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ABSTRACT

The continuously widening gap between the Non-Recurring
Engineering (NRE) and Recurring Engineering (RE) costs of
producing Integrated Circuit (IC) products in the past few
decades gives high incentives to unauthorized cloning and
reverse-engineering of ICs. Existing IC Digital Rights Man-
agement (DRM) schemes often demands high overhead in
area, power, and performance, or require non-volatile stor-
age. Our goal is to develop a novel Intellectual Property
(IP) protection technique that offers universal protection
to both Application-Specific Integrated Circuits (ASIC) and
Field-Programmable Gate-Arrays (FPGAs) from unautho-
rized manufacturing and reverse engineering. In this paper
we show a proof-of-concept implementation of the basic el-
ements of the technique, as well as a case study of applying
the anti-cloning technique to a nontrivial FPGA design.
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General Terms
Design, Experimentation, Measurement, Security

Keywords
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1. INTRODUCTION

There exist several high-impact gaps in the design, imple-
mentation, and manufacturing of integrated circuits (ICs),
including silicon capacity vs. design productivity, number
of gates vs. number of pins, and the disparity between gate
delays and wire delays. These gaps have been having deep
and profound impacts on both IC design and manufacturing
processes. In the last two decades another gap emerged that
may have a far-reaching economic impact on the semicon-
ductor industry. The gap between Non-Recurring Engineer-
ing (NRE) costs and Recurring Engineering (RE) costs has
been growing exponentially as the manufacturing process
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continues to scale down. The numbers are truly fantastic:
while in the sixties the cost of manufacturing one gate was
$1, it is expected that by the end of this decade 1 trillion
gates will cost only $1. Meanwhile, owing mainly to the in-
creasing size and verification complexity of the designs that
are executed, the cost of designing a modern IC product has
skyrocketed. On the other hand, the cost of building a state-
of-the-art semiconductor foundry has also rapidly grown to
well over $1 billion. The NRE-RE cost gap provides high
incentives for independent silicon foundries to recuperate
setup costs by manufacturing non-authorized ICs, and for
fab-less design houses to prevent manufacturing piracy.

This situation provided impetus for the initiation of active
IC digital rights management (DRM) research. Several tech-
niques have been proposed and implemented. They share at
least one of two common denominators: the use of physically
unclonable functions (PUF's) [2][4] or conditionally enabling
through classical cryptographical one-way functions [39][7].
While these techniques address several aspects of IC intel-
lectual property (IP) protection such as prevention of use
of non-authorized ICs, they have significant limitations in-
cluding rather high area, power, and frequency overheads,
additional storage requirements for enabling keys, and sus-
ceptibility to operational and environmental conditions.

Most importantly, they do not offer protection of the design
know-how that is often strategically important, i.e. although
the attacker may not be able to produce non-authorized ICs,
he can gain insight on how significant parts of the design are
created.

Furthermore, the arsenal for IP protection is even more
sparse for volatile SRAM-based Field-Programmable Gate-
Array (FPGA) designs [20][11][15], where a locally-stored
configuration bitstream is usually required. Although the
stored bitstreams can be encrypted with existing crypto-
graphical mechanisms, there exists similar overhead and stor-
age concerns over this technique as crytptographically en-
abled IC designs.

In this paper, we present a novel technique for compre-
hensive IP protection and active device metering with very
low resource and energy overhead. The technique is uni-
versally applicable to both Application-Specific Integrated
Circuit (ASIC) and FPGA designs. In addition to pro-
tecting against non-authorized manufacturing, we show that
reverse-engineering of the design can be prevented at user-



specified levels. Key to this IP protection approach is to
implement sensitive logic paths in such a way that their func-
tionality can be altered, post-silicon, using targeted device
aging. In the context of FPGA IP protection, this means
that the chosen sensitive logic paths can be altered, through
targeted aging, independent of the bitstream design.

The notion of sensitive logic paths reflects the understand-
ing that not the entire silicon product requires protection
against cloning or reverse engineering. For instance, it is
typically not necessary to protect a generic multiplier, as
such designs are easily obtainable or trivial. Sensitive logic
paths refer to the portions of the design where critical know-
how or functionality is embedded, such as the Finite State
Machine (FSM) of a video compression engine.

1.1 Key Concepts

To understand how logic components can be configured post-
silicon or post-bitstream, we introduce the concept of delay
logic. Traditional binary combinational logic produces out-
puts that can be determined statically once the functions
and the connectivities of each element, e.g. the netlist of
the design, are known. Delay logic is a type of logic whose
outputs depend on a third runtime factor, which is the de-
lays of the gates in the circuit.

A small example is presented in Figure 1(a), where the out-
puts of an XOR gate and an OR gate are combined by an
arbiter element. The output C of the arbiter is determined
in the following fashion:

e If a rising edge arrives on input port 0 before input
port 1, then the output is 0.

e If a rising edge arrives on input port 1 before input
port 0, then the output is 1.

If the initial state of the circuit is that A and B are both 0,
and A and B are changed at the same time, then it is clear
that the output port C depends on the knowledge of the
delay of the XOR and OR gates in the circuit. The tables in
Figure 1(b) and (c) show the values of output c as a function
of inputs a and b for the two possible relative speeds of the
XOR and OR gates. Evidently the whole circuit behaves like
an AND gate when the XOR is faster than the OR gate, and
an OR gate when the OR is faster than the XOR.

The delay logic has a clear advantage to the traditional com-
binational logic for protection against cloning and reverse
engineering, due to the fact that its output depends on a
dynamic delay factor. In the context of this paper, we as-
sume that obtaining such information from arbitrary gates
and designs is difficult. However, there are challenges to
using delay logic in implementation. Many factors, such
as die temperature, Vi4, and manufacturing variations, af-
fect the logic delay, thus making it difficult to predict. The
use of the arbiter elements relaxes the design constraints by
measuring only the relative delays between two paths. Fur-
thermore, the reliability of the delay logic can be improved
through post-silicon configuration.

Negative Bias Temperature Instability, or NBTT [1][28], is an
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Figure 1: (a) Delay logic with XOR and OR gates.
(b) Truth table when XOR is faster than OR. (c)
Truth table when OR is faster than XOR.
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Figure 2: CMOS NOR gate.

aging process that occurs to CMOS transistors when a neg-
ative bias is applied to the gate. When stressed, the break-
age of hydrogen-silicon bonds creates interface traps which
lead to increases in the effective threshold voltage Vi of the
gate. Figure 2 shows a typical CMOS representation of a
NOR gate. The top transistors are of PMOS type, and the
bottom ones are of NMOS type. Although NBTT acts upon
both the PMOS and NMOS transistors, PMOS transistors
are impacted more significantly than NMOS transistors, as
they are always negatively biased when turned on. Never-
theless, the overall effect of the NBTI aging is that the logic
propagation delay through the gate is increased, i.e. the
gate is slower.

Combining selective NBTI aging with arbiter-based delay
logic yields a new approach to protecting the sensitive logic
paths of an IC design. Without the knowledge of relative
logic speeds, an attacker cannot understand the functional-
ity of the circuit, even if he was equipped with the full gate-
level netlist. Without proper post-silicon configuration, a
non-authorized copy of the IC will not function as intended.

1.2 Related Efforts and State-of-the-Art

Security techniques for FPGA designs and implementation
are a broad research area that covers a variety of issues rang-
ing from digital rights management (DRM) and detection of
malicious circuitry to reverse engineering and trusted syn-
thesis. There are several recent surveys on FPGA security
[45][30]. In our brief survey of the related work we mainly



focus on directly related IC DRM and FPGA security tech-
niques.

The first set of FPGA DRM techniques was created by John
Lach and his coauthors [25][26][27]. Champagne et al. [13]
discussed secure techniques for distribution of FPGA con-
figurations.

The largest impetus for IC reverse engineering, its surprising
easiness and effectiveness was created by Cambridge Uni-
versity researchers [5]. Consequently, several groups demon-
strated that even highly security hardware security primi-
tives such as PUF's is surprisingly easy to reverse engineer
[29][40].

The IC IP protection efforts emphasized techniques that en-
able zero knowledge proofs that a particular hardware is
designed by a specific entity. Almost all of them used some

form of design watermarking and/or fingerprinting [24][19][36].

Consequently these IC fingerprinting techniques were com-
bined with data mining techniques to form first passive me-
tering approaches [22][3][46][47]. Passive IC metering en-
ables counting of the number of non-authorized ICs. Since
2007, several active IC metering techniques have been de-
veloped [4][39]. These technique enable remote activation
and deactivation of ICs. In many of these techniques PUF
and PPUF [17][8] play a crucial role in the creation and
employment of unique IC IDs. They are creative and effec-
tive solutions and advance active metering research frontier.
Nevertheless, they are subject to several significant limita-
tions such as high hardware and energy overheads, limited
security protocols flexibility (e.g. no mechanisms for speci-
fying active time intervals and only single user control), and
the requirement of key storage that may be the source of
security vulnerabilities. In addition, they are not amenable
to quantitative security analysis and do not guarantee pre-
vention of the IC reverse engineering.

While recovering netlists by reverse engineering actual ICs is
a well-established research and business endeavor [9][33][23],
there is surprisingly little reported work on IC reverse engi-
neering to higher levels of abstraction. Notable exceptions
include efforts at the University of Michigan [18], Michigan
State [48][49][14], and recently the Air Force Institute of
Technology [35][32][31]. However, there have been numer-
ous reverse engineering efforts at lower levels of abstraction
mainly with the goal of verifying actual implementations
[10][42][12].

Recently, in a series of papers Torrance and James pro-
vided detailed description about capabilities, and limita-
tion of state-of-the-art industrial IC reverse engineering pro-
cedures [43][44]. Even more recently, reverse engineering
started to attract rapidly growing interest from academic
community [41].

In addition to directly related IC structure extraction and
reverse engineering techniques, there are several other re-
lated areas. They are related either because we use their
techniques and tools or due to conceptual similarity. The
most difficult task of IC reverse engineering is probably FSM
extraction and traversal. The problem has been addressed
in several communities [38][21][6]. Furthermore, identifica-
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Figure 3: An example DFF design[50].

tion and coverage of regular patterns has been a popular
and important problem in behavioral and system synthesis
[34][37].

1.3 Overview

In the rest of this paper, we present a proof-of-concept of
the delay logic implemented on an FPGA platform and show
that not only the delay logic responds to the slight differ-
ences in delays caused by process variation, but also to the
controlled aging effects of NBTI. We introduce this delay
logic element in Section 2 and explain in detail its imple-
mentation.

To show that manufacturing variation introduces observable
relative delay differences that are unique for each FPGA, in
Section 3 we present the experimental results of the delay
logic by comparing the outputs from an array of 64 arbiters
implemented on two FPGAs using identical configuration
bitstreams.

We also present an preliminary aging study in Section 3 to
show that short-term NBTI aging is observable on FPGA
devices, and this serves as a proof-of-concept for post-silicon
configuration.

In Section 4, we present a case study of incorporating the
delay logic in a non-trivial logic design and proving that it
works as expected.

2. THE SR ARBITER

In this section, we will introduce a delay logic element with
the combined functions of an arbiter and two NAND gates
that compete for the control of the arbiter output, and show
how it can be implemented on an FPGA platform with re-
peatable results.

D-type flip-flops (DFFs) have been used as arbiters in PUF
designs in the past [17], where the path differences are de-
signed to be offset by the preceding tuning circuits. Though
easy to implement, arbiters implemented using DFF's have a
built-in bias due to the fact that the Clock-to-Q and D-to-Q
paths are different by design. Figure 3 shows an example of
an asymmetrical DFF design. In contrast, SR latches, such
as the one depicted in Figure 4 are intrinsically symmetrical,
making it more suitable to function as an unbiased arbiter.

Furthermore, if a trigger signal arrives at both the S and the
R input ports at exactly the same time, then the output of
the arbiter solely depends on the relative speeds of the two
NAND gates. This is an important aspect for the FPGA
platforms, as identical logic paths are almost impossible to
come by. Often the minor speed differences at the transistor
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Figure 4: An SR latch[50].

level are trumped by the enormous routing delay differences.
Therefore an SR latch can serve both as a good arbiter and
delay racing element. We will refer to this design as the SR
arbiter from here on.

2.1 Implementation

We would like to highlight the necessity of nearly identical
logic paths in the implementation of arbiters. Many obsta-
cles, such as unpredictable cell placement and routing, are
to be tackled to ensure that the competing paths to the
arbiters are as symmetrical as possible.

Unfortunately, the target platform (Xilinx Virtex5) does
not offer any native SR latch logic cells. Therefore, an
SR latch must be meticulously implemented by instantiat-
ing two lookup table (LUT) cells occupying the same logic
slice (as NAND gates) and connecting them in combina-
tional loops. By constraining the two LUT cells to the same
logic slice, the combinational loop routing between the two
LUTs are kept minimum and as close as possible.

Though the two NAND gates are identical in logic design,
within each NAND gate, the two input-to-output paths are
purposely designed to be different (as a matter of fact, the
two paths cannot be designed to be identical due to the na-
ture of SRAM-based LUT cells). While the Q-to-Qn and
Qn-to-Q paths utilize the fastest path in each LUT (the
highest address bit of the LUT), the S-to-Q and R-to-Qn
paths utilize the slowest path in each LUT (the lowest ad-
dress bit of the LUT). On the Virtex 5 FPGA where 6-input
LUTs are available, the Q-Qn path only has one multiplexer,
while the S/R-to-Q/Qn path has 6 layers of multiplexers.
This arrangement echoes the desire to use the SR latch to
measure the relative speed of the its NAND gates.

To further ensure that the signal transitions arrive as close as
possible at the S and R input ports, strict relative placement
constraints are used to enforce an in-slice floorplan as illus-
trated in Figure 5. The two DFFs in the middle of the slice
(B-DFF and C-DFF) stores the Q and Qn results from the
immediate NAND gates at B-LUT and C-LUT. The outer
two DFFs (A-DFF and D-DFF) have very little clockskew
between them, so they serve as precision triggers for the
SR arbiter. To preserve local routing channels, the spare
LUTs (A-LUT and D-LUT) are not allowed to be occupied
by other functions. As a result, each SR arbiter occupies
precisely one slice.

3. EXPERIMENT AND RESULTS

The experiment setup and results of the SR-latch based ar-
biters are described in this section.

ALUT ADFF
(spare)

C-DFF
D-LUT D-DFF
(spare)

Figure 5: SR latch mapped to Virtex5 CLB Slice.

3.1 Experiment Setup

The main experiment of this paper carries two objectives.
The first objective is to determine whether the process vari-
ations, manifested as differences in propagation delay be-
tween two FPGA chips, can be effectively detected by the
SR arbiters. To achieve this, two SR arbiters with iden-
tical placement and routing are configured on two separate
FPGA chips, and a trigger pulse is sent to the S and R ports
of the arbiter. The output of the arbiter indicates whether
the S path is faster than the R path, or the contrary. If the S
path is consistently faster than the R path on both FPGAs,
then the results will agree. However, if S path is faster than
the R path on one FPGA, but slower on the other, then the
arbiter results will disagree. Thus by comparing the arbiter
results of two FPGAs, the propagation delay differences can
be detected.

The second objective is to determine whether the effects of
NBTTI aging and recovery can be detected by the SR arbiters.
We will exploit the frequency dependency of the NBTI ag-
ing effect by maintaining the S and R inputs of the arbiter
at either logic one or zero for a prolonged period of time
in the hope to slow down S or R path enough to change
the outcome of the race between S and R paths. Following
the aging process, the static S and R inputs are changed to
toggling between one and zero in order to recover from the
aging effect. The output of the SR arbiter is measured and
compared after each aging and recovery cycle.

3.1.1 Environment

The target platform used in this experiment is the Xilinx
ML505 reference design board. The ML505 board is equipped
with a Virtex-5 FPGA (v51x50) that can be configured via
a JTAG port. For the process variation objective, two such
ML505 boards are used. The two FPGAs installed on the
ML505 boards will be referred to as “FPGA-A” and “FPGA-
B” from here on.

A desktop PC is used to configure and collect the results
from the ML505 boards via RS-232 serial ports. All tests
are conducted at ambient room temperature.

3.1.2 Baseline 64-Arbiter Array Design

To facilitate the test objectives of the experiment, an FPGA
design populated with an array of 64 SR arbiters is imple-
mented. Figure 6 shows a functional diagram of the arbiter
array design. Besides the array of the SR arbiters, a timing
unit is used to generate the trigger pulses to the array of ar-
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Figure 6: 64-Arbiter array test setup.

Figure 7: 64-Arbiter array floorplan.

biters at a rate of 160Hz. The results of the arbiters are then
captured and transmitted by a UART encoder. A chip-level
floorplan of the FPGA design is shown in Figure 7.

3.1.3 Arbiter Result Scoring

An arbiter race result is represented in a binary format. A
one indicates that the S path of the arbiter has won the
previous race, while a zero indicates that the R path of the
arbiter has won. Each result set contains 64 such binary
values. A total of 1000 such result sets are collected by the
host PC to compute an average score for each of the arbiters,
i.e. a score of 0.0 means that the S path of the arbiter has
won the race 1000 times, and a score of 0.6 means that the
S path has won 600 times while the R path has won 400
times, etc. This average score is a reflection of the expected
output of the arbiter under the same condition, and will be
referred to as the “arbiter score” from here on.

3.2 Results

B o Arbiterg2 |
1 0.5 0 -0.5 0 0.5 1

Figure 8: Arbiter score comparison.

3.2.1 Process Variation

The first objective of the experiment is to determine whether
process variation between two FPGAs can be detected by
the SR arbiters. The results are collected before the first
NBTI aging cycle and reflect the starting state of the FP-
GAs. Figure 8 plots the arbiter scores of the two FPGAs in
a polar form, with the solid lines corresponding to FPGA-A,
and the dashed lines corresponding to FPGA-B. The radius
of each point on the plot reflects the arbiter score. For aes-
thetic reasons the inner circle represents a score of 0.0, and
the maximum score (the tips of the longest spikes) is 1.0.

It is evident from the lack of overlaps between the solid and
dashed lines in Figure 8 that the arbiter scores of the two
FPGAs are significantly different. Since the two FPGAs
are configured from an identical bitstream file, and the two
FPGAs are exposed to the same ambient environment, we
conclude that the differences in the arbiter scores observed
at the same arbiter site are due to process variations at the
transistor level.

Though it is possible that the minor differences in voltage
and junction temperatures may contribute to the differences
in arbiter scores, we believe that such differences will only
cause a systematic shift of the scores. The seemingly random
nature of the arbiter scores is more consistent with the effects
of process variation.

3.2.2 NBTI Aging and Recovery

The second objective of the experiment is to determine whether

NBTT aging and recovery effects can be detected by the SR
arbiters. For this purpose, two variations of the baseline
design are created. The first variation of the design applies
a static logic pattern at the S and R ports of all arbiters
to stress the the S paths of the arbiters, while the second
variation stresses the R paths. During an aging session,
the FPGA-A is treated with the first variation (stressing S
paths), and the FPGA-B is treated with the second variation
(stressing R paths).

Each aging session lasts approximately 14 hours (overnight),
followed by one or two days of recovery session where the
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Figure 9: Aging and Recovery of FPGA-A

baseline design is loaded and the S and R ports are con-
stantly toggling. The arbiter scores are recorded between
aging and recovery sessions.

In Figure 9 and Figure 10, results from two aging and one
recovery sessions are presented. The y (vertical) axis reflects
the arbiter scores for each arbiter (x-axis). The z-axis is a
series of sample times in chronological order. In Figure 9,
the arbiter scores for some arbiters in FPGA-A are pushed
towards 0.0 after each aging session. This is consistent with
the fact that the S paths are being stressed during the aging
session, and that an arbiter score closer to 0.0 reflects the
higher likelihood of the R paths winning a race. After a
recovery session, the arbiter scores move back towards 1.0,
indicating that the NBTT stress on the S paths has receded,
and that the S paths are more becoming likely to beat the
R paths in a race.

The complete opposite takes place in Figure 10, where the R
paths of the FPGA-B are stressed during the aging session.
Note that on neither FPGA-A or FPGA-B did all arbiter
scores change; in other words, the effect of a 14-hour con-
tinuous NBTT stress is not enough to change the outcome of
the race between the S and R paths.

4. CASE STUDY: LEON3 PROCESSOR

The LEONS [16] is a 32-bit general-purpose processor based
on the SPARC V8 architecture. The complete VHDL source
code of the LEONS is released under the GNU Public Li-
cense (GPL) for academic use. Due to its moderate size and
design sophistication, we have chosen to use the LEON3 as
a platform to demonstrate a simple anti-cloning mechanism
using the SR arbiters.

4.1 Control Logic Shuffling

A simple way to implement anti-cloning is to use physical
signatures of the device to scramble control signals in a con-
trolled way. As an analogy to cryptography, the control
signals are like messages that can be encrypted, transmit-
ted, and decrypted to be used. The encryption key is the
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Figure 10: Aging and Recovery of FPGA-B

physical signature of the chip, in this case, the arbiter scores,
and the decryption key is a function of the encryption key.

One method to scramble control signals is to shuffle logic.
A two-input shuffler has two data inputs, two data outputs,
and a control input. When the control input is set to logic
zero, the two data outputs are exact copies of the two data
inputs: data input A drives data output A, and data input B
drives data output B. When the control input is set to logic
one, the output orders are swapped: data input A drives
data output B, and data input B drives data output A. A
tree of such shuffling logic controlled by arbiter outputs can
ensure that the design will only function properly on FPGA
devices with a matching arbiter output signature.

4.2 Selection of Control Logic

At the core of the LEONS processor is a seven-stage (fetch,
decode, register read, execute, memory, exception, and reg-
ister write) integer unit. Since all instructions must go
through the integer unit, the control logic in the pipeline
stages is an ideal place to employ the shuffler technique to
prevent unauthorized design cloning.

To minimize the performance impact on the LEON3, the
selection of the control logic for shuffling is made after first
sorting the control logic paths by timing slack. The control
logic with the largest amount of setup slack is least likely
to become the critical path after shuffling logic is inserted.
Evidently the ALU control signals (ALUOP) have the most
slack among all control signals in the integer unit after ex-
amining the static timing analysis. What is also interesting
about the ALU control signals is that they are highly critical
to the normal operation of a processor. Therefore the ALU
control signals are chosen as the target of the shuffling logic.

4.3 Static Shuffling Strategy

The basic strategy to organize static shuffling is described in
this section. The strategy can be summarized in three words:
shuffle, rotate, and reorder. These three words represent the
three types of operations that can be performed on a group
of control signals.

The shuffle operation mainly makes use of two-input shuf-
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Figure 11: Shuffle, Rotate, and Reorder

flers. Each shuffler, depending on the control port ShuffleEn
(SE), can either swap the the two input signals or do nothing
to them. Shown as the first and third stages in Figure 11,
two adjacent control signals are sent to a shuffler. The Shuf-
fleEn signal is controlled by the output of an SR arbiter. If
there is an odd number of control signals to shuffie, the last
signal is sent to a shuffler with its inverted version, i.e. the
shuffler can either send out the original or the inverted ver-
sion of the signal, depending on the state of the ShuffleEn
port. This type of shuffler is also referred to as an Inv-
Shuffler.

The rotate operation always perform a single-bit rotation on
the group of input signals. The direction of the rotation is
decided by the RDIR input port, which is also driven by an
SR arbiter.

The shuffle and rotation operations can be repeated as many
times as possible, so long as the timing slack is sufficient.
Figure 11 shows the shuffle and rotate interleaving each
other to incrementally introduce entropy into the system.

The reorder operation is always the last stage before the con-
trol signals leave the shuffling tree. The purpose of having
the reorder operation is to maintain the original order and
polarity of the signals the same as they enter the shuffling
tree. For example, if signal A and signal B are to be swapped
position by a shuffler, then reorder stage must swap them
back.

In a fully static shuffling tree, all the SE and RDIR inputs
are controlled directly by the outputs of SR arbiters. At the
compile/synthesis time, the reorder stage must know ahead
of time what the SR arbiters will output to properly reorder
the signals.

4.4 Metrics

The implementation result of the LEON3 with static shuf-
fling will be judged on various metrics. The first metric is
the functional correctness of the processor. The modified
LEONS3 processor must remain functional as before on the
intended FPGA target, and any unauthorized copy must
render the processor unusable. This is tested by loading
the same LEON3 design on two ML505 boards. Only one
of the ML505 board has the FPGA that matches the SR
arbiter outputs expected by the reorder stage, i.e. this is
the intended FPGA target. The other ML505 board, when
loaded with the same design, should not function properly
as a processor.

The second metric is the amount of area and performance
overhead incurred by the modification. The area overhead
is measured in number of LUTs used, and the performance
overhead is measured by the minimum clock cycle, or the
maximum clock speed.

The last metric is the most difficult to quantify: how easy
can the anti-cloning scheme be attacked? To answer this
question, we must make several assumptions about the at-
tacks:

e The bitstream of the design can be recovered from the
EEPROM storage.

e With the proper know-how, the bitstream can be con-
verted into a netlist.

e The SR arbiters can be readily identified from the
netlist. However, the outputs of the SR arbiters can-
not be determined statically, nor can they be measured
dynamically.

e The attacker therefore must resort to a brute force at-
tack by guessing the outputs of the arbiters and verify
the correctness of their guesses by running a netlist-
level simulation.

Using the above assumptions, the difficulty of the attack
then depends exponentially on the number of arbiters used,
and linearly on the number of simulation cycles required to
verify the correctness of the guess. Since the number of
arbiters is limited and trivial to determine, we decided to
use the number of simulation cycles to verify correctness as
the metric against attacks. Finally, since the netlist simu-
lation is typically simulated with a time resolution of 1ps
(107*2 seconds, the number of simulation cycles is essen-
tially how many picoseconds the simulation must run before
an attacker realizes that the guess is wrong.

4.5 Results

Figure 12 shows the floorplan of the modified LEON3 pro-
cessor implemented on the v51x50 FPGA. In the picture,
DIV refers to the radix-2 integer divider, MUL refers to the
dedicated multiplier. The integer unit, shown in orange, oc-
cupies most of the north side of the FPGA. The ALU control
shufflers occupies a very small area (inside the white circle).
A magnified view of the shufflers can be see in Figure 13,
where the LUTs implementing the shuffle and rotate stages
are pointed out. As a proof of concept, only three arbiter



Figure 12: LEONS3 Floorplan

are used to statically control the shuffle and rotation stages.
The three DFF's (highlighted in white in Figure 13) store the
arbiter outputs from the selected arbiters. The two DFFs
on the left are expected to hold a value of one, and the DFF
on the right is expected to hold a value of zero in order for
the processor to function properly.

To answer the metric of functional correctness, the modi-
fied LEONS design is loaded on two ML505 boards. A test
program that finds all prime numbers less than 1000 is then
loaded to the processor to run. On the FPGA with the
correct arbiter outputs, the results are returned in exactly
the same way as an unmodified LEON3 processor design
would. On the FPGA with the incorrect arbiter outputs,
the computation did not complete. Instead, the processor
quickly traps to an error state. This proves that the modified
LEONS design passes the functional correctness metric.

To evaluate the area and performance overhead of the static
shuffling and arbiter array, the FPGA mapping and static
timing reports are examined and compared against the un-
modified version of the LEON3 design. As shown in Table 1,
the static shufflers and the arbiter array has a very small re-
source overhead, using only 0.4% additional LUTs and 6.3%
additional DFFs. There is no timing overhead. In fact the
modified LEON3 runs slightly faster than the unmodified
LEONS.

The last metric is the number simulation cycles the design
must be simulated before an attacker can determine that
the guessed arbiter outputs are incorrect. By simulating
an instance of the modified LEON3 design with incorrect
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Figure 13: ALUOP Shuffers

Unmodified | Modified | Overhead
LEON3 LEON3
LUT Usage 15,271 15,334 0.4%
DFF Usage 7,649 8,132 6.3%
Clock Speed | 80.18MHz | 80.48MHz -0.4%

Table 1: Area and Performance Overhead




arbiter outputs until the process traps to an error state, the
answer is determined to be 6.2585 milliseconds, or 6.2585
billion simulation cycles at 1 picosecond per cycle.

5. CONCLUSIONS

We have introduced a new approach to IC Digital Rights
Management by combining directed NBTI aging and delay
logic. As a proof of concept, we have implemented a basic
form of the delay logic on an FPGA platform, and shown
that the delay logic measures the relative speed differences
in competing logic paths due to process variation. Further-
more, we have shown that the delay logic responds correctly
to NBTI aging and recovery cycles. We also presented a
case study to use static arbiter outputs and shuffling logic
to add anti-cloning protection to a non-trivial FPGA de-
sign. We showed that with very little resource and no clock
speed overhead, the LEON3 processor design can be made
clone-proof.
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