
1

An Locking and Unlocking Primitive Function of FSM-modeled

Sequential Systems Based on Extracting Logical Property

Edward Jung*, Chih-Cheng Hung**, Ming Yang* and Seonho Choi***

*School of Computing and Software Engineering, Center for Biometrics Research, Southern Polytechnic State

University, GA, USA

** Anyang Normal University, Anyang, China

and School of Computing and Software Engineering, Center for Biometris Research, Southern Polytechnic State

University, GA, USA

*** Department of Computer Science, Bowie State University, MD, USA

Abstract

In this paper, we attempt to address the following question in the field of computer security: “can

we build a primitive security function or a building block without an explicit modification of the

original system for a class of systems modeled in a deterministic FSM?” As one of possible solutions,

we propose a logical (or functional) property extraction-based solution (in general) and a

synchronicity-based sequential locking and unlocking method (in particular). The proposed method is

solely based on extracting an inherent property embedded in the original D-FSM. The property being

considered is synchronicity due to the desirable characteristic that can be used for the design of an

efficient sequential locking and unlocking method. The proposed method and its application to digital

watermarks (as one of potential applications) are presented and analyzed. Both the feasibility and the

limitation are discussed. However, the basic idea is general in a sense that (1) it can be applied to other

security applications, and (2) other logical properties can be further explored.

Key Words: Property-based Security, Functional property, Synchronicity, Locking/Unlocking, Digital

Watermarks, D-FSM

1. Introduction

One of core functions in designing secure systems is the mechanism of locking and

unlocking (e.g., a password-based mechanism). In designing such a system (e.g., embedded

systems or controllers), the system is frequently modeled using a deterministic finite-state

machine (D-FSM) [8, 17]. Traditionally, the approach to the D-FSM based security solutions

has focused on modifying the original D-FSM. Despite the higher-level of security that can be

potentially achieved by this modification-based solution, it suffers from the increased

complexity of modifying the original D-FSM and the associated overhead (e.g., performance,

area). In many security applications, building an efficient locking and unlocking is important.

To address this problem, we proposed a solution ([7]) based on extracting the property (i.e.,

synchronicity) embedded in the original D-FSM and using that property to build a security

building block (i.e., locking/unlocking). This does not require modifying the system (i.e., D-

FSM) and the benefit of this approach is efficiency.

2

In this paper, we extend the earlier work [7] to the problem of digital watermarks as one of

potential applications. Fundamentally, our work (both in this paper and [7]) is based on our

belief (or principle) that any security solutions must minimize (or avoid if possible) the

changes or modifications in the system solely to improve security. In doing so, we are

promoting a logical property extraction-based security solution as much as possible (i.e., if

the system possess a desirable property). In this approach, a certain type of property will be

defined first, and then be extracted from the system, and finally be applied to build a certain

type of security primitive functions (e.g., a locking/unlocking method) or the broader security

solution itself. The contributions of this work can be summarized as follow:

 We propose fundamentally a different approach to dealing with the overheads of

security solutions in a certain class of system (i.e., FSM-based sequential systems).

 We develop a locking and unlocking method as one of the security building blocks. The

method is based on simply extracting the system’s inherent logical property (i.e.,

synchronicity) embedded in D-FSM.

 Simple algorithms are devised for both the automatic generation of key input sequence

(for locking) and for using the key input sequence to unlock the system (for unlocking).

 For a higher level of security (e.g., the military application), we outline a re-locking

enforcement mechanism with a minimal modification of D-FSM.

 Using digital watermarks, we show that a set of watermark properties and attack

resiliency can be satisfied with the proposed method. Collision probability is estimated.

Preliminaries are provided in Section 2. The locking and unlocking method is described in

Section 3. In Section 4, we consider digital watermarks as an application. An enforcement

method is outlined in Section 5 and the conclusion is made in Section 6.

2. Preliminaries

2.1 Application model

 Producer is an entity that has the ownership of a creative work (e.g., the design

specification of a sequential system). Consumer is an entity that needs to use In the

horizontal business model (e.g., an outsourcing model), the relationship between and is

asymmetric: is not transparent to . In the semiconductor industry, an example of and

can be the design specification of IC/RTL/HDL-level blueprint (i.e., modeled in D-FSM) and

a foundry which needs to use the blueprint, respectively.

2.2 Preliminary background

The following assumptions (A1, A2, and A3) are commonly used in the related literatures [2,

3, 4]. A1 is general while A2 and A3 are specific in the related security application domain.

3

 A1: A system is modeled with a deterministic finite state machine (D-FSM). D-

FSM (), where , , and are finite sets of inputs, outputs, and states,

respectively. is the state transition function. is the output

function.

 A2: D-FSM has both a power-up state Sp and a starting state Ss.

 A3: The system (i.e., D-FSM) will function only when it is starting from Ss.

Synchronicity: The synchronicity of D-FSM has been studied [8, 12]. The study was

conducted based on two notions: (1) uncertainty, and (2) synchronizing sequence. The

primary results can be summarized as follows:

 Uncertainty as non-increasing function: Initially, a machine M1 can be in any one

of its “n” states. That is, the initial uncertainty of a machine is the entire set of states.

By applying a sequence of input, the set of states that the machine can move (i.e.,

future uncertainty) will not increase.

 Synchronizing sequence: Regardless of the initial state or the output, a

synchronizing sequence of is a sequence which takes to a specific final state, if

 possesses the sequence.

The systematic way of deriving a synchronizing sequence was developed using a

synchronizing tree [8]. is a binary tree, where a root node represents the initial uncertainty

and the depth of corresponds to the length of binary input sequence. For a given , can be

constructed until some node is associated with an uncertainty containing just a single element

known as a singleton state (i.e., no uncertainty). For the detailed description, refer to [8]. For

the specific example relevant to the proposed work, refer to our previous paper [7].

2.3 Summary of previous work

 Much of work done in designing D-FSM-based security solutions are based on modifying

the structure of D-FSM [2, 3, 4, 6, 12]. Some has added dummy states while others have

introduced additional edges between states. Despite the original functionality that is preserved,

both an additional overhead and the increased level of design complexity have been reported

for this approach. Another approach, possibly more promising one than changing the structure

of FSMs, is to extract a physical property from the system [1]. However, these approaches are

different from our approach which is based on extracting logical property that is inherently

embedded in D-FSM. Thus, our approach is specific design-agonistic and can be used during

the pre-optimization phase. With the logical level extraction, any design optimization

techniques should be more effectively used.

1 A deterministic finite-state machine D-FSM and simply, a machine M are used interchangeably.

4

3. Locking and Unlocking Method - General

We describe three necessary operations that are used in related applications: (1) creating a

lock (locking), (2) embedding a lock, and (3) unlocking. The first two operations are

performed by the producer while the consumer exercises the third operation.

3.1 Creating a lock (Locking)

A lock is fundamentally secret information created by . Many possibilities of creating a

lock exist. One way is to hide . If this approach is taken, a specific sequence of input that

will transit Sp to Ss is important and thus can serve as secret known as the pass key . In this

case, a lock can be defined as a pair of . Another possible approach is to define a

lock in terms of Ss (solely). In this case, however, the consumer has to derive Ss by running

some experiment (e.g., synchronizing experiments requiring the construction of a

synchronizing tree). We take the former approach since it can potentially provide more

flexibility to and also less burden on .

In a ‘n”-state D-FSM, any state can be chosen as a locking state, if a certain condition is met.

The condition is that the chosen locking state Si must be singleton in the synchronizing tree T.

If there are more than one singleton states, we choose the one in the lowest level. If there are

more than one singleton states in the same level, choose one randomly. In this way, the

singleton state Ss will provide the longest path from itself to the root node (or vice versa). The

steps for creating a lock (by) are as follow: Given an “n”-state D-FSM,

1) Construct “synchronizing tree T”;

2) FOR LOOP (Level “l” = 1, 2, …., j)

a. If exist, record a set of all “singleton” states {S(l, 1), S(l, 2), ….}; /*

at level “l”*/

3) Determine the singleton state S* at the lowest level “l”; if more than one states,

choose one randomly at the lowest level “l”;

4) Work backward from S* to the node at the root level (level 0) to construct the

“longest” “synchronizing sequence”; /* this sequence becomes the pass key Ks */

5) Send Ks to Consumer C in a secure way.

__

Note that the complexity of algorithm is () due to the construction of the

synchronization tree T. Step 5 can be done using either public key system (e.g., PKI),

symmetric key system (i.e., a shared key), or other method [14]. Also, note that in Step 5 only

Ks will be sent to C. This is due to the property of “synchronicity” which will guarantee the

D-FSM move to the correct initial state Ss, irrespective of the power-up state on .

3.2 Embedding a lock

In our approach, a lock is (or should be) embedded in the D-FSM itself. There is no need to

5

explicitly embed the lock (which is done by the traditional method.) This is one of the key

advantages of the proposed method.

3.3 Unlocking

 Consumer can unlock the system using Ks, the key input sequence, received from in

Step 5 (Section 3.2). The steps for unlocking are as follow:

__

1) Power up the system; /* The system can be in “any” one of the states; initial

uncertainty */

2) Apply Ks to unlock the system; /* The system should be in the starting state Ss */

__

Note that the unlocking operation is simple. However, it is simple only for C who knows Ks.

In the following section, we provide the analysis for the length (i.e., least upper bound) of

pass key (Ks). It is known that the unlocking step is usually the most expensive step in many

security applications [9, 16].

Limitation: Synchronizing sequence(s) do not exist in all sequential systems or D-FSMs.

Thus, the proposed method can not be applied to a sequential system or D-FSM which does

not possess a synchronizing sequence. A possible solution is provided in Section 6.

3.4 Analysis – Length of Synchronizing Sequence (Ks)

Intuitively, the longer the length of , the higher the security level is. Since it is known that

the least upper bound on the length of a synchronizing sequence is unknown, we should focus

on analyzing a range of values, [() ()].

Based on [11], we present the results that are relevant to the study of this work below.

Theorem 1: If an n-state D-FSM has a synchronizing sequence, or sequences, then it has

one such sequence whose length is at most
 ()()

.

Proof: To reduce the initial uncertainty to a singleton uncertainty, it takes

 () () ∑
 ()

 Since

 ()

 for , ∑

 ()

 ()()

 ()

 ()()

 ■

Theorem 2: For every n, there exists an n-state D-FSM which has a synchronizing sequence

of length() .

Proof: Refer to the proof in Theorem 13-5 [8] ■

Corollary 1: The least upper bound L on the length of synchronizing sequence is bounded

by()
 ()()

.

6

Proof: Directly from Theorem 1 and Theorem 2 ■

Theorem 3: For every n, there exists ways of constructing a pair of states .

Proof: In an n-state D-FSM, there exists “n” number of possible power-up states and “n”

number of possible starting state . Thus, the total number of pairs is ■

Corollary 2: The least upper bound on the number of ways of unlocking the system by

trying all possibilities is bounded by () ()
 ()()

Proof: Directly from Corollary 1 and Theorem 3 ■

Implication: Corollary 2 says that if both and are unknown, the adversary would try

this many possible ways to unlock the system (in the worst case). The feasibility of applying

the synchronicity to the benchmark systems is shown in Table 1. (For the detailed discussion,

refer to [7])

Table 1. The minimum and maximum least upper bound for the sample circuits using benchmark

sequential circuits [ISCAS’89][5], where *: a number at least bigger than “1.9e+25”; **: a number at

least bigger than “4.5e+30”

4. Digital Watermarking - Application

We consider digital watermarking as an application. First, we do the simple mapping

between the general locking/unlocking method (i.e., three operations in Section 3) and the

watermarking process. Then, we address the properties of watermarks and attack resiliency.

Finally, we analyze the collision probability.

4.1 Mapping

A digital watermarking process is very similar to the three operations described in Section

3.1. The following three-step processes are used in digital watermarks [9, 13]: (a) signature

(i.e., watermark) creation, (b) signature embedding, and (c) signature verification. The

process can be directly mapped to the three operations.

Circuits

No. of

FFs

No. of States Least Upper Bound

Q (min)

Least Upper Bound

Q (max)

s27 3 8 3136 3584

s820, s832 5 32 984064 3724629

s1488, s1492, s386, s510 6 64 16257024 119275520

s208 8 256 4261478400 122166094506

s27-n3 9 512 68451303424 3909359763456

S1196, s1238 18 262144 4.7e+21 1.3e+26

s991 19 524288 7.5e+22 4.4e+27

s382, s400, s444, s526, s526n 21 2097152 1.9e+25 4.5e+30

s635, s838 32 4294967296 * **

s15850 597 5.1e+179 * **

s35932 1728 21728 * **

7

4.2 Watermark Properties and Attack Resiliency

A digital watermark must satisfy a set of properties to provide security and resiliency against

attacks [9]. We consider the following main properties (Table 2) and demonstrate that they

can be satisfied by the methods proposed in Section 3.

Table 2. Properties of digital watermarks in a form of both general and specific properties.

Property Specific properties

Unobtrusiveness

The presence of signature (i.e., watermark) should not

change/modify the original functionality of D-FSM.

P1.1

The signature should be invisible to the design (i.e., D-FSM) P1.2

Universality The same watermarking method should be applicable to all common

sequential systems (i.e., D-FSMs)

P2

Unambiguity Retrieving the signature should be conclusive in proving the

ownership.

P3

Robustness

The embedded signature should be difficult to remove. P4.1

Multiple producers or individuals who create their signatures

should have a unique set of characteristics (i.e., avoid the

collision of watermarks)

P4.2

In Table 3, we provide the informal reasoning for satisfying each of the watermark

properties (P1.1 – P4.2) listed in Table 2.

Table 3. Satisfying the watermark properties with the reasoning

Specific Properties Reasoning

P1.1 Preservation of

functionality

Any explicit changes to the design (i.e., D-FSM) are not made. The

original functionality should be preserved.

P1.2 Invisibility The signature is naturally embedded in the original design (D-FSM).

P2. Universality

The proposed method can be used for all common sequential systems,

as long as the system possesses the synchronicity property. [NOTE:

94.6% of the benchmarks MCNC89 FMSs possess the synchronicity

property [12]]

P3. Unambiguity

The probability of finding a valid sequence is very low without

knowing the secret key pass. The retrieval of a signature is a

strong proof of ownership. [For further improvement, see Section 5]

P4.1 Removal of

signatures

The signature is an internal property of system. Removing an

internal property of system will be not only difficult but will

change the functionality of the system.

P4.2 Collision of

signatures

The probability of collisions is very low. Guessing the secret key

correctly () and the staring state () will be very difficult.

[See Section 4.3]

4.3 Analysis – Collision Probability

In this section, the collision probability is estimated. First, we describe the general problem.

Then, the problem of estimating collisions for the proposed method is addressed using relaxed

assumptions. Most of analysis in this section is performed based on [1].

General Problem: what is the probability that among K possible objects drawn from the

population Ω { } at least two have the same value? (i.e., the birthday problem).

8

Specific Problem: Given a collection of K binary sequences, each of length L, what is the

probability of collision among the K binary sequences?

Analysis: Consistent with the analysis in [1], the collision probability can be formulated as

follow: Let denote the probability that the synchronizing sequence under consideration is

the binary sequence i. There are a total of K sequences with length L, where the minimum and

maximum values of K are 1 and , respectively. Let () be the collection of

probabilities of all the sequences. At least two cases should be considered:

Case 1: All the probabilities Pi are equally likely (i.e.,

) Then, the

probability of no match between K binary sequences is given by (

)

()

(
)()

 .

The probability of collision under this case (i.e., equally likely) is:

 (

)

()

(
)()

 (1)

Case 2: When the sequences are not equally likely, the probability of collision is generally

given by the following formula:

 () () ∑ () () ()
 (2)

There are three sub-cases in specifying () in (2):

 Sub-case 1: The binary bits in each sequence are independent and identically

distributed with probability () () Then,

() () () where the number of “zeros” and “ones” are denoted by

 () () respectively.

 Sub-case 2: The bits in each binary sequence are independent but not identically

distributed with probability () () . If we define

the function () ()

∏ ()

 Sub-case 3: The bits in each binary sequence are correlated and their cumulative

distribution function is P.

In [1], the authors suggested that the Nunnikhoven’s approximation [11] be used, since the

exact solution of (2) is intractable.

Estimation of collision probability () : Since finding the exact collision

probability is complex, we consider the worst case at level with the maximum number of

nodes in the synchronizing tree .

Worst-case scenario: From Theorem 1,
()

 The number of nodes at level

 in should be between 1 and . Since the maximum collision probability

9

should occur at the level where there is the highest number of nodes in , all the nodes at level

 should be considered. In the worst case, there exist nodes. Suppose that the

set of nodes at the last level is denoted by { } , where

 () () ⁄ . Each node in level L is any subset of V. Assuming that each element in the

subset is equally likely, the probability of a node such that is singleton is:

 ()

∑ (
)

 (3)

Then, the average number of singleton nodes at level will be ()

 () () ⁄ . Since the necessary condition for the existence of

synchronizing sequence is that the node should be singleton, we can now consider only

singleton nodes. Let {

 ()
 } = a set of nodes with a singleton state at

level . Assuming that each node in occurs equally likely, we can apply the

birthday problem mentioned above. Specifically, the maximum collision probability under

the relaxed assumptions can be estimated as follow: Given with (), the probability of

collision is:

 () () (() () ⁄ () ()) (4)

Note that (4) denotes the worst-case, meaning that the collision probability will not exceed

this number. Due to the extreme calculation, we were unable to run the simulation even for a

reasonable value of However, we expect that the collision probability is very low. This is

due to the fact that the number of nodes in level is exponentially growing (i.e.,)

and the number of possible subset of states (i.e., uncertainty) should grow accordingly. On the

other hand, the ratio of the expected number of singleton nodes (i.e., the necessary condition)

should decrease at level (i.e., the lowest level in the synchronization tree).

5. Enforcement Method

For a stronger security solution, an additional security countermeasure that can prevent an

adversary from attempting to break the key input sequence by a repeated trial search. The

proposed method is to add a self-loop singleton state to D-FSM. That is, a minor modification

to D-FSM is needed and can be done as follow:

1) Create a redundant state S(r) and add it to the original D-FSM;

2) Add a self loop to S(r); /* δ(S(r), 0) = δ(S(r), 1) = S(r) */

3) Identify the path Pc(critical path) = S(1)*, S(2)*, …, S(t)*; /* Given a derived

key sequence Ks = I(1)*I(2)*…I(p)*,Pc can be constructed; S(t)* = Ss, t = p + 1 */

4) Add a set of edges from S(1)*, S(2)*, …, S(t)* to S(r) such that δ(S(1)*,

NOT(I(1)*)) = S(r), δ((S2)*, NOT(I(2)*) = S(r), etc.

__

10

Fig.1. (a) shows the segment of an original D-FSM. The modified system is shown in Fig.

1(b). The modified system becomes a non-deterministic FSM (ND-FSM). However, any ND-

FSM can be converted to a deterministic FSM [8]. Despite the number of nodes in the

converted D-FSM will increase, the locking/unlocking method presented in the paper can be

applied.

Fig. 1 Segments of original system and modified system where the original system is a deterministic

FSM and the modified system is non deterministic FSM.

6. Conclusion

We proposed a sequential locking and unlocking method using a system’s logical property

of synchronicity. The proposed method can be performed without changing or modifying the

original system modeled in D-FSM, as long as the synchronicity property exists in the D-FSM.

One possible solution of resolving this limitation (i.e., no existence of synchronicity) is to

incorporate a partial scan so that a small subset of final states (i.e., non singleton states) is

made to be directly controllable by external input.

7. Acknowledgments

This material is based upon work supported by, or in part by, the U. S. Army Research

Laboratory and the U. S. Army Research Office under contract/grant number

W911NF1210060.

References

[1] Y. Alkabani, F. Koushanfa and N Kiyavash. Trusted integrated circuits: A nondestructive

hidden characteristics extraction approach. LNCS 5284, 2008, 102-117.

[2] Y. Alkabani and F. Koushanfa. Active hardware metering for intellectual property

protection and security. USENIX Security Symp., 2007, 291-306.

[3] Y. Alkabani and F. Koushanfa. Active control and digital rights management of integrated

circuit IP cores. Int. Conf. on Compilers, Architecture, and Synthesis for Embedded Systems,

2007, 227-233.

[4] Y. Alkabani, F. Koushanfa, and M. Potkonjak. Remote activation of ICs for piracy

prevention and digital rights management. Int. Conf. on Computer-Aided Design, 2007, 674-

677.

1 2 3 4

(a) Original System

Transition on input = 0

Transition on input = 1

(b) Modified System

1 2 3 4

5
Transition on input = 0

Transition on input = 1

11

[5] F. Brglez, D. Bryan, and K. Kozminski. Combinational profiles of sequential benchmark

circuits. Int. Symp. Circuits and Systems, 1989, 1929-1934.

[6] R. Chakraborty and S Bhunia. Hardware protection and authentication through netlist

level obfuscation. Int. Conf. on Computer-Aided Design, 2008, 674-677.

[7] E. Jung, C-C Hung, S. Choi and M. Yang, An efficient locking and unlocking method of

sequential systems, ACM Research in Applied Computation Symposium, 2012, 428-433.

[8] Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill, 1978.

[9] F. Koushanfa. Provably secure active IC metering techniques for piracy avoidance and

digital rights managements. IEEE Trans. on Information Forensics and Security, vol. 7, no. 1,

2012, 51-63.

 [10] F. Koushanfa and G. Qu. Hardware metering. IEEE Design Automation Conference

(DAC), 2001, 490-493.

[11] T. Nunnukhoven, A birthday problem solution for nonuniform birthday frequencies, The

American Statistician 46(4), 1992, 270-274.

[12] C. Pixley, S. Jeong and G. Hatchtel. Exact Calculation of Synchronizing Sequences

Based on Binary Decision Diagrams. IEEE Trans. on Computer-Aided Design of Circuits

and Systems, Vol. 13, No. 8, 1994, 1024- 1034.

[13] A. Oliveira. Techniques for the creation of digital watermarks in sequential circuit

Design. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems. Vol. 20,

No. 9, 2001, 1101-1117.

[14] M. Rodoper, W. Trappe and E. Jung, An IBC and Certificate Based Hybrid Approach to

WiMAX Security, Journal of Communications and Networks (JCN), Special Issue on Secure

Wireless Networking, Vol. 11, No. 6, 2009, 615-625.

[15] M. Tehranipoor and C. Wang (editors). Introduction to Hardware Security and Trust.

Springer, 2011.

[16] I. Torungoglu and E. Charbon. Watermarking-based copyright protection of sequential

functions. IEEE Journal of Solid-State Circuits, Vol. 35, No. 3, Feb. 2000, 434-440.

[17] L. Yuan and G. Qu. Information hiding in finite state machine. Information Hiding

Conference (IHC), Springer, 2004, 340-354.

*Corresponding author: Edward Jung, Ph.D.

Department of Computer Science and Software Engineering

Southern Polytechnic State University

1100 South Marietta Parkway

Marietta, GA 30060, USA

E-mail: ejung@spsu.edu

