
Obfuscation as Intellectual Rights Protection in VHDL Language

Maciej Brzozowski, Vyacheslav N. Yarmolik
Department of Computer Science Bialystok Technical University

Wiejska 45A Street, 15-351 Bialystok, Poland
{brzozowski,yarmolik}@ii.pb.bialystok.pl

Abstract

Software is more and more frequently distributed in form
of source code. Unprotected code is easy to alter and build
in others projects. The answer for attacks against intellec-
tual rights is obfuscation, a process that makes software un-
intelligible but still functional. In this paper we review sev-
eral generic techniques of obfuscation VHDL (Very High
Speed Integrated Circuit Hardware Description Language)
code and present a set of them for software protection.
We are going to describe some related experimental work.

1. Introduction

Subject of obfuscation is so young so it is hard to tell
about its history. The first articles date from second half
of nineties. The precursor of subject was Christian Coll-
berg. He wrote the first publication connected with obfus-
cation . In several articles, which co-author he is, Coll-
berg presents techniques of code obfuscation and divide
them into four groups by the target application - layout,
data, control and preventive transformtions. A lot of articles
were written but no one concerned obfuscation of VHDL
code. It is very easy to change code of other language like
JAVA or C# because size and execute time of transformed
program is not so significant. In VHDL these metrics
are the most important for a programmer.

2. Definition of obfuscation

For people who are not familiar with the subject of ob-
fuscation, it is intentional action conducting to modify
the software code in such way in order to become difficult
to understand.

Gal Hachez in [7] changed definition of obfuscation
created by Collberg in [4] and also used in [6] to:

Transform a program P into another program P” harder
to reverse engineer with the same observable behaviour.
If P fails to terminate or terminates with an error, then
P’ fails to terminate or terminates with an error. Oth-
erwise, P’ must terminate and produce the same output as P.

We should remember, that every program P’ will possi-
ble to reconstruct to P”, which will have very similar struc-
ture to P. Obviously, such operation will absorb much time
and costs, but always it will be possible [1]. Therefore prob-
lem of obfuscation is not a protection before decompilation
of program, but makes it very difficult.

3. VHDL Source Code

We subject analysis the simple codes of VHDL language
-floating point multiplication unit (Figure 1).

Figure 1. RTL Scheme of floating point multi-
plication unit (Register Transfer Level)

We analysed four metrics: offset, number of slices, number
of slice flip flops, number of 4 input LUTs. Base project

6th International Conference on Computer Information
Systems and Industrial Management Applications (CISIM'07)
0-7695-2894-5/07 $20.00 © 2007

Authorized licensed use limited to: CNUDST. Downloaded on February 12, 2009 at 10:31 from IEEE Xplore. Restrictions apply.

was build for Xilinx Spartan2 xc2s100 and before obfusca-
tion metrics had value:

Offset: 29.988ns
Number of Slices: 42 out of 1200 3%
Number of Slice Flip Flops: 13 out of 2400 0%
Number of 4 input LUTs: 77 out of 2400 3%

4. Layout obfuscation

Layout obfuscation relies on changing (removing) infor-
mation in the source code that does not effect operation
of program. It is often called free because does not in-
fluence on size of program neither on its speed of oper-
ation after transformation. There is one-way transforma-
tion because once deleted information can not be restored.
Amount of helpful information decreases for analysing per-
son. This technique contains removing comments, descrip-
tions and changing names of variables which suggest what
is it for.

signal exponent 1 : std logic vector(Exponent-1 downto 0);

⇓
signal O010100101:std logic vector(l01010101-1 downto 0);

Figure 2. Scrambling identifiers in VHDL code

In Figure 2 identifiers were changed exponent 1
to O010100101. Symbol ⇒ means transformation
of source program.

Scrambling identifiers is one and only publicly method
available by Semantic Designs. Xilinx Inc. renders ac-
cessible components indemnify above-mentioned method.
Times of operations and amount of occupied blocks remain
always without changes.

5. Control obfuscation

The objective of this transformation is alter control flow
rather than computing part of code. Some of them come
from compiler optymalization theory.

5.1. Outline statements

This type of obfuscation transforms parts of code into
separate methods - in our case into functions and compo-
nents.
In Figure 3 was outline part of code into component
and function. Part of code was modified which was
responsible for multiply mantissas of two floating point
arguments. The part of code was transferred in project

y<=a+b; ⇒
change: new component port map (a, b, y);

or
y <= function add (a, b);

Figure 3. Outline statements in VHDL code

and situated as a component.

Offset: 31.366ns
Number of Slices: 47 out of 1200 3%
Number of Slice Flip Flops: 13 out of 2400 0%
Number of 4 input LUTs: 84 out of 2400 3%

Outline the statements is one of the obfuscation simplest
methods. In analysed program time and number of logical
cells were changed.

5.2. Ordering

Ordering depends on changing the order of each state-
ments. In VHDL such operation has not influence on work-
ing program if the transforms of code apply to the blocks
of parallel processing

y <= a + z; ⇒ z <= b + c;
z <= b + c; y <= a + z;

Figure 4. Ordering change in VHDL code

It is not important if in code first will be addition a+z or
b+c (Figure 4) because they both execute parallel. A user
or a tool can change the order of each lines of code without
influence on his functioning.

It is unimportant when in source code first will be enu-
meration of mantissa or exponent - enumeration of both op-
erations results will execute parallel.

5.3. Loop transformation

Programmers use loops to increase legibility of written
code. If we know bounds of loop we might unroll it.

for i in 1 to M generate
y(i)(i downto 0)<=y(M-1 downto M-1-i)

+y(i-1)(i-1 downto 0)
when x(i)=’1’ else ’0’& y(i- 1)(i-1 downto 0);

end generate;

⇓
y(1)(1 downto 0) <= y(M-1 downto M-2)

+ y(0)(0 downto 0) when x(1)=’1’ else ’0’ & y(0);
y(2)(2 downto 0) <= y(M-1 downto M-3)

+ y(1)(1 downto 0) when x(2)=’1’ else . . .

Figure 5. Unroll loop in VHDL code

6th International Conference on Computer Information
Systems and Industrial Management Applications (CISIM'07)
0-7695-2894-5/07 $20.00 © 2007

Authorized licensed use limited to: CNUDST. Downloaded on February 12, 2009 at 10:31 from IEEE Xplore. Restrictions apply.

Figure 6. . Scheme of floating point multipli-
cation unit after unroll loop

Offset: 29.988ns
Number of Slices: 42 out of 1200 3%
Number of Slice Flip Flops: 13 out of 2400 0%
Number of 4 input LUTs: 78 out of 2400 3%

This method used alone is not strong. Rolled loop can be
easy rerolled. But in a connection with other tehniques
e.g. ordering it gives more better results.

Extension of loop increases only the size of source code.
The time of operation does not change in relation to project
before transforms. The number of used LUT cells grows up
slightly.

6. Conversion of parallel processing to sequen-
tial

There is transformation which does not appear in other
programming languages. In view of its specification VHDL
is based on parallel processing instruction. Almost every
code written in VHDL may be converted to sequential pro-
cessing (Figure 7).

y next <= a + b;

⇒

process (clock)
process (clock) begin
begin if rising edge . . .
if rising edge(clock) then y <= a + b;

y <= y next; end if;
end if; end process;
end process;

Figure 7. Conversion of parallel processing
to sequential

Mentioned above transform is not difficult to realize. All in-
structions of serial processing in our project were closed
in process - sequential processing. Analysed parameters did
not change further.

7. Removing many levels of registers

Originally VHDL is parallel processing language. Pro-
grammers can not use variables outside the process so they
build multilevel signals.

type tablie is array (Mantissa-1 downto 0) of
std logic vector (Mantissa-1 downto 0);

signal ram : tablie;
. . .

for i in 1 to Mantissa-1 generate
ram(i) ¡= ram(i-1) + line in(i);

end generate;

⇓
process (clock)
variable ram variable:std logic vector(. . .);
. . .
for i in 1 to Mantissa-1 loop

ram variable := ram variable + line in(i);
end loop;
. . .
end process;

Figure 8. Removing many levels of registers
in VHDL code

Offset: 20.563ns
Number of Slices: 71 out of 1200 5%
Number of Slice Flip Flops: 20 out of 2400 0%
Number of 4 input LUTs: 132 out of 2400 5%

Above transform requires deeper analysis of the project
code. The group of signals ram (Figure 9) was replaced
by the variable ram variable. Such transform caused the in-
crease of used LUT cells and decreased time of signal prop-
agation.

8. Conclusion

To conclude obfuscation can be used in many program-
ming languages. It applies to high level languages such
as C# or Java and low-level language such as Assembler.
In many cases (concernning obfuscation of higher level)
these operations are connected with increasing in size of
code or lengthening working of program keeping his full
functionality. One of the largest limits in using obfusca-
tion of program is time of his execution after transforma-
tion. In applications, which task is to communicate with

6th International Conference on Computer Information
Systems and Industrial Management Applications (CISIM'07)
0-7695-2894-5/07 $20.00 © 2007

Authorized licensed use limited to: CNUDST. Downloaded on February 12, 2009 at 10:31 from IEEE Xplore. Restrictions apply.

Figure 9. RTL Scheme of floating point multiplication unit after remove multilevel signals

a user, it does not matter if program executes in ”extreme”
short time. User always can wait for ”one moment longer”
on execution of task.

However, protecting the code, which brings nothing new
or brings little innovative solutions is pointless. Obfuscation
of code affects in the largest extents of algorithms and inno-
vative solutions applied in software. It joins with increase of
code ”complicatedly”. The usage of techniques will proba-
bly influence (without layout obfuscation) on speed of pro-
gram operation or on his capacity. It is necessary to consider
here time limits of task realization - effects maybe decrease
the quality of software (e.g. decrease of signal sampling)
or complete his inability to proper working (the algorithm
does not execute in proper time).

The passed tests show, that in contrast to other program-
ming languages, the obfuscation of VHDL language does
not cause so far changes in program (project) executing
time. It is due to the characteristics of language. For exam-
ple in target architectures (e.g. FPGA, PLD and different)
it does not distinguish in such stages as in architecture x86
of registers sixteen or thirty two bits. Both the run time (the
propagation of signal) and the size of project after compila-
tion (occupied area on programmable unit) underwent small
changes.

All tests were passed on the same compiler with identical
settings, programming environment - Xilinx ISE 7.1, target
unit Xilinx Spartan2 xc2s100. The unit operating time in-
creased maximally about 5 per cent.

As a result of obfuscation caming into being a project
working identically as original one however the occu-
pied area on chip and time of reaction underwent small
changes. A user can choose transforms answering require-
ments of created project.

The simplest transform to use is scrambling identifiers.
This method has no limitations in use and its usage does not
change parameters of project in no way. Protected in this
way code stops being readable for attackers. All presented
methods may be use successfully to protect the intellectual
property of projects written in VHDL language.

References

[1] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sa-
hai, S. Vadhan, and K. Yang. On the (im)possibility of ob-
fuscating programs. Lecture Notes in Computer Science,
2139:1–14, 2001.

[2] C. Collberg and C. Thomborson. Software watermarking:
Models and dynamic embeddings. In Principles of Program-
ming Languages 1999, POPL’99, pages 311–324, 1999.

[3] C. Collberg and C. Thomborson. Watermarking, tamper-
proofing, and obfuscation – tools for software protecti on.
Technical Report TR00-03, Thursday, 10 2000.

[4] C. Collberg, C. Thomborson, and D. Low. A taxonomy of
obfuscating transformations. Technical Report 148, Depart-
ment of Computer Science, University of Auckland, July
1997.

[5] C. Collberg, C. Thomborson, and D. Low. Manufacturing
cheap, resilient, and stealthy opaque constructs. In Prin-
ciples of Programming Languages 1998, POPL’98, pages
184–196, 1998.

[6] C. S. Collberg, C. D. Thomborson, and D. Low. Breaking
abstractions and unstructuring data structures. In Interna-
tional Conference on Computer Languages, pages 28–38,
1998.

[7] G. Hachez. A comparative study of software protection tools
suited for e-commerce with contributions to software water-
marking and smart cards. Universite Catholique de Louvain,
March 2003.

[8] J. S. Johnson N. F., Duric Z. Information hiding - steganog-
raphy and watermarking - attacks and countermeasures.
Kluwer Academic Publishers, Norwell, 2001.

[9] P. F. A. P. Katzenbeisser S. Information hiding - techniques
for steganography and digital watermarking. Artech House,
Norwood, 2000.

[10] D. Low. Java control flow obfuscation, 1998.
[11] J. Nagra, C. Thomborson, and C. Collberg. A functional

taxonomy for software watermarking. In M. J. Oudshoorn,
editor, Twenty-Fifth Australasian Computer Science Confer-
ence (ACSC2002), Melbourne, Australia, 2002. ACS.

[12] T. Sahoo and C. Collberg. Software watermarking in the
frequency domain: Implementation, 2004.

[13] G. Wroblewski. General Method of Program Code Obfus-
cation. PhD thesis, Wroclaw University of Technology, In-
stitute of Engineering Cybernetics, 2002.

Work was funded with Praca Statutowa S/WJ/3/03
and Praca Wlasna.

6th International Conference on Computer Information
Systems and Industrial Management Applications (CISIM'07)
0-7695-2894-5/07 $20.00 © 2007

Authorized licensed use limited to: CNUDST. Downloaded on February 12, 2009 at 10:31 from IEEE Xplore. Restrictions apply.

