
SECURE PARTIAL RECONFIGURATION
OF FPGAS

by

Amir H. Sheikh Zeineddini
A Thesis

Submitted to the
Graduate Faculty

of
George Mason University

in Partial Fulfillment of the
the Requirements for the Degree

of
Master of Science

Electrical and Computer Engineering

Committee:

Dr. Kris Gaj, Thesis Director

Dr. Peter W. Pachowicz

Dr. William Sutton

Andre Manitius, Chairman, Department
of Electrical and Computer Engineering

Lloyd J. Griffiths, Dean, School of
Information Technology and Engineering

Date: Summer 2005
George Mason University
Fairfax, VA

Secure Partial Reconfiguration of FPGAs

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

Amir H. Sheikh Zeineddini
Bachelor of Science

Azad University, 2000

Director: Dr. Kris Gaj, Associate Professor
Department of Electrical and Computer Engineering

Summer 2005
George Mason University

Fairfax, VA

ii

Copyright c© 2005 by Amir H. Sheikh Zeineddini
All Rights Reserved

iii

Dedication

I dedicate this thesis to my family for their endless love and support over the years.

To the person who always believed in me, my greatest supporter, best friend, and

partner Haanieh Riahi.

iv

Acknowledgments

First, I wish to thank my advisor, Dr. Kris Gaj for all of his guidance, encourage-

ment, and patience. Without his never ending support this project would never have

been completed. Also, I would like to thank my committee members, Dr. Peter W.

Pachowicz, and Dr. William Sutton, for the time they provided and their helpful

comments and suggestions.

Additionally, I would like to thank my fellow graduate students Deapesh Misra, Milind

M. Parelkar, and Pawel Chodowiec, who provided invaluable support and suggestions

throughout this process.

Finally, I would like to thank my friends Haanieh Riahi and Reza Shakoori for their

help and support.

v

Table of Contents

Page

Abstract . ix

1 Introduction . 1

1.1 Overview . 1

1.2 Method . 2

1.3 Thesis Outline . 4

2 Related Work and Motivation . 5

2.1 FPGAs and Security . 5

2.2 Bitstream Encryption . 7

2.2.1 Xilinx SecureChip Technology 8

2.2.2 Other Proposed Solutions . 9

2.3 Self-reconfiguring Platform . 11

3 Background . 12

3.1 Virtex-II Pro Platform FPGA . 12

3.1.1 Architecture . 12

3.1.2 Configuration . 16

3.2 Dynamic Partial Reconfiguration . 19

3.2.1 Introduction . 19

3.2.2 Module-Based Partial Reconfiguration 21

3.2.3 Difference-Based Partial Reconfiguration 27

3.2.4 Other Minor Software Flows 28

3.3 Xilinx Embedded Development Kit (EDK) 29

3.3.1 Tool Architecture Overview 29

3.3.2 Tool Flows . 29

3.4 Xilinx ML310 Evaluation Board . 31

4 Implementation Methodology . 33

4.1 Overview . 33

4.2 Design Description . 34

vi

4.3 Hardware Architecture . 35

4.3.1 Processor Cores and Buses . 35

4.3.2 HWICAP (Hardware Internal Configuration Access Port) Module 39

4.3.3 Other Peripherals . 39

4.4 Software Architecture . 42

4.4.1 Overview . 42

4.4.2 AES and HMAC-SHA1 Algorithms 43

4.4.3 ICAP API . 48

5 Experiment Methodology . 49

5.1 Overview . 49

5.2 Difference-Based Reconfigurable Design 50

5.3 Module-Based Reconfigurable Design 54

5.3.1 Design Entry and Synthesis 54

5.3.2 Bus Macros . 56

5.3.3 Implementation . 58

5.3.4 Problems . 60

5.4 Evaluation of Partial Reconfiguration Flows 61

5.5 Security Analysis . 63

6 Results . 64

6.1 Timing Measurements . 64

6.2 Device Utilization Summary . 67

7 Conclusion . 69

A Source Code of the Configuration Controller Software 74

vii

List of Tables

Table Page

2.1 THE RESISTANCE OF FPGAS AGAINST VARIOUS ATTACKS . 7

5.1 DIFFERENCE-BASED FLOW EVALUATION 62

5.2 MODULE-BASED FLOW EVALUATION 62

6.1 TIMING RESULTS FOR EACH PHASE (CLOCK CYCLES) 65

6.2 COMPARISON OF THE TIMING RESULTS FOR EACH PHASE . 66

6.3 DEVICE UTILIZATION SUMMARY 67

6.4 RESOURCE USAGE OF IP CORES 68

viii

List of Figures

Figure Page

1.1 General Structure of the Scheme . 3

2.1 Xilinx SecureChip Technology . 8

2.2 Dedicated Configuration Controller Scheme 10

3.1 Virtex-II Pro Generic Architecture Overview 13

3.2 Processor Block Architecture . 14

3.3 Modular Design Flow . 21

3.4 Physical Implementation of a 4-bit Bus Macro by Xilinx 24

3.5 EDK Tools Flow . 30

3.6 Block Diagram of Xilinx ML310 Embedded Development Board . . . 32

4.1 PowerPC System . 36

4.2 MicroBlaze System . 37

4.3 Block Diagram of HWICAP Module 40

5.1 Simplified Layout of the Difference-Based Experiment Design 51

5.2 FPGA Editor View of the Difference-Based Design 52

5.3 Simplified Layout of the Module-Based Experiment Design 55

5.4 FPGA Editor View of the Module-Based Design 56

Abstract

SECURE PARTIAL RECONFIGURATION OF FPGAS

Amir H. Sheikh Zeineddini

George Mason University, 2005

Thesis Director: Dr. Kris Gaj

SRAM FPGAs are configured by loading application-specific configuration data−the

bitstream−into an internal configuration memory. Because the configuration memory

is a SRAM volatile memory, it must be configured each time the device is powered up.

The necessity of configuration on each power up makes it easier for attackers to clone,

reverse engineer, or tamper the bitstream during configuration. Bitstream encryption

is the most effective and practical solution to improve the security of SRAM FPGAs

and protecting the configuration data.

The existing Xilinx solution uses CAD tools support for bitstream encryption and

an on-chip special circuit for decryption. One of the drawbacks of this solution is

that it is not possible to use partial reconfiguration and readback when the device is

configured with an encrypted bitstream. Partial reconfiguration changes the design

behavior in a portion of the FPGA without full reconfiguration by using a partial

bitstream. Different forms of this new capability provide many advantages such as

run-time reconfiguration for various application areas.

This thesis investigates a method to perform a secure partial reconfiguration and

improve the security of SRAM FPGAs through exploiting a configuration controller

that enables an FPGA to dynamically reconfigure itself under the control of an em-

bedded processor core. The hardware architecture of this configuration controller was

implemented with a minimal footprint using two schemes: one based on hard-wired

PowerPC processor core and the second based on MicroBlaze soft processor core. The

software part of the controller consists of the program responsible for loading the con-

figuration bitstream from external memory, authentication, decryption, and partial

reconfiguration of the FPGA. This scheme enables embedded systems that benefit

from partial reconfiguration to increase their design security without requiring exter-

nal circuitry and provides flexibility by allowing the use of various authentication and

encryption/decryption algorithms.

The scheme is tested for partially reconfigurable designs containing the configu-

ration controller and an application system within a single FPGA. Comparison of

the total configuration time (including authentication and decryption) and resource

utilization targeting Xilinx Virtex-II Pro devices are also provided.

Keywords– Design Security, FPGA Bitstream, Dynamic Partial Reconfiguration,

Platform FPGA

Glossary

AES Advanced Encryption Standard
ASIC Application Specific Integrated Circuit
BRAM BlockRAM
BUFGMUX Global Multiplexed Buffer
CLB Configurable Logic Block
DLMB Data-side Local Memory Bus
DMA Direct Memory Access
EDK Embedded Development Toolkit
FPGA Field Programmable Gate Array
GPIO General Purpose Input Output
Hard IP A fixed IP on the FPGA fabric.
HDL Hardware Description Language
HMAC Hash Message Authentication Code
HWICAP Hardware Internal Configuration Access Port
ICAP Internal Configuration Access Port
ILMB Instruction-side Local Memory Bus
JTAG Joint Test Action Group
LMB Local Memory Bus
LUT Look-up Table
MHS Microprocessor Hardware Specification
MicroBlaze A 32-bit soft processor developed by Xilinx.
MIPS Million Instruction Per Second
MMU Memory Management Unit
MSS Microprocessor software Specification
OPB On-chip Peripheral Bus
PLB Processor Local Bus
PowerPC A type of RISC microprocessor developed jointly by Motorola,

Apple and IBM.
RISC Reduced Instruction Set Computer
Soft IP A synthesizable Intellectual Property which can be readily

incorporated into an FPGA.
TBUF Tri-state Buffer
Throughput The amount of information processed in a given time.
TLB Translation Look-aside Buffer
UART Universal Asynchronous Receiver Transmitter
Volatile Memory in which data is lost when power is removed.
Watchdog Timer A hardware timer that is periodically reset by software.
Word 16 bits
XMD Xilinx Microprocessor Debugger
XPS Xilinx Platform Studio

Chapter 1: Introduction

1.1 Overview

As the performance gap between FPGAs and ASICs decreases [1], platform FPGAs

with various configurable elements and embedded blocks provide new solutions for

high density and high-performance embedded system designs. These platforms not

only enable system architects to design and develop complex custom systems using

embedded processor and interoperable IP cores but also provide technologies such as

dynamic reconfiguration of part of an FPGA while other areas of the device remain op-

erational. There are many advantages in partial dynamic reconfiguration, especially

for applications that require adaptive and flexible hardware such as mobile commu-

nication applications and real-time embedded systems. Deploying dynamic run-time

reconfiguration in systems results in reduced chip area and power consumption.

Considering the wide range of features, platform FPGAs address many new appli-

cation areas and therefore an increase in their popularity makes the need for design

security mechanisms even more important especially in high-security areas where

they might not otherwise be acceptable. The design security must protect the design

against cloning and reverse engineering that correspond to different attacks. A survey

in [2] analyzes possible attacks against FPGAs. In the case of SRAM FPGAs this is

directly concerned with protection of bitstream especially during configuration and

reconfiguration. Bitstream encryption as a solution increases the level of security and

1

2

makes the configuration bitstream secure against attackers.

The Xilinx [3] security solution (SecureChip) uses CAD tools for bitstream en-

cryption and an internal circuit for decryption [4]. The major disadvantage of this

scheme is that the partial reconfiguration capability of the FPGA is disabled and

therefore a device configured with an encrypted bitstream cannot be partially recon-

figured externally. By using new features of platform FPGAs we propose a method

using a configuration controller to achieve bitstream security specifically for designs

that benefit from partial reconfiguration. The controller is implemented in the form

of a self-reconfiguring platform. Self-reconfiguration extends the dynamic reconfig-

uration capability by using particular circuits on the logic array such as embedded

processor cores to control the configuration of other areas of the FPGA.

The configuration controller is capable of performing secure partial reconfiguration

of the FPGA after the initial configuration and provides the flexibility of using arbi-

trary algorithms for authentication and encryption/decryption of partial bitstreams.

This can also facilitate secure remote partial reconfiguration for vendor updates and

feature upgrades in the field.

1.2 Method

In this thesis, the configuration controller is implemented using Xilinx Virtex-II Pro

devices. Figure 1.1 shows the major components of the proposed scheme. The embed-

ded processor in the configuration controller is able to partially reconfigure portions

of an application system with encrypted IP cores. Embedded microprocessor reads an

encrypted partial bitstream from an external memory to authenticate and decrypt it

using software cores. To perform partial reconfiguration it uses a special configuration

3

Figure 1.1: General Structure of the Scheme

interface called Internal Configuration Access Port (ICAP).

PowerPC hard and MicroBlaze soft embedded processors were separately used

in constructing the hardware of the configuration controller. It should be noted

that throughout this thesis we use the term configuration controller and the term

self-reconfiguring platform interchangeably. To analyze and evaluate each of these

self-reconfiguring platforms, they were assembled with an application system in par-

tially reconfigurable system-on-a-chip designs using difference-based and module-

based flows for partial reconfiguration.

Xilinx EDK and ISE provided the framework for design of hardware and software

components. All designs targeted a Xilinx Virtex-II Pro FPGA on a Xilinx ML310

Embedded Development Platform.

4

1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 presents the related work and mo-

tivation. In chapter 3 an overview of Virtex-II Pro platform FPGA, partial recon-

figuration, and EDK tools and ML310 evaluation board is presented. Chapter 4

explains the hardware architecture of the implemented self-reconfiguring systems for

both hard/soft processor cores as well as the software architecture. Chapter 5 presents

the methodology of the experiment. Chapter 6 presents the obtained results and the

discussion of the results. Finally, chapter 7 provides conclusion for this thesis.

Chapter 2: Related Work and Motivation

2.1 FPGAs and Security

FPGAs are increasingly being used for many systems and efficient SoC (System-on-

a-Chip) designs. Competitive market environment and high security areas such as

military systems are among the factors that make protecting designs implemented

in FPGAs more important. Without proper safeguards, design information and pro-

prietary intellectual properties face major security risks and attackers will be able to

steal the design contained in the bitstream of FPGAs. Common approaches to design

theft are:

• Cloning – In cloning an attacker makes an exact copy of the design bitstream

or layout without necessarily understanding the details of implementation. It

is considered as the primary form of IP theft.

• Reverse engineering – This form of piracy involves analyzing the configuration

file and then reconstructing it in HDL/RTL/netlist representation.

Reverse engineering is more complex than cloning because it requires an attacker

to have technical expertise to understand how the design works. It is also considered

to be a more serious threat since the design can be modified or improved afterwards.

Another form of security risk involves tampering the design with malicious intent

and replacing it with a harmful design capable of damaging the device or stealing the

5

6

sensitive information. It is a particular concern in high-security areas such as military

and financial applications.

Different types of FPGAs provide various levels of protection against these attacks.

Currently FPGAs are made based on three different technologies:

• SRAM-based FPGAs – Based on a volatile memory technology, these devices

must be initialized or configured on each power-up typically by loading a bit-

stream from an on-board/external configuration device.

• Antifuse FPGAs – These devices are one-time programmable and their functions

are immediately available upon system power-up. They are programmed by

creating a link between the two terminals of each antifuse node using a high

voltage.

• Flash FPGAs – The connections in Flash FPGAs are realized through flash

transistors [2]. These devices are programmed by changing the charge present

on the floating gates of the flash transistors.

The non-volatile nature of flash and antifuse FPGAs makes them more secure

and practically resistance against different attacks because it is extremely difficult,

cost-inefficient, and time-consuming to copy or reverse engineer these devices. On

the other hand, SRAM-based FPGAs are volatile and the necessity of configuration

on each power up makes it easier for attackers to clone, reverse engineer, or tamper

the bitstream during configuration. Table 2.1 summarizes resistant and vulnerability

of different types of FPGAs against the attacks.

However, reconfigurability, flexibility, and high-density of SRAM-based FPGAs

results in a higher market share comparing to other types of FPGAs and therefore

7

Table 2.1: THE RESISTANCE OF FPGAS AGAINST VARIOUS ATTACKS

Types of FPGAs

Types of Attacks SRAM Antifuse Flash

Cloning Vulnerable Resistant Resistant

Reverse Engineering Vulnerable Resistant Resistant

Tampering Vulnerable Resistant Vulnerable

improving the security level of such FPGAs is the focus of research among the man-

ufacturers and research community.

2.2 Bitstream Encryption

Bitstream encryption is the most effective and practical solution to improve the se-

curity of SRAM-based FPGAs and protecting the configuration file. Bitstream en-

cryption prevents any access to the content of the bitstream without the knowledge

of the secret keys. The keys are stored in a volatile or non-volatile location inside the

FPGA. During configuration, these stored keys are used for decrypting the encrypted

bitstream stored in an external memory.

It should be noted that even though bitstream encryption makes SRAM-based

FPGAs more secure against cloning and reverse engineering and currently is the only

implemented solution, security should also be augmented with authentication as a

way to prevent tampering the bitstream by an active attacker with malicious intent.

8

Figure 2.1: Xilinx SecureChip Technology

In the following sections some implemented and proposed schemes for bitstream

encryption are provided.

2.2.1 Xilinx SecureChip Technology

The Xilinx SecureChip technology is simple and efficient. All Virtex II family devices

(Virtex-II, Virtex-II Pro, and Virtex-II Pro X FPGAs) use the Triple DES encryption

scheme [4]. In Virtex-4 devices Triple DES has been replaced with AES to increase

security and throughput. The scheme exploits software support of Xilinx ISE CAD

tools for both encryption of the bitstream and key generation. Figure 2.1 shows the

Xilinx security system.

For decryption, it uses an on-chip decryptor along with the internal decryption

keys stored in a dedicated memory. Either externally-connected battery or an aux-

iliary power supply (VCCAUX) is the source of power for volatile storage of the keys.

The keys are erased if there is a tampering with the device.

The problem with this scheme is the extra area and cost needed for the external

9

battery, lack of flexibility, and the disablement of partial reconfiguration and readback

for encrypted bitstreams.

2.2.2 Other Proposed Solutions

A method proposed by Algotronix [6] removes the need for an external battery by

finding another way of storing the secret key on the FPGA such as use of laser to

engrave the key. This will make it necessary for the FPGA to contain both encryp-

tion and decryption circuits and hence there is no need for the software to support

encryption. This solution uses even more FPGA silicon area than Xilinx scheme and

it also lacks flexibility since the encryption and decryption circuits are fixed with no

possibility of upgrade or use of another algorithm. Also since the key is stored on

the FPGA each chip is set up with a different random key and it cannot be changed

after manufacture.

In [7] a new solution is proposed with no implementation available at the moment.

The scheme selects and places the cores for encryption and decryption in the FPGA

and then removes them to free the chip area. A dedicated configuration controller

manages both the encryption and decryption configuration schemes by relying on

partial and self reconfiguration. This configuration scheme also uses an embedded

key instead of an externally-powered storage for the secret key.

Figure 2.2 shows an example of the decryption management in this system. In this

example the application is partitioned into three different parts. Two parts require

high security and are encrypted using two different encryption algorithms and one

part requires no encryption.

Before decryption step, first, the FPGA is configured with the encryption circuit

10

Figure 2.2: Dedicated Configuration Controller Scheme

of IP1 and IP2 in order to encrypt the configuration of these parts. Then all the

encrypted configurations along with the non-encrypted configuration for IP3 and the

configuration of the decryption circuits required to decrypt IP1 and IP2 are stored in

a configuration storage.

The configuration process in the decryption phase works as follows: First the

FPGA is configured with the decryption circuit 1 for decrypting the encrypted con-

figuration of IP1. Then the FPGA auto-configures the IP1 inside the FPGA and

replaces the decryption circuit 1 with the decryption circuit 2 in order to decrypt the

encrypted configuration of IP2 and auto-configure the IP2. The last step consists in

configuring the FPGA free area with non-encrypted configuration of IP3.

The method is flexible and adjusts the security level to application needs but is

11

relatively complex considering the limitations for partial reconfiguration imposed by

the FPGA manufacturers and the CAD tools.

2.3 Self-reconfiguring Platform

The idea of implementing a self-reconfiguring platform for Xilinx Virtex family was

first reported in [5]. The platform enabled an FPGA to dynamically reconfigure

itself under the control of an embedded microprocessor. The provided hardware ar-

chitecture established the framework for the implementation of the self-reconfiguring

platforms in this thesis. The authors also presented the first detail description of

the two core software components developed by Xilinx which remove the low level

details of the configuration interface. Internal Configuration Access Port Application

Program Interface (ICAP API) and Xilinx Partial Reconfiguration Toolkit (XPART)

provided methods for reading and modifying select FPGA resources and support for

relocatable partial bitstreams.

The presented methods for hardware architecture are lightweight (minimal area)

and improvable as planned by the authors. The more efficient implementation moves

parts of the control logic for ICAP API implemented in software to hardware core.

The XPART software layer is only reported and not currently available in the Xilinx

CAD tools and hence the application developed in this thesis only employed the ICAP

API.

Chapter 3: Background

3.1 Virtex-II Pro Platform FPGA

3.1.1 Architecture

Overview

The Virtex-II Pro Platform FPGA is the first product of a new paradigm shift from

programmable logic to programmable systems. It is capable of implementing flexible,

high performance, and low cost system-on-a-chip designs by combining a variety of

embedded features with specially developed hardware/software IP cores [8].

The architecture incorporates both embedded RocketIO Multi-Gigabit Trans-

ceivers (MGTs) that create high-speed serial links between devices and a hard proces-

sor core within the FPGA fabric. High I/O bandwidth and high performance general

purpose processor cores are especially beneficial for networking applications, DSP

systems, and deeply embedded systems.

Figure 3.1 shows the generic architecture of Virtex-II Pro FPGA family. Virtex-II

Pro is processed at 0.13 µ and except for the unique features of its architecture all

other FPGA features are identical to Virtex-II devices.

The next sections describe some of the important functional components of the

Virtex-II Pro Platform FPGA architecture related to this study.

12

13

Figure 3.1: Virtex-II Pro Generic Architecture Overview

Processor Block

Figure 3.2 shows the internal architecture of the Processor Block containing four

components: Embedded IBM PowerPC 405-D5 RISC CPU core, On-Chip Memory

(OCM) controllers and interfaces, Clock/control interface logic, and CPU-FPGA In-

terfaces.

The OCM controllers are special instruction and data memory interfaces that

support the attachment of additional memory, the BRAMs in FPGA fabric, to the

instruction and data caches within the PowerPC core. OCM memory can be accessed

at performance levels matching the cache arrays and provides access to optional, user-

configurable direct-mapped memory. Typical applications of OCM memory include

storage of interrupt service routines and scratch-pad memory.

14

Figure 3.2: Processor Block Architecture

The Clock/control interface logic provide connectivity for the processor clock sim-

ilar to CLB clock pins. Therefore the processor clock source can come from DCM,

CLB, or user package pin.

All Processor Block user pins connect to the general FPGA routing resources

through the CPU-FPGA interface. The processor block has the same routing re-

sources available as other user signals. The CPU-FPGA interface provides connec-

tivity for the following interfaces:

• PPC405 core Processor Local Bus (PLB)

• PPC405 core Device Control Register (DCR) Bus

• On-Chip Memory (OCM)

• Reset and Debug

15

• Clock/Power Management (CPM)

• External Interrupt Controller (EIC) – Presents external interrupts to the PPC405

core.

Embedded PowerPC 405 Core

The Processor Block incorporates fully embedded IBM PowerPC 405 processor core

which is an implementation of the PowerPC embedded environment architecture [9].

The PowerPC architecture is a 64-bit architecture with a 32-bit subset. The embedded

PPC405 core is a 32-bit Harvard architecture processor that operates in a five-stage

pipeline and most instructions execute in a single cycle. The architecture is big endian

internally and contains a virtual-memory-management unit that supports multiple

page sizes. It is capable of more than 300 MHz clock frequency and 420 Dhrystone

MIPS. The embedded PPC405 core provides the following functional blocks:

• Cache units – Allow concurrent accesses and minimize pipeline stalls. The

instruction and data cache array are 16 KB each. Both cache units are two-way

set associative. The PPC405 core accesses external memory through the 64-bit

PLB master interface of cache units.

• Fetch and Decode Logic – Maintains a steady flow of instructions to the execu-

tion unit by placing up to two instructions in the fetch queue. It also examines

the branch instructions to facilitate static branch prediction.

• Execution Unit – Contains the register file comprised of thirty-two 32-bit general

purpose registers (GPR), ALU, and the multiply-accumulate (MAC) unit. The

execution unit performs all 32-bit PowerPC integer instructions in hardware.

16

• Memory Management Unit (MMU) – Provides address translation of a 4 GB

address space by using a TLB with 64 entries, protection functions, and storage

attribute control for embedded applications. The MMU supports demand-paged

virtual memory.

• Timers – The embedded PPC405 core contains a 64-bit time base and three

timers: Programmable Interval Timer (PIT), Fixed Interval Timer (FIT), and

Watchdog Timer (WDT) [9]. The PPC405 also provides an interface to an

interrupt controller that is logically outside the PPC405 core.

• Debug Logic – Provides access to the resources on the embedded PPC405 core

using supported tools depending on the debug mode: ROM monitors, JTAG

debuggers, and instruction trace tools.

3.1.2 Configuration

Process and Flow

Configuration is the process of loading the configuration bitstream, a series of configu-

ration commands and application-specific data, into the FPGA internal configuration

memory. Configuration memory is arranged in a rectangular array of bits. One-bit

wide vertical frames are the smallest addressable segments of the Virtex-II Pro con-

figuration memory space [10]. Frames stretch from the top edge of the device to the

bottom and have different sizes based on the device. Data is loaded on a column-basis

and each column contains multiple frames. Different column types correspond roughly

to physical device resources. All Virtex-II Pro devices have the same configuration

column types: IOB, IOI, CLB, GCLK, BlockRAM, and BlockRAM Interconnect.

17

The Virtex-II Pro configuration control logic consists of a packet processor, a set

of registers, and global signals that are controlled by the configuration registers. The

packet processor controls the flow of data from the configuration interface to the

appropriate register. The registers control all other aspects of configuration.

Bitstream is delivered through one of the configuration interfaces (JTAG, Se-

lectMAP, or Slave/Master Serial) in a specific sequence based on the selected config-

uration mode. Writing or reading some or all of a configuration is done by issuing

configuration commands to the desired interface followed by the configuration data.

There are four major phases in the configuration process: clearing configuration

memory, initialization, bitstream loading, and device startup. After clearing the con-

figuration memory the mode pins are sampled in the initialization phase and the con-

figuration process begins. The target FPGA starts to receive data frames in the bit-

stream loading phase. This process is similar for all configuration modes; the primary

difference between modes is the interface to the configuration logic. Device startup

phase is a transition phase from the configuration mode to normal programmed de-

vice operation. The Start-Up Sequencer is an 8-phase sequential state machine that

counts from phase 0 to phase 7. Upon completion of the start-up sequence, the target

FPGA is operational.

Configuration Interfaces

Configuration interface is a logical interface consisting of one or more special config-

uration pins. Each configuration interface corresponds to one or more configuration

modes. These modes are selectable via mode pins:

18

• Master/slave Serial Mode – In serial configuration mode, the FPGA is config-

ured by loading one bit per CCLK cycle. The Slave Serial configuration mode

allows for FPGAs to be configured from other logic devices such as microproces-

sors, or in a daisy-chain fashion. FPGAs CCLK pin is driven by an external

source. In Master Serial mode, the FPGA drives the CCLK pin and it can be

configured from a Serial PROM.

• Boundary-Scan Mode – The Boundary Scan (JTAG) interface allows bit-serial

access to the configuration. It is a permanent interface that is always present.

• SelectMAP Mode – This mode is the fastest configuration option and provides an

8-bit bidirectional data bus interface to the configuration logic. The SelectMAP

interface is typically driven by a processor, microcontroller, or some other logic

device such as an FPGA or a CPLD. Multiple devices can also be chained in

parallel.

Internal Configuration Access Port (ICAP)

The Virtex-II Pro configuration architecture features an Internal Configuration Access

Port (ICAP) that provides the user logic with access to FPGA configuration inter-

face and therefore direct access to memory bits of configuration memory [10]. The

interface is similar to SelectMAP interface but without the restrictions on the read-

back and reconfiguration in case of encrypted bitstream. It does not support different

configuration modes and cannot be used for full configuration. With no handshaking

mechanism ICAP interface can be clocked up to the maximum frequency of 66MHz

[5]. The ICAP block exists in the lower-right corner of the logic array.

19

3.2 Dynamic Partial Reconfiguration

3.2.1 Introduction

FPGA devices are partially reconfigured by loading only a subset of configuration

frames into the FPGA internal configuration memory. The Xilinx Virtex-II Pro FP-

GAs allow partial reconfiguration in two forms: static and dynamic.

Static (or shutdown) partial reconfiguration takes place when the rest of the device

is inactive and in shutdown mode. The non-reconfigurable area of the FPGA is held

in reset and the FPGA enters the start-up sequence after partial reconfiguration is

completed. In contrast, in dynamic (or active) partial reconfiguration new data can

be loaded to dynamically reconfigure a particular area of FPGA while the rest of it

is still operational. User design is not suspended and no reset and start-up sequence

is necessary.

The general reason for partial reconfiguration is changing the design behavior with-

out full reconfiguration. Dynamic partial reconfiguration has additional advantages

when runtime-reconfiguration and efficient resource utilization is desirable. Runtime-

reconfiguration is especially useful for applications that require adaptive and flexible

hardware since they need to change the behavior of a system to adapt it to externally

changing surroundings. Dynamic partial reconfiguration also facilitates more efficient

changing configurations which results in reduced chip area and power consumption

and availability of more FPGA resources.

Combined with other features, a more advanced form of reconfigurability can

be realized when specific circuits on the FPGA control the partial reconfiguration.

Chapter 4 describes this form of self-reconfiguration in detail.

20

A partially reconfigurable design consists of a set of full designs and partial mod-

ules. The full and partial bitstreams are generated for different configurations of

a design. Partial bitstreams are subsets of a complete bitstream. Depending on

the granularity of reconfiguration, partial bitstreams are used to make small content

changes of particular FPGA logic elements such as BRAMs or to configure a large

portion of the FPGA logic area implementing a new module or replacing an existing

one. The partial bitstreams configure full columns of the FPGA. The sections of the

column that were not modified are reconfigured with the same data. Because the

FPGA memory cells have glitchless transitions, if the reconfiguration is performed

on a frame basis, as supported by the Virtex family architecture, unmodified logic

will continue to operate unaffected. Two exception for this rule are LUTs configured

in Shift Register Mode or as a RAM. They will lose their state during readback or

modification.

Currently there is no simple methodology to implement partially reconfigurable

designs and there is limited support and automation of implementation tools to gen-

erate appropriate partial bitstreams. A number of academic and commercial groups

are working on projects aiming at developing more efficient tools and methodologies

[11].

The next sections will focus on software flows and Xilinx recommended method-

ologies for partial reconfiguration using current Xilinx CAD tools and devices [12].

These styles can be applied to different systems by the degree to which they utilize

reconfiguration of the logic resources.

21

Figure 3.3: Modular Design Flow

3.2.2 Module-Based Partial Reconfiguration

Modular Design Overview

Module-based flow is suitable for partially reconfiguring a large portion of the design

and is based on the Xilinx Modular Design methodology [13]. Modular Design allows

large designs to be partitioned into self-contained modules that can be developed in

parallel and independently to save time. Later, implemented modules are merged

into one complete FPGA design. Figure 3.3 shows the overview of this flow. Similar

to the standard design flow this flow comprises the following steps:

Design Entry and Synthesis Both the top-level design and modules are cre-

ated using an HDL (Verilog or VHDL) or any other established design entry method.

To synthesize them Xilinx synthesis tool, Xilinx Synthesis Technology (XST), can be

used. This tool produces a netlist in NGC format.

22

Design Implementation This step consists of the three phases:

• Initial Budgeting – Creating the constraints and floorplan for the top-level de-

sign.

• Active Module Implementation – Implementing the top-level design with one

module expanded at a time.

• Final Assembly – Assembling the top-level design and all implemented modules

into a complete design.

Module-based partial reconfiguration flow is a modified version of modular de-

sign flow [12] that requires specific rules for reconfigurable modules and inter-module

communications.

Reconfigurable Module Properties

Distinct portions of an FPGA, reconfigured by a partial bitstream, are referred to as

reconfigurable modules. Certain properties and restrictions apply to their available

resources, boundaries, and communication with other modules.

The resources in the area occupied by a reconfigurable module include slices,

BRAMs, IOBs at any edge of the module, routing resources, TBUFs, and multipliers.

All these resources are part of the module bitstream except for the clock resources

which have separate configuration frames.

The boundary of a reconfigurable module is fixed and remains unchanged at all

time. The height of the module must always be the full height of the device. The

number of slice columns encompassed by the width of the module is a multiple of four

23

and the minimum width is four slice columns. Also, placement of a reconfigurable

module is at a slice column which is a multiple of four [0, 4, 8, ...].

The states of storage elements (FFs and RAMs) inside the reconfigurable module

are preserved during the reconfiguration process. It can be used as a ’prior state’

information in the design. On the other hand, global set/reset (GSR) logic of FPGA

cannot be used for initializing the state of a reconfigurable module.

Partial reconfiguration requires reconfigurable modules to use fixed communica-

tion channels (bus macros) to communicate with other modules both fixed and recon-

figurable. Bus macros are used to establish unchanging communication paths between

or through reconfigurable modules.

Bus Macro Communication

Module-based partial reconfiguration flow is further decomposed depending on whether

communication is needed between the modules. A special bus macro is required for

inter-module signals because signals connecting the reconfigurable modules with other

modules can be routed differently in alternate design implementation. In other words

the routing resources used for such signal must not change when the module is re-

configured. Bus macros are pre-routed hard macros that use fixed routing resources

with no variation in routing in different design implementations.

Bus macros are currently implemented using 3-state buffers (TBUFs) in CLB

tiles [12]. Figure 3.4 shows a bus macro used for inter-module communication and

its implementation with TBUFs. At the dividing line between the boundary of two

modules, one TBUF at each side is connected to other side via their output longlines

horizontally. Based on the wiring of enable signals of bus macro the direction of each

24

Figure 3.4: Physical Implementation of a 4-bit Bus Macro by Xilinx

one bit path can be from left-to-right or right-to-left. Only if bus macro is in leftmost

position, bits 2 and 3 cannot go right-to-left and if bus macro is in rightmost position,

bits 0 and 1 cannot go left-to-right. Position of a bus macro is locked and is placed

in such way that it straddles the boundary line or area between two modules.

The number of horizontal longlines available in each slice row, four in Virtex-II

Pro, is the limit to create fixed bridges between two modules. Xilinx will introduce a

new implementation with the release of ISE 8.1 since Virtex-4 devices do not contain

TBUFs.

Design Entry and Synthesis

HDL coding and synthesis process follow some general guideline in terms of the struc-

ture of top-level design, instantiation of bus macros, shared signals, and synthesis

attributes.

25

All functional modules in the top-level design are instantiated with ’block-box’

synthesis attribute. Only top-level should be synthesized with I/O buffer insertion

enabled and there is no instantiation of I/Os inside the modules.

There is no additional logic in top-level except for modules and bus macros instan-

tiation, I/O, and clocking logic. All defined clocks must use dedicated global routing

resources and it is recommended to keep the clock design simple.

Modules should be self-contained with port definition clearly declared. There

should be no shared signal other than the clock between the modules. This includes

resets, constants (VCC, GND), enables, etc. Unlike a standard modular design, a

partially reconfigurable design does not have intermodule ports and there are no

pseudo-drivers or pseudo-ports.

As many as bus macros should be instantiated based on the number of bits needed

for one reconfigurable module to communicate with other modules. Signals passing

through reconfigurable modules connecting modules on the sides should be connected

with bus macros and an intermediate signal in the reconfigurable module. During

partial reconfiguration this signal cannot be actively used. However, a custom bus

macro different from the one implemented by Xilinx that spans the width of the area

between the modules can be used with no intermediate signal in the reconfigurable

areas. This way the communication pass could be active during reconfiguration.

The static module(s) of the design should consider the ”transition time” during

reconfiguration when they rely on the state of the signals connected to reconfigurable

module. Proper handshaking may be required.

26

Implementation Flow

The implementation flow takes place in three phases after the design entry.

Initial Budgeting In this phase, the design is floor planned and constrained

based on the properties of each module. This includes the area-based floorplan of each

module considering the boundary properties of reconfigurable modules. All top-level

logic (IOBs and all global logic) should have fixed location constraints. Fixed location

constraints for bus macros should be inserted using LOC constraints. Global-level

timing constraints are also created in this phase. The result is a file with extension

’.ucf’ that is used for active implementation phase. There are various methods for

entering constraint such as using Xilinx GUI tools (Constraint Editor, Floorplanner,

...) or adding constraints directly in VHDL/Verilog code.

Active Implementation This phase places and routes each module separately

in the context of the top-level logic and constraints. Before running ngdbuild, map,

and par for each module, any module-specific constraints is added to the constraints

file created during the initial budgeting phase. After these steps BitGen is used

to create partial bitstream for reconfigurable module and PimCreate publishes each

module to be used in the next phase.

Final Assembly This phase combines all the placed and routed modules gen-

erated from the previous phase into a complete FPGA design. To maintain the

performance of each module, placement and routing for each module are preserved.

At present, bitstreams generated for the full design require that the initial bit-

stream include at least one variation of any partially reconfigurable module. This

27

means that the initial bitstream should be a complete design since all global re-

sources such as clocking logic need to be placed and properly constrained. Bitstream

frames for global clocks are separate from other frames. This property enables partial

reconfiguration to keep clock functional during reconfiguration but imposes a limit in

which a completely separate module cannot be added to an initial design with partial

reconfiguration flow.

3.2.3 Difference-Based Partial Reconfiguration

Using this flow the design can change either at the front-end or the back-end. For

changes in HDL code or schematics at the front-end, the design must be re-synthesized

and re-implemented while for back-end changes the FPGA Editor tool can modify

sections of the design. Many different types of changes can be made using this tool

including routing information, LUT programming, changing BRAM contents and I/O

standards.

Back-end changes require understanding of how to make logic changes using the

FPGA Editor tool, and the relevant options to select in BitGen. If the scale of

changes in the design is small efficient use of this tool avoids re-synthesizing and re-

implementing the design. The support of scripting in the FPGA Editor can also save

time. The FPGA Editor GUI is able to open a routed design with ’.ncd’ extension

and make the file available for modification. It is possible to select an individual

slice and change the LUT equations or modify the contents of a BRAM displayed

in the format of INIT synthesis constraint. Other changeable elements that can be

modified in FPGA Editor include I/O standards, muxes that invert polarity, flip-flop

initialization and reset values, or pull-ups/pull-downs on external pins.

28

The bitstream generator BitGen used with -r switch can create a partial bit-

stream that contains only the difference between the modified design and the initial

bitstream. In other words, BitGen produces a partial bitstream that only configures

the frames that are different between the two designs. The produced partial bitstream

is small and quick to load since -r switch uses multiple write feature of BitGen and

therefore generates a compressed bitstream. It should be noted that the bit length

and reconfiguration speed of a partial bitstream are directly proportional. A partial

bitstream can be loaded only after the device power up and loading an initial bit-

stream. For active partial reconfiguration the -g ActiveReconfig:Yes switch is also

required to remove the shutdown commands from the partial bitstream. When using

the SelectMAP interface for partial reconfiguration, the -g Persist:Yes switch is

required as well.

3.2.4 Other Minor Software Flows

The BitGen ”Partial Mask” flow allows users to select the configuration columns

to be included in a partial bitstream. Different type of columns such as IOB, IOI,

BRAM, or CLB columns can be selected with -g switch and proper PartialMask

settings. A hex mask field for each PartialMask settings indicates exactly which

columns to be written in a partial bitstream. This flow can only produces partial

bitstreams for active partial reconfiguration and therefore it must be used with -g

ActiveReconfig:Yes switch. The details of this flow is provided in [10].

Another feature is BlockRAM ”Savedata” option that prevents writes to BRAMs

during shutdown reconfiguration. This option can be set using FPGA Editor as

described in [12]. This option is only safe to use with static partial reconfiguration

29

since it can interfere with BRAM operation during active reconfiguration.

3.3 Xilinx Embedded Development Kit (EDK)

3.3.1 Tool Architecture Overview

EDK provides a framework for design of hardware/software components of the embed-

ded processor systems on programmable logic [14]. Appropriate tools for each stage

of the design in addition to IBM PowerPC and Xilinx MicroBlaze processor cores in-

frastructure and peripheral IP cores facilitate hardware/software partitioning, design

reuse, and lower time-to-market.

Embedded system tools in EDK consist of Xilinx Platform Studio (XPS), GNU

software development tools, board support packages, and complete operating systems

such as Wind River VxWorks, MontaVista Linux, and Xilinx MicroKernel.

3.3.2 Tool Flows

Figure 3.5 provides an overview of the tools flow. In a typical design of an embedded

processor system, the first step is to create a hardware platform followed by the

creation of software platform and optionally verification platform. Platform Studio,

a GUI technology, with its underlying tools integrates all the processes from design

entry to design debug and verification [15].

Creating a basic hardware system involves assembling a system containing proces-

sor, buses, and peripherals, generating an HDL netlist, and implementing the design

using ISE implementation tools to generate a bitstream. The hardware platform is

defined by the Microprocessor Hardware Specification (MHS) file. XPS GUI or Base

30

Figure 3.5: EDK Tools Flow

System Builder (BSB) can facilitate the creation of MHS file. The BSB provides

a simple, highly automated method for creating an embedded design. To add or

import a user peripheral Create and Import Peripheral Wizard can be used. Plat-

form Generator (PlatGen) customizes and generates the HDL netlist using MHS file.

Simulation Model Generator (SimGen) also uses MHS file to simulate and configure

various VHDL and Verilog simulation models for the specified hardware.

Creating the software platform involves building libraries, compiling C applica-

tions, initializing bitstreams with the application, downloading applications onto ex-

ternal memories, and debugging applications using debugger. The software platform

is defined by Microprocessor Software Specification (MSS) file. The MSS defines the

OS, drivers for IPs, and other libraries. MSS file is generated by XPS using the spec-

ified software setting. Library Generator (LibGen) takes the MSS file as an input

to configure libraries, device drivers, file systems, and interrupt handlers. XPS calls

31

GNU compiler tools provided for both hard/soft processors for compiling and linking

user application executables. The Bitstream Initializer (BitInit) tool can then initial-

ize the bitstream with the executable in the instruction memory of processors on the

FPGA.

The bitstream can be downloaded using Xilinx Microprocessor Debugger (XMD),

bootloader programs, or System ACE controller. XMD is the underlying engine to

communicate to processor targets and provides an interface for both hardware system

debug and software running on hardware. This tool is used with GNU debugger for

software debugging.

3.4 Xilinx ML310 Evaluation Board

The ML310 Embedded Development Platform is a Virtex-II Pro based platform suit-

able for rapid prototyping and system verification. The main features of ML310

include: 256 MB DDR memory, System ACE CF controller, FPGA UART, GPIO

LEDs/LCD, PCI bus interface, CPU debugging interfaces, SPI EEPROM, and high

speed I/O through RocketIO Multi-Gigabit Transceivers. Figure 3.6 shows the block

diagram of the ML310 board.

MGT blocks available in the Virtex-II Pro are flexible parallel-to-serial and serial-

to-parallel embedded transceivers used for high-bandwidth interconnection between

buses, backplanes, or other subsystems. The high-speed I/O signals on the FPGA

are accessible through two personality module (PM) connectors on the ML310 board.

The majority of the ML310 features are accessed over the 33 MHz/32-bit PCI bus.

The Virtex-II Pro PPC405 processors can gain access to the primary PCI bus through

the EDK PCI Host Bridge IP. The peripherals are either directly connected to the

32

Figure 3.6: Block Diagram of Xilinx ML310 Embedded Development Board

FPGA or indirectly accessible by way of the PCI bus. The PCI bus is connected to

fixed PCI devices such as Intel 10/100 PCI Ethernet NIC and ALi PCI South Bridge.

The ALi South Bridge augments the ML310 with many of the basic features found

on legacy PCs such as parallel/serial/USB ports, IDE connectors, and GPIO. The

main system clock of ML310 is a 100 MHz oscillator. The system clock is typically

used to generate multiple clocks with varying frequency and phases within the FPGA

fabric by using the Virtex-II Pro Digital Clock Managers (DCMs). The FPGA also

generates and drives clocks required by the DDR memory and PCI bus interfaces.

Chapter 4: Implementation Methodology

4.1 Overview

Self-reconfiguration is an advanced form of configuration in which specific circuits

on the FPGA are used to control the partial reconfiguration of a subset of the

FPGA resources while the rest of device maintains correct operation. To create a

self-reconfiguring platform the device must be dynamically reconfigurable. Also it

is desirable that the device provides internal access to configuration port [5]. Xilinx

Virtex-II Pro devices support both features.

An embedded processor can be used as a configuration controller in a self-reconfiguring

platform. It provides the following advantages:

• Reduces the overall system complexity since fewer discrete devices are required

for reconfiguration.

• Minimizes the latencies associated with accessing the configuration port since

the control logic is as close to logic array as possible.

• Provides more reconfiguration options to the designer since the processor could

manipulate (encryption, compression) the data before reconfiguring the device.

A Self-reconfiguring platform allows an application to get reconfiguration data

from any peripheral such as a remote network or an external memory. It could also

33

34

help the OS to manage hardware tasks. The next sections describe the design of two

self-reconfiguring platforms capable of performing dynamic partial reconfiguration of

the FPGA under the control of embedded processor cores.

4.2 Design Description

In general, to design an embedded processor system, hardware components, memory

map, and software application are needed. The hardware components of the con-

structed self-reconfiguring platforms target both embedded PowerPC hard processor

core and MicroBlaze soft processor core. These platforms demonstrate how an embed-

ded processor and the software running on it can be used as a configuration controller

capable of performing a secure partial reconfiguration of the FPGA after the initial

configuration. The application running on the embedded processor allows the proces-

sor to read the partial bitstream from an external memory, authenticate the signed

partial bitstream, decrypt the encrypted partial bitstream, and dynamically recon-

figure part of the FPGA. HMAC-SHA1 and AES were used for authentication and

encryption/decryption of partial bitstream but any arbitrary algorithm can be used

as well. Also the HWICAP module, used for reconfiguration, is controlled through

software (ICAP API) which facilitates reconfiguration. EDK automatically creates

the memory map of the systems.

35

4.3 Hardware Architecture

Figure 4.1 and 4.2 show the hardware components of the constructed self-reconfiguring

platforms targeting both 32-bit embedded PowerPC hard processor core and MicroB-

laze soft processor core. The systems were implemented in a XC2VP30-FF896-6

Virtex-II Pro FPGA device on the ML310 Evaluation Board with minimal footprint.

Instruction cache and data cache options are disabled for the microprocessors and

both systems run at 100MHz.

4.3.1 Processor Cores and Buses

The embedded PPC405 hard processor core in Virtex-II Pro is an implementation

of the embedded PowerPC 405D5. It is a 32-bit Harvard architecture processor and

contains elements such as: a five-stage pipeline, virtual-memory management unit,

timers, and separate instruction and data cache units.

The MicroBlaze soft processor core is a true 32-bit processor that supports 32-

bit bus widths. The core is a RISC-based engine with a 32-bit LUT RAM-based

register file with separate instructions for data and memory access. It supports both

on-chip Block-RAM and/or external memory through a LMB (Local Memory Bus).

MicroBlaze uses a three-stage pipeline and separate instruction and data cache units.

Both embedded PowerPC and MicroBlaze processor cores communicate with pe-

ripherals through one or more of the IBM CoreConnect buses [16] which enables

compliant IP cores to integrate with embedded processor cores. The CoreConnect

bus architecture provides three buses for interconnection of hard/soft IP cores. The

key features of CoreConnect bus architecture are:

36

Figure 4.1: PowerPC System

37

Figure 4.2: MicroBlaze System

38

• Processor Local Bus (PLB) – Used by cache units of PPC405 core to access high-

speed system resources and high-performance peripherals. It has a synchronous

architecture with separate busses for address (32-bit) and data (64-bit), and

independent data paths for read/write.

• On-chip Peripheral Bus (OPB) – This bus has 32-bit address and data lines and

supports a greater number of devices which results in decoupling low-bandwidth

peripherals from the PLB and reducing the PLB traffic.

• Device Control Register (DCR) Bus – Used by PPC405 core to initialize and

control peripherals devices that reside on the same FPGA chip. It is a 32-bit

bus directly accessible by PowerPC general purpose registers. DCR bus reduces

PLB traffic and improves system integrity [9].

Both implemented systems require the OPB bus to instantiate the HWICAP mod-

ule for reconfiguration since the current implementation of this module only connects

to OPB. PowerPC only has the PLB bus interface and therefore OPB devices cannot

directly connect to the processor. CoreConnect bus structure facilitates hierarchical

bus design by allowing various types of bridges (OPB2PLB and PLB2OPB). These

bridges connect multiple segments of the bus. In PowerPC system, processor and

peripherals communicate over the OPB connected to the PLB through PLB2OPB

bridge.

Both Xilinx PLB and OPB modules provide efficient arbitration. In a processor-

based system, bus masters initiate a bus transaction and bus slaves devices can only

respond to master request. When more than one master device is present, an arbiter

is required to guide the master devices when they can drive the buses.

39

The MicroBlaze system is configured with OPB bus and two LMBs. The LMB

is a fast and efficient local bus with separate read and write data buses. It requires

no arbiter (single master bus) and connects MicroBlaze instruction and data ports to

high-speed peripherals, primarily BRAMs. The LMB provides single-cycle access to

on-chip dual-port block RAM and operates at 125 MHz.

4.3.2 HWICAP (Hardware Internal Configuration Access Port)

Module

The HWICAP module [17] is used for reconfiguration. It enables the microproces-

sors to read and write the FPGA configuration memory as well as loading partial

bitstreams from system memory through ICAP. The HWICAP core shown in figure

4.3 consists of OPB controller, ICAP controller, and a BRAM. It uses the BRAM on

OPB bus as a configuration cache and has the capability to transfer the partial bit-

stream from local memory via the OPB to ICAP. The partial bitstream is transferred

frame by frame to this BRAM and then to ICAP. The HWICAP ICAP controller

connects to the ICAP block located in the lower right hand corner of the FPGA.

ICAP interface operates at the clock rate of OPB bus.

4.3.3 Other Peripherals

Memory Devices

In MicroBlaze system both ILMB and DLMB (Instruction- and Data-side Local Mem-

ory Buses) are connected to the 8KB of dual-port BRAM using different ports of the

BRAM. In PowerPC system 8KB of on-chip BRAM is connected to the OPB bus.

This memory is used for bootloop storage in both systems. Bootloop consists of a

40

Figure 4.3: Block Diagram of HWICAP Module

simple branch instruction, and is located at the processors boot location. The pur-

pose of a bootloop application is to keep the processor in a defined state until the

actual application can be downloaded and run. XPS contains a predefined bootloop

application for both PowerPC and MicroBlaze processor cores.

DDR SDRAM on the ML310 Evaluation Board, connected to an External Memory

Controller on the processor OPB bus was selected as the external memory for storage

of the encrypted partial bitstreams. This DDR controller module performs device

initialization and auto-refresh cycles of up to four DDR memory banks.

Clock/reset Distribution

Two Digital Clock Manager (DCM) modules are used for providing clocks. A 100

MHz input reference clock is used to generate the main 100 MHz PLB, OPB, and

LMB clocks. The CLK90 output of the DCM produces a 100 MHz clock that is phase

shifted by 90 degrees for use by the DDR SDRAM controller.

41

The Xilinx Processor System Reset Module provides three types of reset supported

by the PPC405:

• Core Reset – Only affects the processor

• Chip Reset – Clears all the logic on the FPGA

• System Reset – Resets the entire system including the FPGA and external

devices connected to the FPGA

The reset interface in the processor block enables the PPC405 core to recognize

resets generated by three user reset input pins. MicroBlaze does not support different

levels of reset.

CPU Debug via JTAG

CPU JTAG chain is combined with the FPGA’s main JTAG chain to download

bitstreams for FPGA programming as well as CPU software debugging. The debug

interface of Processor Block provides access to resources internal to the core and

assist in software development. Sharing the same JTAG chain simplifies the number

of cables needed since only a single JTAG cable (like the Xilinx Parallel IV Cable) is

needed.

JTAG port was used for both transferring the partial bitstream to DDR memory

and debugging. PowerPC system requires a JTAG controller that allows the PowerPC

to connect to the JTAG chain of the FPGA instantiating a JTAGPPC primitive

and directly connecting it to both PowerPC CPUs in the chip. MicroBlaze system

requires a Microprocessor Debug Module on the processor OPB bus for JTAG-based

debugging. This module can also be used with PowerPC 405 processors.

42

Additional Features

RS232 serial channel on the ML310 Evaluation Board, connected to a UART periph-

eral on the processor OPB bus used for stdin and stdout.

In MicroBlaze system a free-running Timebase and Watchdog Timer peripheral

on the processor OPB bus was used to for timing. PowerPC provides a 64-bit time-

base counter inside the processor that works with the system clock and thus, no extra

component is needed.

UART and additional features are not the essential parts of the self-reconfiguring

systems but provide ease of use for user application. Detail description of the IP cores

used in the designs is provided in Processor IP Reference Guide included with the

EDK [17].

4.4 Software Architecture

4.4.1 Overview

EDK automatically generates the memory map of the hardware platform as well as

assigning default drivers to the processors and each of the peripherals. The program

running on the processor core uses some basic standard C libraries and device drivers

since there is no operating system between the software and the hardware platform.

The software performs the following tasks:

• Authentication – Verifying the signed partial bitstream with the stored MAC

value.

• Decryption – Decrypting the encrypted partial bitstream using the stored key.

43

• Configuration – Partially reconfiguring the other active system on FPGA using

the decrypted partial bitstream.

The source code for the program is written in C. It is compiled and linked to

generate executable files in the ELF (Executable and Link Format) format. The

program is stored in the external DDR memory. Using the Xilinx Microprocessor

Debugger (XMD), the signed and encrypted partial bitstream is also stored in DDR

memory at an address range not used by the program.

The following sections describe different parts of the software in more detail.

4.4.2 AES and HMAC-SHA1 Algorithms

To perform decryption and authentication, the program uses AES and HMAC-SHA1

functions implemented by Dr. Brian Gladman [18]. The source code is available in

C/C++ for anyone to use under an open source license on author’s web site. The

functions are portable with no OS or library dependency. The source codes were

imported as a user library to EDK. Information on how the user can add libraries

and customize peripherals and associated drivers can be found at [13]. After adding

the source codes as libraries, they can be simply selected for project using Software

Platform Setting.

The AES code is supplied in the files aes.h, aesopt.h, aescrypt.c, aeskey.c, and

aestab.c. The file to be encrypted or decrypted is split up into 16 byte blocks (the

last can be a partial block) and the resulting block number is used as the encryp-

tion/decryption nonce for CTR mode. The block size used for encryption and de-

cryption must be the same. The lengths of the encrypted file and the non-encrypted

file are also the same.

44

Authentication ensures that the contents of an encrypted file have not been

changed or tampered with after encryption. It is useful because it blocks the at-

tackers whose goal is not only capturing the bitstream but also damaging the FPGA

itself. It is even more essential when using CTR mode encryption because this mode

is vulnerable to several trivial attacks without authentication. The message authen-

tication algorithm HMAC-SHA1 is supplied in hmac.h and hmac.c and the SHA1

hash code is provided in the files sha1.h, sha1.c. It is only necessary to include aes.h

and hmac.h in the program. The MAC value of the encrypted partial bitstream and

the secret key are also stored in the application.

HMAC-SHA1

A keyed Hash Message Authentication Code, or HMAC, is a type of message authen-

tication code (MAC) calculated using an iterative cryptographic hash function, such

as SHA-1, in combination with a secret key. It verifies both the data integrity and

the authenticity of a message. It also provides compression since any arbitrary length

input result in a fixed length output. HMAC is defined as:

HMAC(m) = h (K ⊕ ipad || h (K ⊕ opad || m)), (4.1)

where h is the hash function, K is a secret key, m is the input message, and

ipad/opad are constant padding strings of the length of the message block size in the

hash function h.

The implementation of HMAC used in the application provides a subroutine to

compute the MAC value of the encrypted partial bitstream:

void hmac sha1(const unsigned char key[], unsigned int key len, const

45

unsigned char data[], unsigned int data len, unsigned char mac[], unsigned

int mac len);

This subroutine calls the following functions:

• hmac sha1 begin() – Initializes the HMAC context to zero.

• hmac sha1 key() – Inputs the HMAC key.

• hmac sha1 data() – Inputs the HMAC data.

• hmac sha1 end() – Computes and outputs the MAC value.

The following parameters are passed to this subroutine:

• key – secret key stored as a constant array in the program

• key len – the size of key in bytes (16 bytes)

• data – a pointer to the partial bitstream in external memory

• data len – size of the partial bitstream in bytes

• mac – storage array for MAC value

• mac len – size of the MAC value output (20 bytes)

The application then compares the generated MAC value by this subroutine with

the stored MAC value in the program. If both values are equal authentication is

successful and as a result the decryption phase can be started.

46

AES

Advanced Encryption Standard (AES) algorithm, supported by NIST as an official

encryption standard, is a block cipher that uses 128, 192, or 256 bits keys to encrypt or

decrypt blocks of 128 bits of data at a time. NIST selected Rijndael cipher developed

by two Belgian cryptographers as the AES algorithm.

Rijndael key and block sizes can be sequences containing 128, 160, 192, 224 or

256 bits. Rijndael operates on a two dimensional array of bytes called the state. For

encryption, each round of Rijndael (except for the last round) consists of four stages:

• The SubBytes Transformation – Acts on every byte of the state to produce a

new byte using an S-box substitution table.

• The ShiftRows Transformation – Each row of the state is shifted cyclically a

certain number of steps.

• The MixColumns Transformation – Acts independently on every column of the

state and combines the four bytes in each column using a linear transformation

• The AddRoundKey Transformation – Each byte of the state is combined with

the round key.

Decryption can be implemented in the same form as the encryption cipher by

applying a series of transformations. This is possible because the order of some

operations in decryption can be changed without affecting the final result.

In software, Rijndael can be implemented more efficiently on processors with 32-bit

words. The optimized implementation converts transformations of the entire round

into look-up tables. Different tables are required for the last round.

47

The implementation of AES used in the application uses the following subroutines

and functions to perform decryption:

• gen tabs() – generates the tables

• f dec key128() – initializes the key schedule from the user supplied key

• aes ecb decrypt() – decrypts a 16-bytes block

A structure for the key scheduling is allocated with the maximum 60 word array.

f dec key128() takes as parameters a pointer to a variable with this type and the

secret key stored as a constant array in the program. gen tabs() routine must be

called before first use with no parameter. The number of 16-bytes blocks in the partial

bitstream is set before starting the decryption. Then aes ecb decrypt() routine is

called inside a loop to decrypt all the 16-bytes blocks of the partial bitstream:

aes ecb decrypt(const unsigned char *in, unsigned char *out, int no block,

const aes decrypt ctx cx[1])

The following parameters are passed to this function at each iteration of the loop:

• in – secret key stored as a constant array in the program

• out – a pointer to the partial bitstream in external memory (increased by 16 at

each iteration)

• no block – a pointer to the storage array for the decrypted partial bitstream in

external memory (increased by 16 at each iteration)

• cx – constant ’1’

48

4.4.3 ICAP API

The ICAP API [19] was used for transferring the data between the external configura-

tion memory and OPB BRAM configuration cache. The ICAP API defines methods

for accessing the configuration logic through ICAP port. For using HWICAP API,

xhwicap.h should be included in the application. A structure (XHwIcap) holds the

driver instance data. It is required to allocated a variable of this type for HWICAP

module in the system. A pointer to a variable of this type is then passed to the driver

API functions.

Before using the HWICAP module, one must initialize it. XHwIcap Initialize()

should be called for initialization. The function requires the following parameters: a

pointer to the XHwIcap instance, base address of the instance, user defined ID for

the instance, and IDCODE of the FPGA device. IDCODE can be read from the

device by using the XHI READ DEVICEID FROM ICAP constant. After successful

initialization the following function loads a partial bitstream from external memory.

XHwIcap SetConfiguration(XHwIcap *InstancePtr, Xuint32 *Data, Xuint32

Size)

The following parameters are passed to this function in the application:

• InstancePtr – a pointer to the XHwIcap instance to be worked on.

• Data – a pointer to the storage array for the decrypted partial bitstream in

external memory

• Size – the size of the partial bitstream in 32-bit words.

Chapter 5: Experiment Methodology

5.1 Overview

To perform an experiment using the self-reconfiguring systems described in the pre-

vious chapter, the first step was generating a partial bitstream. This requires im-

plementing a partially reconfigurable design consisting of fixed and reconfigurable

modules.

The reconfigurable design in our experiments consists of two separate processor

based systems:

• Static System – The PowerPC/MicroBlaze self-reconfiguring system was con-

sidered to be the static/fixed module of the design.

• Reconfigurable System – An additional PowerPC/MicroBlaze system was imple-

mented in the form of a microcontroller as the target of partial reconfiguration.

This system generates a pattern on the ML310 LEDs that are connected to the

reconfigurable system general-purpose IO (GPIO) ports.

The considered scenario for the experiment is as follows. The self-reconfiguring

systems read an authenticated and encrypted partial bitstream stored in an exter-

nal memory, authenticate and decrypt it, and send it to ICAP to change the re-

configurable system. The secret keys is stored in the program running on the self-

reconfiguring platforms even though other cases such as providing the key as a pass-

word are also possible.

49

50

The difference-based and module-based methods were both employed to create

the reconfigurable design but only the former resulted in a working partial bitstream.

The complete detail of steps taken for each flow is described in the following sections

along with encountered problems and limitations.

5.2 Difference-Based Reconfigurable Design

An additional MicroBlaze system was implemented in the form of a microcontroller as

the target of partial reconfiguration. Using EDK this system was combined separately

with each of the self-reconfiguring systems. This can be done either by directly

changing the MHS file or using the Add/Edit cores dialog box. Figure 5.1 shows a

block diagram of this system and the static system. The reconfigurable system only

includes:

• MicroBlaze 32-bit soft processor core

• 2 x LMB Bus (ILMB and DLMB)

– 2 x LMB BRAM IF CNTLR

– LMB BRAM (8 KB)

• OPB BUS

– OPB GPIO connected to the 8-bit LED display on the ML310 board.

The partial bitstream changes the BRAM contents where the program running on

the MicroBlaze system had been stored. Since the application running on this system

was generating a pattern on LEDs, partial reconfiguration would result a different

pattern to appear on LEDs.

51

Figure 5.1: Simplified Layout of the Difference-Based Experiment Design

52

Figure 5.2: FPGA Editor View of the Difference-Based Design

Figure 5.2 shows the FPGA Editor view of the design. The implemented design file

with ’.ncd’ extension is opened with FPGA Editor tool to modify the BRAM contents

of the reconfigurable system. This file should be immediately saved under a different

name so that the original design is not lost. Also file property should be changed to

Read Write in the File menu. Using Block Editor Mode each BRAM is selected and

its initial values is modified with the values obtained in system initialization HDL file.

A simpler way of loading the contents of BRAMs is opening the software executable

file with ’.elf’ extension along with BRAM memory map file with ’.bmm’ extension

at the time of opening the implemented design file in the FPGA Editor.

This way the modified design file must be used with the initial bitstream for creat-

ing a difference-based partial bitstream. The initial bitstream of the design contained

the original BRAM contents. The partial bitstream was created with BitGen program

53

using the -r switch. BitGen set with this switch produced a bitstream that contained

only the differences between the modified design file and the initial bit file. The -g

ActiveReconfig:Yes switch is also required for dynamic partial reconfiguration. The

generated bitstream (14 KB) was much smaller than the initial bitstream (1.38 MB).

BitGen ensures that the partial bitstreams would be as small as possible by produc-

ing them with ”Multi Frame Writes.” Using this feature BitGen can write multiple

frames at once, and as a result it also generates the partial bitstreams with different

sizes depending on the design of the module.

After encrypting and signing the partial bitstream, the initial FPGA bitstream

was downloaded into the JTAG port of the FPGA on ML310 Evaluation Board. Then

Xilinx Microprocessor Debugger was used to download the partial bitstream from the

host machine (connected to the board) to an address range not used by the program

in DDR memory on the board.

The next step was running the program on the self-reconfiguring system to per-

form the required tasks. It successfully authenticated the signed partial bitstream

with the stored MAC value; decryption phase would not start if the generated MAC

were different than the stored MAC in program. The program then decrypted the en-

crypted partial bitstream using the stored key, and dynamically partially reconfigured

the other active system on the FPGA. The experiment was judged to be successful

when the new pattern was displayed on the LEDs of the board. It was verifying that

the new application was correctly replaced the initial program stored in the internal

BRAMs of the MicroBlaze system.

Chapter 6 presents the timing results obtained for execution of each phase of the

application along with the device resource utilization summary.

54

5.3 Module-Based Reconfigurable Design

5.3.1 Design Entry and Synthesis

Figure 5.2 shows the implementation of the top-level design in this experience with

the instantiation of systems and bus macros. Similar to the previous flow the top-level

design consists of the following modules:

• Static System – The PowerPC self-reconfiguring platform described in the pre-

vious chapter.

• Reconfigurable System – Contains the other PowerPC processor available on the

chip, PLB and OPB buses, 8K of BRAM connected to OPB, and OPB GPIO

connected to the 8-bit LED display on the ML310 board.

• ICAP and JTAG Wrapper Module – Instantiates the ICAP and JTAG primitive

components.

Using PlatGen both static and reconfigurable systems were generated as sub-

modules in EDK with some modified IP cores and additional external ports and

connections required for the bus macros. The ICAP and JTAG wrapper module was

synthesized and instantiated separately in the top-level. All the guidelines provided

in section 3.2.2 were considered in the design entry and synthesis of the top-level

design and each module.

Each module separately provided local constants for the enable/disable ports of

the bus macros by adding external ports for VCC and GND. It is required since using

constant values in the top-level design might cause sharing of these signals which is

prohibited by the rules of the module-based flow.

55

Figure 5.3: Simplified Layout of the Module-Based Experiment Design

56

Figure 5.4: FPGA Editor View of the Module-Based Design

Clock signal coming from a global clock buffer was the only signal shared by the

modules. A global clock buffer distributes high fan-out clock signals throughout a

device. In Virtex-II Pro clock buffers are multiplexed clock buffers (BUFGMUX)

that can select between two input clocks. This buffer needed GND signal for its

select input. The constant signal was provided by the static module because the

BUFGMUX was in the boundary of the static module.

5.3.2 Bus Macros

The self-reconfiguring system used many pins of the ML310 board scattered all around

the chip. For example all the pins for DDR memory controller were at the bottom and

left part of the device while the ICAP and JTAG components were at the right part.

On the other hand module-based flow requires a module to use only the resources

57

in its placement area and therefore it was not possible to assign a boundary for this

system that encompasses all the resources it needs. Bus macros were needed for all

the signals that passed through the reconfigurable module boundary even though

there was no inter-communication between the static and reconfigurable system.

To minimize the number of these signal, the static module was placed in the left

part of the device while the reconfigurable module is at the right part. This way

only signals for ICAP and JTAG must pass through the reconfigurable part. Both

of these primitive components were being instantiated in the HDL code of HWICAP

and JTAGPPC processor IP cores used in the self-reconfiguring system. Therefore

the code for HWICAP IP core was modified in a way that ICAP primitive component

would not instantiate in the static module and instead all the inputs and outputs of

this component were treated as external ports. JTAGPPC was also removed from

the static module and instead FPGA JTAG chain with two PowerPC processors was

manually created by investigating the HDL code of JTAGPPC IP core and adding

additional external ports for each module. All the required pins of the two PowerPCs

were connected to external ports so that they could be connected to bus macros and

eventually to JTAG primitive at the right part of the device.

As it was required to keep the signals connected to ICAP primitive active during

the reconfiguration it was necessary to use a custom bus macro that span the width

of the reconfigurable module. This bus will stay intact during reconfiguration since

it is exactly placed the same way before reconfiguration. The bus macro provided by

Xilinx was not useful as it only spans four columns and is designed for communications

of modules adjacent to each other. It should be noted that reconfiguration is glitchless

for unchanged resources. This custom bus macro was created using FPGA Editor.

58

Additional bus macros were also used for the static module UART pins in the

reconfigurable area and providing the reset signal in the static area to reconfigurable

module.

5.3.3 Implementation

Initial Budgeting Using UCF constraint file, an ASCII file specifying con-

straints on the logical design, three area groups were created in accordance with the

guidelines in section 3.2.2:

1. AREA GROUP ”AG U1” RANGE = SLICE X0Y159 : SLICE X47Y0
2. AREA GROUP ”AG U2” RANGE = SLICE X48Y159 : SLICE X83Y0
3. AREA GROUP ”AG U3” RANGE = SLICE X84Y159 : SLICE X91Y0

Instances of the static, reconfigurable, and ICAP-JTAG wrapper modules were

assigned to the above area groups respectively. TBUFs, BRAMs, and MULTs were

also included in the ranges of the area groups. Also, all system level, FPGA pins,

and bus macro location constraints were assigned.

Active Module Implementation Module specific constraints such as DCM

and PPC405 location constraints were added to the constraint file created in the

previous phase.

To implement each module, the top-level and module netlists in NGC format and

the constraint file were used. Each active module was separately expanded into the

top-level design. It then mapped, placed, and routed. The implemented designs were

published as Physically Implemented Module (PIM) to a different directory to be

used in the next phase. The following commands were used in this phase:

59

1. ngdbuild -p xc2vp30ff896-6 -uc <constraint file>.ucf -modular module -active

<module name> <top-level file>.ngc

2. map -pr b <top-level file>.ngd -o <top-level file> map.ncd <top-level file>.pcf

3. par -w <top-level file> map.ncd <top-level file>.ncd <top-level file>.pcf

4. pimcreate -ncd <top-level file>.ncd -ngm <top-level file> map.ngm ...\Pims

Final Assembly This phase constructed a complete design using the top-level

design files created during the initial budgeting phase, the top-level constraints file,

and the implemented modules published to the ...\Pims directory in the previous

phase. This integration was done in the ...\Assemble subdirectory corresponding to

each top-level design. The final bitstream for the complete design was generated in

this phase after running the following commands:

1. ngdbuild -p xc2vp30ff896-6 -uc <constraint file>.ucf -u -modular assemble -

pimpath ...\...\Pims <top-level file>.ngc

2. map -pr b <top-level file>.ngd -o <top-level file> map.ncd <top-level file>.pcf

3. par -w <top-level file> map.ncd <top-level file>.ncd <top-level file>.pcf

Up to this point we had one complete design. Any variation of the reconfigurable

module should be created and implemented following the same procedure described in

the previous sections. After that the partial bitstreams generated for each variation

of the reconfigurable modules can change the configuration from one design to the

next one.

60

Two alternate processor systems were attempted to integrate with one of the

self-reconfiguring systems. The first system was a MicroBlaze system with the same

functionality as the reconfigurable system implemented before and the second system

was a similar PowerPC system except that it only used the PLB bus and GPIO. Un-

fortunately, these alternate reconfigurable systems faced different problems, discussed

in the following section, during the implementation process. Hence we were not able

to experiment with the partial bitstreams generated by this flow.

5.3.4 Problems

Most of the minor problems encountered during the design entry, synthesis, and

implementation phases were usually resolved by reviewing the guidelines for each

phase or tweaking some options in the tools. Xilinx support provides some answer

records that might be helpful to resolve the problems.

Major problems were usually encountered during the final assembly phase of the

implementation flow for the systems. Different kinds of ”FATAL ERROR” and ”IN-

TERNAL ERROR” messages usually made PAR too to fail in the final assembly

stage. Mostly, the problem is either unknown or no work around is available. Some

of the encountered problems are listed below.

Error: PAR - FATAL ERROR:Route:basrtareacst.c:792:1.6.12.3...

Solution: Use of non-rectangular area group ranges

Error: MAP - Pack:625 - The dual data rate register ”REG0” failed to combine ...

Solution: Not using the -u command line option

61

Error: GLOBAL LOGIC - Creating and/or using VCCs and GNDs

Solution: MODE=RECONFIG option for AREA GROUP or LUT instantiation

Error: PAR, BUS MACRO - PAR fails after Phase 1.1 and reports no ...

Solution: Service pack update

Error: PAR - Guided placement fails, reporting:

”INTERNAL ERROR:Place:basplrpmsupp.c:484:1.13.2.1 - PARTIALLY PLACED

MACRO ENCOUNTERED!!”

Solution: Currently under investigation by Xilinx, applying an RLOC ORIGIN con-

straint to any affected macro might help

Using online forums and list archives [20] may also provide some additional infor-

mation about the problems.

As it seems partial reconfiguration using module based flow works better for simple

designs with few modules. The tools become problematic as the design gets larger and

more complex. If possible, it is best to work with Xilinx support on a specific design

case to work around the problems and save valuable time. Also it is recommended

to study the pin assignment on a board for partial reconfiguration purpose before

purchasing it since most of the boards in the market were not designed for this

purpose.

5.4 Evaluation of Partial Reconfiguration Flows

Table 5.1 and 5.2 provide the evaluation summary for module-based and difference-

based flows.

62

Table 5.1: DIFFERENCE-BASED FLOW EVALUATION

Level of required Medium depending on the changes made and level of
effort acquaintance with the tool

Level of support of Acceptable with occasional errors and
existing tools problems

Practical limitations Not recommended if routing changes is desired

Benefits Small partial bitstreams (Multiple-frame Write)

Table 5.2: MODULE-BASED FLOW EVALUATION

Level of required High; needs more than average acquaintance with
effort the tool

Level of support of Problematic with frequent errors especially for complex
existing tools designs

Requires:
- A full design for initial reconfiguration

Practical limitations - Special consideration for inter-module
communications
- Different constraints for modules

Benefits Automation and bounded routing

63

5.5 Security Analysis

One of the main advantages of using the self-reconfiguring systems is the increase of

flexibility. The designer is able to partition the application according to the necessary

security level and choose the suitable algorithms for the authentication and decryp-

tion. Moreover these algorithms can be upgraded to take advantage of the latest

improvements of the security field without any change in the implemented partially

reconfigurable design.

The following considerations should be taken into account to improve the security

of the scheme:

• Partial Bitstream Storage – Storing the partial bitstream in internal memory

prevents the interception of the bitstream after decryption. The program run-

ning on the processor core should be modified in a way that either one block

of the partial bitstream is decrypted and sent to ICAP at a time or there is

enough internal memory to store the whole decrypted partial bitstream in the

FPGA.

• Key Storage – Storing the key in a battery-powered storage or providing the key

by an user entered password are among the options that can be used instead of

storing the key in the program.

Chapter 6: Results

6.1 Timing Measurements

In Table 6.1 the timing result of each phase for both self-reconfiguring systems in

difference-based experiment is provided. For each phase of the process (authentica-

tion, decryption, and configuration) 10 measurements were done by obtaining the

number of clock cycles required for each processor to execute the functions. For Pow-

erPC system no extra component was needed since a time-base register inside the

processor is available that works with the system clock. For MicroBlaze system a

watch-dog timer on OPB was used that contains a time-base register. For both sys-

tems, standard deviation from the mean value at each phase along with the percentage

error is also shown in Table 6.1.

Table 6.2 summarizes the comparison of the results for the average values and

throughput. The average values of the obtained results show that PowerPC system

performed faster in both authentication and decryption phases of the application.

Consequently it has higher throughput in these two phases with the ratios shown in

the table. Even though both systems were running at 100 MHz, the better perfor-

mance of the PowerPC system could be due to the fact that its instruction set executes

most of the instructions in a single cycle and is more efficient than MicroBlaze. On

the other hand, MicroBlaze system gives a better performance working with the HW-

ICAP module and therefore it achieves a higher throughput for configuration. The

64

65

Table 6.1: TIMING RESULTS FOR EACH PHASE (CLOCK CYCLES)

PowerPC System

Measurement Authentication Decryption Configuration

1 13,862,435 20,838,769 5,630,038
2 13,862,591 20,838,876 5,631,061
3 13,862,486 20,838,769 5,630,038
4 13,862,435 20,838,769 5,630,038
5 13,862,500 20,838,769 5,631,037
6 13,862,575 20,838,776 5,630,038
7 13,862,591 20,838,876 5,628,993
8 13,862,575 20,838,776 5,630,038
9 13,862,591 20,838,879 5,628,993
10 13,862,486 20,838,769 5,631,037

Std. Dev. 65 51 756
Mean 13,862,527 20,838,803 5,630,131

% Error 0.05% 0.02% 1.34%

MicroBlaze System

Measurement Authentication Decryption Configuration

1 77,649,436 147,201,543 3,175,996
2 77,649,453 147,201,601 3,175,964
3 77,649,510 147,201,675 3,175,420
4 77,649,416 147,201,543 3,175,996
5 77,649,510 147,201,675 3,175,943
6 77,649,349 147,201,675 3,175,996
7 77,649,597 147,201,639 3,175,996
8 77,649,597 147,201,675 3,175,952
9 77,649,515 147,201,451 3,176,008
10 77,648,899 147,201,639 3,175,996

Std. Dev. 201 77 179
Mean 77,649,428 147,201,612 3,175,927

% Error 0.03% 0.01% 0.56%

66

Table 6.2: COMPARISON OF THE TIMING RESULTS FOR EACH PHASE

Measurement System Authentication Decryption Configuration

Ave. PowerPC 139 208 56
Time (ms) MicroBlaze 776 1472 32
Through- PowerPC 102 68 251

put (KB/s) MicroBlaze 18 10 444
Ratio PPC / MB 5.6 7.0 0.5

Timing Based on Units of Operation

System Clock Cycles / Clock Cycles / Clock Cycles /
Byte 16 Bytes Block 4 Bytes Word

PowerPC 982 23,627 1,596
MicroBlaze 5,502 166,895 900

reason might be the presence of the extra PLB bus and PLB to OPB Bridge in the

PowerPC system. Since HWICAP module is a slave on the OPB bus the processor

should transfer the frames of the bitstream from the DDR to the HWICAP BRAM

and therefore an extra bus may actually increase the time of this transfer. Thus, DMA

data transfer is desirable to increase the performance of HWICAP in any system.

Table 6.2 also provides the time based on the unit of operation for each phase.

Authentication algorithm works on bytes with a total number of 14112 bytes in the

partial bitstream. Decryption works on blocks of 16 bytes in CTR mode. There

were 882 blocks in the partial bitstream. Also, 32-bits words are sent to ICAP for

reconfiguration with the total number of 3528.

67

Table 6.3: DEVICE UTILIZATION SUMMARY

Number of Resources
Device Resources Used by PowerPC Used by MicroBlaze Available

Total Percentage Total Percentage in Device
SLICEs 1334 9 1706 12 13696
RAMB16s 5 3 5 3 136
MULT18X18s 0 0 3 2 136
BUFGMUXs 7 43 8 50 16
DCMs 2 25 2 25 8
JTAGPPCs 1 100 1 100 1
ICAPs 1 100 1 100 1
PPC405s 1 50 0 0 2

6.2 Device Utilization Summary

Systems were designed with only the required components. It should be noted that

the Xilinx MicroBlaze soft processor uses 950 logic cells (475 Slices) in the Virtex-II

Pro device but PowerPC cores are part of the FPGA fabric with no resource usage

even though hard core processors in the FPGA fabric reduce the available area for

logic in general. Table 6.3 provides the device utilization summary for both systems.

The resource utilization is only for the self-reconfiguring platforms in the design

and not the additional MicroBlaze system under reconfiguration. The device utiliza-

tion is close for both systems. The PowerPC system used lesser amount of resources

even though it required the use of extra PLB bus and PLB to OPB Bridge but it

should be considered that the resource usage for the MicroBlaze system includes the

soft processor as well.

Table 6.4 provides the contribution of different IP cores. The required IPs for

both systems are listed on the top section of the table followed by the necessary

68

Table 6.4: RESOURCE USAGE OF IP CORES

Resources Used
System Component Slices LUTs FFS

Min Max Min Max Min Max
Required for Both Systems
OPB (On-Chip Peripheral Bus) 46 436 8 668 5 145
OPB HWICAP 120 128 213 224 152 155
OPB BRAM Controller 25 34 16 30 33 55
OPB DDR SDRAM Controller 332 563 353 637 314 444
Total 523 1161 590 1559 504 799
Required for PowerPC System
PLB (Processor Local Bus) 223 1645 270 2540 59 484
PLB to OPB Bridge 595 836 535 823 547 812
Processor System Reset Module N/A N/A 37 57 52 82
PowerPC (Wrapper) 0 0 0 0 0 77
Total 818 2481 842 3420 658 1455
Required for MicroBlaze System
2 x LMB (Local Memory Bus) N/A N/A 0 353 0 0
2 x LMB BRAM Controller N/A N/A 6 6 2 2
Total - - 6 359 2 2
Additional Features
OPB UART Lite N/A N/A 88 108 48 57
OPB Timebase WDT N/A N/A 63 63 111 111
Microprocessor Debug Module 67 188 45 292 79 204
Total 67 188 196 463 238 372

IPs for PowerPC system and MicroBlaze system. Non-essential IPs are provided in

’Additional Features’ section.

Chapter 7: Conclusion

In this thesis we successfully realized a method for performing secure partial reconfig-

uration of FPGAs by implementing a special configuration controller using embedded

processor cores. Under software control and within a single FPGA, the configuration

controller was able to partially reconfigure an application system on the FPGA while

the rest of device maintained correct operation. By performing partial bitstream

encryption and authentication, this method improves the design security specifically

for designs that benefit from partial reconfiguration. It also provides the flexibility

of using arbitrary algorithms for authentication and encryption/decryption of partial

bitstreams.

To test the configuration controller platform it was combined with an application

system to create a partially reconfigurable design. The program running on this

system was generating a pattern on the LEDs of the board. Using authenticated

and encrypted partial bitstream, the configuration controller successfully partially

reconfigured the application system after authentication and decryption of the partial

bitstream. The experiment was judged to be successful when the new pattern was

displayed on the LEDs of the board. Overall the contributions made by the research

that led to this thesis can be summarized as under:

• This self-reconfiguring platform was realized for both PowerPC hard and Mi-

croBlaze soft embedded processor cores for Xilinx Virtex-II Pro Platform FP-

GAs.

69

70

• The system-on-a-chip designs were created using various hard/soft IP cores pro-

vided by Xilinx Embedded Development Kit and resources available on Xilinx

ML310 Evaluation Board.

• A program was developed to demonstrate that the FPGA can be reconfigured

with an encrypted partial bitstream stored in an external memory using software

cores for authentication and decryption.

• A partial bitstream has been generated using the difference-based flow targeting

an active system placed in the FPGA besides the self-reconfiguring platform.

• Using the module-based flow a partially reconfigurable design intended as a

proof-of-concept was created to demonstrate the advantages and problems of

this flow.

The tests showed that integration of the configuration controller with minimal

footprint is feasible for the designs that benefit from partial reconfiguration. It also

enables embedded applications to take advantage of secure dynamic partial reconfig-

uration without requiring external circuitry. Using software cores for authentication

and decryption also removed the need for the hardware cores for these operations at

the expense of lower speed for performing the operations in software. The security

analysis of this scheme also showed the improvements in the design security.

Improving the ICAP control logic from software to hardware planned by Xilinx

will also enhance the performance of self-reconfiguring platforms since there will be

less communication over the system bus and less processor involvement. Even though

the difference-based flow involved none of the difficulties and restrictions of module-

based flow it is not suitable for large designs where large blocks of logic are under

71

reconfiguration. To increase the ease of use for designers and decrease the development

time a simple methodology along with more support and automation from tools are

needed for implementation of a partially reconfigurable design using module-based

flow.

To improve the performance of the current work in future extensions, synthesizable

Intellectual Property (soft IP) cores which can be readily incorporated into an FPGA

can be used for faster authentication and decryption. An embedded OS can also

facilitate the process.

72

Bibliography

[1] S. Wong, S. Vassiliadis, and S. D. Cotofana, “Future Directions of (programmable
and reconfigurable) Embedded Processors,” in Proceedings of the SAMOS 2002
Second International Samos Workshop on Systems, Architectures, Modeling, and
Simulation, July 2002.

[2] T. Wollinger, J. Guajardo, and C. Paar, “Security on FPGAs: State-of-the-art
Implementations and Attacks,” in ACM Transactions on Embedded Computing
Systems, vol. 3, no. 3, August 2004, pp. 534–574.

[3] Xilinx, Inc. [Online]. Available: http://www.xilinx.com/

[4] R. Krueger, “Using High Security Features in Virtex-II Series FPGAs,” Xilinx,
Inc., Xilinx Application Note 766, version 1.0, July 2004.

[5] B. Blodget, P. James-Roxby, E. Keller, S. McMillian, and P. Sundararajan, “A
Self-reconfiguring Platform,” in International Conference on Field Programmable
Logic, Lisbon, Portugal, Sept. 2003.

[6] T. Kean, “Secure Configuration of Field Programmable Gate Arrays,” in Pro-
ceedings of 11th International Conference on Field-Programmable Logic and Ap-
plications, Belfast, United Kingdom, 2001, FPL’01.

[7] L. Bossuet, G. Gogniat, and W. Burleson, “Dynamically Configurable Security
for SRAM FPGA Bitstreams,” in Proceedings of 11th Reconfigurable Architec-
tures Workshop, Santa Fe, USA, 2004, RAW’04.

[8] Virtex-II Platform FPGA Handbook, Xilinx, Inc., 2004, version 2.0.

[9] PowerPC Processor Reference Guide, Xilinx, Inc., 2003, version 2.0.

[10] Virtex-II Platform FPGA User Guide, Xilinx, Inc., 2005, version 4.0.

[11] P. Butel, G. Habay, and A. Rachet, “Managing Partial Dynamic Reconfiguration
in Virtex-II Pro FPGAs,” Xilinx Xcell Journal, Fall 2004, www.reconf.org.

[12] “Two Flows for Partial Reconfiguration: Module Based or Difference Based,”
Xilinx, Inc., Xilinx Application Note 290, version 1.2, July 2004.

73

[13] Development System Reference Guide, Xilinx, Inc., 2005.

[14] Embedded System Tools Reference Manual, Xilinx, Inc., 2004, version 3.0.

[15] Platform Studio User Guide, Xilinx, Inc., 2004, version 3.0.

[16] IBM Inc. [Online]. Available: http://www.chips.ibm.com/products/coreconnect

[17] Processor IP Reference Guide, Xilinx, Inc., 2004.

[18] B. Gladman, “Cryptographic Implementations.” [Online]. Available:
http://fp.gladman.plus.com/cryptography technology/index.htm

[19] EDK OS and Libraries Reference Manual, Xilinx, Inc., 2004, version 3.0.

[20] “Partial Reconfiguration on Xilinx Devices.” [Online]. Available:
http://www.itee.uq.edu.au/ listarch/partial-reconfig/

74

Appendix A: Source Code of the Configuration

Controller Software

This is the main (top-level) source code for the program that is being executed on the

configuration controller. The program is responsible for loading the partial bitstream

from external memory, authentication, decryption, and partial reconfiguration of the

FPGA.

extern "C" {

#include <xhwicap.h> #include <aes.h> #include <xtime_l.h>

}

#include <stdio.h> #include <string.h>

#include "aestst.h" #include "hmac.h"

#define DEVICEID XHI_READ_DEVICEID_FROM_ICAP

typedef unsigned char byte; typedef unsigned long word;

75

/* store the partial bitstream in a safe address in memory

*/

#define PARTIAL 0x01000000 #define ENC_PARTIAL

0x01100000 #define DEC_PARTIAL 0x01200000

/* set the number of 16-bytes blocks in the partial bitstream

*/

#define NUM_BLOCKS 882

#ifdef AES_1_BLOCK #define do_enc(a,b,c,d) f_enc_blk(a, b, c)

#define do_dec(a,b,c,d) f_dec_blk(a, b, c) #else #define

do_enc(a,b,c,d) f_ecb_enc(a, b, c, 1) #define do_dec(a,b,c,d)

f_ecb_dec(a, b, c, 1) #endif

void oblk(char m[], byte v[], word n = 16) {

xil_printf("%s", m);

for(word i = 0; i < n; ++i)

xil_printf("%02X", (word)v[i]);

//print("\r\n");

}

byte exh[32] = // hex digits of stored key {

76

0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,

0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c,

0x76, 0x2e, 0x71, 0x60, 0xf3, 0x8b, 0x4d, 0xa5,

0x6a, 0x78, 0x4d, 0x90, 0x45, 0x19, 0x0c, 0xfe

};

byte stored_mac[20] = // hex digits of stored MAC {

0x99, 0x9a, 0x59, 0xaa, 0xe8, 0x3a, 0xb5, 0xeb, 0x7b, 0xa1,

0xa4, 0xf1, 0x58, 0x1e, 0x03, 0xe5, 0x3f, 0x68, 0xcd, 0xcc

};

int main (void) {

XHwIcap hwicap; /* HWICAP structure */

XStatus status; /* Return value */

XTime tStart, tEnd;

unsigned int tComp;

byte mac[20], err = 0;

unsigned char * const ptr1 = (unsigned char *) PARTIAL;

unsigned char * const ptr2 = (unsigned char *) ENC_PARTIAL;

unsigned char * const ptr3 = (unsigned char *) DEC_PARTIAL;

77

Xuint32 * const ptr4 = (Xuint32 *) DEC_PARTIAL;

print("-- Entering main() --\r\n");

/* Set the device type

* Before using the opb_hwicap, one must initialize it

*/

status = XHwIcap_Initialize(&hwicap, 0, DEVICEID);

if (status == XST_DEVICE_IS_STARTED) {

print("Device is already initialized.\r\n\n");

} else if (status != XST_SUCCESS) {

xil_printf("Failed to initialize: %d\r\n", status);

exit(-1);

}

gen_tabs();

f_ectx alge[1];

f_dctx algd[1];

memset(&alge, 0, sizeof(aes_encrypt_ctx));

memset(&algd, 0, sizeof(aes_decrypt_ctx));

78

/* Performing Authentication using HMAC-SHA1 algorithm

*/

}

79

Curriculum Vitae

Amir Sheikh Zeineddini was born in Tehran, Iran in 1975. He grew up and lived there
till he was 26. He graduated from Azad University, Tehran in February 2000 with
a B.S. in Computer Engineering. Following this, he decided to continue his studies
and obtain an M.S. degree in Computer Engineering. To this end, Amir accepted
admission at George Mason University in the Spring of 2003 and started working in
the FPGA and ASIC Design Laboratory under the guidance of Dr. Gaj.

