
Chapter 1

SECURITY ASPECTS OF FPGAS
IN CRYPTOGRAPHIC APPLICATIONS

Thomas Wollinger and Christof Paar ∗
Chair for Communication Security (COSY)
Ruhr-Universität Bochum, Germany
{wollinger, cpaar}@crypto.rub.de

Chapter in "New Algorithms, Architectures, and Applications
for Reconfigurable Computing", editor Wolfgang Rosenstiel and
Patrick Lysaght, Kluwer, 2004.

Abstract
This contribution provides a state-of-the-art description of security

issues on FPGAs from a system perspectives. We consider the potential
security problems of FPGAs and propose some countermeasure for the
existing drawbacks of FPGAs. Even though there have been many con-
tributions dealing with the algorithmic aspects of cryptographic schemes
implemented on FPGAs, this contribution is one of the few investiga-
tions of system and security aspects.

Keywords: cryptography, security, attacks, reconfigurable hardware,
FPGA, cryptographic applications, reverse engineering

1. Introduction and Motivation
In recent years, FPGAs manufacturers have come closer to filling the

performance gap between FPGAs and ASICs, enabling them, not only
to serve as fast prototyping tools but, also to become active players as
components in systems. Reconfigurable hardware devices seem to com-
bine the advantages of software and hardware implementations. Further-
more, there are potential advantages of reconfigurable hardware in cryp-
tographic applications: algorithm agility, algorithm upload, architecture

∗This research was partially sponsored by the German Federal Office for Information Security
(BSI).

1

2

efficiency, resource efficiency, algorithm modification, throughput, cost
efficiency.

The choice of the implementation platform of a digital system is driven
by many criteria and heavily dependent on the application area. In
addition to the aspects of algorithm and system speed and costs there
are crypto-specific ones: physical security (e.g., against key recovery
and algorithm manipulation); flexibility (regarding algorithm parameter,
keys, and the algorithm itself); power consumption (absolute usage and
prevention of power analysis attacks); and other side channel leakages.

The remainder of this chapter is organized as follows: We devoted the
first part of this chapter to study FPGAs from a systems security per-
spective by describing some possible attacks (Section 2). In the second
part we present possible countermeasures against the introduced attacks
(Section 3). We end this contribution with some conclusions.

2. Shortcomings of FPGAs for cryptographic
applications

This section summarizes security problems produced by attacks against
given FPGA implementations. First we would like to state what the pos-
sible goals of such attacks are.

2.1 Why does someone wants to attack FPGAs?
The most common threat against an implementation of a crypto-

graphic algorithm is to learn a confidential cryptographic key, that is,
either a symmetric key or the private key of an asymmetric algorithm.
Given that the algorithms applied are publicly known in most commer-
cial applications, knowledge of the key enables the attacker to decrypt
future (assuming the attack has not been detected and countermeasures
have not been taken) and, often more harming, past communications
which had been encrypted. Another threat is the one-to-one copy, or
“cloning”, of a cryptographic algorithm together with its key. In some
cases it can be enough to run the cloned application in decryption mode
to decipher past and future communications. In other cases, execution
of a certain cryptographic operation with a presumingly secret key is in
most applications the sole criteria which authenticates a communication
party. An attacker who can perform the same function can masquerade
as the attacked communication party. Yet another threat is given in
applications where the cryptographic algorithms are proprietary. Even
though such an approach is not wide-spread, it is standard practice in ap-
plications such as pay-TV and in government communications. In such
scenarios it is already interesting for an attacker to reverse-engineer the

Security aspects of FPGAs in cryptographic applications 3

encryption algorithm itself. The associated key might later be recovered
by other methods (e.g., bribery or classical cryptanalysis.) The discus-
sion above assumes mostly that an attacker has physical access to the
encryption device. Whether that is the case or not depends heavily on
the application. However, we believe that in many scenarios such access
can be assumed, either through outsiders or through dishonest insiders.

In the following we discuss vulnerabilities of modern FPGAs against
such attacks. In areas were no attacks on FPGAs have been published,
we tried to extrapolate from attacks on other hardware platforms, mainly
memory cell and chip cards.

2.2 Description of the Black Box Attack
The classical method to reverse engineer a chip is the so called Black

Box attack. The attacker inputs all possible combinations, while saving
the corresponding outputs. The intruder is then able to extract the inner
logic of the FPGA, with the help of the Karnaugh map or algorithms that
simplify the resulting tables. This attack is only feasible if a small FPGA
with explicit inputs and outputs is attacked and a lot of processor power
is available. The reverse engineering effort grows and it will become less
feasible as the size and complexity of the FPGA increases. The cost of
the attack, furthermore, rises with the usage of state machines, LFSRs
(Linear Feedback Shift Registers), integrated storage, and, if pins can
be used, as input and output [8].

2.3 Cloning of SRAM FPGAs
The security implications that arise in a system that uses SRAM FP-

GAs are obvious, if the configuration data is stored unprotected in the
system but external to the FPGA. In a standard scenario, the configura-
tion data is stored externally in nonvolatile memory (e.g., PROM) and is
transmitted to the FPGA at power up in order to configure the FPGA.
An attacker could easily eavesdrop on the transmission and get the con-
figuration file. This attack is therefore feasible for large organizations as
well as for those with low budgets and modest sophistication.

2.4 Description of the Readback Attack
Readback is a feature that is provided for most FPGA families. This

feature allows to read a configuration out of the FPGA for easy de-
bugging. An overview of the attack is given in [8]. The idea of the
attack is to read the configuration of the FPGA through the JTAG or
programming interface in order to obtain secret information (e.g. keys,
proprietary algorithm). The readback functionality can be prevented

4

with a security bit. In some FPGA families, more than one bit is used
to disable different features, e.g., the JTAG boundary. In [4], the idea of
using a security antifuse to prevent readout of information is patented.

However, it is conceivable, that an attacker can overcome these coun-
termeasures in FPGA with fault injection. This kind of attack was first
introduced in [7]. The authors showed how to break public-key algo-
rithms, such as the RSA and Rabin signature schemes, by exploiting
hardware faults. Furthermore, they give a high level description of tran-
sient faults, latent faults, and induced faults. This publication, was
followed by [6], where the authors introduced differential fault analy-
sis, which can potentially be applied against all symmetric algorithms
in the open literature. Meanwhile there have been many publications
that show different techniques to insert faults, e.g., electro magnetic ra-
diation [22], infrared laser [2], or even a flash light [28]. It seems very
likely that these attacks can be easily applied to FPGAs, since they are
not especially targeted to ASICs. Therefore, one is able to deactivate
security bits and/or the countermeasures, resulting in the ability to read
out the configuration of the FPGA [16, 8].

Despite these attacks Actel Corporation [1] claims that after the pro-
gramming phase, the cells of FPGAs cannot be read at all. On the
other hand Xilinx offers the users the software tool JBits [9], which pro-
vides an API to access the bitstream information and allows dynamic
reconfiguration for Xilinx Virtex FPGAs. JBits allows a simplified and
automated access to specific part of the bitstream, resulting in a extra
advantage for the attacker who performs a readback attack.

2.5 Reverse-Engineering of the Bitstreams
The attacks described so far output the bitstream of the FPGA de-

sign. In order to get the design of proprietary algorithms or the secret
keys, one has to reverse-engineer the bitstream. The condition to launch
the attack is not only that the attacker has to be in possession of the
bitstream, but furthermore the bitstream has to be in the clear, meaning
it is not encrypted.

FPGA manufactures claim, that the security of the bitstream relies
on the disclosure of the layout of the configuration data. This informa-
tion will only be made available if a non-disclosure agreement is signed,
which is, from a cryptographic point of view, an extremely insecure
situation. This security-by-obscurity approach was broken at least ten
years ago when the CAD software company NEOCad reverse-engineered
a Xilinx FPGA. NEOCad was able to reconstruct the necessary infor-
mation about look-up tables, connections, and storage elements [26].

Security aspects of FPGAs in cryptographic applications 5

Hence, NEOCad was able to produce design software without signing
non-disclosure agreements with the FPGA manufacturer. Even though
a big effort has to be made to reverse engineer the bitstream, for large
organizations it is quite feasible. In terms of government organizations
as attackers, it is also possible that they will get the information of the
design methodology directly from the vendors or companies that signed
NDAs.

2.6 Description of Side Channel Attacks
Any physical implementation of a cryptographic system might pro-

vide a side channel that leaks unwanted information. Examples for
side channels include in particular: power consumption, timing behav-
ior, and electromagnet radiation. Obviously, FPGA implementations
are also vulnerable to these attacks. In [17] two practical attacks, Sim-
ple Power Analysis (SPA) and Differential Power Analysis (DPA) were
introduced. The power consumption of the device while performing a
cryptographic operation was analyzed in order to find the secret keys
from a tamper resistant device. The main idea of DPA is to detect re-
gions in the power consumption of a device which are correlated with
the secret key. Moreover, in some cases little or no information about
the target implementation is required. Since their introduction, there
has been a lot of work improving the original power attacks (see, e.g.,
relevant articles in [13]. There seems to be very little work at the time of
writing addressing the feasibility of actual side channel attacks against
FPGAs. Very recently the first experimental results of simple power
analysis on an ECC implementation on an FPGA have been presented
in [19] and on RSA and DES implementations in [30]. Somewhat related
was the work presented in [27] which concludes that 60% of the power
consumption in a XILINX Virtex-II FPGA is due to the interconnects
and 14% and 16% is due to clocking and logic, respectively. These fig-
ures would seem to imply that and SPA type attack would be harder
to implement on an FPGA than on an ASIC. However, the results pre-
sented in [30, 19] show that SPA attacks are feasible on FPGAs and that
they can be realized in practice.

2.7 Description of Physical Attacks
The aim of a physical attack is to investigate the chip design in order to

get information about proprietary algorithms or to determine the secret
keys by probing points inside the chip. Hence, this attack targets parts
of the FPGA, which are not available through the normal I/O pins. This
can potentially be achieved through visual inspections and by using tools

6

such as optical microscopes and mechanical probes. However, FPGAs
are becoming so complex that only with advanced methods, such as
Focused Ion Beam (FIB) systems, one can launch such an attack. To
our knowledge, there are no countermeasures to protect FPGAs against
this form of physical threat. In the following, we will try to analyze the
effort needed to physically attack FPGAs manufactured with different
underlying technologies.

2.7.1 SRAM FPGAs. Unfortunately, there are no publi-
cations available that accomplished a physical attack against SRAM
FPGAs. This kind of attack is only treated very superficially in a few
articles, e.g. [23]. In the related area of SRAM memory, however there
has been a lot of effort by academia and industry to exploit this kind of
attack [10, 11, 3, 34, 25, 29, 18]. Due to the similarities in structure of
the SRAM memory cell and the internal structure of the SRAM FPGA,
it is most likely that the attacks can be employed in this setting.

Contrary to common wisdom, the SRAM memory cells do not entirely
loose the contents when power is cut. The reason for these effects are
rooted in the physical properties of semiconductors (see [11] for more
details). The physical changes are caused mainly by three effects: elec-
tromigration, hot carriers, and ionic contamination.

Electromigration implies a high current density, that relocates metal
atoms in the opposite direction of the current flow. Electromigration
results in voids at the negative electrode and hillocks and whiskers at
the positive electrode. The effect, that electrons with very high energy
are able to overcome the Si−SiO2 potential barrier and accelerate into
the gate oxide are called hot carrier. This electrons stay there and it
can take days until they neutralize [11]. Ionic contamination is triggered
by the sodium ions present in the material used during semiconductor
manufacturing and packaging process. Electrical fields and high tem-
perature enable the move towards the silicon/sillicon-dioxide interface,
resulting in a change of the threshold voltage.

In the published literature one can find several different techniques
to determine the changes in device operations. Most publications agree
that device can be altered, if 1) threshold voltage has changed by 100mV
or 2) there is a 10% change in transconductance, voltage or current.
An extreme case of data recovery, was described in [3]. The authors
were able to extract a DES master key from a module used by a bank,
without any special techniques or equipment on power-up. The reason
being that the key was stored in same SRAM cells over a long period of
time. Hence, the key was ”burned” into the memory cells and the key
values were retained even after switching off the device.

Security aspects of FPGAs in cryptographic applications 7

”IDDQ testing” is one of the widely used methods and it is based on
the analysis of the current usage of the device. The idea is to execute a
set of test vectors until a given location is reached, at which point the
device current is measured. Hot carrier effects, cell charge, and tran-
sitions between different states can then be detected at the abnormal
IDDQ characteristic [11, 34]. In [25], the authors use the substrate cur-
rent, the gate current, and the current in the drain-substrate diode of a
MOSFET to determine the level and duration of stress applied.

When it becomes necessary to access internal portions of a device,
there are also alternative techniques available to do so, as described in
[29]. Possibilities are to use the scan path that the IC manufacturers
insert for test purposes or techniques like bond pad probing [11].

When it becomes necessary to use access points that are not provided
by the manufacturer, the layers of the chip have to be removed. Me-
chanical probing with tungsten wire with a radius of 0, 1− 0, 2µm is the
traditional way to discover the needed information. These probes pro-
vide gigahertz bandwidth with 100fF capacitance and 1MΩ resistance.

Due to the complex structure and the multi layer production of chips
the mechanical testing is not sufficient enough. Focused Ion Beam
(FIB) workstations can expose buried conductors and deposit new probe
points. The functionality is similar to an electron microscope and one
can inspect structures down to 5nm [18]. Electron-beam tester (EBT) is
another measurement method. An EBT is a special electron microscope
that is able to speed primary electrons up to 2.5 kV at 5nA. EBT mea-
sures the energy and amount of secondary electrons that are reflected.

Resulting from the above discussion of attacks against SRAM mem-
ory cells, it seems likely that a physical attack against SRAM FPGAs
can be launched successfully, assuming that the described techniques
can be transferred. However, the physical attacks are quite costly and
having the structure and the size of state-of-the-art FPGA in mind, the
attack will probably only be possible for large organizations, for example
intelligence services.

2.7.2 Antifuse FPGAs. To discuss physical attacks against
antifuse (AF) FPGAs, one has to first understand the programming
process and the structure of the cells. The basic structure of an AF
node is a thin insulating layer (smaller than 1µm2) between conduc-
tors that are programmed by applying a voltage. After applying the
voltage, the insulator becomes a low-resistance conductor and there ex-
ists a connection (diameter about 100nm) between the conductors. The
programming function is permanent and the low-impedance state will
persist indefinitely.

8

In order to be able to detect the existence or non-existence of the con-
nection one has to remove layer after layer, or/and use cross-sectioning.
Unfortunately, no details have been published regarding this type of at-
tack. In [8], the author states that a lot of trial-and-error is necessary
to find the configuration of one cell and that it is likely that the rest of
the chip will be destroyed, while analyzing one cell. The main problem
with this analysis is that the isolation layer is much smaller than the
whole AF cell. One study estimates that about 800,000 chips with the
same configuration are necessary to explore the configuration file of an
Actel A54SX16 chip with 24,000 system gates [8]. Another aggravation
of the attack is that only about 2–5 % of all possible connections in
an average design are actually used. In [23] a practical attack against
AF FPGAs was performed and it was possible to alter one cell in two
months at a cost of $1000. Based on these arguments some experts ar-
gue that physical attacks against AF FPGAs are harder to perform than
against ASICs [1]. On the other hand, we know that AF FPGAs can be
easily attacked if not connected to a power source. Hence, it is easier to
drill holes to disconnect two connections or to repair destroyed layers.
Also, depending on the source, the estimated cost of an attack and its
complexity are lower [23].

2.7.3 Flash FPGAs. The connections in flash FPGAs are
realized through flash transistors. That means the amount of electrons
flowing through the gate changes after configuration and there are no
optical differences as in the case of AF FPGAs. Thus, physical at-
tacks performed via analysis of the FPGA cell material are not possible.
However, flash FPGAs can be analyzed by placing the chip in a vacuum
chamber and powering it up. The attacker can then use a secondary elec-
tron microscope to detect and display emissions. The attacker has to
get access to the silicon die, by removing the packet, before he can start
the attack [8]. However, experts are not certain about the complexity of
such an attack and there is some controversy regarding its practicality
[1, 23]. Other possible attacks against flash FPGAs can be found in the
related area of flash memory. The number of write/erase cycles are lim-
ited to 10,000 – 100,000, because of the accumulation of electrons in the
floating gate causing a gradual rise of the transistors threshold voltage.
This fact increases the programming time and eventually disables the
erasing of the cell [11]. Another less common failure is the programming
disturbance in which unselected erased cells gain charge when adjacent
selected cells are written [5]. This failure does not change the read op-
erations but it can be detected with special techniques described in [11].
Furthermore, there are long term retention issues, like electron emission.

Security aspects of FPGAs in cryptographic applications 9

The electrons in the floating gate migrate to the interface with the un-
derlying oxide from where they tunnel into the substrate. This emission
causes a net charge loss. The opposite occurs with erased cells where
electrons are injected [21]. Ionic contamination takes place as well but
the influence on the physical behavior is so small that it can not be mea-
sured. In addition, hot carrier effects have a high influence, by building
a tunnel between the bands. This causes a change in the threshold volt-
age of erased cells and it is especially significant for virgin cells [12].
Another phenomenon is overerasing, where an erase cycle is applied to
an already-erased cell leaving the floating gate positively charged. Thus,
turning the memory transistor into a depletion-mode transistor [11].

All the described effects change in a more or less extensive way the
cell threshold voltage, gate voltage, or the characteristic of the cell. We
remark that the stated phenomenons apply for EEPROM memory and
that due to the structure of the FPGA cell these attacks can be simply
adapted to attack flash/EEPROM FPGAs.

2.7.4 Summary of Physical Attacks. It is our position
that due to the lack of published physical attacks against FPGAs, it is
very hard (if at all possible) to predict the costs of such an attack. It
is even more difficult to compare the effort needed for such an attack
to a similar attack against an ASIC as there is no publicly available
contribution which describes a physical attack against an FPGA that
was completely carried out. Nevertheless, it is possible to draw some
conclusions from our above discussion.

First, we notice that given the current size of state-of-the-art FPGAs,
it seems unfeasible, except perhaps for large government organizations
and intelligent services, to capture the whole bitstream of an FPGA.
Having said that, we should caution that in some cases, an attacker
might not need to recover the whole bitstream information but rather a
tiny part of it, e.g., the secret-key. This is enough to break the system
from a practical point of view and it might be feasible.

On the other hand, there are certain properties that might increase the
effort required for a physical attack against FPGAs when compared to
ASICs. In the case of SRAM-, Flash-, EPROM-, and EEPROM-FPGAs
there is no printed circuit (as in the case of ASICs) and therefore it is
potentially harder to find the configuration of the FPGA. The attacker
has to look for characteristics that were changed on the physical level
during the programming phase. In the case of antifuse FPGAs the effort
for a physical attack might increase compared to ASICs because one has
to find a tiny connection with a diameter of about 100 nm in a 1 µm2

10

insulation layer. Furthermore, only 2 − 5% of all possible connections
are used in an average configuration.

3. Prevention of Attacks
This section shortly summarizes possible countermeasures that can

be provided to minimize the effects of the attacks mentioned in the
previous section. Most of them have to be realized by design changes
through the FPGA manufacturers, but some could be applied during
the programming phase of the FPGA.

3.1 How to prevent Black Box Attacks
The Black Box Attack is not a real threat nowadays, due to the com-

plexity of the designs and the size of state-of-the-art FPGAs (see Sec-
tion 2.2). Furthermore, the nature of cryptographic algorithms prevents
the attack as well. Cryptographic algorithms can be segmented in two
groups: symmetric-key and public-key algorithms. Symmetric-key algo-
rithms can be further divided into stream and block ciphers. Today’s
stream ciphers output a bit stream, with a period length of 128 bits [32].
Block ciphers, like AES, are designed with a block length of 128 bits and
a minimum key length of 128 bits. Minimum length in the case of public-
key algorithms is 160 bits for ECC and 1024 bits for discrete logarithm
and RSA-based systems. It is widely believed, that it is infeasible to
perform a brute force attack and search a space with 280 possibilities.
Hence, implementations of this algorithms can not be attacked with the
black box approach.

3.2 How to prevent cloning of SRAM FPGAs
There are many suggestions to prevent the cloning of SRAM FPGAs,

mainly motivated by the desire to prevent reverse engineering of general,
i.e., non-cryptographic, FPGA designs. One solution would be to check
the serial number before executing the design and delete the circuit if it
is not correct. This approach is not practical because of the following
reasons: 1) The whole chip, including the serial number can be easily
copied; 2) Every board would need a different configuration; 3) Logistic
complexity to manage the serial numbers [16]. Another solution would
be to use dongles to protect the design [14, 16]. Dongles are based on
security-by-obscurity, and therefore do not provide solid security, as it
can be seen from the software industry’s experience using dongles for
their tools. A more realistic solution would be to have the nonvolatile
memory and the FPGA in one chip or to combine both parts by covering

Security aspects of FPGAs in cryptographic applications 11

them with epoxy. This reflects also the trend in chip manufacturing
to have different components combined, e.g., the FPSLIC from Atmel.
However, it has to be guaranteed that an attacker is not able to separate
the parts.

Encryption of the configuration file is the most effective and practical
countermeasure against the cloning of SRAM FPGAs. There are several
patents that propose different scenarios related to the encryption of the
configuration file: how to encrypt, how to load the file into the FPGA,
how to provide key management, how to configure the encryption algo-
rithms, and how to store the secret data In [36], the authors proposed
that to partly decrypt the configuration file, in order to increase the
debugging effort during the reverse engineering. If an attacker copies
the partly decrypted file, the non-decrypted functionality is available,
whereas the one decrypted is not. Thus, the attacker tries to find the
errors in the design not aware of the fact, that they are caused through
the encrypted part of the configuration. Most likely an attacker with
little resources, would have dropped the reverse engineering effort, when
realizing that parts are decrypted (which he did not do because he did
not know). However, this approach adds hardly any extra complexity
to an attack if we assume that an attacker has a lot of resources. In
[15] an advanced scenario is introduced where the different parts of the
configuration file are encrypted with different keys. The 60RS family
from Actel was the first attempt to have a key stored in the FPGA in
order to be able to encrypt the configuration file before transmitting it
to the chip. The problem was that every FPGA had the same key on
board. This implies that if an attacker has one key he can get the secret
information from all FPGAs. In [14], the author discusses some scenar-
ios where depending on the manufacturing cost, more than one key is
stored in the FPGA.

An approach in a completely different direction would be to power
the whole SRAM FPGA with a battery, which would make transmission
of the configuration file after a power loss unnecessary. This solution
does not appear practical, however, because of the power consumption
of FPGAs. Hence, a combination of encryption and battery power pro-
vides a possible solution. Xilinx addresses this with an on-chip 3DES
decryption engine in its Virtex II [35] (see also [20]), where only the two
keys are stored in the battery powered memory. Due to the fact that the
battery powers only a very small memory cells, the battery is limited
only by its own life span.

12

3.3 How to prevent Readback Attacks
The readback attack can be prevented with the security bits set, as

provided by the manufactures, see Section 2.4. If one wants to make
sure that an attacker is not able to apply fault injection, the FPGA has
to be embedded into a secure environment, where after detection of an
interference the whole configuration is deleted or the FPGA is destroyed.

3.4 How to prevent Side Channel Attack
In recent years, there has been a lot of work done to prevent side-

channel attacks, see [13]. The methods can generally be divide into
software and hardware countermeasures, with the majority of proposals
dealing with software countermeasures. “Software” countermeasures re-
fer primarily to algorithmic changes, such as masking of secret keys with
random values, which are also applicable to implementations in custom
hardware or FPGA. Hardware countermeasures often deal either with
some form of power trace smoothing or with transistor-level changes
of the logic. Neither seem to be easily applicable to FPGAs without
support from the manufacturers. However, some proposals such as du-
plicated architectures might work on today’s FPGAs.

3.5 How to prevent Physical Attacks
To prevent physical attacks, one has to make sure that the retention

effects of the cells are as small as possible, so that an attacker can not
detect the status of the cells. Already after storing a value in a SRAM
memory cell for 100–500 seconds, the access time and operation voltage
will change [33]. Furthermore, the recovery process is heavily dependant
on the temperature: 1.5 hours at 75◦C, 3 days at 50◦C, 2 month at 20◦C,
and 3 years at 0◦C [11]. The solution would be to invert the data stored
periodically or to move the data around in memory. Cryptographic
applications cause also long-term retention effects in SRAM memory
cells by repeatedly feeding data through the same circuit. One example
is specialized hardware that uses always the same circuits to feed the
secret key to the arithmetic unit [11]. Neutralization of this effect can
be achieved by applying an opposite current [31] or by inserting dummy
cycles into the circuit [11]. In terms of FPGA application, it is very
costly or even impractical to provide solutions like inverting the bits
or changing the location for the whole configuration file. A possibility
could be that this is done only for the crucial part of the design, like
the secret keys. Counter techniques such as dummy cycles and opposite
current approach can be carried forward to FPGA applications.

REFERENCES 13

In terms of flash/EEPROM memory cell, one has to consider that the
first write/erase cycles causes a larger shift in the cell threshold [24] and
that this effect will become less noticeably after ten write/erase cycles
[12]. Thus, one should program the FPGA about 100 times with random
data, to avoid these effect (suggested for flash/EEPROM memory cells
in [11]). The phenomenon of overerasing flash/EEPROM cells can be
minimized by first programming all cells before deleting them.

4. Conclusions
This chapter analyzed possible attacks against the use of FPGA in

security applications. Black box attacks do not seem to be feasible
for state-of-the-art FPGAs. However, it seems very likely for an at-
tacker to get the secret information stored in a FPGA, when combining
readback and fault injection attacks. Cloning of SRAM FPGA and
reverse engineering depend on the specifics of the system under at-
tack, and they will probably involve a lot of effort, but this does not
seem entirely impossible. Physical attacks against FPGAs are very
complex due to the physical properties of the semiconductors in the
case of flash/SRAM/EEPROM FPGAs and the small size of AF cells.
It appears that such attacks are even harder than analogous attacks
against ASICs. Even though FPGA have different internal structures
than ASICs with the same functionality, we believe that side-channel
attacks against FPGAs, in particular power-analysis attacks, will be
feasible too.

It seems from our previous remarks that, while, the art of crypto-
graphic algorithm implementation is reaching maturity, FPGAs as a
security platform are not, and in fact, that they might be currently out
of question for security applications. We don’t think that is the right
conclusion, however. It should be noted that many commercial ASICs
with cryptographic functionality are also vulnerable to attacks similar to
the ones discussed here. A commonly taken approach to prevent these
attacks is to put the ASIC in a secure environment. A secure environ-
ment could, for instance, be a box with tamper sensors which triggers
what is called “zeroization” of cryptographic keys, when an attack is
being detected. Similar approaches are certainly possible for FPGAs
too. (Another solution often taken by industry is not to care and to
build cryptographic products with poor physical security, but we are
not inclined to recommend this.)

References

14

[1] Actel Corporation. Design Security in Nonvolatile Flash and Antifuse. Avaialble
at http://www.actel.com/appnotes/DesignSecurity.pdf, August 2002.

[2] C. Ajluni. Two New Imaging Techniques to Improve IC Defect Indentification.
Electronic Design, 43(14):37–38, July 1995.

[3] R. Anderson and M. Kuhn. Low Cost Attacks on Tamper Resistant Devices.
In 5th International Workshop on Security Protocols, pages 125–136. Springer-
Verlag, 1997. LNCS 1361.

[4] J. M. Aplan, D. D. Eaton, and A. K. Chan. Security Antifuse that Prevents
Readout of some but not other Information from a Programmed Field Pro-
grammable Gate Array. United States Patent, Patent No. 5898776, April 27
1999.

[5] S. Aritome, R. Shirota, G. Hemink, T. Endoh, and F. Masuoka. Reliability
Issues of Flash Memory Cells. Proceedings of the IEEE, 81(5):776–788, May
1993.

[6] E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosys-
tems. In Advances in Cryptology - CRYPTO ’97, pages 513–525. Springer-
Verlag, 1997. LNCS 1294.

[7] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the Importance of Checking
Cryptographic Protocols for Faults (Extended Abstract). In Advances in Cryp-
tology - EUROCRYPT ’97, pages 37–51. Springer-Verlag, 1997. LNCS 1233.

[8] B. Dipert. Cunning circuits confound crooks. http://www.e-
insite.net/ednmag/contents/images/21df2.pdf, October 12 2000.

[9] S. A. Guccione and D. Levi. Jbits: A java-based interface to fpga hardware.
Technical report, Xilinx Corporation, San Jose, CA, USA, 2003. Available at
http://www.io.com/ guccione/Papers/Papers.html.

[10] P. Gutmann. Secure Deletion of Data from Magnetic and Solid-State Memory.
In Sixth USENIX Security Symposium, pages 77–90, July 22-25, 1996.

[11] P. Gutmann. Data Remanence in Semiconductor Devices. In 10th USENIX
Security Symposium, pages 39–54, August 13–17, 2001.

[12] S. Haddad, C. Chang, B. Swaminathan, and J. Lien. Degradations due to hole
trapping in flash memory cells. IEEE Electron Device Letters, 10(3):117–119,
March 1989.

[13] B. S. Kaliski, Jr., Ç. K. Koç, D. Naccache, C. Paar, and C. D. Walter, editors.
CHES 1999-2003, Berlin, Germany, September 2003. Springer-Verlag. LNCS
1717/1965/2162/2523/2779.

[14] T. Kean. Secure Configuration of Field Programmable Gate Arrays. In Inter-
national Conference on Field-Programmable Logic and Applications 2001 (FPL
2001), pages 142–151. Springer-Verlag, 2001. LNCS 2147.

[15] S. H. Kelem and J. L. Burnham. System and Method for PLD Bitstram En-
cryption. United States Patent, Patent Number 6118868, September 12 2000.

[16] D. Kessner. Copy Protection for SRAM based FPGA Designs, May 8 2000.
Available at http://www.free-ip.com/copyprotection.html.

[17] P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In CRYPTO ’99,
pages 388–397. Springer-Verlag, 1999. LNCS 1666.

[18] O. Kommerling and M. Kuhn. Design Principles for Tamper-Resistant Smart-
card Processors. In USENIX Workshop on Smartcard Technology (Smartcard
’99), pages 9–20, May 1999.

[19] S. Örs, E. Oswald, and B. Preneel. Power-Analysis Attacks on an FPGA —
First Experimental Results. In CHES 2003, pages 35–50. Springer-Verlag, 2003.
LNCS 2779.

REFERENCES 15

[20] R. C. Pang, J. Wong, S. O. Frake, J. W. Sowards, V. M. Kondapalli, F. E.
Goetting, S. M. Trimberger, and K. K. Rao. Nonvolatile/ battery-backed key
in PLD. United States Patent, Patent Number 6366117, Nov. 28 2000.

[21] C. Papadas, G. Ghibaudo, G. Pananakakis, C. Riva, P. Ghezzi, C. Gounelle,
and P. Mortini. Retention characteristics of single-poly EEPROM cells. In
European Symposium on Reliability of Electron Devices, Failure Physics and
Analysis, page 517, October 1991.

[22] J.-J. Quisquater and D. Samyde. Electro Magnetic Analysis (EMA): Measures
and Countermeasures for Smart Cards. In International Conference on Research
in Smart Cards, E-smart 2001, pages 200 – 210, Cannes, France, September
2001.

[23] G. Richard. Digital Signature Technology Aids IP Protection. In
EETimes - News, 1998. Available at http://www.eetimes.com/news/98/
1000news/digital.html.

[24] K. San, C. Kaya, and T. Ma. Effects of erase source bias on Flash EPROM de-
vice reliability. IEEE Transactions on Electron Devices, 42(1):150–159, January
1995.

[25] D. Schroder. Semiconducor Material and Device Characterization. John Wiley
and Sons, 2nd edition, 1998.

[26] G. Seamann. FPGA Bitstreams and Open Designs. Available at
http://www.opencollector.org/news/Bitstream, 2000.

[27] L. Shang, A. Kaviani, and K. Bathala. Dynamic Power Consumption on the
Virtex-II FPGA Family. In 2002 ACM/SIGDA 10th International Symposium
on Field Programmable Gate Arrays, pages 157–164. ACM Press, 2002.

[28] S. Skorobogatov and R. Anderson. Optical Fault Induction Attacks. In CHES
2002, pages 2–12. Springer-Verlag, 2002. LNCS 2523.

[29] J. Soden and R. Anderson. IC failure analysis: techniques and tools for quality
and reliability improvement. Proceedings of the IEEE, 81(5):703–715, May 1993.

[30] F.-X. Standaert, L. van Oldeneel tot Oldenzeel, D. Samyde, and J.-J.
Quisquater. Power Analysis of FPGAs: How Practical is the Attack. In 13th In-
ternational Conference on Field Programmable Logic and Applications — FPL
2003. Springer-Verlag, 2003. LNCS 2778.

[31] J. Tao, N. Cheung, and C. Ho. Metal Electromigration Damage Healing
Under Bidirectional Current Stress. IEEE Transactions on Elecron Devices,
14(12):554–556, December 1993.

[32] S. Thomas, D. Anthony, T. Berson, and G. Gong. The W7 Stream Cipher
Algorithm. Available at http://www.watersprings.org/ pub/id/draft-thomas-
w7cipher-03.txt, April 2003. Internet Draft.

[33] J. van der Pol and J. Koomen. Relation between the hot carrier lifetime of
transistors and CMOS SRAM products. In International Reliability Physics
Symposium (IRPS 1990), page 178, April 1990.

[34] T. Williams, R. Kapur, M. Mercer, R. Dennard, and W. Maly. IDDQ Testing
for High Performance CMOS - The Next Ten Years. In IEEE European Design
and Test Conference (ED&TC’96), pages 578–583, 1996.

[35] Xilinx Inc. Using Bitstream Encryption. Handbook of the Virtex II Platform,
2003. Available at http://www.xilinx.com.

[36] K.-W. Yip and T.-S. Ng. Partial-Encryption Technique for Intellectual Prop-
erty Protection of FPGA-based Products. IEEE Transactions on Consumer
Electronics, 46(1):183–190, 2000.

