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ABSTRACT 
Previously used ICs, which are resold as new, result in undue lost 
revenue, cause lower performance, reduced life span, and even 
catastrophic failure of platforms and systems. Non-invasive and 
inexpensive techniques are needed to establish the authenticity of 
such ICs that do not have special in-built structures for counterfeit 
detection. Although delay of circuit increases with its age, it cannot 
directly reveal the age of the chip, as it is also greatly influenced by 
process variation. In this work, we show that the relationship 
between two or more paths within the chip is a great indicator of its 
age. Using the proposed statistical and circuit-level technique, we 
observe over 97% correct detection of an aged IC from a new IC. 

Categories and Subject Descriptors 
B.8.1 [Performance and Reliability]: Reliability, Testing, and 
Fault-Tolerance 

Keywords 
Counterfeit, Aging, Process Variation 
 

1. INTRODUCTION 
Globalization has provided us with a vast choice of hardware 
suppliers at various levels of the design and manufacturing flow. 
Designs and fabricated chips can now come from practically 
anywhere in the world. However, this has not come without costs. 
The trustworthiness of the received device is no longer a guarantee. 
The reliability of a system is directly dependent on the reliability of 
the components that it is built of. One unreliable IC in a system 
possibly can result in a catastrophic system failure. An area where 
this is particularly critical is in defense and medical related systems 
where the reliability of a system is of utmost importance. Recently, 
many cases have come to light, which show ICs being scavenged 
from electronic waste, repackaged and sold as genuine new ICs [1]. 
The focus of this paper is this specific form of IC counterfeiting. 
A report on the counterfeit ICs by IHS iSuppli estimates a $169 
billion in potential annual risk to the global electronics business [2-
5]. These studies suggest that IC counterfeiting is a serious and 
growing problem. Some of the direct impacts due to IC 
counterfeiting are enumerated here: Firstly, consumers do not get 
what they pay for. The devices get slower and are more prone to 
failure.   
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Secondly, semiconductor manufacturers incur a significant loss due 
to lost sale, which eventually hurts everyone related to this industry 
including consumers. Thirdly, system manufacturers suffer bad 
reputation when the components fail. In addition, they endure loss 
for providing warranty. And lastly, in case of critical applications 
such as avionics, defense systems, and medical devices, untimely IC 
failures can result in catastrophic events. As a result, it is extremely 
important to be able to distinguish new authentic ICs from 
counterfeits and/or used parts. 
For the future designs we might have the luxury of inserting 
specialized circuitry to the chip in order to help establish the age or 
usage of the chip (e.g., ROM-based fuses can be implemented to act 
as IC seals or special protected registers can be employed to 
produce the manufacturing date of the chip). However, determining 
whether an existing chip is a counterfeit is much harder.  For such 
cases, statistical and testing techniques are needed. Figure 1 
illustrates these two categories of counterfeit detection methods. 

 
Figure 1: Anti-Counterfeit Techniques 

Although finding anti-counterfeit methods for future designs is not a 
trivial problem, it poses a less challenge compared to detecting 
counterfeits amongst existing chips, where one has to depend on 
just the original circuit itself to establish the age of the device. This 
paper focuses on solutions for existing ICs. 
 
The major contributions of this paper are as follows: 
1. Based on detailed simulation results, we show that although 

the delay of a circuit is greatly affected by aging, it cannot be 
used as an age indicator by itself since delay is also 
significantly affected by process variation.  

2. We show that the relationship between two or more paths in 
the circuit can be used as an age marker and we propose a 
statistical method based on this fact, which can correctly 
predict the age of an IC. 

3. We provide an extensive analysis of our proposed method and 
show its accuracy by implementing on variety of sample 
circuits, including few cores and ISCAS benchmarks. 

The rest of this paper is organized as follows: In Section 2, the 
related work is discussed. Section 3 presents the background and 
motivation of this work. Section 4 introduces the anti-counterfeiting 
techniques proposed in this work and Section 5 highlights the 
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overlap in the range of delay values for the two groups. In fact, 
more than 70% of both the new and old circuits have delay between 
0.565ns to 0.615ns. Suppose we pick a delay value of 0.6ns, it 
would be impossible to tell if it corresponds to an aged IC – which 
was originally faster and now has increased delay due to aging or to 
a new one, which is just slower due to process. 

The above observation demonstrates that delay of a single path from 
the chip is not effective as a direct indicator of the age of an IC. To 
make matters more complicated, there is recent submicron data 
showing that aging itself can be affected by process variation [20]. 
Specifically, there is significant dependence of NBTI and PBTI on 
device geometry, e.g., channel length, which is variable as virtue of 
process also. These effects have begun to be modeled by 
commercial tools [20], but reverse engineering the cumulative effect 
to isolate age becomes a tedious problem. In this paper, we propose 
a method that overcomes this challenge by combining the 
characteristics of more than one path and isolating the effect of 
aging. 

4. ANTI-COUNTERFEIT TECHNIQUES 
This section discusses the method we propose for detecting old 
counterfeit ICs, which lack special anti-counterfeiting. We begin 
with the goal of just being able to distinguish an old device from a 
new one and later extend the methodology to accurate predict the 
age of a chip.  
As we saw in Section 3, although delay of a single path is 
significantly affected by aging, it is a poor indicator of the age of 
the chip as it is also greatly affected by process variation. Therefore, 
instead of using a single path, we propose the use of a set of paths 
from within a chip, such that each path individually has a 
characteristic aging behavior. The relationship between the delays 
of the chosen paths is used as an indicator of the age of the chip. 
The premise of our method is that the pattern that governs the 
relationship between two delay paths for new ICs are 
distinguishably different from the pattern governing that of old ICs. 
This means, if we have a trusted set of new chips and we are able to 
study them before and after (accelerated) aging, we can characterize 
these relationship patterns at different ages. Now, when an untrusted 
chip is under test, the relationship of the same paths is evaluated and 
it is determined whether it follows the pattern belonging to the new 
chips or older chips.  This is illustrated in Figure 4. 
 

 
Figure4. Detection method for New/Old in existing designs 

The details of our technique for a 2-path method are described as 
follows, where the relationship between the two paths is used for 
determining the age. 
1. Two different paths are selected from the chip. 
2. The delays of the two paths are measured for a variety of 

trusted new chips. Ideally the trusted chip pool is big enough to 
present a realistic mix of chips affected by process variation. 

Curve fitting is used to identify a pattern relating the two paths 
to each other, similar to the “AGE0” line shown in Figure 5. 

3. The trusted chips undergo accelerated aging by being 
subjected to more than nominal operating voltages and high 
temperatures.  

4. The delays of the two paths are again measured for all the 
trusted chips. Once more curve fitting is used for relating the 
paths to each other, similar to the “AGE5” line in Figure 5. 

5. When an untrusted chip is under test, the delays of the same 
two paths are measured. Based on mathematical methods (e.g. 
shortest perpendicular distance), it is determined whether the 
“new ICs” curve is a better fit for the untrusted IC or the “older 
ICs”. 

This method can be extended to a 3-path or 4-path method, which 
uses more than two paths, and the relationship between their delays 
is fitted to a surface plot instead.  
 

  
Figure5. Two-Delay method for detection of Age  

The important aspect is to decide on the kind of paths to choose. 
Our method is successful if the paths chosen resemble each other in 
nature of their delay, e.g., paths with fairly similar capacitive 
loading, and similar length, but have a distinct aging profile. The 
latter is achieved by using paths of dissimilar activity – i.e. paths 
undergoing different number of transitions.  The path with higher 
activity is more affected by age, which means the relationship of the 
two paths changes significantly over time. In a real chip, some 
portion of the chip logic is not as active during its lifetime, as other 
portions. For example, the test paths around the memory test logic 
will be quite less active or totally inactive, during the lifetime, 
relative to a functional clock tree path.  Such paths, which 
significantly differ in their activity, are good candidates for this 
scheme. We provide a detailed sensitivity analysis in Section 6, 
which details more on the best candidate paths for this method. 

4.1 Just-in-Time Voltage Reduction 
We will show in the Section 6 that the above-proposed technique 
can achieve only up to 87% accuracy for detecting counterfeit ICs, 
and almost 1 out of every 3 new chips get falsely detected as old. In 
order to improve our method, we propose an augmentation 
technique that we call Just-in-Time Voltage Reduction. In this 
approach, we reduce the operating voltage of the chip at the time of 
testing. The rationale is that the effect of aging can be more easily 
detected at lower voltages. This is explained in more detail in the 
rest of this section.  
The first order equations for gate delay (inverter with symmetrical 
nmos and pmos), shown in equations (1) and (2), provide the basis 
for modeling delay in both strong-inversion and sub-threshold 
regions [22]. The dependence of the delay on the difference of VDD 
and VT changes from a linear relation to exponential one as we 
move into sub-threshold region.  
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ௗݐ   = ௄஼ಸ௏ವವ(௏ವವି௏೅)ഀ    (1) 

ௗ,௦௨௕ݐ  = ௄஼ಸ௏ವವூ೚ୣ୶୮	(ೇವವషೇ೅೙ೇ೟೓ )  (2) 

On the other hand, the equations of aging models [17] show how 
HCI and BTI result in increase to the threshold voltage of the 
transistor over time. So, it is expected that operating the circuit at 
lower voltages, especially near or lower than threshold voltage will 
result in more drop in circuit speed after aging compared to a circuit 
that is run at nominal voltage.  
Simulation results support this hypothesis. Figure 6 shows the plot 
of the delay of a path, as it is aged from zero to five years. While all 
circuits are operated at nominal voltage during their lifetime, each is 
subjected to a different voltage, i.e., 0.5, 0.8 and 1.2V at the time of 
delay measurement. As expected, the delays are higher at lower 
voltages. In addition, we observe that at 0.5V, the effect of aging is 
more distinguishable, as seen by the clear increase in delay after 
aging. We intend to use this observation to augment our proposed 
method for improved detection of counterfeit ICs. Section 6 shows 
the improvement in results using this. 

 
Figure6. Delay v/s Age for diff supply voltage used during post-

stress phase (testing phase only) 
 

5. EXPERIMENTAL SETUP 
All the circuits are simulated by HSPICE tool using publicly 
available 90nm Predictive Technology Model (PTM). The effect of 
aging is simulated through MOS Reliability Analysis (MOSRA) 
model provided by HSPICE. MOSRA accurately models the HCI 
and BTI aging mechanisms and analyzes their impact on circuit 
performance using actual circuit operation and stimulus. It operates 
in two phases of simulation: pre-stress and post-stress. Different 
operating voltages can be used for each phase. In our analysis, we 
use the nominal voltage for the pre-stress phase, which represents 
the typical usage of the circuit. We use different voltages for the 
post-stress phase (testing stage). 
The effect of process variation is modeled using Monte Carlo (MC) 
simulation. Specifically, we vary the threshold voltage of transistors 
(Vth0) following Gaussian distributions with means obtained from 
nominal values in the technology file and 3σ variation (30mV). 
Using MC, 100 random process points each are evaluated for all age 
groups. The characterization step, to arrive at reference curves, uses 
70 points each for every age group. For the testing phase, the 
remaining 30 points each (in all 150 unknown chips) are used for 
validation of prediction scheme. 
Test Circuits: A variety of test circuits are used in this paper. The 
results of Section 6 are based on two sets of circuits. The first set is 
a variety of inverter chains that differ from each other in their 
typical delay and activity. Typical delay is the characteristic delay 
of the path, which has not been affected by either process variation 
or aging. We modify the depth of the chain and the load capacitance 
at gate outputs in order to arrive at different typical delays. The 

input stimulus is controlled to bring desired variation in the activity 
for different paths. The second set of test circuits for Section 6 
consists of typical circuits such as dividers, discrete-cosine-
transform circuits and few ISCAS benchmarks. 
 

6. Results, Analysis and Improvements  
This section is organized in three parts. In the first part, we use the 
set of inverter-based circuits for establishing the results of our base 
method, and the augmented reduced voltage method. In the second 
part, using the same set of circuits, we show a detailed sensitivity 
analysis of the method of detection to the type of paths selected. As 
a remedy to this sensitivity, we introduce 3-path approach, and 
show the improved results. In the third part, we share our results on 
some standard circuits. Test results are categorized into two sets: 
Plain New/Old detection and Exact Prediction of age of the design 
under test. For exact age analysis, we consider 4 possible ages: 0 
(new), 2, 5 and 10 years. 

6.1 Basic 2-path method 
Table 1 shows the results achieved for the 2-path method as 
described in Section 4. It also provides some basic information 
about the two paths involved in this experiment. 
 
Candidate Paths Transition Activity Ratio 100:1 

Typical Delay Difference None 
Post-Stress Voltage 1.2V 

Prediction of 
New/Old 

Overall Correct Prediction 87% 
False Negatives 6 out of 90
False Positives 10 out of 30 

Exact Prediction 
of Age	 Overall Correct Prediction	 58%

Table1. Prediction results for Basic 2-Delay method 
 
The result shows that if the two paths have an equal typical delay 
(in the absence of PV effect) and one of them is 100 times more 
active than the other, we are able to predict with 87% accuracy, 
whether a chip is old or new. This method is seen to have a high 
false positive rate, which means we will be discarding more than 
30% authentic chips as potential counterfeits. It is also shown that 
the exact age prediction is correct only 58% of times. 

 
Figure7. Curve-fits across different ages, for different post-

stress voltages  
Now for the same experimental setup, instead of making the post-
stress measurements at 1.2V, we use an operating voltage of 0.5V. 
As illustrated in Figure 7, the relationship curves obtained at 0.5V 
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1) Minimum activity ratio between the high activity paths to low 
activity path is 5x. The activity ratio between the higher 
activity paths should be minimal. 

2) In terms of typical delay, all paths are within 15% difference in 
typical delay to each other. 

In Figures 10-11, for any data cell of the variation matrix, 10 
possible triplets are evaluated. On an average, large improvements 
are observed in the prediction results for all triplets, except for a few 
outliers. Hence, each data cell value records an average of the 
%prediction over the chosen triplets. The sensitivity of the plain 
detection is almost reduced to nil, and percent detection is regained 
to 100%, and the exact age prediction is also correct over 90% of 
times, if the activity ratio between high activity and low activity 
path is at least 10x (minimum activity ratio). 

6.3 Real circuits 
The 3-D method is deployed on a few standard circuits like 
multiplier, divider, discrete-cosine-transform (DCT) module, and 
combinational circuits from ISCAS benchmark. Top critical paths 
were extracted from the circuits. As expected, the degree of 
variation in typical delays among the critical paths is not more than 
10%.  Some sample results for each flavor of circuit, is shown in 
Table2. The typical delay difference between the 3 chosen paths is 
also captured, and minimum activity ratio is 10x. 

Circuit % Diff in 
typical delay 

Detection of 
Old/New 

Exact Age 
Prediction 

DCT 6-7% 100% 97.5% 

Divider <1% 100% 98.3% 

C6882 (ISCAS) 15% 97.5% 91% 

Table 2: Results for standard circuits 

This idea can be easily extended to real designs. Finding the 
candidate paths, as per the requirement of the detection scheme 
should not be very difficult. Critical paths from a functionally active 
block can be chosen. And the third path can be chosen from a test 
path of the chip. If the critical test paths are not as long, we can re-
choose the high activity paths such that the typical delay is in the 
range of the critical test path. Eventually, the aim is to not have 
more than 10% typical delay difference between the paths. If the 
typical delays of the chosen paths are almost equal, then even 2 
paths of different activity are sufficient for successful detection. 

7. Conclusion and Future Work 
In this paper, we presented a technique for successful detection of 
counterfeits among existing ICs which do not have in-built age-
detection circuits. For indicating the age of the design, we used a 
simple parameter of circuit delay, and filtered out the impact of 
process variation by using the relationship between the delays of 
paths, instead of using the delay of a single path. Our results that 
were based on industry-enabled simulation framework show a 
detection rate of over 97% for identifying an old IC from a new IC. 
As no circuit study is complete without real chip validation, as 
future work, we plan a chip tapeout. A variety of paths with varied 
typical delay will be fabricated. All the chips will be extensively 
characterized in terms of delay while running at different operating 
voltages. Later, the chips will undergo accelerated aging using heat 
and high operating voltage. The chips will be consequently 
characterized several times and the results will be aggregated. The 
proposed methodology will then be employed to detect aged versus 
new devices and prediction rates will be compared to those from 
simulation results. 
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