
Reverse engineering of embedded consumer
electronic systems

Ian McLoughlin

Abstract— Cutting edge consumer electronics systems typically
rely upon embedded processors and software for a large part of
their competitive features. Developing such features is, in turn, a
costly part of the design exercise that is usually recouped through
initial high-price sales.

If competitors are able to reduce their own development
costs, and cut time-to-market through the reverse engineering of
the pioneering products, such practices will distort the market
and stifle forward progress. Unfortunately, reverse engineering
of consumer products for nefarious purposes appears to be
commonplace, with significant cost implications on industry sales
and profitability.

This paper discusses the scope of the reverse engineering
problem for consumer electronics reliant upon embedded proces-
sors, formalises the process of reverse engineering, and classifies
potential mitigation strategies.

I. INTRODUCTION

New consumer electronics products only reach market after
a long, arduous and potentially expensive design process.
Companies releasing cutting-edge products tend to recoup
development costs during the first few months of sales in
an uncluttered market. In general, if other companies delay
releasing competing devices, then profitibility is enhanced.

Of course, any pioneering design and manufacturing com-
pany (DMC) will naturally expect competing products to ap-
pear in time (and these may improves upon the original design
in some ways). Often their competitors development costs will
be as large as, if not greater than, their own. Assuming that
manufacturing costs are similar for both devices, a profitable
sales price will also be similar for both products.

However these market economics are significantly disrupted
when a competitor cheaply and quickly reverse engineers a
pioneering design. In this case, the competitors development
costs are largely determined by the reverse engineering (RE)
costs. If these RE costs are low, then the new product may
easily undercut the pioneer device in price. This shortens the
market lead of the pioneering product, but also massively
curtails sales due to reduced market share (which is in turn a
consequence of price undercutting). The assumption that RE
costs are lower than development costs (i.e. the process is
shorter, and less expensive than a full prototype-development
project) is borne out in the evidence of commercial examples
of design piracy and the prevalence of industrial espionage.

In general, the larger the amount of upfront development
cost that can be saved through RE, the greater the risk to a
pioneering company [1]. It is thus beneficial to analyse that
difference by firstly understanding the RE process, and then
applying this to a particular consumer electronic system under
consideration.

Note that RE is not always done for nefarious purpose: many
engineers, including the author, enjoy the reverse engineering
process. In fact RE to understand, and improve upon, a
competitors product is legal in many territories - as long as
patents and copyrights are not infringed [2].

This paper is more concerned with the use of the RE process
to commit design piracy, a negative outcome. Apart from being
illegal, this stifles product innovation, and hinders forward
progress. Although it is an attack upon the intellectual property
of the DMC, it also affects the consumer as well as the wider
consumer electronics industry.

The primary engineering response to the threat of design
piracy through reverse engineering, is to incorporate RE pro-
tection (REP) into new products. The aim of REP is to increase
RE cost as much as possible, with (hopefully) only a moderate
increased development cost as a consequence. REP requires
an appreciation of RE and the RE process, an identification
of risks, and an output which is an engineering action to
mitigate against these risks. This paper attempts to formalise
the nomenclature of RE, with the follow on step of classifying
REP approaches and eventual aim of allowing researchers to
evaluate the effectiveness of REP for different stages of RE.
Section II will discuss and define reverse engineering (RE)
applied to consumer electronics in general, while section III
provides a step-by-step overview of the RE process. Section
IV introduces a simple economic analysis model, which is
used in V to classify some of the more obvious mitigation
techniques. Finally, section VI concludes the paper.

II. REVERSE ENGINEERING DEFINED

The RE process involves determining the functionality,
architecture and technology of a system, represented in such a
way that allows reuse or duplication of the original product, its
architecture or technology. For consumer electronic systems,
the end goal may be for many reasons, include the following:
• Understanding what the system does
• Understanding how the system works
• Replicating/copying/cloning part or all of the system
• To enable modification of the functionality of the system
• To obtain trade secrets
• To inform and educate
• For validation and/or verification
As mentioned in Section I, a common motivation for performing

RE is economic, since the information gained can be used to
significantly shorten the development cycle and time-to-market of
a competing product. It is this motivation which is likely to have the
greatest impact on the consumer electronic systems manufacturer, and
it is thus RE performed for this purpose that we would most like to
mitigate. Much of this discussion does not apply to RE for national



Fig. 1. Block diagram of a typical consumer electronics device containing
an embedded processor

security purposes, since in such cases, there may be no economic
argument for performing the RE, and thus no economical protection
against it.

For other cases, especially commercially-motivated RE, we first
state that it is impossible to build a completely secure system [3].
However it is very possible to construct a consumer electronic system
that has sufficient REP incorporated in it to make the RE process
uneconomical. The aim is that those who attempt to RE such systems
would quite quickly recognise the futility of attempting the process
and give up half way.

Hardening consumer electronics systems against RE may require
increased development time and effort, increased manufacturing
costs (including potentially a more expensive bill of materials), and
often result in reduced serviceability. Engineers need to be able to
understand the big picture behind these issues, and thus to understand
the process of RE itself, as described in the following section.

III. THE REVERSE ENGINEERING PROCEDURE

Consumer electroncis RE involves several analytical steps which
are not necessarily sequential, and depend to a large extent upon
the components within the system being analysed. Since consumer
electronics devices cover a very wide scope, we note firstly that we
are predominantly interested in the RE of systems containing an
embedded processor. The reason for this is that in such systems,
a significant proportion of the functionality that sets the product
apart from the competition, will often be implemented in software.
To aid discussion, Fig. 1 presents a typical consumer electronic
device consisting of a CPU connected to volatile memory (SRAM
in this case), non-volatile memory (flash), a field-programmable gate
array (FPGA) or application specific integrated circuit (ASIC), a user
interface of some kind and a power unit. Of course not all systems
will contain all of these, but this paper presents this example system
as an aid to further discussion.

The top-down RE of a consumer electronics device such as that
shown in Fig. 1 may include determining the information associated
with the following categories:

A Functionality - understanding what the system does
B Physical structure analysis:

B.1 electro-mechanical arrangement
B.2 enclosure design
B.3 printed circuit board layout
B.4 wiring looms and connectors
B.5 assembly instructions

C Bill of materials:
C.1 active electronic components
C.2 passive electronic components
C.3 interconnect wires and connectors
C.4 mechanical items

D System architecture:
D.1 functional blocks and their interfaces
D.2 connectivity

E Detailed physical layout:
E.1 placement of individual components
E.2 electrical connectivity between components
E.3 impedance controlled and location-aware orientation

F Schematic of electrical connectivity - system circuit diagram.
G Object/executable code - including:

G.1 isolation of code processors
G.2 isolation of firmware code for reconfigurable logic

H Software - analysis of the software within the object files,
including embedded code, bootloader, firmware plus ASIC
reverse engineering.

Most of the item categories listed here are self-explanatory, and
several others are described either in [1] (or in [4], chapter 7). The
final category, H:Software RE, in general is a very well researched
field. Chikofsky and Cross [5] provide an excellent overview, and
taxonomy, and thus this present paper does not attempt a detailed
taxonomy for software in consumer electronic systems, however there
are differences between general purpose software, and that developed
for personal computers. In the first place, consumer electronics
software is usually resident in flash memory (as shown in Fig. 1),
rather than on hard disc. The operating systems are also vastly
different. Most desktop personal computers run Microsoft Windows,
which is an inherently insecure OS, and one that is often exposed
to almost unlimited external connectivity to the Internet. However
most large scale computers (i.e. server farms) run Linux, as do
many consumer electronic devices such as televisions, entertainment
devices, smartphones and so on. Linux, based upon a UNIX model,
is a far more secure OS. Smaller and cheaper consumer electronics
devices may run a traditional real-time operating system (RTOS) such
as VxWorks, QNX, eCOS, ThreadX or similar. Traditional RTOS
code usually exists as a single composite image that contains all
functionality along with a kernel, and may be quite difficult to RE,
exacerbated by the lack of high level analysis tools. Embedded Linux,
by contrast, often involves a stand-alone kernel image, a filesystem,
and a separate bootloader. These can be examined and analysed
separately [4], which means that in the absence of any software
security choices, the code may be vulnerable to analysis.

It may be that, at the benign end of the scale, software RE is
a useful means to achieve the potential reuse of OO code, whereas
at the opposite extreme, circumvention of copy protection schemes
leads to software piracy and theft. Interestingly, studies have even
included the question of the morality of software piracy, and attitudes
to intellectual property violations, and related this to region [6]. There
is no indication that the conclusions of such a study are confined to
software only. It is interesting to note the anecdotal evidence that
pirated consumer electronic devices are found more often in some
regions of the world than in others.

Software plays an important role in embedded systems, and
although it is advisable for manufacturers to consider software RE
and software security, this will not be considered further here since,
as has been mentioned, it is a subset of general software RE and
protection [7]–[9].

IV. ECONOMIC ANALYSIS

From the point-of-view of a design and manufacturing company
(DMC), any newly released product is at risk of design theft through
RE by unscrupulous competitors. When such an attack occurs, the
outcome will probably be that DMC revenue is reduced. One of the
contributions of this paper is to demonstrate that the DMC can spend
more money up-front, and possibly more on BOM costs, to reduce
the likelihood of an RE-based attack and - if one does occur - to
reduce the impact on their revenue.

In order to examine this effect, let EPD be the non-recurring
expenditure on product development by a DMC. CM is the cost
of manufacturing one unit of product, CS is the per-unit revenue,
with sales amounting to N units. From this, and ignoring all other



unrelated factors, DMC profit over a product lifetime, PDMC is given
in Eqn. 1

PDMC = N(CS − CM )− EPD (1)

However a more realistic model would be for a manufacturer
to change prices during a product lifetime as a consequence of a
competitor product reaching market. Thus we will define CS1 as the
sales cost over N1 units from market introduction, reduced to CS2

over N2 units once the first competition arrives, as in Eqn. 2:

PDMC = N1(CS1 − CM ) +N2(CS2 − CM )− EPD (2)

Next we assume that the first competitor released their product
precisely because they cloned the DMC through RE. There may well
be other competition joining the market later, but the very fact that
RE can shorten a development cycle supports the assumption that, if
cloning occurs due to RE, the worst case impact on the DMC will
be the early introduction of lower cost competition. In reality the
competition may not be a complete clone, but rather have copied
aspects of the original design, however the rationale still stands:
the use of RE means that the competition could thus be earlier and
cheaper than a genuine in-house development.

The reverse engineering company (REC) cloning the product
would experience similar CS and CM but replace the development
cost EPD with the non-recurring RE cost ERE as in Eqn. 3 to yield
a profit PREC , assuming a 50% market share:

PREC = N2(CS2 − CM )− ERE (3)

Quite clearly, the profit made by the DMC over and above the
REC is related to the difference between development and RE cost
from Eqns. 2 and 3:

PDIFF = PDMC − PREC

= N1(CS1 − CM )− EPD + ERE (4)

It would then seem that any DMC performing up-front develop-
ment of a pioneering consumer electronics device needs to maintain
a sales monopoly as long as possible, and ensure that their product
is difficult/time consuming/expensive to reverse engineer.

As mentioned in Section II, complete RE protection, requiring an
unconditionally secure system, is impossible to achieve in practice,
however it is very possible to increase ERE by making the RE
process more difficult. To do this the DMC will require extra
design effort, and thus increased up-front ERP , and possibly extra
componentry or manufacturing complexity in each device sold, CRP .

If the DMC chooses to adopt this approach of incorporating REP,
their profit will now be as shown in Eqn. 5, where extra terms
reducing this profit are included. However the entry to market of
the competition is delayed, and so the sales quantities differ from
Eqn. 2: N ′1 and N ′2, where N ′1 > N1 and N ′2 > N2 (the former
because the REC enters the market later, and the latter because the
REC costs are higher, and hence their sales price).

P ′DMC = N ′1(CS1 − CM − CRP )

+N ′2(CS2 − CM − CRP )− EPD − ERP (5)

However, if these measures have been succesful, the RE cost to
the competitor has increased also. Their adjusted profit is shown in
Eqn. 6 (assuming that they are sufficiently intelligent to skip the
components included specifically for RE protection when they clone
the device).

P ′REC = N ′2(CS2 − CM )− E′RE (6)

The reduction in profit to the REC incured due to the RE
protection, is thus equivalent to the difference in Eqn. 7.

PREC − P ′REC = N2(CS2 − CM )− ERE

−N ′2(CS2 − CM ) + E′RE

= (N2 −N ′2)(CS2 − CM )− (ERE − E′RE) (7)

PREC − P ′REC is largely based on two factors, namely the
difference in sales units due to later market entry ∆N2 = N2 −N ′2
and the increase in RE cost ∆ERE = ERE − E′RE , thus:

PREC − P ′REC = ∆N2(CS2 − CM )−∆ERE (8)

The increased cost to the DMC, and reduced profit is given in
Eqn. 9 using similar notation:

PDMC − P ′DMC =

= ∆N1(CS1 − CM )

+∆N2(CS2 − CM )

+(N ′1 +N ′2)CRP − ERP (9)

Clearly the major factors increasing the change in profit are the
cost of implementing the REP, both in terms of NRE and in ongoing
expenses, offset by the change in sales volumes. In fact, it is possible
to define a metric which identifies the effectiveness of REP, the ratio
γ, between the decrease in profits of the two entities as given in Eqn.
10.

γ =
PDMC − P ′DMC

PREC − P ′REC

γ =
∆N1(CS1 − CM )

∆N2(CS2 − CM )−∆ERE

+
∆N2(CS2 − CM )

∆N2(CS2 − CM )−∆ERE

+
(N ′1 +N ′2)CRP − ERP

∆N2(CS2 − CM )−∆ERE
(10)

The measure of success of deliberate REP is thus a combination of
several interlinked factors indended to minimise the ratio γ, namely:
• increasing the positive difference ∆N2 and decreasing the

negative difference ∆N1 by making RE more difficult, such
as to delay entry to the second phase of reduced profit caused
by direct competition.

• limit any increases in ERP and CRP as much as possible
consistent with increasing the incremental cost of reverse engi-
neering, ∆ERE .

It is unfortunate that the engineering answer to RE risk in
consumer electronic systems, namely to incorporate REP, leads to
lower profits all around. Socially speaking this is a lose-lose situation,
except for the particularly welcome consequence of increasing the
gainful employment of development engineers.

V. RE MITIGATION TECHNIQUES

Since RE is not preventable, the issue becomes primarily eco-
nomic, as outlined in section IV: how can a DMC maximise the
RE cost experienced by competitors at minimal additional cost to
themselves. General system protection methods have been presented
elsewhere [10], but here the variety of RE mitigation techniqes will
be classified, alongside a rating of their difficulty of implementation.
Most importantly, these are ranked based on their cost to a DMC,
and the economic impact of their implementation upon a RE-based
attacker.



TABLE I
PASSIVE METHODS OF INCREASING HARDWARE RE COST SCORED ON

SEVERAL CRITERA, OUT OF 5, PLUS THE AREA OF INFORMATION THAT

THEY PREDOMINANTLY INFLUENCE, FROM SECTION III.

Design RE Manuf. Area
Method cost cost impact affected

Tamper proof fixtures 2 0 1 B
Potting 1 1 2 B

Remove silk screen 1 1 1 F
Remove component markings 1 1 2 C

Use BGA packages 1 3 3 E.2
Route on inner layers only 2 2 3 E.2

Random fill of PCB 2 2 0 E.2
Use blind/buried vias 2 2 4 E.2

Jumble buses 1 1 0 F
Route through ASIC 5 3 2 F

Route through FPGA 2 2 2 F
Remove debug port 1 1 2 H

Memory filling 2 2 0 G
Encrypt code 1 2 0 H

Use of custom logic 5 5 2 D.1
Add impedence control 4 4 2 E.3

Methods of REP can be classified into passive or active [1], which
are those fixed at design time, and those able to change operation in
response to attach, respectively. Most important, is the analysis of
cost multipliers experienced by the REC, and how those relate to the
various REP methods. In general, REP costs will rise as a result of:
• Increased labour cost due to greater time taken to RE the system
• Increased labour cost due to higher levels of expertise required
• Increased cost spent on the purchase or use of specialised

equipment required for the RE

A. Passive RE mitigation
Table I lists several common passive methods of REP, also

providing an indication of their upfront cost in design terms, the likely
incremental RE cost that they will incur, the degree of manufacturing
impact, and the major elements of the RE procedure that they
influence (from Section III). The scoring used is a subjective estimate.
When performing an audit for a particular consumer electronics
devices, this should be adjusted based upon knowledge of the
particulars of that device.

B. Active RE mitigation
Many of the passive methods of section V-A also have active

variants: this means, for example, that memory filling in flash is
replicated at runtime in SRAM, or that the particular arrangement of a
jumbled bus changes during system operation. Electrical connectivity
can be confused by using spare inputs and outputs from processors,
FPGAs or ASICs to route signals which are not timing critical but
which are funcionally critical. Jumbled address and data buses are
a little difficult to reverse engineer, but dynamically jumbled buses
provide a significant further level of complication. They add cost to
incorporate active devices for the jumbling/de-jumbling.

ASICs are probably the ultimate device for REP, but even the
humble FPGA can be relatively effective. There are many possibilities
for using such devices in active REP, including for performing
encryption, however even without this, soft cores which are com-
pletely custom [11], and perhaps company confidential, add a layer
of security through the hidden instruction set architecture and code
arrangement. For an even more extreme protection, the instruction
set could be deliberately changed in every implementation among
several product versions to prevent repeated RE of core program.

TABLE II
RELATIVE STRENGTH OF ACTIVE PROTECTION METHODS, OUT OF 5 WHEN

IMPLEMENTED DYNAMICALLY OR STATICALLY, AND THE AREA IMPACTED.

Method Fixed timing Dynamic timing Area
Information hiding 0 2 G

Routing through logic 3 5 F
Obfuscation 1 3 D

Deliberate confusion 3 4 H
Impedance matching 4 5 E.3

C. Active RE mitigation classification
The basic forms of RE mitigation in consumer electronics can be

classified into multiple dimensions. One useful classification, as we
have seen, is into active or passive mitigation. A second division may
be into temporal or spatial methods of achieving the protection.

Some mitigation classes are as follows:
• Temporal methods
• Spatial methods
• Active methods
• Passive methods
• Information hiding
• Obfuscation
Information hiding employs existing resources in ways that at-

tempt to conceal information from attackers. Obfuscation, normally
a passive method (such as swapping the names of labels and functions
within code, or jumbling the PCB silk screen annotations) can also be
active when changing system bus connectivity [12] [13], or device
pin usage (for example multiplexing an interrupt input pin with a
signal output function). This involves the use of existing, or spare
resources, to complicate the RE process by deliberately misdirecting
the RE team.

Protection by confusion can also mean adding resources specifi-
cally to deliberately confuse attackers. For example, including large
pseudo-random data transfers, out-of-order or redundant code reading
[14] and so on.

Spatial methods operate at a placement or connectivity level,
and include scrambling buses differently depending upon memory
area, turning on or off signal path routing devices depending upon
operating mode or clock phase.

Temporal methods confuse through altering the sequence and/or
timing of events. For example, a boot loader that deliberately executes
only a subset of fetched instructions (i.e. uses redundant instruction
fetch). Another would be a memory management device able to pre-
fetch code pages from memory and access these non-linearly. Some
examples which combine these attributes are shown in table II.

Undoubtedly, active dynamic obfuscation methods are the most
costly and perhaps the most effective to develop, debug, deploy and
test. What is clear is that custom logic is a great resource for actively
resisting RE attacks.

VI. CONCLUSION

This paper has discussed the RE of consumer electronic systems
that contain embedded processors (i.e. the majority of systems).
It has set out the reason why RE may take place, and classified
the processes involved. An extensive economic analysis provides
impetus for systems manufacturers, particularly of pioneering high-
value systems with a large software component, to incorporate REP.

The paper then outlined several of the more common REP strate-
gies, firstly static techniques, and secondly more complex dynamic
methods, identifying which part of the RE process they impact, and
classifying both the costs and degree of protection afforded.

Unfortunately, RE will probably always be a factor in electronic
design, and can be applied for social good as well as for nefarious



purposes. As consumer electronics systems become more complex,
and more reliant upon embedded software, the risks of RE, and the
potential gains from nefarious practitioners, both rise. It is becoming
more difficult for manufacturers to ignore these issues. In fact,
consumer electronics companies struggling to succeed in a crowded
marketplace should make an informed decision as to what degree
and type of REP, if any, they choose to apply in their products. If
they choose not to apply any protection, they need to appreciate the
risks that they face in terms of design theft and loss of intellectual
property.

This paper attempts to move some way towards informing that
decision, and presents classifications of the stages of the RE process,
along with a useful economic analysis, and a classification of REP
methods, their costs, and effectiveness.
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