponentiation algorithm, one can perform multiplications
and squarings in parallel as shown in [Orup and Kornerup 1991], thus achieving a
factor of two speedup, i.e., more than 2.4 Mbit/sec throughput. This is four times
faster than the implementation of [Shand and Vuillemin 1993] which at the time
was the fastest. Furthermore, if the modulus is composite, as in the RSA case, and
its prime factorization is known, it is possible to obtain a factor of four speedup
through the use of the CRT as in [Shand and Vuillemin 1993].

In [Blum and Paar 1999], the authors implemented a version of Montgomery’s
algorithm optimized for a radix two hardware implementation. Blum and Paar
[2001] extends [Orup 1995] to reconfigurable hardware, a systolic array architecture
as presented in [Kornerup 1994], and following [Orup 1995] high radix hardware
implementations of modular exponentiation. There had been a number of propos-
als for systolic array architectures for modular arithmetic but, to our knowledge,
[Blum and Paar 1999; 2001] were the first implementations that have been reported.
For the exact design and technical details we refer the reader to [Blum and Paar
1999; Blum 1999; Blum and Paar 2001]. Here, however, summarize their results.
As target devices, [Blum and Paar 1999; 2001] used the Xilinx XC40250XV, speed-
grade -09, 8464 CLBs, for the larger designs (> 5000 CLBs), and the XC40150XV,
speedgrade -08, 5184 CLBs, for the smaller designs. Table IV shows our results for
a full length modular exponentiation, i.e., an exponentiation where base, exponent,
and modulus have all the same bit length. We notice that [Blum and Paar 1999;
2001] both use the right-to-left method for exponentiation. Table V shows [Blum

Table IV. CLB usage and execution time for a full modular exponentiation
512 bit 768 bit 1024 bit

Radix C T C T C T
(CLBs) (msec) (CLBs) (msec) (CLBs) (msec)

2 [Blum and Paar 1999] 2555 9.38 3745 22.71 4865 40.05
16 [Blum and Paar 2001] 3413 2.93 5071 6.25 6633 11.95

and Paar 2001] RSA encryption results. The encryption time is calculated for the
Fermat prime F4 = 216 + 1 exponent [Knuth 1981], requiring 2 · 19(n + 2) clock
cycles for the radix 2 design [Blum and Paar 1999], and 2 · 19(n + 8) clock cycles if
the radix 16 design is used, where the modulus has n− 2 bits.

Table V. Application to RSA: Encryption
512 bit 1024 bit

Radix C T C T
(CLBs) (msec) (CLBs) (msec)

2 [Blum and Paar 1999] 2555 0.35 4865 0.75

16 [Blum and Paar 2001] 3413 0.11 6633 0.22

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

Cryptography on FPGAs: State of the Art Implementations and Attacks · 25

For decryption, [Blum and Paar 2001] apply the Chinese remainder theorem [Quisquater
and Couvreur 1982]. They either decrypt m bits with an m/2 bit architecture se-
rially, or with two m/2 bit architectures in parallel. The first approach uses only
half as many resources, the latter is almost twice as fast. A little time is lost here
because of the slower delay specifications of the larger devices.

Table VI. Application to RSA: Decryption

512 bit 512 bit 1024 bit 1024 bit
2× 256 serial 2× 256 parallel 2× 512 serial 2× 512 parallel

Radix C T C T C T C T
(CLBs) (msec) (CLBs) (msec) (CLBs) (msec) (CLBs) (msec)

2 [Blum and Paar 1999] 1307 4.69 2614 2.37 2555 18.78 5110 10.18

16 [Blum and Paar 2001] 1818 1.62 3636 0.79 3413 5.87 6826 3.10

7.5 Elliptic Curves Cryptosystems over GF (p)

In this section, we first provides a brief introduction to elliptic curve point addition
and doubling. Additional information can be found in [Miller 1986b; Koblitz 1987;
Blake et al. 1999]. An elliptic curve E over GF (p) is the set of solutions P = (x, y)
which satisfy the Weierstrass equation:

E : y2 = x3 + Ax + B (mod p) (3)

where A,B ∈ GF (p) and 4A3 + 27B2 6≡ 0 mod M with M > 3, together with the
point at infinity O. It is well known that the points on elliptic curve form a group
under an addition operation which is defined as follows. Let P = (x0, y0) ∈ E; then
−P = (x0,−y0). P + O = O + P = P for all P ∈ E. If Q = (x1, y1) ∈ E and
Q 6= −P , then P + Q = (x2, y2), where

x2 = λ2 − x0 − x1 (4)
y2 = λ(x1 − x2)− y1 (5)

and

λ =

y0−y1
x0−x1

if P 6= Q

3x2
1+A
2y1

if P = Q
(6)

This coordinate representation is known as affine representation. However, in many
applications it is more convenient to represent the points P and Q in projective
coordinates. This is advantageous when inversion is very computationally expensive
compared to multiplication in the finite field GF (p). Thus, algorithms for projective
coordinates trade inversions in the point addition and in the point double operations
for a larger number of multiplications and a single inversion at the end of the
algorithm. This inversion can be computed via exponentiation using the fact that
A−1 mod M ≡ AM−2 mod M , for prime modulus M . In projective coordinates, a
point P = (x, y) is represented as P = (X,Y, Z) where X = x, Y = y, and Z = 1.

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

26 · Thomas Wollinger et al.

To convert from projective coordinates back to the affine ones, we use the following
relations:

x =
X

Z2
, y =

Y

Z3

Finally, one can obtain expressions equivalent to (6)for doubling and addition op-
erations in projective coordinates. We refer to [Chudnovsky and Chudnovsky 1986;
P1363 2000] for the actual algorithms. One can achieve a point doubling in the
general case with 10 finite field multiplications 5 and in as little as 3 multiplications
for special parameters[Chudnovsky and Chudnovsky 1986]. Similarly, addition re-
quires 16 field multiplications in the general case and only 11 when one of the points
being added is constant, i.e., the case of cryptographic applications [P1363 2000].

7.6 FPGA Processor Architecture for ECC over GF (p)

Orlando and Paar [2001] proposes a new elliptic curve processor (ECP) architecture
for the computation of point multiplication for curves defined over fields GF (p).
Point multiplication is defined as the product kP , where k is an integer, P is a
point on the elliptic curve, and by multiplication we mean that P is added to itself
k times. We emphasize that there is no multiplication operation on the elliptic
curve, only additions and doublings of points P ∈ E. The ECP is best suited for
the computation of point multiplications using projective coordinates. Inversions
are computed via Fermat’s Little Theorem and multiplication via Montgomery
reduction.

The ECP has a scalable architecture in terms of area and speed specially suited for
memory-rich hardware platforms such a field programmable gate arrays (FPGAs).
This processor uses a new type of high-radix Montgomery multiplier that relies on
the precomputation of frequently used values and on the use of multiple processing
engines. The ECP consists of three main components. These components are the
main controller (MC), the arithmetic unit controller (AUC), and the arithmetic unit
(AU). The MC is the ECP’s main controller. It orchestrates the computation of
kP and interacts with the host system. The AUC controls the AU. It orchestrates
the computation of point additions/subtractions, point doubles, and coordinate
conversions. It also guides the AU in the computation of field inversions. Both the
MC and the AUC execute their respective operations concurrently and they have
the capability of executing one instruction per clock cycle. The AU incorporates
a multiplier, an adder (or adders), and a register file, all of which can operate in
parallel on different data. The AU’s large register set supports algorithms that rely
on precomputations.

As with systems based on RSA or the DL problem in finite fields, in ECC-based
systems, multiplication is also the most critical operation in the computation of
elliptic curves point multiplications. The elliptic curve processor (ECP) introduced
in [Orlando and Paar 2001] develops a new multiplier architecture that draws from
[Orup 1995; Frecking and Parhi 1999] an approach for high radix multiplication,
from [Shand and Vuillemin 1993; Orup 1995] the ability to delay quotient resolution,

5Note that in this context, the complexity of adding or doubling a point on an elliptic curve is
usually given by the number of field multiplications and inversions (if affine coordinates are being
used), field additions are relatively cheap operations compared to multiplications or inversions.

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

Cryptography on FPGAs: State of the Art Implementations and Attacks · 27

and from [Blum 1999] the use of precomputation. In particular, this work extends
the concept of precomputation. The resulting multiplier architecture is a high-radix,
precomputation-based modular multiplier, which supports positive and negative
operands, Booth recoding and pre-computation.

Orlando and Paar [2001] developed a prototype that implemented the double-
and-add algorithm using the projective coordinates algorithms defined in [P1363
2000] for point addition and point double operations on a Xilinx’s XCV1000E-8-
BG680 (Virtex E) FPGA. This prototype was programmed to support the field
GF (2192 − 264 − 1), which is one of the fields specified in [U.S. Department of
Commerce/National Institute of Standard and Technology 2000b]. To verify the
ECP’s architectural scalability to larger fields, a modular multiplier for fields as
large as GF (2521 − 1) was also prototyped. The ECP prototype for GF (2192 −
264 − 1) used 11,416 LUTs, 5,735 Flip-Flops, and 35 BlockRAMS. The frequency
of operation of the prototype was 40 MHz for 192 bit operands and 37.3 MHz for
the 521-bit multiplier. The authors in [Orlando and Paar 2001] point out that
assuming that the ECP is coded in a form that extracts 100% throughput from
its multiplier, it will compute a point multiplication for an arbitrary point on a
curve defined over GF (2192 − 264 − 1) in approximately 3 msec. This estimate
ignores the processing cost of additions and overhead operations and it assumes
the computation of 17m multiplications per point multiplication: 15.5m for the
point double and the point add operations and 1.5m for the inverse required in the
conversion to affine coordinates.

8. OPEN PROBLEMS

At this point we would like to provide a list of open questions and problems regard-
ing the security of FPGAs. If answered, such solutions would allow stand-along
FPGAs with much higher security assurance than currently available.

Physical attacks. There has not been any published physical attacks against
FPGAs. In the following we list some open questions regarding the physical se-
curity of FPGAs, that should be answered from industry and research community:
—Have FPGAs really more resistant against physical attacks than ASICs?
—What kind of technical equipment is necessary to accomplish a physical attack

against FPGAs?
—How much effort is needed to successfully attack an FPGA?
—What are the cost of such an attack?
—How much time and man-years are needed to perform such an attack?
—Does the internal structure of the FPGA (i.e. logic elements, connections and so

on) make the life of the attacker more difficult? or does it even be helpful for an
attack?

Again, we think it would be very interesting to study this problems.

Side channel attacks. Side channel attacks on FPGAs should be investigated
with the same intensity as it has been done with processor and ASIC platforms.
We assume that many characteristics from ASIC attacks carry over, but some fea-
tures will certainly be different. One extremely interesting question in this context
is whether there are design strategies that make FPGA designs less vulnerable

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

28 · Thomas Wollinger et al.

against power analysis attacks. If so, can we integrate such strategies in the design
tools?

Fault injection. There appears to be no published attempt to perform this kind of
attack against FPGAs. It seems very likely that one can use, for example, radiation
or glitches to alter the contents of FPGAs. However, for attacks that need to target
specific components of a design, the small features of current FPGAs together with
the uncertainty of the location of the design might make those fault injection attacks
a more formidable task in the FPGA case. We think that this subject is worth of
further investigation.

Key management for configuration encryption. On-chip decryption of an encrypt-
ed configuration file would have benefits well beyond cryptographic applications.
One major problem to overcome is the key management. The specific problems
include who assigns the keys, who keeps track of them, secure storage of the key,
and possibly zeroization of the key when an attack is detected.

battery:
Secure deletion. The configuration time of an FPGA transcends more than one

minute and hence it is not possible to overwrite or delete the configuration after
an attack was detected. This is bad, especially if the configuration of the FPGA
includes any proprietary algorithms which should be kept secret. There should be
research on how to securely delete the design information. A related problem is
on-chip tamper detection for FPGAs.

9. CONCLUSIONS

This contribution analyzed possible attacks against the use of FPGA in security
applications. Black box attacks do not seem to be feasible for state-of-the-art
FPGAs. However, it seems very likely for an attacker to get the secret information
stored in a FPGA, when combining readback and fault injection attacks. Cloning
of SRAM FPGA and reverse engineering depend on the specifics of the system
under attack, and they will probably involve a lot of effort, but this does not seem
entirely impossible. Physical attacks against FPGAs are very complex due to the
physical properties of the semiconductors in the case of flash/SRAM/EEPROM
FPGAs and the small size of AF cells. It appears that such attacks are even harder
than analogous attacks against ASICs. Even though FPGA have different internal
structures than ASICs with the same functionality, we believe that side-channel
attacks against FPGAs, in particular power-analysis attacks, will be feasible too.

The second part of the contribution summarized the state-of-the-art in implemen-
tations of symmetric-key and public-key algorithms. Symmetric-key ciphers and,
specially, DES and AES have been throughly investigated and different approaches
to implementations exposed. The different approaches to modular multiplication,
the main operation in most public-key cryptosystems, were briefly summarized
and the Montgomery multiplication algorithm, by far the most popular reduction
method, throughly studied. In addition, we describe the current tendencies in el-
liptic curve processor design, a growing are of interest, specially in the context of
embedded systems.

It seems from our previous remarks that, while, the art of cryptographic algorithm
implementation is reaching maturity, FPGAs as a security platform are not, and
ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

Cryptography on FPGAs: State of the Art Implementations and Attacks · 29

in fact, that they might be currently out of question for security applications. We
don’t think that is the right conclusion, however. It should be noted that many
commercial ASICs with cryptographic functionality are also vulnerable to attacks
similar to the ones discussed here. A commonly taken approach to prevent these
attacks is to put the ASIC in a secure environment. A secure environment could, for
instance, be a box with tamper sensors which triggers what is called “zeroization”
of cryptographic keys, when an attack is being detected. Similar approaches are
certainly possible for FPGAs too. (Another solution often taken by industry is not
to care and to build cryptographic products with poor physical security, but we are
not inclined to recommend this.)

REFERENCES

Actel Corporation. 2002. Design Security in Nonvolatile Flash and Antifuse. Avaialble at
http://www.actel.com/appnotes/DesignSecurity.pdf.

Agrawal, D., Archambeault, B., Rao, J. R., and Rohatgi, P. 2002. The EM Side – Channel(s).
In Workshop on Cryptographic Hardware and Embedded Systems — CHES 2002, Ç. K. Koç
and C. Paar, Eds. Vol. LNCS 2523. Springer-Verlag, 29–45.

Ajluni, C. 1995. Two New Imaging Techniques to Improve IC Defect Indentification. Electronic
Design 43, 14 (July), 37–38.

Algotronix Ltd. Method and Apparatus for Secure Configuration of a Field Programmable
Gate Array. PCT Patent Application PCT/GB00/04988.

Altera Corporation 2000. Nios Soft Core Embeded Processor. Altera Corporation. Available at
http://www.altera.com/products/devices/nios/nio-index.html.

Altera Corporation 2002a. Excalibur Device Overview. Altera Corporation. Available at http:

//www.altera.com/products/devices/arm/arm-index.html.

Altera Corporation 2002b. Stratix FPGA Family. Altera Corporation. Available at http://www.

altera.com/products/devices/dev-index.jsp.

American National Standards Institute 1998. ANSI X9.52-1998, Triple Data Encryption Al-
gorithm Modes of Operation. American National Standards Institute. Available at http:

//webstore.ansi.org/ansidocstore/dept.asp?dept_id=80.

Amphion. High Performance AES Encryption Cores. Available at
http://www.chipcenter.com/networking/images/prod/prod226.pdf.

Anderson, R. and Kuhn, M. 1997. Low Cost Attacks on Tamper Resistant Devices. In 5th
International Workshop on Security Protocols, B. Christianson, B. Crispo, T. M. A. Lomas,
and M. Roe, Eds. Vol. LNCS 1361. Springer-Verlag, 125–136.

ANSI. 1981. American National Standards Data Encryption Algorithm X3.92-1981. American
National Standards Association.

Aplan, J. M., Eaton, D. D., and Chan, A. K. 1999. Security Antifuse that Prevents Readout of
some but not other Information from a Programmed Field Programmable Gate Array. United
States Patent, Patent Number 5898776.

Aritome, S., Shirota, R., Hemink, G., Endoh, T., and Masuoka, F. 1993. Reliability Issues
of Flash Memory Cells. Proceedings of the IEEE 81, 5 (May), 776–788.

Athanas, P. and Abbott, A. 1995. Real-Time Image Processing on a Custom Computing
Platform. IEEE Computer 28, 2 (February), 16–24.

Austin, K. 1995. Data Security Arrangements for Semicondutor Programmable Devices. United
States Patent, Patent Number 5388157.

Barrett, P. 1986. Implementing the Rivest Shamir and Adleman Public Key Encryption Al-
gorithm on a Standard Digital Signal Processor. In Advances in Cryptology – CRYPTO ’86,
A. M. Odlyzko, Ed. Vol. LNCS 263. Springer-Verlag, Berlin, Germany, 311–323.

Benaloh, J. and Dai, W. Fast modular reduction. Rump session of CRYPTO ’95.

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

30 · Thomas Wollinger et al.

Biham, E. and Shamir, A. 1997. Differential Fault Analysis of Secret Key Cryptosystems. In
Advances in Cryptology - CRYPTO ’97, B. Kaliski, Jr., Ed. Vol. LNCS 1294. Springer-Verlag,
513–525.

Blake, I., Seroussi, G., and Smart, N. 1999. Elliptic Curves in Cryptography. Cambridge
University Press, London Mathematical Society Lecture Notes Series 265.

Blum, T. 1999. Modular exponentiation on reconfigurable hardware. M.S. thesis, ECE Depart-
ment, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.

Blum, T. and Paar, C. 1999. Montgomery modular multiplication on reconfigurable hardware.
In Proceedigns of the 14th IEEE Symposium on Computer Arithmetic (ARITH-14). 70–77.

Blum, T. and Paar, C. 2001. High radix Montgomery modular exponentiation on reconfigurable
hardware. IEEE Transactions on Computers 50, 7 (July), 759–764.

Bondalapati, K. and Prasanna, V. 2002. Reconfigurable Computing Systems. Proceedings of
the IEEE .

Boneh, D., DeMillo, R. A., and Lipton, R. J. 1997. On the Importance of Checking Crypto-
graphic Protocols for Faults (Extended Abstract). In Advances in Cryptology - EUROCRYPT
’97, W. Fumy, Ed. Vol. LNCS 1233. Springer-Verlag, 37–51.

Bora, P. and Czajka, T. 1999. Implementation of the Serpent Algorithm Using Altera FPGA
Devices. Available at http://csrc.nist.gov/encryption/aes/round2/pubcmnts.htm.

Borriello, G. and Want, R. 2000. Embedded computation meets the world wide web. Com-
munications of the ACM 43, 5 (May), 59–66.

Brickell, E. F. 1982. A fast modular multiplication algorithm with applications to two key
cryptography. In Advances in Cryptology — CRYPTO ’82, D. Chaum and R. L. Rivest and
A. T. Sherman, Ed. Plenum Publishing, New York, USA, 51–60.

Buell, D., Arnold, J., and Kleinfelder, W. 1996. Splash 2: FPGAs in a Custom Computing
Machine. John Wiley and Sons.

Chameleon Systems Inc. Available at http://www.chameleonsystems.com/.

Chari, S., Jutla, C. S., Rao, J. R., , and Rohatgi, P. 1999. A Cauttionary Note Regarding the
Evaluation of AES Condidates on Smart Cards. In Proceedings of the Second AES Candidate
Conference (AES2). Rome, Italy.

Chari, S., Jutla, C. S., Rao, J. R., and Rohatgi, P. 1999. Towards Sound Approaches to
Counteract Power-Analysis Attacks. In Advances in Cryptology — CRYPTO ’99, M. Wiener,
Ed. Vol. LNCS 1666. Springer-Verlag, 398–412.

Chodowiec, P. and Gaj, K. 2003. Very Compact FPGA Implementation of the AES Algorithm.
In Workshop on Cryptographic Hardware and Embedded Systems — CHES 2003, C. Walter,
Ç. K. Koç, and C. Paar, Eds. Vol. LNCS 2779. Springer-Verlag, 319–333.

Chudnovsky, D. and Chudnovsky, G. 1986. Sequences of numbers generated by addition in
formal groups and new primality and factorization tests. Advances in Applied Mathematics 7, 4,
385–434.

Clavier, C., Coron, J., and Dabbous, N. 2000. Differential Power Analysis in the Presence of
Hardware Countermeasures. In Workshop on Cryptographic Hardware and Embedded Systems
— CHES 2000, Ç. K. Koç and C. Paar, Eds. Vol. LNCS 1965. Springer-Verlag, 252–263.

Clavier, C. and Coron, J.-S. 2000. On Boolean and Arithmetic Masking against Differential
Power Analysis. In Workshop on Cryptographic Hardware and Embedded Systems — CHES
2000, Ç. K. Koç and C. Paar, Eds. Vol. LNCS 1965. Springer-Verlag, 231 – 237.

Compton, K. and Hauck, S. 2002. Reconfigurable Computing: A Survey of Systems and Software.
ACM Computing Surveys 34, 2 (June), 171–210.

D. De Waleffe and J.-J. Quisquater. 1990. CORSAIR: A smart card for public key cryptosys-
tems. In Advances in Cryptology - CRYPTO ’90, A. J. Menezes and S. A. Vanstone, Eds. Vol.
LNCS 537. Springer-Verlag, Berlin, 502–514.

Dandalis, A., Prasanna, V. K., and Rolim, J. D. P. 2000a. A Comparative Study of Perfor-
mance of AES Final Candidates Using FPGAs. In Workshop on Cryptographic Hardware and
Embedded Systems — CHES 2000, Ç. Koç and C. Paar, Eds. Vol. LNCS 1965. Springer-Verlag,
Worcester, Massachusetts, USA, 125–140.

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

Cryptography on FPGAs: State of the Art Implementations and Attacks · 31

Dandalis, A., Prasanna, V. K., and Rolim, J. D. P. 2000b. An Adaptive Cryptographic Engine
for IPSec Architectures. In Eighth Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, FCCM ’00, K. L. Pocek and J. M. Arnold, Eds.

Davies, N. and Gellersen, H.-W. 2002. Beyond Prototypes: Challenges in Deploying Ubiquitous
Systems. IEEE Pervasive Computing 1, 1 (January–March), 26–35.

Dhem, J.-F. 1994. Modified version of the Barret modular multiplication algorithm. UCL Tech-
nical Report CG-1994/1, Université catholique de Louvain. July 18,.

Dhem, J.-F. 1998. Design of an efficient public-key cryptographic library for RISC-based smart
cards. Ph.D. thesis, UCL — Université catholique de Louvain, Louvain-la-Neuve, Belgium.

Dierks, T. and Allen, C. 1999. RFC 2246: The TLS Protocol Version 1.0. Corporation for Na-
tional Research Initiatives, Internet Engineering Task Force, Network Working Group, Reston,
Virginia, USA.

Diffie, W. and Hellman, M. E. 1976. New directions in cryptography. IEEE Transactions on
Information Theory IT-22, 644–654.

Dipert, B. 2000. Cunning circuits confound crooks. Available at http://www.e-insite.net/

ednmag/contents/images/21df2.pdf.

Dussé, S. R. and Kaliski, B. S. 1990. A Cryptographic Library for the Motorola DSP56000. In
Advances in Cryptology — EUROCRYPT ’90, I. B. Damg̊ard, Ed. Vol. LNCS 473. Springer-
Verlag, Berlin, Germany, 230–244.

Elbirt, A. 1999. An FPGA Implementation and Performance Evaluation of the CAST-256 Block
Cipher. Technical Report, Cryptography and Information Security Group, ECE Department,
Worcester Polytechnic Institute, Worcester, Massachusetts, USA. May.

Elbirt, A. and Paar, C. 2000. An FPGA Implementation and Performance Evaluation of the
Serpent Block Cipher. In FPGA ’00 - ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays. ACM, Monterey, CA, USA, 33–40.

Elbirt, A. and Paar, C. 2001. An FPGA-based performance evaluation of the AES block
cipher candidate algorithm finalists. IEEE Transactions on Very Large Integration (VLSI)
Systems 4, 9, 545–557.

Elbirt, A., Yip, W., Chetwynd, B., and Paar, C. 2000. An FPGA Implementation and Per-
formance Evaluation of the AES Block Cipher Candidate Algorithm Finalists. In The Third
Advanced Encryption Standard Candidate Conference. National Institute of Standards and
Technology, New York, New York, USA, 13–27.

Elbirt, A., Yip, W., Chetwynd, B., and Paar, C. 2001. An FPGA-based performance evaluation
of the AES block cipher candidate algorithm finalists. IEEE Transactions on VLSI Design 9, 4
(August), 545–557.

Eldridge, S. E. and Walter, C. D. 1993. Hardware implementation of Montgomery’s modular
multiplication algorithm. IEEE Transactions on Computers 42, 6 (July), 693–699.

Erickson, C. R. 1999. Configuration Stream Encryption. United States Patent, Patent Number
5970142.

Federal Information Processing Standards 1977. NIST FIPS PUB 46, Data Encryption Standard.
Federal Information Processing Standards, National Bureau of Standards, U.S. Department of
Commerce.

Ferreira, R., Malzahn, R., Marissen, P., Quisquater, J.-J., and Wille, T. 1996. FAME:
A 3rd generation coprocessor for optimising public key cryptosystems in smart card applica-
tions. In Proceedings of CARDIS 1996, Smart Card Research and Advanced Applications,
P. H. Hartel, P. Paradinas, and J.-J. Quisquater, Eds. Stichting Mathematisch Centrum, CWI,
Amsterdam, The Netherlands, 59–72.

Fischer, V. and Drutarovsky, M. 2001. Two Methods of Rijndael Implementation in Reconfig-
urable Hardware. In Workshop on Cryptographic Hardware and Embedded Systems — CHES
2001, Ç. K. Koç, D. Naccache, and C. Paar, Eds. Vol. LNCS 2162. Springer-Verlag, 77–92.

Frecking, W. and Parhi, K. K. 1999. A unified method for iterative computation of modular
multiplications and reduction operations. In International Conference on Computer Design –
ICCD ’99. 80–87.

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

32 · Thomas Wollinger et al.

Freier, A. O., Karlton, P., and Kocher, P. C. 1996. The SSL Protocol Version 3.0. Transport
Layer Security Working Group INTERNET-DRAFT.

Gaj, K. and Chodowiec, P. 2000. Comparison of the Hardware Performance of the AES Candi-
dates Using Reconfigurable Hardware. In The Third Advanced Encryption Standard Candidate
Conference. National Institute of Standards and Technology, New York, New York, USA, 40–54.

Gaj, K. and Chodowiec, P. 2001. Fast implementation and fair comparison of the final candidates
for Advanced Encryption Standard using Field Programmable Gate Arrays. In Topics in
Cryptology - CT-RSA 2001, D. Naccache, Ed. Vol. LNCS 2020. Springer-Verlag, Berlin, 84 –
99.

Gordon, D. M. 1998. A survey of fast exponentiation methods. Journal of Algorithms 27,
129–146.

Goubin, L. and Patarin, J. 1999. DES and Differential Power Analysis. In Workshop on Cryp-
tographic Hardware and Embedded Systems — CHES 1999, Ç. K. Koç and C. Paar, Eds. Vol.
LNCS 1717. Springer-Verlag, 158–172.

Guccione, S. A. and Levi, D. Jbits: A java-based interface to fpga hardware. Tech. rep., Xilinx
Corporation, San Jose, CA, USA. Available at http://www.io.com/~guccione/Papers/Papers.
html.

Gutmann, P. 1996. Secure Deletion of Data from Magnetic and Solid-State Memory. In Sixth
USENIX Security Symposium. 77–90.

Gutmann, P. 2001. Data Remanence in Semiconductor Devices. In 10th USENIX Security
Symposium. 39–54.

Haddad, S., Chang, C., Swaminathan, B., and Lien, J. 1989. Degradations due to hole trapping
in flash memory cells. IEEE Electron Device Letters 10, 3 (March), 117–119.

Hauser, J. and Wawrzynek, J. 1997. Garp: A MIPS Processor with Reconfigurable Coprocessor.
In IEEE Symposium on FPGAs for Custom Computing Machines, K. Pocek and J. Arnold,
Eds. 12–21.

Järvinen, K. U., Tommiska, M., and Skyttä, J. 2003. A fully pipelined memoryless 17.8
Gbps AES-128 encryptor. In 2003 ACM/SIGDA 11th International Symposium on Field pro-
grammable gate arrays — FPGA 2003. ACM Press, 207–215.

Jeffrey, G. P. 2002. Field programmable gate arrays. United States Patent, Patent Number
6356637.

Kaliski, Jr., B. S., Koç, Ç. K., and Paar, C., Eds. 2002. Workshop on Cryptographic Hardware
and Embedded Systems — CHES 2002. Vol. LNCS 2523. Springer-Verlag, Berlin, Germany.

Kaps, J. P. 1998. High speed FPGA architectures for the Data Encryption Standard. M.S. thesis,
ECE Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.

Kaps, J. P. and Paar, C. 1998. Fast DES implementation on FPGAs and its application to a
universal key-search machine. In Fifth Annual Workshop on Selected Areas in Cryptography,
S. Tavares and H. Meijer, Eds. Vol. LNCS 1556. Springer-Verlag, Berlin, Germany. Conference
Location: Queen’s University, Kingston, Ontario, Canada.

Kaps, J.-P. and Paar, C. 1999. DES auf FPGAs (DES on FPGAs, in German). Datenschutz
und Datensicherheit 23, 10, 565–569. Invited contribution.

Kean, T. 2001. Secure Configuration of Field Programmable Gate Arrays. In International
Conference on Field-Programmable Logic and Applications 2001 (FPL 2001). Vol. LNCS 2147.
Springer-Verlag, 142–151.

Kelem, S. H. and Burnham, J. L. 2000. System and Method for PLD Bitstram Encryption.
United States Patent, Patent Number 6118868.

Kent, S. and Atkinson, R. 1998. RFC 2401: Security Architecture for the Internet Protocol. Cor-
poration for National Research Initiatives, Internet Engineering Task Force, Network Working
Group, Reston, Virginia, USA.

Kessner, D. 2000. Copy Protection for SRAM based FPGA Designs. Available at http://www.

free-ip.com/copyprotection.html.

Knuth, D. E. 1981. The Art of Computer Programming. Volume 2: Seminumerical Algorithms,
2nd ed. Addison-Wesley, Reading, Massachusetts, USA.

Koblitz, N. 1987. Elliptic curve cryptosystems. Mathematics of Computation 48, 203–209.

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

Cryptography on FPGAs: State of the Art Implementations and Attacks · 33

Koç, Ç.. K. and Hung, C. Y. 1991. Bit-level systolic arrays for modular multiplication. Journal
of VLSI Signal Processing 3, 3, 215–223.

Koç, Ç. K., Naccache, D., and Paar, C., Eds. 2001. Workshop on Cryptographic Hardware
and Embedded Systems — CHES 2001. Vol. LNCS 2162. Springer-Verlag, Berlin, Germany.

Koç, Ç. K. and Paar, C., Eds. 1999. Workshop on Cryptographic Hardware and Embedded
Systems — CHES’99. Vol. LNCS 1717. Springer-Verlag, Berlin, Germany.

Koç, Ç. K. and Paar, C., Eds. 2000. Workshop on Cryptographic Hardware and Embedded
Systems — CHES 2000. Vol. LNCS 1965. Springer-Verlag, Berlin, Germany.

Kocher, P., Jaffe, J., and Jun, B. 1999. Differential Power Analysis. In Advances in Cryptology
— CRYPTO ’99, M. Wiener, Ed. Vol. LNCS 1666. Springer-Verlag, 388–397.

Kommerling, O. and Kuhn, M. 1999. Design Principles for Tamper-Resistant Smartcard Pro-
cessors. In USENIX Workshop on Smartcard Technology (Smartcard ’99). 9–20.

Kornerup, P. 1994. A systolic, linear-array multiplier for a class of right-shift algorithms. IEEE
Transactions on Computers 43, 8 (August), 892–898.

Lai, X. and Massey, J. 1990. A proposal for a new block encryption standard. In Advances in
Cryptology — EUROCRYPT ’90, I. B. Damg̊ard, Ed. Vol. LNCS 473. Springer-Verlag, Berlin,
Germany, 389–404.

Lai, X. and Massey, J. L. 1991. Markov Ciphers and Differential Cryptanalysis. In Advances in
Cryptology — EUROCRYPT ’91, D. W. Davies, Ed. Vol. LNCS 547. Springer-Verlag, Berlin,
Germany, 17–38.

Lai, X., Massey, Y., and Murphy, S. 1991. Markov Ciphers and Differential Cryptoanalysis. In
Advances in Cryptology — EUROCRYPT ’91, D. W. Davies, Ed. Vol. LNCS 547. Springer-
Verlag, Berlin, Germany.

Lenstra, A. and Verheul, E. 2001. Selecting cryptographic key sizes. Journal of Cryptol-
ogy 14, 4, 255–293.

Leonard, J. and Magione-Smith, W. 1997. A case study of partially evaluated hardware circuits:
Keyspecific DES. In Field-Programmable Logic and Applications, 7th International Workshop,
FPL ’97, W. Luk, P. Cheung, and M. Glesner, Eds. Springer-Verlag, London, UK.

Lipmaa, H. 2002. Fast Software Implementations of AES. Available at
http://www.tcs.hut.fi/~helger/aes/rijndael.html.

M. Dworkin. 2001. NIST SP 800-38A, Recommendation for Block Cipher Modes of Operation
— Methods and Techniques. National Institute of Standards and Technology/U.S. Department
of Commerce. Available at http://csrc.nist.gov/encryption/tkmodes.html.

M. Dworkin. 2002. Draft NIST SP 800-38B, Recommendation for Block Cipher Modes of
Operation: The RMAC Authentication Mode — Methods and Techniques. National In-
stitute of Standards and Technology/U.S. Department of Commerce. Available at http:

//csrc.nist.gov/encryption/tkmodes.html.

Massey, J. L. and Lai, X. 1992. Device for converting a digital block and the use thereof.
European Patent, Patent Number 482154.

McLoone, M. and McCanny, J. 2001. High Performance Single-Chip FPGA Rijndael Algorithm.
In Workshop on Cryptographic Hardware and Embedded Systems — CHES 2001, Ç. K. Koç,
D. Naccache, and C. Paar, Eds. Vol. LNCS 2162. Springer-Verlag, 65–76.

Menezes, A. and Johnson, D. 1999. The elliptic curve digitial signature algorithm (ECDSA).
Technical report CORR 99-34, Department of C & O, University of Waterloo, Ontario, Canada.
August.

Menezes, A. J., van Oorschot, P. C., and Vanstone, S. A. 1997. Handbook of Applied Cryp-
tography. CRC Press, Boca Raton, Florida, USA.

Miller, V. 1986a. Uses of elliptic curves in cryptography. In Advances in Cryptology — CRYPTO
’85, H. C. WIlliams, Ed. Vol. LNCS 218. Springer-Verlag, Berlin, Germany, 417–426.

Miller, V. 1986b. Uses of elliptic curves in cryptography. In Advances in Cryptology — CRYPTO
’85, H. C. Williams, Ed. Vol. LNCS 218. Springer-Verlag, Berlin, Germany, 417–426.

Montgomery, P. L. 1985. Modular multiplication without trial division. Mathematics of Com-
putation 44, 170 (April), 519–521.

Naccache, D. and M’Räıhi, D. 1996. Cryptographic smart cards. IEEE Micro 16, 3, 14–24.

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

34 · Thomas Wollinger et al.

Nechvatal, J., Barker, E., Bassham, L., Burr, W., Dworkin, M., Foti, J., and Roback, E.
2000. Report on the Development of the Adavanced Encryption Standard (AES). Available
at csrc.nist.gov/encryption/aes/round2/r2report.pdf, National Institute of Standards and
Technology/U.S. Department of Commerce. October 2,,.

Norris, M. J. and Simmons, G. J. 1981. Algorithms for high-speed modular arithmetic. Con-
gressus Numeratium 31, 153–163.

Omura, J. K. 1990. A public key cell design for smart card chips. In International Symposium
on Information Theory and its Applications. USA, 983–985.

Orlando, G. and Paar, C. 2001. A Scalable GF (p) Elliptic Curve Processor Architecture for
Programmable Hardware. In Workshop on Cryptographic Hardware and Embedded Systems
— CHES 2001, Ç. K. Koç, D. Naccache, and C. Paar, Eds. Vol. LNCS 2162. Springer-Verlag,
348–363.

Örs, S., Oswald, E., and Preneel, B. 2003. Power-Analysis Attacks on an FPGA — First
Experimental Results. In Workshop on Cryptographic Hardware and Embedded Systems —
CHES 2003, C. Walter, Ç. K. Koç, and C. Paar, Eds. Vol. LNCS 2779. Springer-Verlag, 35–50.

Orup, H. 1995. Simplifying quotient determination in high-radix modular multiplication. In
Proceedigns of the 12th IEEE Symposium on Computer Arithmetic (ARITH 12). 193–9.

Orup, H. and Kornerup, P. 1991. A High-Radix Hardware Algorithm for Calculating the Expo-
nential ME Modulo N . In Proceedigns of the 10th IEEE Symposium on Computer Arithmetic
(ARITH 10), P. Kornerup and D. W. Matula, Eds. 51–56.

P1363 2000. IEEE P1363-2000: IEEE Standard Specifications for Public Key Cryptography.
Available at http://standards.ieee.org/catalog/olis/busarch.html.

Pang, R. C., Wong, J., Frake, S. O., Sowards, J. W., Kondapalli, V. M., Goetting, F. E.,
Trimberger, S. M., and Rao, K. K. 2000. Nonvolatile/battery-backed key in PLD. United
States Patent, Patent Number 6366117.

Papadas, C., Ghibaudo, G., Pananakakis, G., Riva, C., Ghezzi, P., Gounelle, C., and Mor-
tini, P. 1991. Retention characteristics of single-poly EEPROM cells. In European Symposium
on Reliability of Electron Devices, Failure Physics and Analysis. 517.

Patterson, C. 2000a. A Dynamic Implementation of the Serpent Block Cipher. In Workshop on
Cryptographic Hardware and Embedded Systems — CHES 2000), Çetin K. Koç and C. Paar,
Eds. Vol. LNCS 1965. Springer-Verlag, 142–156.

Patterson, C. 2000b. High Performance DES Encryption in Virtex FPGAs Using JBits. In IEEE
Symposium on Field–Programmable Custom Computing Machines (FCCM 2000), K. L. Pocek
and J. M. Arnold, Eds.

Preneel, B., Van Rompay, B., Örs, S., Biryukov, A., Granboulan, L., Dottax, E., Dichtl,
M., Schafheutle, M., Serf, P., Pyka, S., Biham, E., Barkan, E., Dunkelman, O., Stolin,
J., Ciet, M., Quisquater, J.-J., Sica, F., Raddum, H., and Parker, M. 2003. Performance
of Optimized Implementations of the NESSIE Primitives. Tech. rep. February 20. Available at
http://www.cryptonessie.org/.

Quisquater, J.-J. Fast modular exponentiation without division. Rump session of EUROCRYPT
’90.

Quisquater, J.-J. 1992. Encoding system according to the so-called RSA method, by means of
a microcontroller and arrangement implementing this system. United States Patent, Patent
Number 5166978.

Quisquater, J.-J. and Couvreur, C. 1982. Fast decipherment algorithm for RSA public–key
cryptosystem. Electronics Letters 18, 905–907.

Quisquater, J.-J. and Samyde, D. 2001. Electro Magnetic Analysis (EMA): Measures and
Countermeasures for Smart Cards. In International Conference on Research in Smart Cards,
E-smart 2001. Cannes, France, 200 – 210.

Rashid, A., Leonard, J., and Mangione-Smith, W. 1998. Dynamic circuit generation for solving
specific problem instances of boolean satisfiability. In IEEE Symposium on FPGAs for Custom
Computing Machines - FCCM ’98. Napa Valley, California, USA, 196–205.

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

Cryptography on FPGAs: State of the Art Implementations and Attacks · 35

Riaz, M. and Heys, H. 1999. The FPGA Implementation of RC6 and CAST-256 Encryption
Algorithms. In Proceedings: IEEE 1999 Canadian Conference on Electrical and Computer
Engineering. Edmonton, Alberta, Canada.

Richard, G. 1998. Digital Signature Technology Aids IP Protection. In EETimes - News. Avail-
able at http://www.eetimes.com/news/98/1000news/digital.html.

Rivest, R. L., Shamir, A., and Adleman, L. 1978. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM 21, 2 (February), 120–126.

San, K., Kaya, C., and Ma, T. 1995. Effects of erase source bias on Flash EPROM device
reliability. IEEE Transactions on Electron Devices 42, 1 (January), 150–159.

Schaumont, P., Verbauwhede, I., Keutzer, K., and Sarrafzadeh, M. 2001. A Quick Sa-
fari Through the Reconfiguration Jungle. In Proceedings of the 38th Conference on Design
Automation — DAC 2001. ACM Press, New York, NY, USA, 172–177.

Schneier, B. 1996. Applied Cryptography, 2nd ed. John Wiley & Sons Inc., New York, New York,
USA.

Schroder, D. 1998. Semiconducor Material and Device Characterization, 2nd ed. John Wiley
and Sons.

Seamann, G. 2000. FPGA Bitstreams and Open Designs. Available at http://www.

opencollector.org/news/Bitstream.

Sedlak, H. 1987. The rsa cryptography processor. In Advances in Cryptology – EUROCRYPT
’87, D. Chaum and W. L. Price, Eds. Vol. LNCS 304. Springer-Verlag, Berlin, Germany, 95–105.

Shamir, A. 2000. Protecting Smart Cards form Power Analysis with Detached Power Supplies.
In Workshop on Cryptographic Hardware and Embedded Systems — CHES 2000, Ç. K. Koç
and C. Paar, Eds. Vol. LNCS 1965. Springer-Verlag, 71–77.

Shand, M. and Vuillemin, J. 1993. Fast implementations of RSA cryptography. In Proceedigns of
the 11th IEEE Symposium on Computer Arithmetic (ARITH-11), E. Swartzlander, Jr., M. J.
Irwin, and G. Jullien, Eds. 252–259.

Shang, L., Kaviani, A., and Bathala, K. 2002. Dynamic Power Consumption on the Virtex-II
FPGA Family. In 2002 ACM/SIGDA 10th International Symposium on Field Programmable
Gate Arrays. ACM Press, 157–164.

Skorobogatov, S. and Anderson, R. 2002. Optical Fault Induction Attacks. In Workshop on
Cryptographic Hardware and Embedded Systems — CHES 2002, B. S. Kaliski, Jr., Ç. K. Koç,
and C. Paar, Eds. Vol. LNCS 2523. Springer-Verlag, 2–12.

Soden, J. and Anderson, R. 1993. IC failure analysis: techniques and tools for quality and
reliability improvement. Proceedings of the IEEE 81, 5 (May), 703–715.

Standaert, F.-X., Rouvroy, G., Quisquater, J.-J., and Legat, J.-D. 2003a. A Methodology to
Implement Block Ciphers in Reconfigurable Hardware and its Application to Fast and Compact
AES RIJNDAEL. In 2003 ACM/SIGDA 11th International Symposium on Field programmable
gate arrays — FPGA 2003. ACM Press, 216–224.

Standaert, F.-X., Rouvroy, G., Quisquater, J.-J., and Legat, J.-D. 2003b. Efficient Im-
plementation of Rijndael Encryption in Reconfigurable Hardware: Improvements and Design
Tradeoffs. In Workshop on Cryptographic Hardware and Embedded Systems — CHES 2003,
C. Walter, Ç. K. Koç, and C. Paar, Eds. Vol. LNCS 2779. Springer-Verlag, 334–350.

Standaert, F.-X., van Oldeneel tot Oldenzeel, L., Samyde, D., and Quisquater, J.-J. 2003.
Power Analysis of FPGAs: How Practical is the Attack. In 13th International Conference on
Field Programmable Logic and Applications — FPL 2003, P. Cheung, G. Constantinides, and
J. de Sousa, Eds. Vol. LNCS 2778. Springer-Verlag.

Sung, C. and Wang, B. I. 1999. Method and Apparatus for Securing Programming Data of
Programmable Logic Device. United States Patent, Patent Number 5970142.

Tao, J., Cheung, N., and Ho, C. 1993. Metal Electromigration Damage Healing Under Bidirec-
tional Current Stress. IEEE Transactions on Elecron Devices 14, 12 (December), 554–556.

Taylor, R. and Goldstein, S. 1999. A high-performance flexible architecture for cryptography.
In Workshop on Cryptographic Hardware and Embedded Systems — CHES ’99, Ç. Koç and
C. Paar, Eds. Vol. LNCS 1717. Springer-Verlag, Worcester, Massachusetts, USA, 231–245.

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

36 · Thomas Wollinger et al.

Tessier, R. and Burleson, W. 2000. Reconfigurable Computing for Digital Signal Processing:
A Survey. Journal of VLSI Signal Processing 28, 1 (June), 7–27.

Thomas, S., Anthony, D., Berson, T., and Gong, G. 2003. The W7 Stream Cipher Algorithm.
Available at http://www.watersprings.org/pub/id/draft-thomas-w7cipher-03.txt. Internet
Draft.

Trimberger, S., Pang, R., and Singh, A. 2000. A 12 Gbps DES Encryptor/Decryptor Core in
an FPGA. In Workshop on Cryptographic Hardware and Embedded Systems — CHES 2000, Ç.
K. Koç and C. Paar, Eds. Vol. LNCS 1965. Springer-Verlag, Worcester, Massachusetts, USA,
157–163.

Triscend Corporation. Available at http://www.triscend.com/.

U.S. Department of Commerce/National Institute of Standard and Technology 2000b. FIPS 186-
2, Digital Signature Standard (DSS). U.S. Department of Commerce/National Institute of
Standard and Technology. Available at http://csrc.nist.gov/encryption.

U.S. Department of Commerce/National Institute of Standard and Technology 2001a. FIPS
PUB 197, Specification for the Advanced Encryption Standard (AES). U.S. Department of
Commerce/National Institute of Standard and Technology. Available at http://csrc.nist.

gov/encryption/aes.

U.S. Department of Commerce/National Institute of Standards and Technology 1999. NIST
FIPS PUB 46-3, Data Encryption Standard (DES). U.S. Department of Commerce/National
Institute of Standards and Technology. Available at http://csrc.nist.gov/encryption/

tkencryption.html.

van der Pol, J. and Koomen, J. 1990. Relation between the hot carrier lifetime of transistors
and CMOS SRAM products. In International Reliability Physics Symposium (IRPS 1990).
178.

Vuillemin, J. E., Bertin, P., Roncin, D., Shand, M., Touati, H. H., and Boucard, P. 1996.
Programmable active memories: Reconfigurable systems come of age. IEEE Transactions on
VLSI Systems 4, 1 (March), 56–69.

Walter, C. D. 1991. Faster modular multiplication by operand scaling. In Advances in Cryptology
- CRYPTO ’91, J. Feigenbaum, Ed. Vol. LNCS 576. Springer-Verlag, Berlin, 313–323.

Weaver, N. and Wawrzynek, J. 2000. A Comparison of the AES Candidates Amenability to
FPGA Implemenation. In The Third Advanced Encryption Standard Candidate Conference.
National Institute of Standards and Technology, New York, New York, USA, 28–39.

Wilcox, D. C., Pierson, L., Robertson, P., Witzke, E., and Gass, K. 1999. A DES ASIC
Suitable for Network Encryption at 10 Gbps and Beyond. In Workshop on Cryptographic
Hardware and Embedded Systems — CHES ’99, Ç. Koç and C. Paar, Eds. Vol. LNCS 1717.
Springer-Verlag, Worcester, Massachusetts, USA, 37–48.

Williams, T., Kapur, R., Mercer, M., Dennard, R., and Maly, W. 1996. IDDQ Testing
for High Performance CMOS - The Next Ten Years. In IEEE European Design and Test
Conference (ED&TC’96). 578–583.

Wollinger, T., Wang, M., Guajardo, J., and Paar, C. 2000. How well are high-end DSPs suited
for the AES algorithms? In The Third Advanced Encryption Standard Candidate Conference.
National Institute of Standards and Technology, New York, New York, USA, 94–105.

Wong, S., Vassiliadis, S., and Cotofana, S. 2002. Future Directions of (Programmable and
Reconfigurable) Embedded Processors. In Embedded Processor Design Challenges, Workshop
on Systems, Architectures, Modeling, and Simulation — SAMOS 2002.

Wu, H. 1999. Low complexity bit-parallel finite field arithmetic using polynomial basis. In
Workshop on Cryptographic Hardware and Embedded Systems — CHES 1999, Ç. K. Koç and
C. Paar, Eds. Vol. LNCS 1717. Springer-Verlag, 280 – 291.

Xilinx Inc. Using Bitstream Encryption. Handbook of the Virtex II Platform. Available at
http://www.xilinx.com.

Xilinx Inc. 1999. XC4000E and XC4000X Series Field Programmable Gate Arrays (Version 1.6).
Xilinx Inc., San Jose, California, USA.

Xilinx Inc. 2001. Virtex 2.5V Field Programmable Gate Arrays (Version 2.5). Xilinx Inc., San
Jose, California, USA.

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

Cryptography on FPGAs: State of the Art Implementations and Attacks · 37

Xilinx Inc. 2002. VirtexTM -II Platform FPGA Data Sheet. Xilinx Inc. Available at http:

//www.xilinx.com/partinfo/databook.htm.

Xilinx Inc. 2003. Virtex-II ProTM Platform FPGAs: Introduction and Overview. Xilinx Inc.
Version 2.4. Available at http://direct.xilinx.com/bvdocs/publications/ds083.pdf.

Yip, K.-W. and Ng, T.-S. 2000. Partial-Encryption Technique for Intellectual Property Protection
of FPGA-based Products. IEEE Transactions on Consumer Electronics 46, 1, 183–190.

APPENDIX

A. BACKGROUND: PUBLIC-KEY AND SYMMETRIC-KEY ALGORITHMS

A.1 Symmetric-key Algorithms

Private-key or Symmetric-key algorithms are algorithms where the encryption and
decryption key is the same and which encrypt the data, often at high speeds.
Private-key algorithms require the sender and the receiver to agree on the key prior
to the communication taking place and the security rests in this key. There are
two types of symmetric-key algorithms which are commonly distinguished: block
ciphers and stream ciphers [Schneier 1996].

Block ciphers encrypted the message broken into blocks of fixed length and ex-
amples include Data Encryption Standard (DES) [Federal Information Processing
Standards 1977], the International Encryption Standard (IDEA) [Lai and Massey
1991; Massey and Lai 1992], and the Advanced Encryption Standard (AES) [U.S.
Department of Commerce/National Institute of Standard and Technology 2001a].
AES became a US standard in October 2000 and supports block size of 128 bits
and 128-bit, 192-bit, and 256-bit long keys. It is important to point out that the
trend in modern symmetric-key cipher design has been to optimize the algorithms
for efficient software implementations in contrast to DES which was designed with
hardware in mind.

In practical applications, if one needs to encrypt larger blocks than the block size
of the block-cipher the data will be partitioned into blocks of size n, where n is
the input size of the block-cipher6. Each block is encrypted via different methods
or so called “modes of operation”, like Electronic Code Book (ECB), Cipher Block
Chaining (CBC), Cipher Feedback (CFB), Output Feedback (OFB), and Counter
mode [Menezes et al. 1997; M. Dworkin 2001; 2002]. Considering modes of operation
is important because depending on the mode different methodologies might be used
to enhance the throughput of a block cipher.

Stream ciphers operate on a single bit of plaintext at a time. They are useful
because the encryption transformation can change for each symbol of the message
being encrypted. In particular, they are useful in situations where transmission
errors are highly probable because they do not have error propagation. In addition,
they can be used when the data must be processed one symbol at a time because
of lack of equipment memory or limited buffering.

As a final remark, notice that one of the major issues with symmetric-key systems
is the need to find an efficient method to agree on and exchange the secret keys
securely [Menezes et al. 1997]. In [1976], Diffie and Hellman proposed a new concept

6We will use n to denote the block-size of the block cipher in the remaining of this contribution
whenever we are discussing symmetric ciphers.

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

38 · Thomas Wollinger et al.

that would revolutionize cryptography as it was known at the time, called public-
key cryptography.

A.2 Public-key Algorithms

Public-key (PK) cryptography is based on the idea of separating the key used to
encrypt a message from the one used to decrypt it. Anyone that wants to send
a message to party A can encrypt that message using A’s public key but only A
can decrypt the message using her private key. It is understood that A’s private
key should be kept secret at all times and A’s public key is publicly available to
everyone. Furthermore, it is impossible for anyone, except A, to derive the private
key (or at least to do so in any reasonable amount of time).

In general, one can divide practical public-key algorithms into three families:

—Algorithms based on the integer factorization problem: given a positive integer
n, find its prime factorization, e.g. RSA [Rivest et al. 1978].

—Algorithms based on the discrete logarithm problem: given α and β find x such
that β = αx mod p, including the Diffie-Hellman [Diffie and Hellman 1976] key
exchange protocol and the Digital Signature Algorithm (DSA).

—Algorithms based on Elliptic Curves. Elliptic curve cryptosystems [Miller 1986b;
Koblitz 1987] are the most recent family of practical public-key algorithms, which
have gained acceptance including standardization [P1363 2000].

Despite the differences between these mathematical problems, all three algorithm
families have something in common: they all perform complex operations on very
large numbers, typically 1024–2048 bits in length for the RSA and discrete loga-
rithm systems or 160–256 bits in length for the elliptic curve systems7. PK systems
have a major disadvantage, they are very arithmetic intensive and even when prop-
erly implemented, all PK schemes proposed to date are several orders of magnitude
slower than the best known private-key schemes.

B. FPGA TECHNOLOGY

The Xilinx Virtex family is the most used FPGA series in academia concerning
cryptographic implementations, as it can be seen from the summaries of results
in Section 6 and Section 7. This section will give some more detailed description,
about FPGA in general and the chips used in the cited contributions.

The original 2.5-Volt Virtex family was introduced in 1998 offering features,
like Block RAM, Distributed RAM and High-speed external memory interfaces,
Delay-Locked Loops (DLLs), and SelectI/O. The Virtex-E family, introduced in
1999, delivers more RAM, more DLLs, the SelectLinkTM technology and high-
speed differential signaling. Virtex-II and Virtex-II Pro FPGAs are the high end
chips offered by Xilinx.

One of the biggest architectural differences between FPGAs and CPLDs is that
FPGAs have an array of many small logic blocks with vast interconnection net-
works, while Complex Logic Device (CPLDs) have a few large logic block based on
PALs, with smaller interconnection networks. Hence, FPGAs exist of three main

7We refer to [Lenstra and Verheul 2001] for extended discussions regarding key equivalences be-
tween different asymmetric and symmetric cryptosystems.

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

Cryptography on FPGAs: State of the Art Implementations and Attacks · 39

Fig. 1. 2-Slice Virtex CLB

I/O Blocks

Configurable Logic Block

Interconnection
Matrix

components: Configurable Logic Blocks (CLBs), interconnections, and I/O blocks
(see Figure 1).

FPGA technology is usually based on SRAM, flash, EEPROM or anti-fuse in-
terconnections. The Virtex family is based on SRAM technology. The I/O blocks
of FPGAs are very similar to the I/O pads in an ASIC and act as buffers to the
outside world. The CLBs are the core logic element in an FPGA. The main block
in a Virtex CLBs is the logic cell (LC). Each Virtex CLB contains of four LCs,
organized in two similar slices. An LC includes a 4-input function generator, carry
logic, and a storage element. The output from the function generator in each LC
drives both the CLB output and the D input of the flip-flop.

The slice includes 4-input look-up tables (LUTs), which are the function gen-
erators of the CLB. Each LUT can provide a 16 x 1-bit synchronous RAM and
the two LUTs within a slice can be combined to create a 16 x 2-bit or 32 x 1-bit
synchronous RAM, or a 16x1-bit dual-port synchronous RAM. The F5 multiplexer
provides the ability to combine the function generator outputs, either to a func-
tion generator (implementing any 5-input function), to a 4:1 multiplexer, or to a
selected functions of up to nine inputs. F6 multiplexer combines the outputs of all
four function generators in the CLB by selecting one of the F5-multiplexer outputs.
This permits the implementation of any 6-input function, an 8:1 multiplexer, or
selected functions of up to 19 inputs. The XOR gate provides the possibility to im-
plement a 1-bit full adder in one LC and the AND gate allows a efficient multiplier
implementation.

Moreover, large block of RAM memories which are organized in columns are
provided. Virtex devices have two columns that extend the full height of the chip.
Each memory block is four CLBs high, and consequently, a Virtex device 64 CLBs
high contains 16 memory blocks per column, and a total of 32 blocks.

A summary of the number of system gates, CLBs, LC, available I/O and RAM
for the Virtex devices can be found in Table VII.

Besides the Virtex family the XC4000 devices were used in some mentioned imple-
mentations. The XC4000 family was introduced in 1992 as Xilinxs third generation
and spans from 3,000 to 125,000 gates. XC4000 CLB consists of two 4-input LUTs,
one 3-input LUT, and two flip-flops. For example the XC4025 FPGA consists of
1024 CLBs, 2560 Flip-Flops and 256 I/O pins.

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

40 · Thomas Wollinger et al.

Table VII. Virtex FPGA Family Members

Device System CLB Logic Maximum Block Maximum
Gates Array Cells I/O RAM Bits RAM Bits

XCV 50 57, 906 16x24 1, 728 180 32, 768 24, 576

XCV 100 108, 904 20x30 2, 700 180 40, 960 38, 400

XCV 150 164, 674 24x36 3, 888 260 49, 152 55, 296

XCV 200 236, 666 28x42 5, 292 284 57, 344 75, 264

XCV 300 322, 970 32x48 6, 912 316 65, 536 98, 304

XCV 400 468, 252 40x60 10, 800 404 81, 920 153, 600

XCV 600 661, 111 48x72 15, 552 512 98, 304 221, 184

XCV 800 888, 439 56x84 21, 168 512 114, 688 301, 056

XCV 1000 1, 124, 022 64x96 27, 648 512 131, 072 393, 216

ACM Special Issue Security and Embedded Systems Vol. No. March 2003.

