
17th Telecommunications forum TELFOR 2009 Serbia, Belgrade, November 24-26, 2009.

Abstract — In this paper a novel non-invasive procedure

will be presented to determine nonlinear binary multi-input
multi-output (MIMO) integrated circuits (ICs) solely by their
input-output behaviour. The algorithm identifies unknown
CMOS ICs through the abstraction of traditional automata
theory. The entire determination procedure was simulated
and fully tested on IEEE ISCAS benchmark models as well
as user defined models of real ICs. The results obtained will
be presented in this paper. For every circuit analysed the
function has been successfully determined by the novel
identification procedure proposed.

Keywords — Deterministic Automata, Non-Invasive
Reverse Engineering, Unknown CMOS ICs.

I. INTRODUCTION
NTIL now the investigation of unknown CMOS
integrated circuits is an important part in reverse

engineering. However, several destructive [1], [2] and
non-destructive procedures have been developed [3], [4]
to identify the internal function and structures. Current ICs
consist of very complex structures with a great variety of
functions and different behaviours. Since these functions
are not always known it can be essential to correctly
determine their behaviour. This is required when the label
is lost or it is necessary to find out more about the internal
structure of the integrated circuit. Furthermore, it is
conceivable to use structures of discontinued ICs in new
IC designs or to add new functionality to an existing
system.

To make a structured analysis of these ICs possible the
overall analysis must be divided into different parts. The
determination of pin types is the first analysis step which
was described in detail in [6]. This is followed by a
preliminary investigation of the IC under test which results
in combinatorial, sequential linear or sequential nonlinear
behaviour as described in [7]. Here, it was demonstrated
that a real IC can be abstracted using the model of
automaton [8]. A large number of unknown ICs have a
nonlinear behaviour. Therefore, this paper will discuss the
specific problem of the identification of unknown
nonlinear CMOS ICs represented by sequential
deterministic finite state machines. The overall
identification procedure consists of three parts. The
separation into Moore or Mealy automaton will be
described in Section II. Afterwards, the preparation
algorithm will be explained in Section III, while the

M. Brutscheck is with the Dublin Institute of Technology, Ireland

(e-mail: brutscheck@gmx.net).

identification algorithm will be described in detail in
Section IV before the results are presented in Section V.

II. SEPARATION INTO MOORE OR MEALY AUTOMATA
The separation into Moore or Mealy is the first step of

the overall identification procedure. It is an important
improvement of this novel procedure compared to other
methods to significantly simplify the following analysis
steps. The different behaviour of Moore and Mealy
automata is used for a general classification. The output of
a Moore automaton only depends on the internal states.
Additionally, if the storages and the inputs are connected
by combinatorial circuitry the automaton is of type Mealy.

The test run is started while a random input word is
applied and then a clock pulse is given to the circuit under
test. After this step, the first input word (‘0’) is applied to
the automaton and the resulting output word is stored. In
the following loop all other input words are applied to the
circuit while no clock pulse is applied. The output words
which appear are compared to the stored one and in case
of any differences the automaton is classified as a Mealy
automaton and the procedure is finished. If all output
words are identical then the next random step is made until
the maximum number of cycles is reached. If the last cycle
is executed and no variance in output words was found,
the automaton will be considered as a Moore automaton
during the following analysis.

III. PREPARATION ALGORITHM
After the type of the automaton was determined the

identification algorithm is prepared by several process
steps. The identification procedure must firstly find one
initial state of the automaton. In the simplest case the
initial state can be reached by a reset pin control. In other
ICs the reset can be carried out by disconnecting the
power supply. However, if such a reset capability does not
exist an initial state can also be found using suitable
process steps by applying input combinations which will
be not described in this paper. After an initial state is
found the preparation can be carried out.

First, the information about the input-output words
(OWs) or input-output word combinations (OWCs) are
gathered. These sets are recorded as shown in
Equation (1).
 { } () ()

{ } () ()
1 : 1 ; ;
2 : 1 ; ;

Moore OW t IW OW t
Mealy OWC t IW OWC t

−
−

 (1)

If the analysis has identified a Moore automaton set {1}
is used. Set {2} is used in the case of a Mealy automaton.
The following steps and parts of the algorithm are
explained for a Mealy automaton and are carried out in an
analogous manner for Moore automata. However, for a

Non-Invasive Reverse Engineering of
 CMOS Integrated Circuits

M. Brutscheck, B. Schmidt, M. Franke, A. Th. Schwarzbacher, and St. Becker

U

783

Moore automaton only a single output word is processed
instead of all output word combinations.

The different states are separated relative to their
detected differences in their output behaviour before the
identification algorithm is started. Therefore, random input
words are applied and a clock pulse is applied afterwards.
In regular intervals a reset is applied to resettable automata
to restart the algorithm from initial states. The previous as
well as the following output word are recorded at each
step. Additionally, the input word which has caused the
step is stored. Repeating combinations of these three
values are not saved. However, all differences are
collected using the described procedure. At always the
first OW(t-1) the change of the OW(t) to multiple
applications of different input words is investigated and is
used for the result. If the current output word has two or
more following output words when the same input word is
applied then the number of these output words relates to
the minimum number of states which share the first output
word. This is valid for deterministic automata.

Each information set as illustrated in Equation (1) is
checked if it has already occurred. If it has not it is added
to the current list. The number of output words found is
stored. The number of states, the output words, the input
words and the type of the automaton are the basic
information. The combinations are checked for their first
output word. Due to their order each alteration implies a
new output word. If entries exist where at any time input
words and output words are equal but the following states
are different, then the list is rearranged. The detection of
such entries is proof that a minimum of two states exists
with the same output word. The input word, which causes
most output words following a particular output word, is
labelled as most significant input word (MSIW). Again,
there is no targeted search for an output word which
means that the gathered output words are caused by the
randomly applied input words. Furthermore, this number
is the number of detected distinguishable states. With the
help of the most significant input words it is possible to
separate states that have the same output word and the
same input word is applied but the following output word
is a different one. For instance, if there would be three
such entries there will be at least three states related to this
output word.

After all entries are made the information is interpreted.
Therefore, the data structure is reduced to the most
significant input words and their significances. Here,
significance means the number of expected states when
applying the related most significant input word. The total
number of found differences forms the number of securely
distinguishable states. This means, that it is possible to
compare two sets of OW(t-1); IW; OW(t) for a Moore
automata or OWC(t-1); IW; OWC(t) for a Mealy automata
there is no difference in the actual sets but only in the
result of the investigation. The use of a number of
distinguishable states severely reduces the necessary
investigation depth of the integrated circuit. Equation (2)
shows the calculation of the number of distinguishable
states (NoDS). If this number is equal to the real number
of states, then the automaton can be identified directly.
Otherwise, it is not possible to determine the automaton in
only one step.

MSIW

NoDS significance= ∑ (2)

The classification into Moore or Mealy automata as
well as the consideration of the number of distinguishable
states are important parts of the analysis procedure. The
preparation results are used to fully solve such problems
through the identification algorithm which will be
described in the next section.

IV. IDENTIFICATION ALGORITHM
After the initial investigation of the unknown IC the

identification algorithm is carried out which is the major
part of the analysis procedure for nonlinear FSMs. It
consists of several blocks and works similar for Moore
and Mealy automata. Figure 2 schematically shows the
identification algorithm.

First, the required length of the investigation tree is
determined. This state tree length is important to record
the state transitions and to afterwards correctly identify the
unknown IC. After the determination of the tree length the
IC under investigation is checked if a reset capability
exists or an entry point can be determined. Then the
algorithm queries the solution type. These are the fast or
the slow identification. Basically, both the fast and the
slow analysis are equivalent. Usually, the IC under test is
analysed using a fast identification. However, in case of
insufficient RAM it is not possible to process the
algorithm using the fast identification. Therefore, it
automatically switches to the slower solution which uses
less memory but requires more evaluation time.

Fig. 2. The Identification Algorithm.

The maximum number of states needs not to be known

to proceed with the algorithm. In most cases the number of
states can be calculated using several iterations. The initial
value can be either given by the user or is determined from
the number of distinguishable states (NoDS). If the real
number of states is not known the number of
distinguishable state for the initial value can be calculated

Start

Identified
unknown IC?

Yes

No

Can reset?

Faster?

Yes

Try to find an
entry point instead
of reset capability

No

Slow identification
of unknown ICs

Fast identification
of unknown ICs

No

Yes

Faster?

Yes

Cannot identify
the automaton!

No

Slow identification
of unknown ICs

Fast identification
of unknown ICs

No Yes

Entry point
found?

End

Determine
tree length

784

as NoS = NoDS + 2. The added two is based on the fact
that it is the number of guessed and not identified states.
This number can be chosen in a free range. If a higher
value is chosen the likelihood increases to find
distinguishable states in each identification cycle which
would previously have not been detected. At the same
time the investigation complexity increases. If the addend
2 is too high this advantage could be lost. The iteration to
the real number of states is carried out after each cycle of
the identification algorithm. Again, the addend two is a
selectable value which function was previously described.
The idea behind the identification of unknown ICs is
similar to the general classification of states using the data
prepared in the previous determination of the number of
distinguishable states. Using deterministic automata a state
has to have the same response at the output caused by the
same input word which means a jump to the following
state. If two states differ in their internal bit combination
but always respond equally at the outputs then the
algorithm identifies these states as only one state. With
this, the automaton is not only identified but also reduced.
Several states can share the same output word. This is
valid for all output words. Therefore, it is possible that all
output words of two states are identical without any
redundancy. For a final distinction of states their state
trees are investigated. A state tree contains information of
particular output words which are causes by the respective
input word applied. As previously described the
evaluation of the following output word is an adequate
further distinctive feature. Therefore, all following output
words (FOWs) of the previous final points are also
gathered. This classification is continued until the
significance of the trees is sufficient to clearly separate
occurring states. Traditional solutions require the
knowledge of the maximum number of states [3]. This is
an essential disadvantage as the maximum number of
states is not available in practice. However, the restriction
to resettable automata or automata with a definable entry
point provides the possibility to determine the number of
states using an iterative approximation without any
knowledge of the real number of states. More precisely if
the initial value is predefined then the solution of the
investigated unknown automata is found faster. As
previously described the initial value can be either given
by the user or is derived from the number of
distinguishable states. In this case the number of
distinguishable states represents the minimum number of
states. A predefined number of states is added to this
number of distinguishable states. From this predefined
number it is expected that many other similar states exist,
which are not distinguishable by only one step. The length
of the state trees is calculated as illustrated in
Equation (3).
 2treelength NoS NoDS= − + (3)

The added two is based on the fact that two output
words form a pair at the rough classification of states.
Here, a preliminary reduction is possible because the
states are compared in relation to their current output word
as well as their following output word. For a general
discrimination two output words are required at time t and
at t + 1 after one step. Here, the maximum tree length is

detected if either a difference occurs or the states are
identical or redundant. Each state found can be reached
again, because the path from the initial state to the related
state is recorded if the state is identified as a new state.
The states in these trees will only together cause the same
output word if the states which the trees belong to are
identical. If they are not identical then there will be
discrepancies in the output words that render it possible to
identify the different states. Once again the following
output words of the last branch of both trees are compared
and the discrepancies are found. Two states are not
redundant if they differ in at least one following state
regardless if this is distinguishable from the output word
or not. Passing through the complete state trees a
difference to all other states will occur due to this
condition. Each state found can be retrieved because the
path from the initial state to the considered state is saved if
it is recognised as a new state. If the state has to be
reached again the automaton must be reset. From the
initial state the desired state is retrieved. The state tree is
recorded while passing from the current investigated state
to the end of the tree. During this process all output words
are saved. If the end of the branch is reached the
automaton is reset and the next branch is investigated. By
applying all possible input words step-by-step a tree is
subsequently generated. Each tree consists of a number of
branches, where each branch differs in a minimum of one
input word. Beginning with the initial state each state is
investigated towards its following states. Whenever a new
state is found the related output word, the tree and its
position relative to its initial state is recorded. For each
state and for each input word the following state is
determined. The different output words of each state tree
are stored in an array.

The required length of the array is calculated as in (4).
 1

0

treelength
n

treearray
n

length NoIW
−

=

= ∑ (4)

Each output word in this array is controlled by a
sequence which is stored in another path array. The
position of the output word can be determined from
Equation (5).

()
0

1

0

1n n

position

position patharray n position NoIW−

=

= + + ×⎡ ⎤⎣ ⎦
 (5)

At the position where n is equal to the length of the path
array the wanted output word is located. Because of this
structure the input words need not to be stored. Therefore,
its tree is recorded and compared with all already recorded
trees. If the tree is identical then the previously recognised
state is entered as the following state. Otherwise, a new
state is generated and recorded as the following state. As
soon as the last found state is investigated towards its last
following state the automaton is fully determined.

V. RESULTS
The theory presented in this paper was verified using

both simulation and real hardware tests. The IC models [5]
were analysed having unknown as well as known number
of internal states using MATLAB [9]. The following
tables will show the results of the simulation and the
hardware analysis of the nonlinear identification
procedure. Furthermore, for each model the result with
unknown as well as known number of states is shown.

785

TABLE 3 first shows the results where NoFS is the number
of states found. Moreover, the state transition table is STT
and the output function is represented by OF. Here, the
number of internal states of the IC models to be
investigated is unknown.

TABLE 3: RESULTS OF HARDWARE ANALYSING USING
UNKNOWN NUMBER OF STATES.

IC
Name

Type of
FSM

FSM
Found NoS NoFS STT

Found?
OF

Found?
Evaluation

Time

EC1 Mealy Mealy 1 1 yes yes 7713,6s
= 2,14h

ELS1 Mealy Mealy 8 8 yes yes 62110,0s
= 17,25h

ENLS1 Mealy Mealy 8 8 yes yes 62127,0s
= 17,26h

S27 Mealy Mealy 5 5 yes yes 615580,0s
= 7,12d

B06 Moore Moore 13 13 yes yes 11456s
= 3,18h

As can be seen in TABLE 3 for each benchmark circuit
the presented algorithm found the correct type of IC. The
evaluation time in the right column shows that about one
week is needed to identify the complex benchmark S27.
The other IC models can be determined in less than a day.
However, it is even possible to identify the expected state
transition table as well as the correct output function.
TABLE 4 presents the simulation results using unknown
number of internal states of the IC models to be
investigated.

TABLE 4: RESULTS OF SIMULATION USING UNKNOWN NUMBER
OF STATES.

IC
Name

Type of
FSM

FSM
Found

NoS NoFS STT
Found?

OF
Found?

Evaluation
Time

EC1 Mealy Mealy 1 1 Yes yes 13,6s

ELS1 Mealy Mealy 8 8 Yes yes 73,4s
ENLS1 Mealy Mealy 8 8 Yes yes 70,7s

S27 Mealy Mealy 5 5 Yes yes 636,2s
B06 Moore Moore 13 13 Yes yes 17,2s
C17 Mealy Mealy 1 1 Yes yes 2378,7s

= 39,6min

TABLE 4 shows that the algorithm found the correct
type for all unknown ICs under investigation. Moreover,
the correct number of states was also always found.
Hence, the correct state table as well as the correct output
function were in all cases successfully determined.
However, the algorithm introduced was developed to
analyse nonlinear FSM. As can be seen from TABLE 4
combinatorial as well as linear sequential FSM can also be
identified using the novel algorithm. Furthermore, the
evaluation time in the right column shows that the
simulation is accomplished within less than an hour for
even complex circuits. In the case that the exact number of
states is known both the hardware analysis shown
TABLE 3 as well as the simulation as presented TABLE 4
was used. Therefore, the same implementations were
analysed with known number of states instead the initial
number of states equal to zero. First, TABLE 5 presents the
hardware models analysed using the known number of
states. From TABLE 5 it can be seen that in each case the
nonlinear detection algorithm found the correct type of the
unknown IC.

TABLE 5: RESULTS OF HARDWARE ANALYSING USING
KNOWN NUMBER OF STATES

IC
Name

Type of
FSM

FSM
Found NoS NoFS STT

Found?
OF

Found?
Evaluation

Time

EC1 Mealy Mealy 1 1 Yes yes 282,7s
= 4,7min

ELS1 Mealy Mealy 8 8 Yes yes 39124,0s
= 10,9h

ENLS1 Mealy Mealy 8 8 Yes yes 39117,0s
= 9,9h

S27 Mealy Mealy 5 5 Yes yes 466562,0s
= 5,4d

B06 Moore Moore 13 13 Yes yes 2758,0s
= 46,0min

In comparison to the hardware analysis using an
unknown number of states the identification using known
number of states is 1,3 times faster. Here, no
approximation of the number of states is necessary.
Furthermore, the analysis identified the expected state
transition table as well as the output function. TABLE 6
shows the simulation results using known number of
states.

TABLE 6: RESULTS OF SIMULATION USING KNOWN
NUMBER OF STATES

IC
Name

Type of
FSM

FSM
Found NoS NoFS STT

Found?
OF

Found?
Evaluation

Time

EC1 Mealy Mealy 1 1 Yes Yes 0,355s

ELS1 Mealy Mealy 8 8 Yes Yes 34,3s

ENLS1 Mealy Mealy 8 8 Yes Yes 34,0s
S27 Mealy Mealy 5 5 Yes Yes 8,74s

B06 Moore Moore 13 13 Yes Yes 2,94s

From TABLE 6 it can be seen that the nonlinear
algorithm firstly investigates the type of automaton.
Afterwards, the state transition table as well as the output
function of the unknown IC were analysed. From all result
tables presented TABLE 6 exhibits the lowest evaluation
times of the IC models analysed. This can be explained
that in this case the number of states was known prior to
simulation.

VI. CONCLUSIONS
All analysis steps described were implemented into the

MATLAB. The correct operation was verified through the
implementation of several IEEE benchmark ICs as well as
user defined IC models. The procedure described
successfully solves the identification problem for the first
time. Therefore, in conclusion this paper has presented a
novel non-invasive reverse engineering procedure for
structured analysis of deterministic sequential finite state
machines in unknown CMOS ICs.

REFERENCES

[1] St. Jarzabek, T.P. Keam, “Design of a generic reverse engineering
assistant tool,” in Proceedings of the 2nd Working Conference on
Reverse Engineering, Toronto, Canada, pp. 61-70, July 14-16,
1995.

[2] S. Blythe, B. Fraboni, S. Lall, H. Ahmed and U. de Riu, “Layout
reconstruction of complex silicon chips,“ IEEE Journal of Solid-
State Circuits, vol. 28, issue 2, no. 2, Feb. 1993.

[3] D. Lee, M. Yannakakis, “Principles and methods of testing finite
state machines – a survey,” Proceedings of the IEEE, vol. 84, no. 8,
pp. 1090-1123, Aug. 1996.

[4] Y. Kuroe, “Learning and identifying finite state automata with
recurrent high-order neural networks,” SICE Annual Conference,
pp. 2241-2246, Sapporo, Aug. 2004.

[5] M. C. Hansen, H. Yalcin and J. P. Hayes, “Unveiling the ISCAS-85
benchmarks: a case study in reverse engineering,” IEEE Design and
Test of Computers, vol. 16, issue 3, pp. 72-80, July-Sept. 1999.

[6] M. Brutscheck, M. Franke, A. Th. Schwarzbacher, St. Becker,
“Determination of pin types and minimisation of test vectors in
unknown CMOS integrated circuits,” 13th Electronic Devices and
Systems IMAPS CS International Conference, Brno, Czech Republic,
pp. 64-69, Sept. 2006.

[7] M. Brutscheck, St. Berger, M. Franke, A. Th. Schwarzbacher,
St. Becker, “Structural division procedure for efficient IC analysis,”
Irish Signals and Systems Conference, Galway, Ireland, pp. 18-23,
June 2008.

[8] Z. Kohavi, Switching and Finite Automata Theory, 2nd Edition, New
York, NY: McGraw-Hill Book Company, 1978.

[9] The MathWorks Incorporation [Online]. Available:
http://www.mathworks.com, [Accessed: September 21, 2009].

786

