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On-chip Structures and Techniques to improve

the Security, Trustworthiness, and Reliability of

Integrated Circuits

Xuehui Zhang, Ph.D.

University of Connecticut, 2013

Due to the globalization of the semiconductor design and fabrication process, inte-

grated circuits (ICs) are becoming increasingly vulnerable to malicious activities.

There are two major problems that impact the security, trustworthiness, and relia-

bility of ICs used in military, financial, or other critical applications: (i) Malicious

inclusions and alterations, known as hardware Trojans, could be easily inserted

into intellectual properties (IPs) or ICs by an untrusted process. These hardware

Trojans may leak confidential information to an adversary or potentially disable

part or all of an IC at a specific target time in the field. Techniques need to be

developed to identify these hardware Trojans to prevent the potential damages.

(ii) The number of circuit-related counterfeiting incidents reported by component

manufacturers increases significantly over the past few years and recycled ICs con-



tribute major percentages of the total reported counterfeiting incidents. These

recycled ICs enter the market when electronic “recyclers” divert scrapped circuit

boards away from their designated place of disposal for the purposes of removing

and reselling the ICs on those boards. Since these recycled ICs have been used in

the field before, the performance of such ICs has been degraded by aging effects

and harsh recycling process. In this thesis, to address the above two problems,

we developed several light-weight on-chip structures and techniques to improve

the security and reliability of ICs. These structures and techniques include (i)

a verification-based flow to detect hardware Trojans in IPs, (ii) an on-chip ring

oscillator network (RON) acting as power monitors to detect hardware Trojans in

ICs, (iii) a novel technique combining the improved RON with transient current

to improve the sensitivity of the RON for hardware Trojan detection, (iv) three

light-weight sensors recording the usage time to identify recycled ICs, (v) a path-

delay fingerprinting flow with zero area overhead to identify recycled ICs, and (vi)

two true random number generators (TRNGs) to generate sequences with high

randomness, which are widely used for secure data communication and storage.

The simulation results and implementation analysis demonstrate the effectiveness

of our proposed techniques.
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Chapter 1

Introduction

1.1 Background and Motivation

An integrated circuit (IC) is an electronic circuit on one small plate (“chip”) of

semiconductor material. Several billion transistors or other electronic components

could be integrated into one IC, which is widely used in virtually all electronic

equipment, such as computers, mobile phones, other digital home appliances in

modern society, etc. According to reports from US Department of Defense [1] and

documents from US Department of Commerce [2], ICs are becoming increasingly

vulnerable to malicious activities. Hardware Trojan insertion and recycled ICs are

major problems related to the security and reliability of ICs in the recent several

years.

1.1.1 Hardware Trojan

Hardware Trojans are malicious function that can be inserted into a circuit from

register transfer level (RTL) design to fabrication process by untrusted foundry

1
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[19]. The survey presented in [19] discussed the seriousness of hardware Trojan

problem. An IC design and fabrication process (shown in Figure 1.1) contains

four major steps: RTL design (involving specification, IP blocks, and designers),

physical design (involving CAD tools, models, and designers), fabrication (involv-

ing mask generation and lithography), and manufacturing test (involving wafer

probe and packaging). In the ASIC RTL and physical design process, commer-

cial CAD tools are generally considered to be trusted since they are commonly

developed by trusted companies such as Synopsys, Cadence Design Systems, and

Mentor Graphics. However, the IP blocks, models, and standard cells used by the

designer during the design process and by the foundry during the postdesign pro-

cesses are considered untrusted [19] due to the globalization of the semiconductor

industry. For example, IP blocks provided by third party IP (3PIP) vendors over-

sea, who may be untrusted, could contains a well hidden Trojan that is designed

to be activated under specific conditions. Moreover, the fabrication step might

also be considered untrusted, because an attacker could insert a Trojan into the

IC mask.

Hardware Trojans inserted by those untrusted designers and foundries fea-

ture different physical, activation, and functional characteristics. However, they

are typically composed of trigger and payload, shown in Figure 1.2. The trigger

inputs (T1, T2, ..., Tk) come from various nets in the circuit. The payload taps

signals from the original (Trojan-free) circuit and the output of the trigger. Since
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Fig. 1.2: Trojan structure.

the trigger is expected to be activated under rare conditions, the payload output

maintains the same value as Trojan-free circuit most of the time. However, when

the trigger is activated, the payload output will inject an erroneous value into

the circuit and cause an error at the output. In addition, some Trojans may not

necessarily impact the function of the circuiti, but rather execute a code that is

designed to perform a specific function such as sending or receiving information to

or from adversary from the outside. For instance, a hardware Trojan inserted into

an microprocessor 8051 could leak the secure identification number of the design

through a peripheral equipment [70].

These Hardware Trojans could destroy the fabricated chips, cause erroneous

behavior in the field, or provide adversary with access to secret keys in secure
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hardware. Since 2007, researchers have been studying hardware trojan detection

techniques to prevent the potential damages [11]. The typical strategy is to ac-

tivate hardware Trojans by applying enumerative inputs to the circuit. Then

the functional behavior of the Trojan-inserted circuit will be different from that

of a Trojan-free circuit. However, it is very difficult to activate most hardware

Trojans since they feature different physical, activation, and functional character-

istics. Moreover, exhaustive evaluation for designs with millions of gates involves

lots of time and effort, which may be not economically viable. One of the alter-

native methods for hardware Trojan detection is to use side-channel information.

With hardware Trojans, the side-channel signature of Trojan-inserted ICs, such

as power consumption, path delay, and leakage current, will be beyond that of

Trojan-free ICs. The problem for this type of technique is that the impact of

hardware Trojans on side-channle information could be masked by that caused

by process variations. Environmental variations could also make this technique

less effective. Another problem with the side-channel analysis technique is that it

is very difficult to analyze the impact of Trojans inserted to IPs on side-channel

information since most IPs are provided in RTL code.

Due to these disadvantages of each existing technique, new techniques must

be developed to secure electrics systems, especially those used in critical appli-

cations. One of our objectives in this thesis is to develop techniques to detect

hardware Trojans effectively. In order to achieve our objectives, we run a case
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study to further understand hardware Trojans inserted into IPs in this thesis.

Then we analyze impact of hardware Trojans on a circuit. Finally, we propose a

verification-based flow to detect hardware Trojans in IPs. Also, we design a novel

on-chip structure to generate fingerprints, which eliminate the impact of process

and environmental variations to detect hardware Trojans in ICs.

1.1.2 Recycled ICs

The counterfeiting of ICs is another major issue that impacts the security of

a wide variety of electronic systems. A counterfeit component is defined as an

electronic part that is not genuine because it: (i) is an unauthorized copy; (ii)

does not conform to original component manufacturers design, model, and/or

performance; (iii) is not produced by the original component manufacturers or

is produced by unauthorized contractors; (iv) is an off-specification, defective, or

used original component manufacturers product sold as “new” or working; (v) has

incorrect or false markings and/or documentation [2].

The Office of Technology Evaluation, part of the U.S. Department of Com-

merce, reported over 10,000 incidents involving the re-sale of used or defective ICs

from 2005 to 2008 alone which is much more than other types of counterfeits [2]

(shown in Figure 1.3). From the figure, we can see that the number of reported

incidents of used ICs being sold as new or remarked as higher grade is much more

than other types of counterfeits. Note that the term recycled IC is used to denote
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Recycled ICs

Fig. 1.3: Counterfeit incidents by type of problem for microcircuits from 2005 to

2008.

used ICs being sold as new or remarked as higher grades in this thesis and the

terms unused/new IC represents the ICs that are brand new. In 2008, Business

Week published an investigation that traced recycled ICs found in U.S. military

supplies back to their sources [3]. It is reported in [4] that used or defective prod-

ucts account for 80 to 90% of all counterfeits being sold worldwide. With such

an estimate on the percentage of used ICs being sold, and the numbers relating

to semiconductor sales and counterfeiting in general presented in [5], it could be

possible that the intentional sale of used or defective chips in the semiconductor

market could have accounted for about $15 billion USD of all semiconductor sales

in 2008 alone. Note that this number could actually be much larger since many

of the counterfeit ICs go undetected and are being used in systems today. In

addition, from Figure 1.3, we can see that the trends, shown in [2], suggest that

this number is only going to increase over time.

These used or defective ICs enter the market when electronic “recyclers”
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divert scrapped circuit boards away from their designated place of disposal for

the purposes of removing and reselling the ICs on those boards. The detailed

recycling process is shown in Figure 1.4. After carefully cleaning, those used ICs

look like new and could be re-used in critical applications. It is vital to prevent

recycled ICs from entering critical infrastructure, aerospace, medical, and defense

supply chains since they will fail sooner and less predictably than new chips.

Since the recycling process usually involves a high temperature environment

to remove ICs from boards, there are several security issues associated with these

ICs: (i) a used IC can act as a ticking time bomb [6] since it does not meet the

specification of the unused (new) ICs; (ii) an adversary can include additional

die on top of the recycled die carrying a back-door attack, sabotaging circuit

functionality under certain conditions, or causing denial of service [7]. Therefore,

it is vital that we prevent these recycled ICs from entering critical infrastructures,
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aerospace, medical, and defense supply chains.

1.2 Previous Works and Their Limitations

1.2.1 Hardware Trojan Detection Techniques

Hardware Trojans are extremely difficult to be detected since their impact on the

functionality is not always observable. A carefully designed Trojan has small num-

ber of gates placed on different locations in the design, the change on the circuit’s

parameters is almost negligible. Furthermore, the adversary can easily defeat the

Trojan detection strategies that target the testing of statistically unlikely circuit

states because the observation points of these types of approaches will be limited

to circuit states defined by only small number of nodes. The existing design for

testability methods, inserting a scan chain to the circuit, are not very helpful in

detecting Trojans. Automatic test pattern generation (ATPG) tools can generate

structural patterns to detect certain faults, i.e., stuck-at, path delay, and tran-

sition delay. Since hardware Trojans cannot be modeled by the normal flow of

ATPG, the fault locations due to these Trojans cannot be detected. Finally, hard-

ware Trojans may be decomposed into different categories based on: structure,

function, distribution, parameters, and size. Therefore, it is fairly impossible to

model all possibilities and utilize these models to identify Trojans in a design by

comparison.

Recently, several approaches have been proposed to identify Trojan-inserted
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ICs since 2007 [19]. These detection methods can be classified into three cate-

gories: side-channel signal analysis, Trojan activation, and monitoring architec-

tures. Side-channel signal analysis has been utilized to detect hardware Trojans

by measuring circuit parameters. Examples of this type include: power-based

analysis [11] [12] [19], current analysis [15], and delay-based analysis [16] [17].

The authors in [11] were the first to use power signatures to measure the

power contribution of Trojans by applying random patterns, and observing the

power consumption. A Trojan-free IC is supplied as a golden IC to generate a

power signature, which will be used for comparison against target ICs in the paper.

Path delay information is collected to build a series of fingerprints from Trojan-

free circuit [16]. For all the methods using side-channel information, the basic

idea is shown in Figure 1.5. Different side-channel information will be collected

from the Trojan-free ICs and the circuit under authentication (CUT). If the side-

channel information of the CUT is beyond the signature of those Trojan-free ICs,

with a high probability that the CUT is Trojan-inserted. Otherwise, it could be

Trojan-free. Side-channel analysis methods are effective for Trojans that have a

significant effect on power, current, and delay. However, there are many variables

which affect these parameters, such as measurement noise, process variations, and

environmental variations, and may mask Trojan’s contribution to the side-channel

signals.

The second Trojan detection method is to use Hardware Trojan activation
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Fig. 1.5: The basic idea of methods using side-channel information.

strategies, which are proposed in [22] [23] [24] [25]. When hardware Trojans are

activated, with a high probability the malicious functionality could be monitored

by checking the output of the design. For example, a dummy scan flip-flop in-

sertion procedure is aimed at decreasing the potential Trojan activation time in

[25]. However, the time required to activate (i.e. launch the malicious function

of) a hardware Trojan is a major concern from an authentication standpoint.

In addition, a skilled adversary will design Trojans which activate under excep-

tionally rare conditions (e.g. a specific 32-bit instruction which would be one of

≈ 232 = 4.295 × 109 possible combinations). Therefore, the disadvantage of any

Trojan activation method lays in the difficulty of activating Trojans that are de-

signed to be enabled under very specific conditions, and an inability to detect the

non-functional Trojans listed in [18].

Monitoring structures have been also proposed to prevent the damages

caused by Trojans. For instance, reconfigurable Design-For-Enabling-Security

(DEFENSE) logic was embedded into functional designs to implement real-time
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security monitors in [27]. The DEFENSE infrastructure consists of distributed in-

struments that can be repeatedly configured to dynamically implement different

security checks to detect unexpected or illegal behavior. In [26], the Trojan-

resistant SoC bus architecture tries to prevent untrusted access to the secure

memory or data. Once the bus has detected unexpected behavior, it will block

the attacking packet and report it to the system, which will reset and initialize

necessary registers. However, with millions of nets in the circuit, it is impossible

to monitor all of them.

New techniques must be developed to detect those hardware Trojans. Our

main objectives in developing new techniques are: (i) these techniques must be

effective to detect hardware Trojans composed of even a small number of gates,

(ii) the impact of process and environmental variations on these techniques must

be minimal, (iii) these techniques must be resilient to attacks, and (iv) the mea-

surement and identification process must be done by using time efficient, low-cost,

and user friendly equipment.

1.2.2 Recycled ICs Identification

In the past several years, several techniques related to recycled ICs detection

have been developed. Physical unclonable functions (PUFs) implement challenge

and response authentication for IC identification [48] [49] [50] [51] [52]. For each

physical stimulus, the circuit will react in an unpredictable way due to the complex
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interaction of the stimulus with the physical structure of the PUF and the inherent

process variations. As the physical variations for each IC are unique, a distinct ID

can be obtained for each IC through the PUF. Techniques to protect ICs against

counterfeiting via active and passive authentication and identification (also known

as hardware metering) have been proposed in [35] [53] [54]. Metering techniques

attempt to ensure that over-production of ICs will be prohibited. The above

approaches are effective at authenticating ICs but not at identifying recycled ICs

since they are expected to have the same IDs as the unused ICs.

The computer-aided design and reliability research community has also seen

extensive research on analyzing the aging of ICs. In particular, ring oscillator

based reliability analysis has become a common practice. For instance, a silicon

odometer has been proposed to monitor different types of aging effects [55] [56];

however, the objective was to improve the reliability of ICs, not to identify the

recycled ICs. Such sensors will be ineffective if they are to be used in detecting

recycled ICs due to the presence of process and environmental variations.

On the other hand, since recycled ICs have the original appearance, func-

tionality, and markings as the devices they are meant to mimic, even the best vi-

sual inspection techniques will have difficulty identifying these ICs with certainty

[8]. Physical tests, described in [9], are often used to identify recycled ICs by vi-

sual inspection, blacktop testing, scanning electron microscopy (SEM), scanning

acoustic microscopy (SAM), x-ray imaging, x-ray fluorescence, fourier transform
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infrared (FTIR) spectroscopy, etc. These methods can efficiently detect recycled

ICs with mechanical defects, such as defects in package, lead, bond wires, die

etc. However, they cannot detect recycled ICs without these physical defects.

Moreover, all the ICs under physical test cannot be verified as most of these tests

are based on sampling. On the other hand, electrical detection methods can be

applied to all the ICs under test. SAE AS5553 [9] incorporates some electrical

tests such as DC curve trace, full DC test, key (AC, switching, functional) and

full functional tests at ambient temperature and over temperature in their detec-

tion procedure. However, the applicability of these tests to today’s complex ICs

(microprocessors, memories, programmable logic devices, ASICs, etc.) is a major

concern. Detection of recycled ICs using electrical tests has not yet been verified

completely and there are currently no available documents to guide recycled ICs

detection using electrical tests.

Therefore, new techniques need to be developed to help measure recycled

ICs’ specifications and effectively detect them if they have already been used in

the field even for a short period of time. The major difference between recycled

ICs and unused ICs is that recycled ICs have already been used and experienced

aging. We will proposed our recycled ICs identification methods based on the

performance degradation caused by aging effects in this thesis. The usage time of

ICs could be also reported by our techniques to identify recycled ICs.



14

1.3 Major Contributions

With the above motivation, this dissertation is devoted the development of on-

chip structures and techniques for hardware Trojan detection and recycled ICs

identification to improve the security, trustworthiness, and reliability of ICs. The

major contributions of this thesis can be divided into the following three parts.

1.3.1 Hardware Trojan Detection

Hardware Trojan Detection in 3PIPs: as we mentioned, hardware Trojan

detection in ICs is a difficult task. However, detection of Trojans in 3PIPs is even

more difficult since IP vendors usually provide specifications and the source code,

both of which may contain Trojans. Conventional side-channel techniques for IC

trust are not applicable to IP trust. Identifying a few lines of RTL code in an IP

core that contains a well-hidden Trojan is an extremely challenging task. Given

its complexity, there is no silver bullet available.

One of the major contributions of this thesis is the development of a novel

flow to detect hardware Trojans in 3PIPs, involving formal verification, coverage

analysis, redundant circuit removal, sequential ATPG, and equivalence theorems.

It is the first time that formal verification and code coverage are used to help

identify potential Trojans. Redundant circuit removal and equivalence theorems

are developed to reduce the number of potential Trojan gates.

Hardware Trojan Detection in ICs: the RON architecture is proposed



15

to generate a power supply fingerprint, used to identify malicious alterations in

ICs. Each ring oscillator acts as a power monitor and captures the voltage drop

caused by hardware Trojans close to it. In order to improve the sensitivity of the

RON for hardware Trojan detection, we developed a revised RON structure. Each

component of ROs in the revised RON is placed in each row of the design and each

row contains at lease one component of one RO. Therefore, the voltage drop caused

by hardware Trojans will be captured by at least one RO that shares power supply

with them. A novel data analysis method is also proposed to separate the impact

of hardware Trojans on ROs from that caused by process variations. The area

overhead and power consumption of the RON is negligible compared to current

designs with millions of gates.

The proposed RON structure was implemented in test chips fabricated us-

ing the IBM 90nm process by MOSIS. Hardware Trojans composed of different

number of gates were also inserted into the design. With our proposed data

analysis method and IC classification technique, the silicon results show that

Trojan-inserted ICs could be identified even in the presence of obfuscating process

variations, measurement noise, and environment variations.

1.3.2 Recycled ICs Detection

Another major contribution of this thesis is the development of techniques for

recycled ICs detection. Since recycled ICs have been used before they are resold in
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the market, the performance must have been degraded by aging effects. Therefore,

performance degradation, such as RO’s frequency degradation and path delay

degradation, can be used to identify recycled ICs. Leakage current and transient

current degradation could also be used for recycled ICs detection.

In this thesis, we define the recycled ICs problem and propose techniques

using light-weight on-chip sensors and path delay degradation to detect recycled

ICs. These light-weight on-chip sensors are the first attempts to solve recycled

ICs problem. By placing the components in the sensors next to each other, the

impact of aging effects on the sensors could be separated from that caused by

process variations. With small area overhead, these sensors are demonstrated

to be very effective. However, they only work when the designs already have

those sensors in place but cannot detect ICs without such sensors. A path-delay

fingerprinting flow is proposed to address this issue. With zero area overhead, the

path-delay fingerprinting flow can identify recycled ICs for all digital ICs.

1.3.3 True Random Number Generator

A true random number generator (TRNG) is an important security module in-

tegrated in most ICs for secure data communication and storage. We propose

two TRNGs that can generate sequences with high randomness. With small area

overhead and limited power consumption, our proposed TRNGs increase the ran-

domness of generated sequences by introducing more random noise to the circuit.
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1.4 Organization

This thesis is divided into 9 chapters. The motivation, background, and contribu-

tions are provided in Chapter 1. Chapter 2 presents our case study of hardware

Trojans inserted into 3PIPs and also our proposed flow to identify the potential

hardware Trojan. Formal verification and coverage analysis are introduced in this

chapter to help hardware Trojan detection in 3PIPs. Chapter 3 describes our

on-chip structure RON to detect hardware Trojans in ICs. In order to improve

the sensitivity of our hardware Trojan detection method, we propose a technique

combining the revised RON and transient current to detect hardware Trojans in

Chapter 4. The silicon evaluation results of our RON and IC classification al-

gorithms are presented in Chapter 5. Chapter 6 describes our three light-weight

on-chip sensors to identify recycled ICs based on the performance degradation

and usage time of ICs. Chapter 7 presents the fingerprinting flow for recycled ICs

identification based on path delay degradation caused by aging effects. Chapter 8

describes two novel TRNGs to generate random sequences with high randomness.

We conclude this thesis in Chapter 9, with suggestions for future work.



Chapter 2

A Case Study for Hardware Trojans Detection in

Third-Party Digital IP Cores

Hardware Trojans can be found in 3PIPs and ICs. We will focus on hardware

Trojan detection in 3PIPs in this chapter. In general, 3PIP cores fall into one

of the three categories: Soft, Firm, and Hard, depending on the format when

they are supplied. Soft IP cores are described using VHDL or Verilog and are the

most flexible and popular cores used in practice. Firm cores are described and

synthesized for specific libraries while hard IP cores are described at the physical

level and are supplied as GDSII file. Since soft IP cores are most widely used in

practice, in this work, we will focus on targeting Trojans in such IPs.

Detection of such Trojans is extremely difficult since there is no known

golden model for 3PIPs as IP vendors usually provide specification and source

code, both of which may contain Trojans. The conventional side-channel tech-

niques for IC trust are not applicable to IP trust. When a Trojan exists in an

IP core, all the fabricated ICs will contain Trojans. The only trusted component

18
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would be the specification from the SOC designer which defines the function, pri-

mary input and output, and other information of the 3PIP that they intend to

use in their systems. For the 3PIP supplied as register transfer level (RTL) code,

a Trojan can be very well hidden during the normal functional operation. A large

industrial-strength IP core can include thousands of lines of code. Identifying a

few lines of RTL code in a soft IP core that represent a Trojan is an extremely

challenging task.

In this chapter, a case study is presented to detect Trojans in 3PIPs, based

on identification of suspicious signals. Several concepts such as formal verification,

code coverage analysis, and ATPG methods will be employed in our technique to

achieve high confidence in whether the circuit is Trojan-free or Trojan-inserted.

It is important to note that a 3PIP source code is largely Trojan free; only few

parts may be suspicious. The challenge is to identify these suspicious parts that

will most likely be part of a Trojan. Suspicious signals are identified first by

coverage analysis with improved test bench. Removing redundant circuits and

equivalence theorems will be applied to reduce the number of suspicious signals.

Sequential ATPG is used to generate patterns to activate these suspicious signals.

Our method considers both the characteristics of dormant Trojans and redundant

circuits.
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2.1 Formal Verification and Coverage Analysis

One of the important concepts used in our method is formal verification, which

is an algorithmic-based approach to logic verification that exhaustively proves

functional properties about a design [28]. It contains three types of verification

methods that are not commonly used in the traditional verification namely model

checking, equivalence checking, and property checking. All functions in the spec-

ification are defined as properties. The specific corner cases in the test suite as

they monitor particular objects in a 3PIP could also be represented by properties,

such as worry cases, inter-block interfaces, and complex RTL structures, wherever

the protocols may be misused, assumptions violated, or design intent incorrectly

implemented. Formal verification uses property checking to check whether the IP

satisfies those properties. With property checking, we can explore every corner of

the design. For example, in benchmark RS232, there are two main functionalities

in the specification: (1) transmitter; (2) receiver. Figure 2.1 shows the waveform

of the transmitter. Take the start bit as an example; with Rst == 1′b1, clk posi-

tive edge, and xmitH == 1′b1, the output signal Uart xmit will start to transmit

start bit ”0”. This functionality is described using SystemVerilog property shown

in Figure 2.2 and the corresponding assertion is defined simultaneously. The re-

maining items in the specification are also translated to properties during formal

verification. Once all the functionalities in the specification are translated to

properties, coverage metrics can help identify suspicious parts in the 3PIP under
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Fig. 2.1: Transmitter property in the specification.

01: property e1;
02: @(posedge uart clk) disable iff (Rst)
03: $rose(xmitH) |−> ##1 (uart XMIT dataH==0);
04: endproperty
05:
06: a1: assert property( e1 );
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Fig. 2.2: One of the properties and assertions definition for RS232.

authentication. Those suspicious parts may be Trojans (or part of Trojans).

Coverage metrics include code coverage and functional coverage. Code cov-

erage analysis is a metric that evaluates the effectiveness of a test bench in ex-

ercising the design [29] [30]. It has many different types but only a few of them

are helpful for IP trust, namely line, statement, toggle, and finite state machine

(FSM) coverage. Toggle coverage reports whether signals switch in gate-level

netlist while the other three coverage metrics show which line(s) and statement(s)

are executed, and whether states in FSM are reached in RTL code during ver-

ification. Figure 2.3 shows parts of line coverage report during our simulation

with RS232. This report shows lines 72 and 74 are not executed, which help us

improve the test bench by checking the source code. If the RTL code is easily

readable, special patterns that can activate those lines will be added to test bench.
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01: Line No Coverage Block Type

02: 69 1 ALWAYS

03: 70 1 CASEITEM

04: 71 1 CASEITEM

05: 72 0 CASEITEM

06: 73 1 CASEITEM

07: 74 0 CASEITEM

08: 82 1 ALWAYS

09: 82.1 1 IF

... ... ... ...

Fig. 2.3: Part of line coverage report.

Otherwise, random patterns will be added to verify the 3PIP.

Functional coverage is the determination of how much functionality of the

design has been exercised by the verification environment. The functional re-

quirements are imposed on both the inputs and outputs of the design and their

interrelationships by the design specifications from SOC designer (i.e. IP buyers).

All the functional requirements can be translated as different types of assertions

like Figure 2.2. Functional coverage checks those assertions to see whether they

are successful or not. Table 2.1 shows part of assertions coverage report (Assertion

a1 is defined in Figure 2.2). The number of Attempts in the table means there are

500,003 positive edge clocks during the simulation time when tool tries to check the

assertion. The Real Success represents assertion success while Failure/Incomplete

denote assertion failure/incomplete. With ”0” failure, this property is always
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Table 2.1: Part of assertion report with RS232.

Assertion Attempts Real Success Failure Incomplete

test.uart1.uart checker.a1 500,003 1,953 0 0

test.uart1.uart checker.a2 1,953 1,952 0 1

... ... ... ... ...

satisfied.

If all the assertions generated from the specification of the 3PIP are suc-

cessful and all the coverage metrics such as line, statement, and FSM are 100%,

then with a high confidence we can assume that the 3PIP is Trojan-free. Other-

wise, the uncovered lines, statements, states in FSM, and signals are considered

as suspicious. All the suspicious parts constitute our suspicious list.

2.2 Techniques for Suspicious Signals Reduction

Based on formal verification and coverage metric, we proposed our flow to ver-

ify the trustworthiness of 3PIP. The basic idea of our proposed solution is that

without redundant circuit and Trojans in a 3PIP, all the signals/ components

are expected to change their states during verification and 3PIP should function

perfectly. Thus, the signals/components that stay stable during toggle coverage

analysis are considered suspicious as Trojan circuits do not change their states fre-

quently. Each suspicious signal is then considered as the TriggerEnable. Figure
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Fig. 2.4: The proposed flow for identifying and minimizing suspicious signals.

2.4 shows our flow to identify and minimize the suspicious parts, including test

pattern generation, suspicious signal identification, and suspicious signal analysis.

Each step in the figure will be discussed in detail in the following subsections.

2.2.1 Phase 1: Test Bench Generation and Suspicious Signal

Identification

In order to verify the trustworthiness of 3PIPs, we hope the coverage of test bench

could be 100%. However, it is very difficult to achieve 100% coverage for every

3PIP, especially those with tens of thousand lines of code. In our flow, the first

step is to improve the test bench to obtain a higher code coverage with acceptable

simulation run time. With each property in the specification and basic functional

test vectors, formal verification reports line, statement, and FSM coverage for the
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RTL code. If one of the assertions is failed even just once during verification, the

3PIP is considered untrusted, containing Trojans or bugs. If all the assertions

are successful and the code coverage is 100%, the 3PIP is considered trusted.

Otherwise, more test vectors need to be added in the test bench. The basic rule

of adding new vectors is to activate the uncovered parts as much as possible. But

the verification time will increase as the number of test vectors increases. With

the acceptable verification time and certain coverage percentage, both defined by

IP buyer, the final test bench will be generated and the RTL source code will be

synthesized for further analysis.

2.2.2 Phase 2: Suspicious Signals Analysis

Redundant Circuit Removal (RCR): The redundant circuit must be removed

from our suspicious list since they also tend to stay at the same logic value during

the verification and input patterns cannot activate them. Removing the redundant

circuit involves sequential reasoning, SAT-sweeping, conflict analysis, and data

mining. The SAT method integrated in Synopsys Design Compiler (DC) is used

in our flow.

We also develop another method to remove redundant circuit. Scan chain

will be inserted into the gate-level netlist after synthesis for design for testability

and ATPG generates patterns for all the stuck-at faults. The untestable stuck-

at faults during ATPG is likely to be redundant logic. The reason is that if



26

the stuck-at fault is untestable, the output responses of the faulty circuit will

be identical to the output of the fault-free circuit for all possible input patterns.

Thus, when ATPG identifies a stuck-at- 1/0 fault as untestable, the faulty net

can be replaced by logic 1/0 in the gate-level netlist without scan-chain. All the

circuits driving the faulty net will be removed, as well. Figure 2.5(a) shows the

circuit before redundant circuit removal. Stuck-at-0 fault of net F is untestable

when generating patterns. Net F will be replaced by 0 and the gate G driving it

will be removed from the original circuit as shown in Figure 2.5(b).

A

B

C

Z

F
G

A

0

0

1
1

1

(a)

A

B

C

Z

1

(b)

Fig. 2.5: (a) Before removing redundant circuit with untestable F stuck-at-0

fault and (b) After removing redundant circuit.

After redundant circuit removal, toggle coverage analysis for gate-level netlist
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without scan chain will identify which signals do not toggle (also called quiet sig-

nal) during verification with the test bench generated in Phase 1. These signals

will be suspicious and added to our suspicious list. By monitoring these suspicious

signals during verification, we can obtain the logic value those signal are stuck at.

We try to further reduce the number of suspicious signals in the following.

Equivalence Analysis: Fault equivalence theorems are known to reduce

the number of faults during ATPG [41]. Similarly, we develop suspicious signal

equivalence theorems to reduce the number of suspicious signals.

Theorem1 : If signal A is the D pin of a flip-flop (FF) while signal B is the

Q pin of the same FF, the quiet signal A makes signal B quiet. Thus signal A is

considered equal to B, which means if we can find the pattern that can activate

A, it will activate B as well. Then signal B will be removed from the suspicious

signal list.

As the QN port of a FF is the inversion of the Q port, they will stay quiet

or switch at the same time. Thus the suspicious signal B would be considered

equal to A and should be removed from the suspicious list.

Theorem2: If signal A is the output pin of an inverter while signal B is its

input, they will stay quiet or switch at the same time. Thus the suspicious signal

B would be considered equal to A and should be removed from the suspicious list.

Theorem3: One of the input of AND gate A stuck-at-0 will cause the output

B stay quiet and one of the input of OR gate C stuck-at-1 will make the output
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D high all along. Thus, for AND gate, B stuck-at-0 is identical to A stuck-at-0

while for OR gate, D is identical to C stuck-at-1.

Sequential ATPG: After reducing the number of suspicious signals by

applying the above equivalence theorems, we use sequential ATPG to generate

special patterns to change the value of certain signals during simulation. Stuck-at

faults are targeted by the sequential ATPG to generate a sequential pattern to

activate the suspicious signals when applied to the 3PIP. If the 3PIP functions

perfectly with this pattern, the activated suspicious signals are considered part of

the original circuit. Otherwise, there must be malicious inclusion in the 3PIP.

2.3 Simulation Results

We applied the flow to RS232 circuit. 9 Trojans from our original design and 10

Trojans from [31] were inserted into the 3PIP. Totally, there are 19 RS232 bench-

marks with one Trojan in each IP. In the following, we first present simulation

setup and test bench analysis for the 19 Trojan-inserted benchmarks. Next, the

results of redundant circuit removal and reducing the suspicious signals will be

presented. Finally, Trojan coverage analysis will be discussed.

2.3.1 Benchmark Setup

Currently, there are a total of 22 benchmarks with different Trojans in Trust-Hub

[31], from which 10 of them are at RT Level. Readers can visit [31] for more
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Table 2.2: Analyzing impact of test bench on coverage metrics (benchmark with

Trojan 1 is used).

Test Bench # Test Bench 1 Test Bench 2 Test Bench 3 Test Bench 4 Test Bench 5

Test Patterns # 2,000 10,000 20,000 100,000 1,000,000

Verification Time 1 minutes 6 minutes 11 minutes 56 minutes 10 hours

Line Coverage 89.5% 95.2% 98.0% 98.7% 100%

FSM State Coverage 87.5% 87.5% 93.75% 93.75 % 100%

FSM Transition Coverage 86.2% 89.65% 93.1% 96.5% 100%

Path Coverage 77.94 % 80.8% 87.93% 97.34% 100%

Assertion Successful Successful Successful Successful Failure

details about the specification, structure, and functionality of these Trojans in

the 10 RTL benchmarks. However, the other 9 Trojans are briefly described in

the following:

Trojan1 : The trigger of Trojan 1 is a special input sequence 8′ha6−8′h75−

8′hc0 − 8′hff . The payload changes the FSM in the transmitter of RS232 from

state Start to Stop, which means that once the Trojan is triggered, RS232 will stop

transmitting data (outputdata = 8′h0). Since the trigger of the Trojan is a four

special input sequence, the probability to detect the Trojan during verification is

1/232. If the baud rate is 2400 and RS232 transmits 240 words in one second, it

will take 207.2 days to activate the Trojan and detect the error. In other words,

it would be practically impossible to detect it by conventional verification. When

we insert this Trojan into RS232, an FSM is used to describe the Trojan input
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sequence. A three-bit variable state represents the FSM.

Trojan2 : This Trojan only adds four lines to the original RTL code. If the

transmitting word is odd and the receiving word is 8′haa, RS232 will stop receiving

words. This Trojan is less complex compared to Trojans 1 however it provides

opportunities to demonstrate the effectiveness of each step of the proposed flow.

Trojan3 : The trigger of Trojan 3 is the same as that of Trojan 1, but

the payload is different. Trojan 1 changes the state machine while Trojan 3

changes the shift process. The eighth bit of the transmitting word will be replaced

by a Trojan bit during transmission. The Trojan bit could be authentication

information, the special key to enable the system, or other important information.

Trojan4 : Trojan 4 is designed to act like a time bomb. A counter is inserted

into RS232 to count the number of words that have been sent out. After sending

10′h3ff words, the Trojan will be activated. The sixth bit of the transmitting

word will be replaced by a Trojan bit.

Trojan5 : After 24′hffffff positive edge clock, this Trojans enable signal

will become high. The sixth bit of the transmitting word will be replaced by a

Trojan bit.

Trojan6 : If RS232 receives 0 when the system is reset, the Trojan will be

activated. The eighth bit of the transmitting word will be replaced by a Trojan

bit.

Trojan7 : When the transmitter sends a word 8′h01 and the receiver receives
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a word 8′hef at the same time, the Trojan will be activated. A Trojan bit will

replace the first bit of the transmitting word.

Trojans8 & 9 : They do not tamper the original function of RS232 but add

extra one stage (Trojan 8) and three stage (Trojan 9) ring oscillator to the RTL,

which will increase the temperature of the chip quickly in the field if they get

activated.

2.3.2 Impact of Test Bench on Coverage Analysis

All the items in the specification are translated into properties and defined as

assertions in test bench. Assertion checkers is used to verify the correctness of

assertions by SystemVerilog. Another most important feature of a test bench is

the input patterns. Some test corners need special input patterns. The more

input patterns in test bench, the more, for example, lines will be covered during

verification. Table 2.2 shows five test benches with different test patterns and

verification time for various coverage metric reports for the RS232 benchmark

with Trojan 1. Generally, the verification time increases with more test patterns

and the code coverage is higher, as well. For Test Bench 1 to Test Bench 4, all the

coverage reports are less than 100% and all the assertions are successful, which

states that the Trojan is dormant during the entire verification. But if we add

special test patterns in Test Bench 5 and increase the pattern count significantly,

which can activate the Trojans inserted in the benchmark, the code coverage
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could achieve 100% and one of the assertion experiences a failure, which means

the Trojan is triggered and RS232 gives an erroneous output. A conclusion that

the IP is Trojan-inserted would be made. However, it is not easy to generate a

test bench with 100% code coverage for large IPs and the verification time will

be extremely long. This phase of the flow can help improve quality of the test

bench. Given the time-coverage trade off, a test bench is selected for further

analysis. Thus, here, we selected Test Bench 4 to verify this and the remaining

benchmarks.

2.3.3 Reducing the Suspicious Signals

All the 19 benchmarks with different Trojans were synthesized to generate the

gate-level netlist. Removing redundant circuit was done during the synthesis

process with special constrains using Design Compiler. The simulation results are

shown in Table 2.3. The second column in the table shows the area overhead of

each Trojan after generating the final layout. From this table, we can see that

Trojans are composed of different sizes, gates, and structures as well as different

triggers and payloads as mentioned earlier. The smallest Trojan has only 1.15%

area overhead. The percentage of Trojan area covered by suspicious signals SS-

Overlap-Trojan is obtained by SS-Overlap-Trojan=NSS

NTS
where NSS is the number

of suspicious signals and NTS is the number of Trojan signals. The results in Table

2.3 show that SS-Overlap-Trojan is between 67.7% and 100% as shown in seventh
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Table 2.3: Suspicious signal analysis.

Trojan Step 1: Number Step 2:Number of Step 3: Number Step 4: Number of SS-

Benchmark Area of SS after SS after of SS after SS after Overlap

(RS232) Overhead RCR with RCR with Equivalence Sequential - Trojan

Synthesis with ATPG Analysis ATPG

With Trojan 1 11.18% 22 20 17 12 100%

With Trojan 2 20.35% 17 16 3 Trojan is identified 100%

With Trojan 3 10.48% 20 15 15 10 97.3%

With Trojan 4 20.35% 3 3 3 2 87.6%

With Trojan 5 4.59% 9 8 8 7 100%

With Trojan 6 1.15 % 1 1 1 Trojan is identified 100 %

With Trojan 7 3.79 % 3 3 3 2 100%

With Trojan 8 1.15 % 1 Trojan is removed - - 100%

With Trojan 9 3.79 % 3 Trojan is removed - - 100%

TR04C13PI0 1.6% 8 3 3 3 100%

TR06C13PI0 1.8% 9 3 3 3 100%

TR0AS10PI0 2.09% 8 1 1 1 100%

TR0CS02PI0 25.3% 59 55 39 39 67.7%

TR0ES12PI0 2.09% 8 1 1 1 100%

TR0FS02PI0 25.0% 30 28 20 20 73.3%

TR2AS0API0 11.9% 19 18 11 11 100%

TR2ES0API0 12.0% 20 18 11 11 100%

TR30S0API0 12.4% 22 20 13 13 93.6%

TR30S0API1 12.3% 25 22 14 14 87.3%
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column. If all the suspicious signals are part of Trojan, the SS-Overlap-Trojan

would be 100%. This indicates that the number of signals in the final suspicious

list fully overlapped with those from Trojan. This is an indicator of how successful

the flow is in identifying Trojan signals. In addition, if the Trojan is removed or

detected by sequential ATPG, the SS-Overlap-Trojan would be 100%, as well.

Test Bench 4 is used to verify the gate-level netlist and toggle coverage

analysis reports which signals in each Trojan-inserted circuit are not covered by

the simulation with all the successful assertions. Those quiet signals are identified

as suspicious. The number of suspicious signals of each benchmark is shown in

the third column in Table 2.3. Different benchmarks have different number of

suspicious signals based on size of Trojans. The larger the Trojan is, the more

suspicious signals it has. On the other hand, the suspicious signals stuck-at values

are monitored by verification. All stuck-at-faults are simulated by ATPG tool

with scan chain in the netlist. If the fault is untestable, the suspicious circuit

is a redundant circuit and will be removed from the original gate level netlist,

in addition to the gates that drive the net. The number of suspicious nets after

redundant circuit removal is shown in the fourth column in Table 2.3. From

the table, we can see that the suspicious nets of benchmarks with Trojan 8 and

Trojan 9 are zero, which means if the redundant circuit are removed in the two

benchmarks, the benchmarks will be Trojan-free. The reason that redundant

circuit removal can distinguish Trojans is that some Trojans are designed without
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payload and have no impact on circuit functionality. Thus, we can conclude that

such Trojans can be removed by redundant circuit removal.

The remaining suspicious nets of each benchmark were processed by equiva-

lence analysis and sequential ATPG. The fifth and sixth columns in Table 2.3 show

the number of suspicious signals after the two steps. We can see that equivalence

analysis can reduce a large number of suspicious signals and sequential ATPG can

be effective as well. For benchmarks with Trojan 2 and Trojan 6, the sequential

ATPG can generate sequential pattens for the stuck-at faults in the suspicious sig-

nal. The sequential test patterns improve the test bench and increase its coverage

percentage. Even though the coverage percentage is not 100%, some assertions

experience failure during simulation. Thus, we conclude that the benchmark with

Trojan 2 and Trojan 6 is Trojan-inserted.

We have implemented our flow on 10 of trust benchmarks from Trust-Hub

[31] and the results are reported in rows 11 to 20 in Table 2.3 show that the

presented flow can effectively reduce the total number of suspicious signals. In

addition, as shown in seventh column, there is a good overlap between the num-

ber of suspicious signals and actual Trojan signals inserted into each benchmark.

However, we experience low SS-Overlap-Trojan with a couple of benchmarks, such

as RS232-TR0CS02PI0, since part of this Trojan was activated during simulation.
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Fig. 2.6: Average Trojan signals/Suspicious signals in 19 benchmarks.

2.3.4 Trojan Coverage Analysis

In the suspicious list, not all of signals are part of Trojans. However, TriggerEnable

must be in the suspicious list if the IP contains Trojan. Once one net is iden-

tified as part of Trojans, we conclude that the 3PIP is Trojan-inserted. All the

gates driving this net are considered to be Trojan gates. Figure 2.6 shows that

the percentage of Trojan signals in the suspicious list increases significantly with

our flow. As we apply different steps (step 1 through 4) to the benchmarks, on

average 72% of the suspicious signals are part of Trojan after redundant circuit

removal with synthesis and ATPG in the 19 benchmarks. However, the percent-

age increases to 85.2% when equivalence analysis is done and 93.6% of signals in

the suspicious signal list are part of Trojans after sequential ATPG is applied to

these benchmarks.
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2.4 Conclusions

In this chapter, we have presented a study to verify trustworthiness of 3PIPs, in-

volving formal verification, coverage analysis, redundant circuit removal, sequen-

tial ATPG, and equivalence theorems. The code coverage generates the suspicious

signals list. Redundant circuits are removed to reduce the number of suspicious

signals. Equivalence theorems are developed for the same purpose. Sequential

ATPG is used to activate these suspicious signals and some Trojans will be de-

tected. However, more work are needed if we want to get 100% hardware Trojan

detection rates in 3PIPs.



Chapter 3

Hardware Trojans Detection in ICs Using Basic Ring

Oscillator Network

In this chapter, we will introduce our proposed techniques for hardware Trojan

detection in ICs. A new structure, namely RON, is developed with the ability to

detect Trojans that cause power fluctuations, thereby uncovering the malicious

inclusion. A number of ring oscillators (ROs) acting as power monitors, dis-

tributed across the entire IC, constitute the RON, which takes into account the

noise caused by the Trojan gates and those caused by both inter-die and intra-die

process variations. The output of each ring oscillator represents one part of the

power signature of the entire IC. With NRO ring oscillators in the IC, a series of

power signatures can be generated by the RON. An off-chip test equipment would

be able to select which ring oscillator should be used to generate the signature and

could disable the RON when IC operates in functional mode. The number of ring

oscillators, NRO, could be adjusted according to the size of the IC and sensitivity

to Trojans, thereby scaling the network and optimizing Trojan detection. Statisti-

38
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Fig. 3.1: Five-stage ring oscillators.

cal data analysis is used to effectively distinguish the power differences caused by

Trojans from those of process variations, and identifies hardware Trojans inserted

into the IC.

3.1 Analyzing Impact of Power Supply Noise on Ring Oscillators

Two simple five-stage ring oscillators are shown in Figure 3.1: the ring oscillator

in Figure 3.1(a) consists of inverters and the ring oscillator in Figure 3.1(b) is

composed of NAND gate. The second ring oscillator has a higher sensitivity

to supply noise since one of its inputs is connected to power supply but offers

larger area overhead. In this thesis, we only use the first ring oscillator as power

monitor due to its easier analytical analysis. The frequency of this ring oscillator is

determined by the total delay of all the inverters, in the presence of supply voltage

and process variations. Assume that each stage in the ring oscillator provides a

delay of td. The delay of the n-stage ring oscillator is approximately 2 ∗n ∗ td and

the oscillation frequency will be:
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Fig. 3.2: The RLC model of a simple power line in a power distribution network.

f =
1

2 ∗ n ∗ td
(3.1)

The delay of each inverter varies according to parameters such as temper-

ature, supply voltage (VDD), load capacitance (CL), threshold voltage (Vth),

channel length (L), oxide thickness (Tox), and transistor channel width (W). Since

all ICs can be tested under the same temperature, the environmental variation

will not be considered in this work. All the remaining parameters are susceptible

to process variations and power supply noise.

Power supply noise (also known as voltage drop) impacts the delay of the

logic gates. When the voltage drops, the delay of the gates increases. Thus, a

change in the supply voltage of any inverter in a ring oscillator impacts the delay of

all associated gates, and therefore impacts the oscillation frequency. Concerning

today’s tightly designed power supply distribution networks, transitions in some

gates can impact the power supply of other gates within close proximity [42].

Figure 3.2 shows a simple power line model in which VDD supplies one row in

standard cell design. The indicated VDD represents the point where a via connects
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the power rail to the upper metal layer in a power distribution network. Nodes

G1, G2, and G3 connect to adjacent cells represented as current source for Cell 1,

Cell 2, and Cell 3. Here, for sake of simplicity, the power via is assumed to have

zero impedance and each interconnect is modeled by a resistance, inductance, and

capacitance (RLC) network. The contribution of each current source to the overall

noise is described in Equation 3.2 where V 1, V 2, and V 3 (voltage at nodes G1,

G2, and G3) are the power supply noise spectrum, V ii = Zii∗Iii(i = 1, 2, 3) (Zii is

the impedance of node i and Iii is the current) is the power noise, ρij(i, j = 1, 2, 3)

is voltage division coefficient, and ω is the frequency of the circuit. From the

equation, we can see that V 1, V 2, and V 3 are related to the neighboring gates,

demonstrating that a gate’s transition has effect on neighboring gates connected

to the same VDD line.

V 1 = V 11 + ρ21(ω) ∗ V 22 + ρ31(ω) ∗ V 33

V 2 = ρ12(ω) ∗ V 11 + V 22 + ρ32(ω) ∗ V 33 (3.2)

V 3 = ρ13(ω) ∗ V 11 + ρ23(ω) ∗ V 22 + V 33

For Trojan-inserted ICs, the switching gates in the Trojan would cause small

voltage drop on the VDD line and ground bounce on the VSS line. Thus, with

the same input patterns, the power supply noise affecting the Trojan-free IC and

Trojan-inserted IC will differ. In order to verify the impact of the Trojan on the

frequency of the ring oscillator, we implemented a 5-stage ring oscillator (shown

in Figure 3.1(a)) in 90nm technology for simulation.
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Fig. 3.3: (a) Power supply variations for Trojan-free and Trojan-inserted circuits;

(b) Cycle difference caused by Trojan gates’ switching.

In Figure 3.3(a), assume that the dashed line denotes the dynamic power in

the presence of a Trojan and the solid line denotes the Trojan-free power (assuming

V DD = 1.1V ). As can be observed, the two supply voltages only differ during the

first 2ns. These two power waveforms are applied to the ring oscillator for 400ns.

Figure 3.3(b) shows the cycle count difference due to the extra noise caused by the

Trojan. At time 0, the two ring oscillators denoting with and without an inserted

Trojan have the same period. However, with the presence of power supply noise,

the difference will grow steadily as the measurement duration increases.

3.2 Ring Oscillator Network

As mentioned earlier, Trojan gates switching impacts the frequency of a ring

oscillator due to injected power supply noise. Process variations can impact the
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threshold voltage, channel length, and oxide thickness in circuit gates which, in

turn, impacts power supply noise distribution in an IC. Since these effects may be

localized, one ring oscillator may not have enough sensitivity to distinguish the

effect of Trojans and process variations. A ring oscillator placed in one corner

of an IC may not be able to capture noise effects which occur due to a Trojan

placed in another corner of the IC. A ring oscillator network however can improve

the sensitivity to Trojan noise, and increase the accuracy in determining Trojan’s

contributions using relative values.

Our RON is composed of NRO ring oscillators distributed across the entire

IC. For different ICs, the number of ring oscillators can be adjusted accordingly

depending on the sensitivity of the ring oscillators to the gate switching in a pre-

determined proximity. The output of RON in Trojan-free ICs generates a power

signature. In this thesis, we assume that a number of golden ICs can be identified

via a thorough test process. If the output of an IC under authentication is not

compatible with the expected signature, the IC may contain a Trojan.

The oscillation cycle count generated from the ring oscillators in the RON is

used to generate the IC’s signature. For ith ring oscillator, the total accumulated

cycles, Ci, in the measurement time T is:

Ci =
∫ T

0

1

2 ∗ n ∗ tdi(t)
dt (3.3)

where tdi(t) is the inverter delay which will vary with time as the input patterns

change. Let ∆tdti(t) represent the change in inverter delay of ith ring oscillator
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caused by Trojan effects and CTF i and CTIi denote the total cycle count for

Trojan-free and Trojan-inserted ICs, respectively. The effect a Trojan has on ith

ring oscillator (∆Ci) is presented by Equation 3.4. The value of ∆Ci is related

to the number of stages in a ring oscillator (n), the measurement time (T ), and

the Trojan’s impact on inverter delay (∆tdti(t)). The Trojan’s impact on a ring

oscillator is determined by the size of the Trojan, switching activity of the Trojan,

and the distance between the Trojan and the ring oscillator.

∆Ci = CTIi − CTF i = −
∫ T

0

∆tdti(t)

2 ∗ n ∗ tdi(t) ∗ (tdi(t) + ∆tdti(t))
dt (3.4)

Figure 3.4 shows the proposed ring oscillator network with NRO=12 oscil-

lators inserted into the ISCAS’89 s9234 benchmark circuit according to power

straps in the layout. One RO is inserted into each grid surrounded by power

straps. The on-chip structure also includes a linear feedback shift register (LFSR),

one decoder, one multiplexer, and one counter. The LFSR will supply random

functional patterns for the entire IC during the signature generation and authen-

tication processes; the same seed must be used for each golden IC and each IC

under authentication. A decoder and multiplexer are used to select which ring

oscillator is measured. When a ring oscillator is selected, the decoder enables

that particular RO and the multiplexer transmits the output of that RO to the

counter. The counter measures the cycle count of the selected ring oscillator over

a specified duration. The number of stages in a ring oscillator is limited by the

operating speed of the counter, which is determined by the technology node. For
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example, using our 90nm technology, a 16-bit counter can operate at a maximum

frequency of 1GHz according to HSPICE simulation.

The RON architecture has a small area overhead, mainly caused by the

counter and LFSR. For instance, the overhead is 10.8% for the smaller bench-

mark circuit, s9234 (two vertical power straps and three horizontal power straps,

NRO = 12), 3.6% for s35932 benchmark circuit (three vertical power straps and

three horizontal power straps, NRO = 16), and 0.9% for DES circuit (five vertical

power straps and five horizontal power straps, NRO = 30). We believe that the

area overhead will be negligible for larger circuits even if NRO increases consid-

erably based on power planning, since the counter size does not increase linearly

with NRO. Also, LFSR is commonly used for built-in self-test (BIST) in modern

designs.

The RON is resilient to removal and tampering attacks. It is inherently

difficult for an attacker to remove the ring oscillator network, due to (i) its dis-

tributed placement throughout the entire IC and (ii) the expected measurement

results from each ring oscillator, i.e., the designer relies on the ability to capture

RON data from each embedded ring oscillator. If a specific ring oscillator is not

reporting data, the designer should assume the design has been attacked. On the

other hand, ring oscillator is sensitive to its stage count and inverter type. For the

RON inserted by the designer, the frequency falls in a certain range considering

variations. If one of them is not within the range, it must be tampered with.
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In addition, similar to ring oscillator based physical unclonable functions (PUFs),

the RON architecture is also resilient to modeling and reverse engineering attacks.

3.3 Statistical Analysis

When the Trojan is small or widely distributed, distinguishing between noise

generated by Trojan gates and process variations may be exceedingly difficult.

Therefore, as an extension, a signature must be generated by recording all ring

oscillators cycle count from a large number of ICs of the same design. Since the

ICs will all be subject to different process variations, this signature can be statis-

tically more tolerant to errors. In order to separate the effect of process variations

and Trojans, a data analysis flow is suggested in this work, which includes three

methods namely: (i) Simple Outlier Analysis, (ii) Principal Component Analysis

(PCA), and (iii) Advanced Outlier Analysis. Simple outlier analysis offers least

complexity compared with the other two data analysis methods.

Simple outlier analysis is based on the oscillation cycle distribution of each

ring oscillator in the RON. For each ring oscillator, the oscillation cycle is within

a certain range for Trojan-free ICs. If the oscillation cycle of one ring oscillator in

the IC under authentication is outside of the range, this IC is considered suspicious

and might contain a Trojan. This method uses the information from individual

ring oscillators but not the relationship between them in the RON. Usually, this

method can identify a small number of Trojan-inserted ICs but not most based
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on our results. If oscillation cycle count of all ring oscillators in an IC under

authentication is within each Trojan-free IC’s signature, the data collected from

this IC will be processed by PCA and advanced outlier analysis.

The concept of principal component analysis [43] is used to account for

the NRO variables (one variable represents one ring oscillator). The relationship

between the data from the NRO ring oscillators is considered by PCA when it

transforms the NRO variables into uncorrelated variables. For example, noting

similarities in oscillation readings between two adjacent ring oscillators, would

imply a correlation in the data. The oscillation cycle count of NRO ring oscillators

in the Trojan-free ICs will be analyzed by PCA and convex hull [44] is constructed

with the first three components. If the output of RON is beyond the convex, a

Trojan must exist in the IC under authentication. However, if the output is inside

the convex, advanced outlier is used for futher analysis and validation.

Advanced outlier analysis is developed to identify the ICs with Trojan that

cannot be detected by simple outlier analysis and PCA. It considers the relation-

ship between ring oscillators in the RON. The pseudo-code is shown in Figure 3.5,

which consists of two steps. The first step, Measurement, generates NRO*(NRO-1)

power signatures from NTF Trojan-free ICs. For each Trojan-free IC, the total

oscillation cycle count from the RON is CRON =
∑NRO

m=1 Cm. Then, the data from

the ROi (Ci) and ROj (j 6= i) (Cj) are selected to calculate xi = (CRON −Ci)/Ci

and yj = (CRON −Ci)/Cj. Finally, (xi, yj) from all the Trojan-free ICs would be
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Step 1: Measurement

01: Collect data from NTF Trojan-free ICs with NRO ring oscillators

02: for (i = 1, i <= NRO, i++) { //select ithRO

03: for (j = 1, j <= NRO , j ++) (j 6= i) { //select jthRO

04: for (k = 1, k <= NTF , k ++) { //select kth Trojan-free IC

05: xki=(
∑NRO

m=1
Ckm − Cki)/Cki;

06: ykj=(
∑NRO

m=1
Ckm − Cki)/Ckj ;

07: plot(xki, ykj);

08: }

09: The power signature, PSij , is created from all NTF ICs.

10: } //xki is named as the first vector

11: } //ykj is named as the second vector

Note: Ckm, Cki, Ckj : Oscillation cycle count of ROm, ROi, ROj in kth IC

Step 2: Authentication

For each IC under authentication:

01: Collect data from NRO ring oscillators (CRON =
∑NRO

i=1
Ci).

02: for (i = 1, i <= NRO, i++)

03: { x = (CRON − Ci)/Ci;

04: for (j = 1, j <= NRO , j ++) (j 6= i);

05: { y = (CRON − Ci)/Cj ;

06: plot(x,y);

07: if ((x,y) is outside of the power signature PSij

08: {The IC is Trojan-inserted; Break; }

09: else go on;

10: }

11: }

Note: Ci, Cj : Oscillation cycle count of ROi, ROj

Fig. 3.5: Advanced outlier analysis procedure.
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plotted to generate PSij power signature. Thus, NRO*(NRO-1) power signatures

can be generated. The second step, Authentication, deals with the IC under

authentication using the same process. If one of the IC’s signatures is beyond the

NRO*(NRO-1) power signatures, then it is assumed to contain a Trojan.

3.4 Results and Analysis

In order to verify the effectiveness of the RON architecture, we implemented

NRO = 12 ring oscillators with 5-stage inverters in (i) s9234 benchmark using 90nm

technology, including 2 vertical and 3 horizontal power straps, for IC simulation

and (ii) AES circuit on Xilinx Spartan-3E FPGA for hardware validation. For

IC simulation, six Trojans (T1 through T6) with different sizes, distributions, and

switching activities are inserted into s9234 benchmark. s9234, which is a small

benchmark with 145 flip-flops and 420 gates, is selected for simulation rather than

AES (6,089 flip-flops and 18,103 gates) to be able to run the very slow process of

Monte Carlo simulations. Few of the Trojans can change the output of the original

circuits when they are enabled. The location of the ring oscillators and Trojans

are shown in Figure 3.6. The dark-colored circles in the figure represent the

corresponding regions used in the actual layout by the Trojans. Four of the Trojans

(T1, T2, T4, and T5) are placed around the ring oscillator RO8. Gates in Trojans

(T3 and T6) are distributed at different regions within close proximity to RO5,

RO7, RO8, and RO9. All Trojans have passed our validation test suite including
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Table 3.1: Oscillation cycle count of ring oscillators in presence of Trojan gates

switching without process variations

RO T1 T2 T3 T4

CTI CTF ∆C CTI CTF ∆C CTI CTF ∆C CTI CTF ∆C

RO1 4933 4939 -6 4985 4989 -4 4944 4965 -21 4999 4999 0

RO5 4735 4744 -9 4740 4749 -9 4908 4948 -40 4906 4925 -19

RO8 4714 4545 -31 4932 4974 -42 4796 4855 -59 4604 4635 -31

RO12 5279 5282 -3 4999 4999 0 4943 4966 -23 5027 5031 -4

RO T5 T6

CTI CTF ∆C CTI CTF ∆C

RO1 4976 4985 -9 5000 5000 0

RO5 4989 4994 -5 4792 4819 -27

RO8 4936 4981 -45 4925 4974 -49

RO12 5054 5062 -8 5242 5250 -8

100,000 random functional patterns as well as structural patterns generated using

automatic test pattern generation (ATPG) tool. During simulation, the same

input patterns generated by LFSR are applied to all ICs, including those which

are Trojan-free. The fast Spice simulation tool Nanosim from Synopsys is used to

conduct the power analysis and collect the oscillation cycle count in presence of

process variations.
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3.4.1 Trojan Size Analysis

The six inserted Trojans are designed with varying sizes to analyze the impact

they would have on the RON architecture. T1, T2, and T3, are composed of

8 inverters, 12 inverters, and 25 inverters, respectively. 8 combinational gates

consisting of AND, INV, and OR constitute T4, while T5 and T6 are comprised

of 25 and 22 combinational gates, respectively. We observed that in T1, T2, and

T3, the oscillation cycle count difference of RO8 increased with Trojan size from

-31 (for T1) to -59 (for T3). This occurred due to the greater power supply noise

imparted from the Trojan gates. As the power supply voltage is lowered, the

speed of the ring oscillator is dropped. For T4, T5, and T6, we observed similar

results. In general, the greater the size of the Trojan, the larger impact it can



53

have on the power supply network and consequently the greater impact on the

ring oscillators.

3.4.2 Trojan Switching Activity Analysis

Trojan size is not the only parameter impacting the frequency of the ring os-

cillators.The Trojan switching activity plays an important role as well. In the

interest of simulation running time, we designed few Trojans featuring frequent

switching activities; e.g., T1, T2, and T3 switch 760 times, 1140 times, and 2375

times respectively during the pattern application period. T4, T5, and T6 switch

665 times, 2090 times and 1850 times during the simulation. From the Table 3.1,

one can notice the trend: the more frequently the Trojan switches, the greater

the voltage drop imparted on the ring oscillator gates, which in turn, impacts

oscillation cycle count reported by the ring oscillator.

3.4.3 Process Variations Analysis

Random process variations, consisting of 10% voltage threshold (8% inter-die

and 2% intra-die), 3% oxide thickness (2% inter-die and 1% intra-die), and 10%

channel length (8% inter-die and 2% intra-die) in 90nm technology library, are

used in the following simulations. All the simulations are done under temperature

25 ◦C. 100 Trojan-free ICs and 600 Trojan-inserted ICs (100 per Trojan) are

generated by Monte Carlo simulations. The statistical data analysis flow proposed
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Fig. 3.7: Oscillation cycle distribution of RON with 100 Monte Carlo simulations

when T5 is inserted in s9234. (a) RO8 with Trojan; (b) RO8 w/o

Trojan; (c) Cycle count distribution of RO8; (d) RO5 with Trojan; (e)

RO5 w/o Trojan; (f) Cycle count distribution of RO5.
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Fig. 3.7: Oscillation cycle distribution of RON with 100 Monte Carlo simulations

when T5 is inserted in s9234. (g) RO1 with Trojan; (h) RO1 w/o

Trojan; (i) Cycle count distribution of RO1; (j) RO12 with Trojan; (k)

RO12 w/o Trojan; (l) Cycle count distribution of RO12.
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in the previous section processed the data collected from these ICs. T5 is used to

show the detailed results of the data analysis flow.

Simple outlier analysis is first applied to distinguish the effect of Trojan

and process variations. Histograms obtained from RO1, RO5, RO8, and RO12

are shown in Figure 3.7, each showing the distribution of oscillation cycle count

plotted from the data obtained in the presence of process variations with T5.

Figure 3.7(a) displays the histogram of the cycle count of oscillations reported by

RO8 with the Trojan inserted and Figure 3.7(b) shows the same result without

(w/o) the Trojan. The distribution of the two sets of oscillation cycle count

are plotted in Figure 3.7(c). The remaining figures (3.7(d)-3.7(l)) show the data

distribution collected from RO5, RO1, and RO12, respectively. We do not notice

a significant change in RO5, RO1, and RO12. However, due to the presence of

T5, RO8’s distribution shifts toward left considerably. For RO8, the oscillation

cycle range is 4400− 5350 in Trojan-free ICs and the boundary is marked by the

black dashed line in Figure 3.7(c). 3 ICs out of the 100 ICs under authentication

fell outside of the range, which are identified to contain Trojan.

For the remaining 97 ICs, PCA is done to analyze the data. Figure 3.8

shows the power signature comparison using PCA for Trojan detection. The

convex is drawn from the first three principal components with Trojan-free ICs.

The asterisks denote data obtained from ICs with the inserted Trojan, which are

shown to be separate from the convex hull. Thus, with the RON architecture and
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Fig. 3.8: Power signature using PCA for Trojan-free ICs and Trojan-inserted ICs

with T5.

statistical analysis, T5 can be detected with 100% accuracy. However, limited by

the statistical methods and the increasingly larger process variations of nano-scale

technologies, smaller Trojans may not necessarily be detected with such accuracy.

Thus, advanced outlier analysis shown in Figure 3.5 is also used to identify

Trojan-inserted ICs. There are a total of 12*11=132 power signatures generated

by the Trojan-free ICs. In the following, for advanced outlier analysis results, only

the power signature that can detect the most Trojan-inserted ICs is shown. As

an example, for T5, Figure 3.9(e) shows the advanced outlier analysis result. The

blue dots represent Trojan-free ICs and the red asterisks denote Trojan-inserted

ICs. We can see that all of the Trojan-inserted ICs are outside of the Trojan-free

ICs. Thus, the detection rate with T5 using advanced outlier analysis is 100%.
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Similarly, the remaining 5 Trojans (T1, T2, T3, T4, and T6) with 100

Trojan-free ICs and 100 Trojan-inserted ICs are also simulated and the data analy-

sis flow is applied for every Trojan. By simple outlier analysis, one Trojan-inserted

IC is detected with T1, T2, and T4 and two Trojan-inserted ICs are identified

with T3 and T6. Using PCA, Trojan-inserted ICs detected with T1, T2, T3, T4,

and T6 are 16, 17, 8, 10, and 29, respectively. The remaining Trojan-inserted ICs

are analyzed by advanced outlier analysis, shown in figures 3.9(a) - 3.9(f). In order

to show the effectiveness of RON when using our advanced outlier analysis, the

Trojan-inserted ICs detected by simple outlier analysis and PCA are also plotted

in these figures. Combined simple outlier analysis, PCA, and advanced outlier

analysis, the Trojan detection rates for T2, T3, and T6 are 100%. For smaller

Trojan T1, the detection rate is 100%, even though the Trojan-inserted ICs are so

close to the Trojan-free ICs. For T4, 98% Trojan-inserted ICs are detected. Note

that the detection rates presented above are all only from the best distributions

selected from 132 power signatures. When we analyze all power signatures, the

detection rate for all Trojans including T4 is 100%.

3.4.4 Validation on Spartan-3E FPGA

The same RON architecture is applied to AES implemented on Xilinx Spartan-3E

FPGA (shown in Figure 3.10(a)). Three Trojans (T7, T8, and T9) are inserted

into the benchmark. T9 consists of 80 gates. The area overhead of T7 is 0.17%,
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Fig. 3.10: (a) Xilinx Spartan-3E FPGA board and (b) AES layout after place-

ment.
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T8 is 0.25%, and T9 is 0.33%. 24 Trojan-free FPGAs and 24 Trojan-inserted

FPGAs are used. The oscillation cycle count from different FPGAs represent

inter-die process variations and the oscillation cycle count from the same FPGA

but different ring oscillators denote intra-die process variations.

The layout of FPGA after the placement and routing is shown in Figure

3.10(b). 12 ring oscillators with five inverters constitute RON while Trojans are

placed near RO8. LFSR module generates patterns during authentication process.

Multiplexer module selects which ring oscillator would be enabled and recorded.

The implementation temperature is 25 ◦C. Several measurements are done for

each ring oscillator in every FPGA in order to eliminate the measurement noise,

and the average value is used to perform data analysis.

One Trojan-inserted FPGA is detected by simple outlier analysis for each

Trojan. PCA detects 9 Trojan-inserted FPGAs with T7, 10 Trojan-inserted FP-

GAs with T8, and 16 Trojan-inserted FPGAs with T9. The remaining Trojan-

inserted FPGAs are analyzed by advanced outlier analysis (shown in Figure 3.11).

In order to show all the detected Trojan-inserted FPGAs, the FPGAs detected by

simple outlier analysis and PCA are also plotted in these figures. From combined

simple outlier analysis, PCA, and advanced outlier analysis, 100% Trojan-inserted

FPGAs are detected for T8 and T9 but 80% for T7 from the best selected power

signature. Performing similar analysis for all power signatures, we are able to

increase the Trojan detection rate to 92% for T7. In addition, we also imple-
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mented Trojans of smaller size (T10=30 gates and T11=20 gates) to verify the

sensitivity of RON. Trojan detection rate is 92% for T10 but 100% for T11 since

it experiences more switching activity.
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Fig. 3.11: Advanced outlier analysis results from FPGA implementation.

3.5 Conclusions

In this chapter, we presented an effective structure to detect hardware Trojans

inserted into an IC. The RON architecture generates a power supply fingerprint,

used to identify malicious alterations. Statistical analysis distinguishes the effects

of hardware Trojans from process variations. The experimental results demon-
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strate that this approach is very effective in identifying Trojan-inserted ICs. How-

ever, for Trojans with very small number of gates, more work needs to be done.

We will present our improved technique in Chapter 4.



Chapter 4

Detection of Trojans using Combined Ring Oscillator

Network and Off-chip Transient-Power Analysis

Based on the experimental results and analysis in Chapter 3, we can see that the

sensitivity of using RON only is limited. It is very difficult to be detect Trojans

with a very small number of gates. In order to improve the effectiveness of our

method, we propose a novel hardware Trojan detection method performed by com-

bining measurements from RON with external dynamic current measurements. It

monitors power fluctuations and differentiates fluctuations due to hardware Tro-

jans from fluctuations due to measurement noise and process variations. This

method considers Trojans’ impact on the power consumption of neighboring cells

and the entire IC. Each row of the circuit under authentication contains at least

one inverter of an RO in the RON. Thus any malicious inclusions in each row

would be captured by one of these ring oscillators. Off-chip test equipment will

measure the transient current of the IC, which will be combined with the ROs’

cycle counts to generate a power signature for the entire IC. The signature of the

64
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CUT is then compared against the Trojan-free signatures.

Comparing the new combined on- and off-chip measurement method with

the method we proposed in Chapter 3, we have improved our method in the fol-

lowing ways: (i) the new Trojan detection method takes into account a Trojan’s

impact on neighboring cells; (ii) the new proposed architecture ensures the place-

ment of ring oscillator components in every row in a standard-cell design, the

most widely used design style in practice; (iii) high threshold voltage gates are

used in the new on-chip sensors to improve their sensitivity to the noise induced

by Trojans; (iv) the circuit’s total transient current is taken into account.

The ring oscillators will be disabled when the IC operates in functional

mode to reduce the power consumption. The number of ring oscillators, Nro,

can be adjusted according to the size of the IC and the desired sensitivity to

Trojans. Simulation and FPGA implementation results demonstrate that the

proposed method effectively distinguishes the power differences caused by Trojans

from those caused by process variations. We will present this technique in detail

in this chapter.

4.1 The Relationship between RO Frequency and Localized and

Total Dynamic Current

The delay of each inverter in the ring oscillator can be expressed as td = kg/Ig

where kg is a gate-dependent constant and Ig is the dynamic current of the inverter
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[45]. Based on the Alpha-Power Model mentioned in [46], the dynamic current of

a switching gate is

I = µg ∗ (Vdd − Vth)
α (4.1)

where α is the velocity saturation index. Thus the frequency of the n-stage ring

oscillator can be expressed as:

f =
µg ∗ (Vdd − Vth)

α

2n ∗ kg
(4.2)

In the presence of a Trojan, the ring oscillator frequency is modeled by

Equation 4.3 rather than Equation 4.2 where the voltage-drop ∆Vt represents the

Trojan’s contribution to the ring oscillator frequency. From the equation, we can

see that the frequency of the ring oscillator ft is more sensitive to the voltage-

drop ∆Vt when the stage of the ring oscillator n is smaller. However, if n is too

small, the frequency of the ring oscillator will be too high to be measured by

on-chip counter in practice. Using (i) an operating frequency of f=1GHz, (ii)

Vdd = 1.2V, and (iii) Synopsys 90nm technology in a Nanosim simulation, we

have determined that a 5-stage RO would be the smallest allowable RO. Thus,

5-stage ring oscillators will be used throughout this thesis.

ft =
µg ∗ (Vdd −∆Vt − Vth)

α

2n ∗ kg
(4.3)

The dynamic current of the entire Trojan-free chip is:

Itotal =
i=N∑
i=0

λi ∗N ∗ µg ∗ (Vdd − Vth)
α (4.4)
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where N is the total number of switching gates in the IC and λi denotes the

gate-dependent constant of the ith gate. The constant, λi, depends only on the

type of gate specified, not the particular instance of such a gate. The relationship

between the frequency of the n-stage ring oscillator embedded into the chip and

the dynamic current of entire chip will be:

Itotal
f

=
i=N∑
i=0

λi ∗N ∗ 2n ∗ kg (4.5)

For ICs with nt Trojan gates inserted, Equation 4.5 becomes:

Itotal,t
ft

=
i=N+nt∑

i=0

λi ∗ (N + nt) ∗ 2n ∗ kg(1 +
∆Vt

Vdd −∆Vt − Vth

)α (4.6)

Since ∆Vt << Vdd −∆Vt − Vth, the above equation can be approximated as

Equation 4.7 based on Taylor’s expansion theorem.

Itotal,t
ft

≈
i=N+nt∑

i=0

λi ∗ (N + nt) ∗ 2n ∗ kg(1 + α ∗
∆Vt

Vdd −∆Vt − Vth
) (4.7)

Comparing Equation 4.7 with Equation 4.3, we can see that combining ring os-

cillator frequency measurements with current measurements will achieve greater

sensitivity to Trojans than either measurement alone.

All the above analysis are based on ring oscillators made with standard

threshold voltage (SVT) transistors. However, ring oscillators with high thresh-

old voltage (HVT) transistors are more sensitive to power supply noise as shown

by the simulation results in Figure 4.1, performed using the same technology with

a 5-stage ring oscillator. The green line in Figure 4.1(a) denotes the power supply
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Fig. 4.1: (a) Power supply variations for Trojan-free and Trojan-inserted cir-

cuits; (b) Cycle count difference increases as threshold voltage increases.

voltage of Trojan-free ICs during the 1000ns simulation period while the red line

represents the power supply voltage of Trojan-inserted ICs. Figure 4.1(b) shows

that for a particular ring oscillator, the cycle count difference between Trojan-free

ICs and Trojan-inserted ICs will increase as the threshold voltage of the transis-

tors increases until a maximum is reached. Once this maximum has been reached,

increasing the threshold adversely affects the cycle-count difference (and thus the

sensitivity to inserted Trojans). The X axis in Figure 4.1(b) represents the thresh-

old voltage coefficient, Vth/Vsth, where Vsth is the SVT of the MOS transistors.

In the Synopsys 90nm technology library, the threshold voltage coefficient of the

HVT transistors is 1.2. With HVT ring oscillators, Equation 4.7 becomes:

Itotal,t
ft

=
i=N+nt∑

i=0

λi ∗ (N + nt) ∗ 2n ∗ kg(1 + α ∗
∆Vt + Vhth − Vsth

Vdd −∆Vt − Vhth
) (4.8)

where Vhth is the high threshold voltage of the transistors in the ring oscillators.
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From Equation 4.8, we can tell that the relationship between the IC’s dynamic

current and the frequency of a ring oscillator in the circuit will be more sensitive

using HVT transistors. In addition, we can conclude that Trojans with larger size

(nt) and more IR-drop (∆Vt) are easier to be detected.

Some of the parameters in Equation 4.8 will change with process and envi-

ronmental variations. In this thesis, we assume that ICs are tested under the same

temperature condition in a production test environment, thus, only small environ-

mental variations will be considered in this thesis. All remaining parameters are

susceptible to process variations and we will use statistical analysis to separate

the contributions of process variations and Trojans to the transient power.

4.2 Improved Ring Oscillator Network Structure

As aforementioned, Trojan gates’ switching impacts both the frequency of nearby

ring oscillators and the IC’s dynamic current. Since a Trojan’s effects may be

localized (i.e. tightly distributed), and the impact of a Trojan on a ring oscil-

lator is dependent upon the distance between them, one ring oscillator may not

be sensitive enough to distinguish the effects of Trojans from process variations

throughout the entire IC. A improved RON, however, can improve the sensitivity

to Trojan noise.

Figure 4.2 shows a circuit into which the proposed on-chip structure with

NRO n-stage ring oscillators is inserted. These n-stage ring oscillators are each
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Fig. 4.2: Our improved on-chip structure with each gate of the ring oscillators

placed in a standard cell row.
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composed of one NAND gate and n − 1 inverters with one component located

in each of the n rows of the standard cell design. The ring oscillators are more

sensitive to the voltage drop caused by a Trojan if they share the same power

strap. Therefore, it is highly advantageous to ensure complete coverage of the

power distribution network by placing at least one ring oscillator component in

each row of the standard cell (and thus near each power strap). One set of n-

stage ring oscillators will be inserted between two vertical straps. If there are M

vertical power straps and R rows in the design, NRO = (M + 1)⌈R/n⌉. However,

the number of ring oscillators could be adjusted according to the required Trojan

detection sensitivity and the minimum sensitivity to Trojan activity. The linear

feedback shift register (LFSR), decoder, multiplexer, and counter are the same as

those in Chapter 3.

Since the ring oscillators are only enabled during the production test and the

authentication phase, their power overhead in the field is negligible. The proposed

architecture has a small area overhead, due mainly to the ring oscillators. For

larger circuits, assuming there is one vertical power strap for every 20 FFs or 80

gates, the area overhead of the ring oscillators will be approximately 1/(20 ∗ 4) =

1.25%. The total area overhead will be approximately 2.5% if there is one vertical

strap for only every 10 FFs or 40 gates in the design. For a small circuit, the

counter may play a significant part in the area overhead, but the counter size

does not increase linearly with the size of the circuit. Since LFSRs are commonly
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used for built-in self-tests in modern designs, it can be ignored when analyzing

the area overhead. However, even with LFSRs, the area overhead of a RON

in large designs is still quiet small since the area of the LFSRs does not increase

significantly with the size of the circuit, either. Transient current will be measured

externally (i.e. with no area cost). In summary, the area overhead will be less

than 3% for a large circuit and would be slightly larger for a smaller circuit. For

instance, the overhead of RONs with LFSRs is 5.58% for the ISCAS’89 benchmark

circuit s38584 (which contains four vertical power straps), 2.47% for a AES circuit

(with six vertical straps), and 1.99% for a DES circuit (with six vertical power

straps). The AES and DES circuits are provided in [31].

Since the ring oscillators are distributed across the entire IC, it is inher-

ently difficult for an adversary to remove or tamper with one. If one of the ring

oscillators reports data outside of a certain range or does not report data, we

will assume it has been attacked. In addition, this proposed on-chip structure is

resilient to modeling. Some attackers may build up a lookup table to repeatedly

generate the same cycle count for each ring oscillator, which would attempt to

replace the Trojan-effected counter values with known good values. However, the

current consumed by the lookup tables may be captured by the external current

measurement and the power signature generated by our outlier analysis would

also be changed. On the other hand, if the ROs are replaced with lookup tables

embedded in the design, the frequency of the same ring oscillator at the same
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location, but on a different chip would stay at the same value in different ICs.

However, unlike the value stored in a lookup table, the measured frequency of an

RO in different ICs should be slightly different due to different process variations

in Trojan-free circuits. If one ring oscillator in all CUTs has the exactly same

frequency, designers would easily know that the IC was tampered with embedded

lookup tables.

4.3 Measurement Flow and Statistical Analysis

The measurement flow for each IC is shown in Figure 4.3. To measure the fre-

quency of NRO ring oscillators, we apply the LSFR patterns with the same seed

NRO times. The transient current is measured externally. A signature is gener-

ated by recording the cycle count of each ring oscillator and the transient current

from a large number of ICs of the same design. Since the ICs will all be subject

to different process variations, this signature can be statistically more tolerant to

similar variations in chips under authentication. In order to separate the effect

of process variations and Trojans, a data analysis flow is suggested in this work

which includes three methods namely: (i) Simple Outlier Analysis, (ii) Princi-

pal Component Analysis (PCA), and (iii) Advanced Outlier Analysis. This data

analysis flow is very similar with the data analysis flow we proposed in Chapter

3.

Principal component analysis method is slightly different from the PCA we
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Fig. 4.3: Measurement flow of our proposed method.

used in Chapter 3. With one variable representing one ring oscillator, there are

NRO variables and the NRO + 1th variable represents the dynamic current. The

relationship between the data from the NRO ring oscillators and the dynamic

current is considered by PCA when it transforms the NRO + 1 variables into

uncorrelated variables. The NRO + 1 variables are transformed by PCA and the

first three of the resulting components in Trojan-free ICs are used to construct a

convex hull [44]. If the output of the CUT is beyond the convex, a Trojan must

exist in the IC under authentication. However, if the output is inside the convex,

advanced outlier is used for further analysis and validation.

Advanced outlier analysis considers the relationships among ROs in the

RON and the dynamic current of the entire chip. The pseudo-code is shown in
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Power Signature Generation

01: Collect data from NTF Trojan-free ICs with NRO ring oscillators

02: for (i = 1, i <= NRO , i++) { //select ithRO

03: for (j = 1, j <= NRO, j ++) (j 6= i) { //select jthRO

04: for (k = 1, k <= NTF , k ++) { //select kth Trojan-free IC

05: xki=(
∑NRO

m=1
CCkm − CCki)/CCki;

06: ykj=(
∑NRO

m=1
CCkm − CCki)/CCkj ;

07: plot(xki, ykj , IK);

08: }

09: The power signature, PSij , is created from all NTF ICs.

10: } //xki is named as the first vector

11: } //ykj is named as the second vector

Note: CCkm, CCki, CCkj : Oscillation cycle count of ROm, ROi, ROj in kth IC

Ik: The dynamic current of kth IC

(a)

Authentication

For each IC under authentication:

01: Collect data from NRO ring oscillators (CCRON =
∑NRO

i=1
CCi).

02: for (i = 1, i <= NRO, i++) {

03: for (j = 1, j <= NRO , j ++) (j 6= i) {

04: x = (CCRON − CCi)/CCi;

05: y = (CCRON − CCi)/CCj ;

06: plot(x,y,I);

07: if ((x,y) is outside of the power signature PSij

08: {The IC is Trojan-inserted; Break; }

09: else go on;

10: }

11: }

Note: CCi, CCj : Oscillation cycle count of ROi, ROj

I: Dynamic current of the under test IC

(b)

Fig. 4.4: Advanced outlier analysis procedure.
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Figure 4.4. For each Trojan-free IC, two out of NRO ring oscillators will be selected

along with the dynamic current information to generate a power signature (shown

in Figure 4.4(a)). For a particular Trojan-free IC, the total oscillation cycle count

from the RON is CCRON =
∑NRO

m=1 CCm. Then, the data from the ROi (CCi)

and ROj (j 6= i) (CCj) are selected to calculate xi = (CCRON − CCi)/Ci and

yj = (CCRON −CCi)/CCj. Finally, (xi, yj, I) from all the Trojan-free ICs would

be used to generate the power signature, PSij. There will be NRO × (NRO − 1)

unique power signatures in total. The same process will be applied to the CUT

(shown in Figure 4.4(b)). If the CUT lies within the signature it may be assumed

that the circuit is Trojan-free. Otherwise, if one of the NRO*(NRO −1) signatures

does not match the Trojan-free signature, it will be treated as a suspicious part,

i.e., Trojan-inserted.

4.4 Experimental Results and Analysis

We implemented our proposed approach on a small s9234 benchmark using Syn-

opsys 90nm technology, and a larger circuit, AES benchmark, on Xilinx Spartan-6

FPGAs (45nm technology). For IC simulation, the s9234 benchmark was designed

with two vertical power straps and 35 rows, with NRO = 15 ring oscillators consti-

tuting the on-chip structure. Twenty Trojans (T1 to T20) with different sizes, gates

types, and physical distributions were inserted into s9234. Table 4.1 shows these

twenty Trojans where FF represents a flip-flop, Cen. indicates that the Trojan
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Table 4.1: Twenty Trojans inserted in s9234 circuit.

Combinational Trojans

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Sizes 2 gates 3 gates 4 gates 5 gates 7 gates 8 gates 10 gates 12 gates 16 gates 20 gates

Area Overhead 0.09% 0.16% 0.2% 0.25% 0.37% 0.43% 0.5% 0.66% 0.82% 0.92%

Distribution Cen. Cen. Dis. Dis. Cen. Dis. Dis. Cen. Dis. Dis.

Sequential Trojans

T11 T12 T13 T14 T15 T16 T17 T18 T19 T20

Sizes 2 FFs 3 FFs 4 FFs 5 FFs 6 FFs 7 FFs 8 FFs 10 FFs 12 FFs 16 FFs

Area Overhead 0.41% 0.62% 0.81% 0.98% 1.18% 1.4% 1.61% 1.83% 2% 2.21%

Distribution Cen. Cen. Dis. Dis. Cen. Dis. Dis. Dis. Dis. Dis.

is centrally located, and Dis. indicates that the Trojan is physically distributed

(shown in Figure 4.5). Ten combinational Trojans (T1-T10) tap internal signals

working as comparators and the sequential Trojans (T11-T20) act as shift registers.

None of these Trojans were detected by a test suite made up of 80,000 random

functional patterns and 206 structural patterns (created by ATPG tools) for de-

tecting stuck-at and transition delay faults. StarRC was used to extract parasitic

parameters from the layout of benchmarks and generate SPICE files. A Monte

Carlo simulation (performed with Synopsys Nanosim) was used to emulate the

effects of process variations which impact the frequencies of the ring oscillators

and the dynamic current. The simulation temperature was 25◦C with ±5◦C vari-
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Table 4.2: Oscillation cycle count of some of the ring oscillators and circuit dy-

namic current in presence of hardware Trojans without process vari-

ations.

T1 T3 T6 T10

TF TI ∆T TF TI ∆T TF TI ∆T TF TI ∆T

Average Dynamic

Current (µA) 29.8 29.84 0.04 25.56 25.65 0.09 24.94 25.08 0.14 24.94 26.1 1.16

RO (CC) RO8 2790 2787 -3 3396 3392 -5 3064 3054 -10 3064 3024 -40

RO7 3021 3021 0 3528 3528 -2 3008 3005 -3 3008 2998 -10

RO1 2952 2952 0 3377 3377 0 2985 2984 -1 2985 2982 -3

RO15 3103 3103 0 3406 3406 0 2803 2803 0 2803 2801 -2

T11 T16 T20

TF TI ∆T TF TI ∆T TF TI ∆T

Average Dynamic

Current (µA) 27.48 27.6 0.12 23.14 23.77 0.63 26.85 29.05 2.25

RO (CC) RO8 3150 3141 -9 3120 3084 -36 3031 2972 -59

RO7 3117 3117 -0 3158 3150 -8 2925 2914 -11

RO1 3042 3042 0 3198 3198 0 2980 2977 -3

RO15 3132 3132 0 3210 3210 0 3012 3011 -1
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Fig. 4.5: s9234 with 15 ROs and 20 Trojans. One Trojan at a time is inserted

into the circuit.

ations. For hardware validation, eight Trojans (T21-T28) with different gates and

distributions were inserted into an AES benchmark. Trojan-inserted and Trojan-

free versions of the AES benchmark were both implemented on multiple FPGAs

under room temperature; the use of multiple FPGAs allowed us to analyze the

effects of both inter-die and intra-die process variations.

4.4.1 Effectiveness Demonstration

Trojan Size and Distribution Analysis: Using a simulation without varia-

tions, the detailed cycle count and dynamic current results of T1-T3, T6, T7, and T12

with four ring oscillators (RO1, RO7, RO8, and RO15) during a 1000-clock cycle
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LFSR test are shown in Table 4.2. Since the IC’s dynamic current varies with the

test pattern applied, the waveform of the dynamic current is recorded during the

simulation. Average dynamic current in the measurement time window is shown

in the table as well. In Table 4.2, TF indicates that the data in this column was

collected from Trojan-free ICs while TI denotes data from Trojan-inserted ICs.

∆T represents the difference between the Trojan-inserted ICs and the Trojan-free

ICs. From Table 4.2, we can see that the Trojans consume extra power, increase

the dynamic current, and decrease the cycle count of the ring oscillators.

Table 4.2 shows that T1, T3, and T11 have a larger impact on the oscillation

frequency of RO8 than the other ring oscillators. Similarly, for T6, T10, T16 and

T20, there is a larger impact on RO8 and RO7 than RO1 and RO15. This phe-

nomenon is explained by the power supply voltage’s dependence on the voltage

division coefficient which is partially determined by the distance (resistive path)

between two gates; smaller distance implies greater Trojan impact on ring oscilla-

tors. The remaining Trojans not shown in Table 4.2 exhibit similar behavior for

ring oscillators. However, the total dynamic current current does vary with the

distributions of Trojans.

From Table 4.2, we observed that in these seven Trojans, the oscillation

cycle count difference ∆CCft of RO8 increased with Trojan size from -3 (for T1)

to -59 (for T20). This occurred due to the greater power supply noise imparted

from the Trojan with more gates. The dynamic current difference between Trojan-
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free IC and Trojan-inserted IC varies from 0.04 µA to 2.25 µA. Larger Trojans

consume more power. For the Trojans that are not shown in the table, we observed

similar results. In general, larger Trojans have a greater impact on the power

supply network and consequently have a greater impact on the ring oscillators

and dynamic current measurements.

Process Variations Analysis: random process variations, consisting of

3σ = 10% voltage threshold (5% inter-die and 5% intra-die), 3σ = 3% oxide

thickness (2% inter-die and 1% intra-die), and 3σ = 10% channel length (5%

inter-die and 5% intra-die) are used in the following simulations to analyze their

impact on our method. 200 Trojan-free ICs and 100 Trojan-inserted ICs for each

Trojan are generated by Monte Carlo simulations. The statistical data analysis

flow proposed in the previous section was used to process the data collected from

these ICs. T10, composed of 20 combinational gates, is used to show the detailed

results of the data analysis flow.

Simple outlier analysis is first applied to distinguish the effects of Trojans

and process variations. Histograms obtained from RO1, RO7, RO8, and RO15

in Figure 4.6 show the distribution of oscillation cycle counts in the presence

of process variations with T10. Figure 4.6(a) displays the histogram of the cycle

counts reported by RO8 with the Trojan inserted and Figure 4.6(b) shows the same

result without (w/o) the Trojan. The distributions of the two sets of oscillation

cycle counts are plotted in Figure 4.6(c). The remaining figures (4.6(d)-4.6(l))
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Fig. 4.6: Oscillation cycle distribution of RON with Monte Carlo simulations

when T10 is inserted in s9234. (a) RO8 with Trojan; (b) RO8 w/o

Trojan; (c) Cycle count distribution of RO8; (d) RO7 with Trojan; (e)

RO7 w/o Trojan; (f) Cycle count distribution of RO7.
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Fig. 4.6: Oscillation cycle distribution of RON with Monte Carlo simulations

when T10 is inserted in s9234. (g) RO1 with Trojan; (h) RO1 w/o

Trojan; (i) Cycle count distribution of RO1; (j) RO15 with Trojan; (k)

RO15 w/o Trojan; (l) Cycle count distribution of RO15.
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Table 4.3: Trojan detection rates with process variations.

Combinational Trojans

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Trojan Detection Rate 75% 80% 86% 100% 100% 100% 100% 100% 100% 100%

Sequential Trojans

T11 T12 T13 T14 T15 T16 T17 T18 T19 T20

Trojan Detection Rate 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

show the data distributions collected from RO7, RO1, and RO15, respectively.

We do not notice a significant change in RO7, RO1, and RO15. However, due to

the presence of T10 which is proximal to RO8, RO8’s distribution shifts leftward

considerably. For RO8, the oscillation cycle range is 2756 − 3090 in Trojan-free

ICs. 3 ICs out of the 100 ICs under authentication fell outside of the range, which

are identified to contain a Trojan.

For the remaining 97 ICs, PCA is done to analyze the data. Figure 4.7(a)

shows the power signature comparison using PCA with NRO ring oscillators and

dynamic current for Trojan detection. The convex is drawn from the first three

principal components with 200 Trojan-free ICs. The asterisks denote data ob-

tained from ICs with Trojans which are shown to be separate from the convex

hull. Thus, with the RON architecture and statistical analysis, T10 can be de-

tected with 100% accuracy. However, with limited statistical analysis, or if the
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Fig. 4.7: Power signature for Trojan-free ICs and Trojan-inserted ICs with T10

using (a) PCA and (b) advanced outlier analysis.

RON is subjected to the increasingly large variations of nano-scale technologies,

smaller Trojans may not necessarily be detected with such accuracy, which was

the case for T1 to T8 and T11 to T17.

Thus, advanced outlier analysis shown in Figure 4.4 is also used to identify

Trojan-inserted ICs. There are a total of 15*14=210 power signatures generated

by the Trojan-free ICs. Some power signatures could identify more Trojan-inserted

ICs than the others. In the following advanced outlier analysis results, only the

power signature that can detect the most Trojan-inserted ICs is shown. Figure

4.7(b) shows the advanced outlier analysis results with Trojan T10. The ring

oscillator that was selected as x in Figure 4.4 is defined as the first vector and

y as the second vector. The blue dots represent Trojan-free ICs and the red

asterisks denote Trojan-inserted ICs. We can see that all of the Trojan-inserted
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ICs are outside of the Trojan-free signature. Thus, the detection rate with T10

using advanced outlier analysis is 100%.

Similarly, the remaining nineteen Trojans with 200 Trojan-free ICs and 100

Trojan-inserted ICs are also simulated and the data analysis flow is applied for

every Trojan. The Trojan-inserted ICs with T1, T4, T11, and T20 are selected to

present detailed results using advanced outlier analysis shown in Figure 4.8(a)-

4.8(d). The Trojan detection rates of Trojans T11 and T20 shown in Figure 4.8 are

100% with only one signature. For T4, 98% of the Trojan-inserted ICs are detected

using one signature shown in Figure 4.8(b). When all 210 power signatures are

used, the detection rate for Trojan T4 is 100%. Complete results for all Trojans

using all of the power signatures are shown in Table 4.3. From Table 4.3 and

Figure 4.8, we can see that for Trojan T4-T20, the detection rates are all 100%.

The power signatures of the Trojan-free ICs are completely separate from the

Trojan-inserted ICs. However, the Trojan-inserted ICs with T4 are close to the

Trojan-free ICs. For the very small Trojans T1-T3, the detection rates are less

than 100% because of their diminished impact on the power supply lines.

4.4.2 Sensitivity Analysis

Ring Oscillator Number Analysis: Trojans T1, T2, and T3 were chosen for

ring oscillator number analysis since their detection rates are less than 100%

with NRO=15 ring oscillators. RONs with NRO=10, 20, and 25 ring oscillators
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Fig. 4.8: Signatures with outlier data analysis from IC simulation.
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were implemented with Monte Carlo simulation. The location of the inserted

Trojans is fixed throughout this analysis. For RONs with different quantities of

ring oscillators, the layout is similar to Figure 4.5. The three columns of ring

oscillators were replaced by 2, 4, and 5 columns of ring oscillators respectively.

Figure 4.9 shows Trojan detection rates using advanced outlier analysis with

different number of ring oscillators in RON for Trojans T1, T2, and T3. With 10

ring oscillators, the detection rates for T1, T2, and T3 are 40%, 48%, and 53%,

respectively. With 25 ring oscillators, the detection rates increase to 95%, 100%,

and 100%. These results imply that increasing the number of ring oscillators in

the circuit improves detection rates. This is because a Trojan will likely be closer

to a ring oscillator (or perhaps several) with more of them embedded in a design.

When the number of ring oscillators in the RON is increased, the power

consumption will be unchanged while the circuit is under normal operation; the

RON is only on for a short time during testing and remain off during functional

operation. The area overhead would increase slowly with the number of ring

oscillators. For our simulation, the area overheads are 2.5%, 3.75%, 5.0%, and

6.25% with 10, 15, 20, and 25 ring oscillators in the RON inserted in s9234.

However, the increase in area overhead is small in comparison to the increase in

Trojan detection rates. Thus, the RON structure may be adjusted to meet desired

area overhead and detection resolution values.

Trojan Location Analysis: in order to verify the impact of a Trojan’s
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Fig. 4.9: Ring oscillator number (NRO) analysis with Trojans T1, T2, and T3.

R

O

1

R

O

2

R

O

3

R

O

4

R

O

5

R

O

6

R

O

11

R

O

7

R

O

12

R

O

8

R

O

9

R

O

10

R

O

13

R

O

14

R

O

15

Top

Middle

Bottom

Left Mid.1 Mid.2 Right

Fig. 4.10: Placing T2 at different location in the s9234 circuit.



90

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Top Middle Bottom

Left
Mid.1
Mid.2
Right

Fig. 4.11: Trojan location analysis with T2.

location on its detection rate, Trojan T2 was placed in twelve locations (shown in

Figure 4.10). For each location, 200 Trojan-free ICs and 100 Trojan-inserted ICs

were generated by a Monte Carlo simulation. A RON of 15 ROs was embedded

into the benchmark. The detection rates using advanced outlier analysis are shown

in Figure 4.11. From the figure, we can see that when Trojan T2 was placed

around boundary corners, fewer Trojan-inserted ICs would be detected than if it

was placed centrally. This occurs because the Trojan is closer to a greater number

of ring oscillators when placed towards the center. However, the Trojan detection

rate varies by less than 8% for the twelve locations. This can likely be alleviated

with greater design coverage; placing columns of ring oscillators adjacent to the

outermost edges of the IC will limit the maximum distance between a Trojan and

an RO.

Pattern Analysis: since different inputs could cause different switching

activities in ICs, the pattern generated by the LFSR during testing can impact
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the Trojan detection resolution in two ways: (1) Trojan switching activity (and

thus the Trojan contribution to changes in dynamic power) depends on circuit

inputs and thus the pattern selected and (2) the total switching activity in the

circuit may be altered by the patterns. Increased switching among Trojan gates

implies a greater Trojan contribution to side-channel information. Decreased total

switching in the circuit under authentication implies reduced background noise

and a greater chance that Trojan activity will not be obfuscated. It is crucial

to note that Trojan switching activity does not refer to the event of actually

activating a Trojan to launch its malicious function, but rather refers to any

amount of switching in the gates which comprise the Trojan. For example, for

Trojan T3, which is composed of four gates, if only one gate transitions we will say

that there was switching activity in the Trojan, regardless of whether or not the

Trojan was completely activated. The LFSR was simulated to verify the impact

of pattern selection on our combined ring oscillator network and dynamic current

method. We use different seeds in the LFSR to generate different patterns; 1000

patterns are generated by one seed.

Figure 4.12 shows the detection rates with four different seeds (S1, S2,

S3, and S4) in the LFSR. The four different seeds were randomly generated by

MATLAB. Trojans T1, T2, and T3 were selected to show the results. All these

Trojans were fixed at locations shown in Figure 4.5. From Figure 4.12, we can see

that our Trojan detection method gives different detection rates using different
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Fig. 4.12: Pattern analysis with Trojans T1, T2, and T3.

Table 4.4: Trojans Inserted in FPGAs and their detection rate when NRO = 24.

T21 T22 T23 T24 T25 T26 T27 T28

Area Overhead 0.0016% 0.012% 0.025% 0.05% 0.08% 0.1% 0.15% 0.2%

Trojan Detection Rate 73% 86% 100% 100% 100% 100% 100% 100%

random patterns. In generally, the detection rate will be higher if the Trojan

switching activity is greater. However, with random patterns the Trojan detection

rates do not vary significantly. If we can generate special patterns, such as ones

that could cause more switching at nets which activate rarely in the design, our

Trojan detection method would be more effective.

4.4.3 Experimental Results from Spartan-6 FPGA

Xilinx Spartan-6 FPGA boards (shown in Figure 4.13(a)) were used for the hard-

ware validation of our proposed method and 24 ring oscillators were inserted into
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Fig. 4.13: (a) Xilinx Spartan-6 FPGA board (45nm technology) and (b) AES

layout after placement.
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an AES benchmark circuit (shown in Figure 4.13(b)). An Atmel Atmega328P

microcontroller is connected to the FPGA to facilitate in the collection of ring

oscillator cycle count data from the counter. Transient current waveforms (shown

in Figure 4.14(a)) are collected using Digilent Adept software [47]. 28 Trojan-

inserted FPGAs and 60 Trojan-free FPGAs were used to verify the impact of

process variations. Several measurements were done for each ring oscillator in

each FPGA in order to eliminate measurement noise, and the average oscilla-

tion count was used to perform data analysis. The Trojans implemented in the

following analysis are composed of arbitrary combinational gates of varied sizes.

The malicious function to be carried out by the Trojans will not be important

since this analysis is intended to demonstrate the ability of our method to detect

arbitrarily added yet difficult to detect malicious gates.

Eight different Trojans T21-T28 with different sizes were inserted into the

AES benchmark. As seen in Table 4.4, some Trojans are extremely small and

switch rarely during functional operation. For example, the switching probability

of Trojan T21 is 0.0016%. These Trojans were located at location L3 (shown in

Figure 4.13(b)). The area overhead and detection rates of these Trojans are shown

in Table 4.4. T26 was used to show the detailed results of our advanced outlier

analysis in Figure 4.14(b). From the figure, we can see that the Trojan detection

rate for T26 is 100%. With all the Trojan detection rates (shown in Table 4.4),

we can also see that most of Trojans were detected with a 100% detection rate
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however for very small Trojans, the detection rates were lower.
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Fig. 4.14: (a) Transient current waveform and (b)Outlier analysis results with

Trojan T26 from FPGA implementation.

The impact of the number of ring oscillators on detection rates was analyzed

on Xilinx Spartan-6 FPGAs in addition to the simulation results presented earlier.

Here, the number of oscillators in the network is varied and Trojans of varied sizes

are inserted into the circuit. The Trojans are placed in the same location, and the

same LFSR seed is applied for each part of this experiment. RONs, composed of

8, 16, and 24 ring oscillators, were implemented in the AES benchmark circuit.

Figure 4.13(b) shows the RON with 24 ring oscillators and RONs with 8 ring

oscillators and 16 ring oscillators were implemented similarly. With 60 Trojan-

free FPGAs and 28 Trojan-inserted FPGAs, Figure 4.15 shows detection rates

with different RONs for Trojans T21, T22, T23, and T24. From the figure, we can
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Fig. 4.15: Ring oscillator number analysis with Trojans T21, T22, T23 and T24 in

FPGAs.

see that the number of ring oscillators in the RON plays a considerable role in the

effectiveness of our method. For T23 and T24, a detection rate of 100% is achieved

by increasing the size of the network from 8 to 24 ring oscillators.

Also, a significant improvement is achieved by increasing the number of

ROs from 8 to 16, but a smaller improvement is seen when the number of ROs is

increased from 16 to 24. This suggests that detection resolution is not linear with

the number of ring oscillators in RON.

To analyze the sensitivity of our method to location of Trojans, T22 was

placed in different locations, from L1 to L5. Figure 4.16 shows results using

our data analysis flow. The detection rate varies between 88.3% and 79.3% by

changing the Trojan’s location. When the Trojan was placed in locations L4 and

L3, the detection rate is relatively higher since it impacted more ring oscillators.

When the Trojan was located in L2, at a corner of the FPGA, the Trojan detection
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Fig. 4.16: Trojan location analysis with Trojans T22 in FPGAs.

rate is at its lowest.

To analyze the impact of patterns, Trojan T22 was located in L3. Six ran-

domly selected seeds were applied to the LFSR. The ring oscillator cycle counts

and transient current waveforms were collected and analyzed. Figure 4.17 shows

the data analysis results. From the figure, we can see that random patterns do

not have a significant impact on the Trojan detection rate. We acknowledge, how-

ever, that if a designer were to intelligently select a set of patterns which control

background noise and net coverage, more substantial improvements in detection

resolution are possible.

4.5 Conclusions

In this chapter, we proposed an effective Trojan detection framework which com-

bines an on-chip structure with off-chip current measurements. We have shown

that our technique has the capability of detecting very small Trojans with very
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Fig. 4.17: Patterns analysis with Trojans T22 in FPGAs.

little contribution to circuit transient current. Statistical analysis distinguishes

the effects of hardware Trojans from process variations. The experimental results

on 45nm FPGAs demonstrated that this approach is very effective at identifying

Trojan-inserted ICs.



Chapter 5

Experimental Analysis of Ring Oscillator Network for

Hardware Trojan Detection in a 90nm ASIC

In Chapter 3 and Chapter 4, we presented our ring oscillator network that serves

as a power supply monitor by detecting fluctuations in characteristic frequen-

cies due to malicious modifications (i.e. hardware Trojans) in the circuit under

authentication. In order to further verify the effectiveness of our method, we

implemented the ring oscillator network on a design with controlled hardware

Trojans and fabricated the design using IBM 90nm ASICs technology by MOSIS.

With silicon results for 40 test chips, this chapter will analyze the impact of Tro-

jans with varied partial activity, area, and location on the proposed ring oscillator

structure and demonstrate that stealthy Trojans can be efficiently detected with

our technique even while obfuscated by process variations, background noise, and

environment noise.

99
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Fig. 5.1: Layout for the test chip design.

5.1 IC Design and Implementation

5.1.1 Test Chip Design

The RON architecture shown in Figure 4.2 is inserted into the ISCAS s9234 bench-

mark which represents the design to be protected in the test chip. Figure 5.1 shows

the layout of the test chips with the RON structure composed of Nro = 8 n = 61-

stage ROs (ROj where 1 ≤ j ≤ 8) with one NAND gate and 60 inverters each

distributed across the chip. It is important to note that the areas labeled RO1

to RO8 show the broad area in which that RO is confined rather than the to-

tal area occupied by that RO. Ring oscillator stages are placed in each standard

cell row in an intentionally, loosely distributed fashion that improves its cover-

age of the power distribution network. Therefore, these areas are also occupied

by background circuit and control structure components and the area overhead



101

of the oscillators is substantially lower than the labeled areas. The approximate

locations of the seven Trojan stages (Ti where 1 ≤ i ≤ 7) are labeled as well.

The number of RO stages was selected so that the maximum observed frequency

would not exceed the 400MHz operating frequency of the 90nm counters used in

this design. The distance between the two adjacent RO components is limited to

10 times of the width of the flip-flops. Based on this design rule and the area of

the chip, 8 ROs were used.

The feedback polynomial of the LFSR used in our test chip is

X7 +X3 + 1 (5.1)

To conserve area, this design uses an LFSR with only 8-bits to generate patterns

for the 36 input s9234 benchmark. A broadcasting technique is used to assign this

8-bit output to the 36 inputs. An 8-bit decoder and 8-bit multiplexer are used

for RO selection. A 16-bit counter is used to measure the number of oscillations

observed in the test duration which is controlled by a timer. In this design, the

test duration of 500 clock cycles was selected based on the technology node and

test area overhead.

5.1.2 Hardware Trojan Design

Each IC contains seven combinational hardware Trojan designs which may be

completely deactivated. Since this design is implemented in 90nm CMOS tech-

nology, the static power dissipation and side-channel contribution are negligible



102

Troen[i]

Troout[i-1]

Troout[i]

Fig. 5.2: Design of a hardware Trojan stage Ti.

when the Trojans are deactivated. By using a single-IC multiple-Trojan design

we are able to not only carry out a more extensive set of Trojan impact tests,

but we are also able to isolate the effect of process variations from the effect of

inserted Trojans on RO characteristic frequencies. Further, since the static power

is present in the Trojan-free case, it is neglected in comparisons to Trojan-inserted

cases, and the detection results provide a lower-bound.

The gate-level implementation of a Trojan stage is shown in Figure 5.2 where

troout[i] is the output of the ith Trojan stage, troout[i − 1] is the output of the

previous Trojan stage, and troen[i] is the enable signal for the ith stage which also

asserts all prior enable signals when enabled. Trojan Ti contains i stages consisting

of i × (4AND + 1INV ) gates where each stage i − 1 is also enabled if stage i is

enabled. The first Trojan, T1 is driven by the 200MHz clock signal at the location

of signal troout[0]. Note that the Trojan, Ti, is not derived of the trigger-payload

Trojan design used in [11] [23] [24]. Here, each Trojan gate transitions once per

clock cycle, therefore, the partial activity of each of these Trojans is simply 5i

partial activations per clock cycle. The average ratio of Trojan partial activation

to background circuit activity is estimated in the fourth column of Table 5.2.
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Table 5.1: Estimation of area occupied by s9234 in terms of the number of tran-

sistors.

Component Quantity Total Transistors

D Flip-Flops 211 7174

Inverters 3570 7140

Gates 2027 8108

Total 5808 22422

The s9234 benchmark consists of 211 D flip-flops, 3570 inverters, and 2027

other gates. The number of transistors used in the s9234 benchmark is estimated

in Table 5.1 by assuming each flip-flop consists of 8 NAND or NOR gates and 2

inverters. As mentioned earlier, there are a total of seven Trojans (T1 to T7) in

this design. The area overhead of each Trojan is summarized in Table 5.2.

5.2 Experimental Setup

During data collection, the IC is mounted on and wired to a prototyping board

which includes a high-density serial connector. The serial connector allows the

prototyping board to interface with a Xilinx Spartan-6 FPGA on a Digilent Nexys

3 board. The FPGA is programmed to control the test sequence supplied to the IC

and transmit the outputs of the IC to a computer using an on-board USB-UART

module. The complete setup is shown in Figure 5.3.

The nominal supply voltage of the pins of the IC is 2.5V. This is converted
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Table 5.2: Estimation of Trojan area overheads and noise.

Trojan Transistors Percent Trojan to Background

Number Area Circuit Switching Ratio

T1 26 0.12% 0.11%

T2 52 0.23% 0.22%

T3 78 0.35% 0.33%

T4 104 0.47% 0.45%

T5 130 0.58% 0.56%

T6 156 0.70% 0.67%

T7 182 0.81% 0.78%

internally to the nominal core voltage of 1.2V using a voltage divider. Since the

s9234 benchmark circuit used in this design is small compared to a modern IC, in

order to emulate the tight power design of a modern circuit, an external voltage

divider is used to supply the IC with 1.875V and the core with 0.9V which is

greater than the 0.80V minimum core voltage. In practice, reducing the power

supply voltage will reduce the background circuit switching activity and improve

Trojan detection rates. Therefore, it is desirable to reduce the supply voltage

during measurement.

The FPGA includes a state machine which sequences through each ring

oscillator, begins a data collection trial, selects each 4-bit window of the counter

output for the current ring oscillator, and transmits each 4-bit window as a hex

digit over the USB-UART connection. The process is repeated for 10 trials on
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Fig. 5.3: Data collection setup including a Spartan 6 FPGA connected to a pro-

totyping board through a serial connector.

each ring oscillator of each IC. The IC is supplied with 1.875V using a voltage

divider and the board’s 2.5V peripheral power supply over the serial connection

along with a 200MHz clock signal. Each trial lasts 500 clock cycles.

As shown in Figure 5.1, each of the 40 ICs contains NT = 7 pre-inserted

hardware Trojan designs. During Trojan-free data collection each hardware Tro-

jan circuit is disabled, as is any Trojan not being analyzed. Since the designs are

implemented with CMOS circuits, the static dissipation is negligibly low. Fur-

thermore, since all Trojan measurements are compared to the Trojan-free results

(which include static dissipation) the presented detection results provide a con-

servative lower bound.
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5.3 Experimental Results and Analysis

The frequency of a single ring oscillator on a single IC was measured 10 times.

The measurement noise is then calculated with

Max{fTrial1, ..., fTrial10} −Min{fTrial1, ..., fTrial10}

0.1
∑10

m=1 fTrialm

(5.2)

for a single IC and a single ring oscillator where fTrialm is the mth repeated mea-

surement of frequency for that RO. This is repeated for all ICs and all ROs and

averaged resulting in a measurement noise of 0.23%.

The impact of intra-die variation on an RO’s frequencies was analyzed by

comparing a single RO on an IC with other ROs on that same IC. For a single

IC, intra-die variation is calculated with

Max{fRO1 , ..., fRO8} −Min{fRO1 , ..., fRO8}

0.125
∑8

j=1 fROj

(5.3)

where fROj is the frequency of the jth RO. This calculation is repeated for all

ICs and averaged resulting in a mean intra-die variation impact on frequency of

8.05%.

Of the 40 fabricated ICs, 38 functioned correctly and the remaining faulty

ICs are omitted. The impact of inter-die variation on the frequency of a ring

oscillator was determined by selecting a single RO and comparing the frequency

of this RO across each IC. For a single RO the inter-die variation is calculated

with

Max{fIC1, ..., fIC38} −Min{IC1, ..., fIC38}

(1/38)
∑38

k=1 fICk

(5.4)
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Table 5.3: Summary of validation data

Measurement Noise 0.23%

Intra-die Variation 8.05%

Inter-die Variation 16.67%

Mean RO Frequency 291MHz

where fICk is the frequency of the individual RO of interest on the kth integrated

circuit. This calculation is repeated for all ROs and averaged resulting in a mean

inter-die variation impact on frequency of 16.67%. The average RO frequency of all

ROs on all ICs was 291MHz. The maximum recorded frequency was 315MHz

which was less than the 400MHz frequency the counter was timing closed at.

These results are summarized in Table 5.3.

5.3.1 Trojan Impact Analysis

The direct impact of hardware Trojan induced power supply noise on ring oscilla-

tor frequencies is analyzed by measuring the frequency of each RO on each IC for

the Trojan-free case as well as for each Trojan. The mean impact of a particular

Trojan on a particular RO is then computed by comparing the frequency of that

RO on a particular IC with the frequency of that RO on the same IC with the

Trojan disabled. The computation is thus

TROIROj,T i = (1/38)
k=38∑
k=1

|ROj,k,Tfree −ROj,k,T i|

ROj,k,Tfree
× 100% (5.5)
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where TROIROj,T i is the mean impact of the ith Trojan on the jth RO across all

ICs compared to the Trojan-free case. ROj,k,Tfree is the Trojan-free frequency for

the jth RO on the kth IC, and similarly, ROj,k,T j is the frequency of the jth RO

on the kth IC with the ith Trojan activated.

It is with this calculation that the value of the single-IC multiple-Trojan

design is best demonstrated. By comparing measurements made with a Trojan

enabled against measurements made on the same IC with the Trojan disabled

inter-die variation is eliminated from the analysis. Had separate ICs been fabri-

cated with Trojans inserted and Trojans removed, only comparisons between dif-

ferent ICs would be possible and the computation would include inter-die process

variation. By restricting comparisons to the same RO intra-die process variations

are eliminated from the computation as well.

The results for Trojan impact are presented in Figure 5.4. It is immedi-

ately clear that Trojans of greater area and those which partially activate more

frequently induce a greater change in the frequencies of nearby ROs since they con-

sume more power. The maximum induced change for the largest Trojans in this

experiment is representative of one of the core issues in the IC trust problem. The

Trojan induces at most a change of 2.5% to frequencies, yet as Table 5.3 reports,

intra-die variation and inter-die variation induce far greater changes suggesting

these Trojans would be completely obfuscated in a test where these variations are

not isolated. However, Trojan detection is still possible with this technique. The
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Fig. 5.4: The impact of inserted hardware Trojans on RO frequencies isolated

from process variations.

manner in which Trojan impact is distributed across ROs, including the decrease

in impact on RO3 and RO4 for larger Trojans.

5.3.2 Spatial Locality Analysis

To analyze the effect of Trojan location, the ring oscillator which experiences the

greatest Trojan impact calculated with Equation 5.5 is determined for each IC

with a particular Trojan. A histogram showing the frequency with which each

ring oscillator was the most impacted on an IC is shown in Figure 5.5. The

location of Trojan gates relative to the gates of the ROs and the vertical power

line is shown in Figure 5.1

Notably, RO8 is impacted most frequently for all Trojans since several of

its gates are closest to the vertical power strap thereby causing a portion of the
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overall power supply noise to affect this RO. For T1 and T2 a substantial portion of

the Trojan impact is distributed on RO2 and RO3 since these Trojans are located

close to these ROs and likely share power lines.

Since the majority of the gates in subsequent Trojans are closest to RO8,

more of the Trojan impact is distributed on this RO. Perhaps counter-intuitively,

the distribution becomes more focused on a single RO as the Trojan expands in

size. Had the Trojan expanded vertically and towards multiple ROs it is likely

the distribution would become less focused. However, for these Trojans which

extend primarily horizontally, the increase in area and activity further increases

the Trojan impact without expanding into other regions of the power network.

For T7 the Trojan becomes less localized on RO8 since T7 is particularly

close to the vertical power strap. For this reason, the Trojan impact is more

evenly distributed across ROs since the vertical power strap supplies power to the

entire circuit. Finally, the reduced impact on RO3 and RO4 for T6 and T7 shown

in Figure 5.4 is due to the loosely distributed nature of these ROs away from the

vertical power line and the placement of these Trojans close to the vertical power

line.

5.3.3 IC Classification and False-Positive Analysis

In previous section, it was shown that all Trojans used in this study impacted the

RO frequencies substantially less than inter-die and intra-die process variations.
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Fig. 5.5: Number of instances of each RO being most impacted by a Trojan.

However, using the principal component analysis (PCA) [43] based classification

scheme presented below, it is still possible to detect these Trojans. In order to

verify that this data is adequately represented in fewer than 8 principal compo-

nents, the percent of the total variance in each PCA representation is computed

by dividing the cumulative sum of the latent of the PCA representation by the to-

tal sum. The percent variance for each representation is shown in Table 5.4. The

results imply that any representation of at least 2 components should adequately

represent this data.

To succeed, a classification scheme must perform two functions: (1) it must

correctly label Trojan-inserted circuits as tampered and (2) it must correctly label

Trojan-free circuits as un-compromised. The steps for the presented classification

scheme are:

1. Form a matrix from golden (Trojan-free) data in which each row is a verified
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Table 5.4: Percent variation contained in a representation of h principal compo-

nents.

Components Percent Variation

1 89.4%

2 99.39%

3 99.59%

4 99.79%

5 99.87%

6 99.93%

7 99.97%

8 100%

Trojan-free IC and each column is a ring oscillator. Append a similar row

containing the data from the chip under authentication (CUA) to the matrix.

2. Obtain a representation of this matrix using the first h principal components

3. Render an h-dimensional convex hull [44] with all data except that of the

CUA.

4. Determine if the CUA point falls within the hull. If it is within the bound-

aries of the hull it is considered Trojan-free.

To examine the performance of this classification scheme, the data are or-

ganized into five cases in which 8 of the 38 functioning ICs are randomly selected
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to represent Trojan-free chips to be authenticated and the remaining ICs are used

to build the golden signature. All 38 ICs are used as Trojan-inserted chips under

authentication.

The classification scheme was tested using both 2 and 3 dimensional hulls

using the same subset cases for both hull types. The percent chips labeled as

Trojan-inserted are shown for each case using both 2 and 3 dimensions are shown

in Figure 5.6(a) and Figure 5.7(a) respectively. ”FP” indicates the number of

Trojan-free chips which were incorrectly classified. For both 2 and 3 dimensions,

the behavior varies among the randomly selected cases. Thus for clarity, the

average rates among all cases are shown in Figure 5.6(b) and Figure 5.7(b). For

both the 2 and 3 dimensional schemes, the false positive rates are lower than the

detection rates for even the smallest Trojans in the experiment. For Trojans T1-

T5 the detection rates are under 50%. This is unsurprising since these Trojans

consisting of fewer than 130 transistors were intentionally designed to determine

and emphasize the limitations of this technique.

For the larger Trojans, the detection rates are as high as 60-70% for the 2

dimensional case and 80-90% for the 3 dimensional case. Notably, the percent ICs

labeled Trojan-inserted tends to be higher for the 3 dimensional case indicating

sensitivity is related to the number of dimensions used. However, the three-

dimensional case also achieves a higher ratio of detection rate to false positive

rate for some cases.
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Fig. 5.6: Classification using the presented scheme and 2 dimensions.
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These results demonstrate that the ring oscillator network scheme and the

presented classification scheme can adequately separate Trojan-inserted designs

from the Trojan-free designs despite the presence of obfuscating process varia-

tions. Although intra-die and inter-die variations introduce roughly 8% and 17%

variations in RO frequencies respectively compared to the 1-3% change induced

by the inserted Trojans, this technique successfully classifies ICs by exploiting the

spatially correlated nature of process variations.

5.4 Conclusions

In this chapter, our proposed RON structure for detecting hardware Trojans was

analyzed using 38 ICs containing the ISCAS s9234 benchmark circuit fabricated

using the IBM 90nm process. Each IC contains 7 different hardware Trojans.

By using a single-IC multiple-Trojan design we are able to not only carry out a

the extensive set of Trojan impact tests, but we are also able to isolate the ef-

fect of process variations from the effect of inserted Trojans on RO characteristic

frequencies. We have shown that ring oscillator frequencies increase with increas-

ing Trojan partial activity and that ring oscillators which share power lines with

nearby Trojans will be most impacted. The presented results reveal that it is

possible for Trojan impact to counter-intuitively become more localized as it ex-

pands in size provided it remains within the region most closely aligned with a

single ring oscillator. Lastly, this chapter has demonstrated that the proposed IC
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classification method is very effective to detect Trojan-inserted ICs even in the

presence of obfuscating process variations, measurement noise, and environment

variation.



Chapter 6

Design of On-chip Light-Weight Sensors for Effective

Detection of Recycled ICs

In Chapter 2, 3, 4, and 5, several hardware Trojans detection techniques in 3PIPs

and ICs are presented, which could help improve the security and trustworthiness

of circuits. The other topic we will focus on in this thesis is recycled ICs detection.

As we mentioned in Chapter 1, the recycled ICs have the original appearance,

functionality, and markings as the devices they are meant to mimic, but they

have been used for a period of time before they are re-sold. It is vital to develop

new techniques to help measure these ICs’ specifications and effectively detect

them if they have already been used in the field even for a short period of time.

The major difference between recycled ICs and unused ICs is that recycled

ICs have already been used and experienced aging, as they were removed from

their original boards and re-sold in the market. Aging effects, such as negative

bias temperature instability and hot carrier injection, would have had an impact

on the performance of the recycled ICs due to the change in threshold voltage.

118
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In this chapter, we propose two techniques using light-weight sensors (RO-based

and AF-based) to help with the detection of recycled ICs.

The RO-based sensor is composed of a reference ring oscillator (Reference

RO) and a stressed ring oscillator (Stressed RO). The Stressed RO is designed to

age at a very high rate by using high threshold voltage gates to expedite aging so

that ICs used for a period of time can be identified. The Reference RO is gated

off from the power supply during chip operation, so that it experiences less stress.

The frequency difference between the two ROs could denote the usage time of

the chip under test (CUT); the larger the difference is, the longer the CUT has

been used, and with a higher probability the CUT could be a recycled IC. With

close placement of the two ROs in the RO-based sensor, the impact of intra-die

process variations could be minimized. Data analysis can effectively distinguish

the frequency differences caused by aging from those caused by temperature and

inter-die process variations, to identify recycled ICs, which is demonstrated by

our simulation and silicon results. The RO-based sensor presents a negligible area

overhead, imposes no constraint on circuit layout, and is resilient to removal and

tampering attacks. The three working modes of the RO-based sensor proposed

in the chapter ensure that the Reference RO cannot be gated on alone, thus the

frequency difference between the two ring oscillators cannot be changed to mask

detection.

The second half of this chapter, we propose the AF-based sensor, composed
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of counters and an embedded antifuse memory block, to identify recycled ICs. The

counters are used to record the usage time of ICs and the value is dynamically

stored in the antifuse memory block by controlling the programming signal. Since

the antifuse memory block is one time programmable, “recyclers” could not erase

the context during recycling process. Therefore, our AF-based sensor is resilient

to removal and tampering attacks. Two different structures of AF-based sensor

are proposed to measure the usage time of ICs in this chapter: (i) AF-based sensor

using clock (CAF-based) records the cycle count of the system clock during the

chip operation. The usage time of recycled ICs can be reported by this sensor and

the measurement scale and total measurement time could be adjusted according to

the application of ICs. (ii) AF-based sensor using signal transition (SAF-based)

selects a certain number of signals with low switching probability and records their

switching activities to calculate usage time to detect recycled ICs with less area

overhead compared to CAF-based sensor.

6.1 Background

In this section, we will briefly describe aging phenomenon in ICs and present

their impact on different circuit components, which will be used in our RO-based

sensor. The antifuse OTP memory used in the AF-based sensor will also be briefly

introduced in this section.
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Fig. 6.1: (a) Inverter chain structure, (b) Degradation of inverter chains with

different lengths (stage count), and (c) Degradation of a 3-inverter chain

with different inverter types.

6.1.1 Aging Analysis

When the chip operates in functional mode, the transistors age mainly due to

NBTI and HCI. The aging effects of NBTI and HCI could cause parametric shifts

and circuit failures, as demonstrated by reliability models [57] [59] [60]. NBTI

occurs when a negative gate-to-source voltage is applied at the PMOS transistors,

which breaks Si-H bonds generating the interface traps. These interface traps

can increase the absolute value of the PMOS threshold voltage (Vth), resulting in

reduced transistor current and increased gate delay. Equation 6.1 shows the shift
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of Vth caused by NBTI [61].

∆Vth =
qNit,NBTI(t)

Cox
(6.1)

where Cox represents the gate oxide capacitance, q is the electronic charge, and

Nit,NBTI(t) is the number of interface traps, which will increase as the transistors

continue to operate in the field. HCI occurs when the electron or hole in transistors

gains sufficient energy to overcome silicon dioxide barrier in order to break an

interface state. The silicon substrate/gate dielectric interface and dielectric bulk

traps caused by HCI can impact device parameters including threshold voltage,

shown in Equation 6.2.

∆Vth =
qNit,HCI(t)

Cox
(6.2)

where Nit,HCI(t) is the number of interface traps caused by HCI.

Since recycled ICs have been impacted by these aging effects when used in

the field, the circuit parameters of recycled ICs would be different from those of

new ICs. If a fast-aging sensor was embedded into the circuit to help detect its

usage, then recycled ICs could be identified.

In order to verify the effects of aging on a circuit’s performance, several

different inverter chains were simulated using Synopsys 90nm technology [62].

The delay of these inverter chains will represent the circuit’s performance. The

simulation was conducted using HSPICE MOSRA (Synopsys’ reliability analysis

tool) with combined NBTI and HCI aging effects at 25◦C. Figure 6.1(a) shows

the basic structure of the inverter chains with the same capacitive load and the
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same stress coming from a 500MHz clock. These chains are composed of 3, 7,

15, and 31 standard, high, and low threshold voltage (SVT, HVT, and LVT)

inverters. Figure 6.1(b) presents the delay degradation of inverter chains under

clock stress for up to 27 months with no interrupt. From the figure, we can see that

the number of inverters does not have a significant impact on the degradation of

these chains since they receive the same stress, and each inverter’s speed degrades

at the same rate. Aging effects are also dependent on device’s threshold voltage.

The 3-inverter chains were simulated using SVT, HVT, and LVT and two different

size inverters (INVX1 and INVX32). Figure 6.1(c) shows that the chain with the

HVT inverters experiences more degradation than the chains with SVT or LVT

inverters. The INVX1 inverter chain has a larger degradation than the INVX32

inverter chain.

NAND and buffer (BUF) gate chains with HVT were also simulated at 25◦C

with a 500MHz clock stress. The basic structure of these chains is the same as the

inverter chains. A NAND gate will function as an inverter when its two inputs are

connected together. Figure 6.2 shows the simulation results. From the figure, we

can see that the gate type does not impact the aging speed significantly. However,

the inverter chain ages slightly faster than the others, while the NAND gate chain

and the BUF chain age at almost the same speed. The difference in the amount

of aging depends on the structure of gates. Therefore, inverters (INVX1) with

HVT will be used to create the ring oscillators used to detect recycled ICs in our
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Fig. 6.3: (a) Frequency degradation of a 5-stage RO, and (b) Frequency of a

5-stage RO decreases with increasing temperature.

simulation.

Figure 6.3(a) shows the frequency degradation of a 5-stage ring oscillator

with HVT inverters after aging for 27 months. The frequency of the RO in a recy-

cled IC will be smaller than in a new IC. If there are no environmental or process

variations, we could easily identify recycled ICs by measuring the frequency of the

RO embedded in the circuit. However, variations have a significant impact on the
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frequency of ROs. Figure 6.3(b) shows that the frequency of the 5-stage RO will

decrease as we increase the temperature, and that the frequency variation could

be very large. Note that increasing temperature can also increase the degradation

of the circuit.

The 1000 Monte Carlo (MC) simulation results of the 5-stage RO are shown

in Figure 6.4(a), at a temperature of 25◦C with 3σ: 2% Tox, 5% Vth, and 5% L

inter-die variations and 1% Tox, 5% Vth, and 5% L intra-die variations. We can

see that the frequency of the RO can vary as much as 20% under process variations.

In addition, process variations impact the aging rate of the RO, as shown in Figure

6.4(b). The frequency degradation of the 1000 chips varies around 8% (7.4%-8.6%)

for one year of aging. This frequency shift caused by the aging effects in recycled

ICs can help separate them from those caused by process variations in new ICs if

we try to use ROs to detect recycled ICs.

With a fixed stress, the number of inverters does not have a significant

impact on an inverter chains’ delay degradation. However, the frequency of an

RO is related to the number of inverters, f = 1
2∗n∗td

, where n is number of stages

in the RO and td is the delay of an inverter. Figure 6.4(c) shows the frequency

shift of a 21-stage RO with HVT inverters. The frequency degradation is shown

in Figures 6.4(d). Comparing the frequency degradation of the 5-stage and 21-

stage ROs, we can see that the 5-stage RO experiences slightly more degradation

since its oscillation frequency is higher than the 21-stage RO. However, a 5-stage
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RO may require a very fast counter which might be difficult to design for timing

closure.

6.1.2 Antifuse Memory

An antifuse is an electronic device that changes state from non-conducting/high

resistance to low resistance in response to electrical stress. With sufficiently high

voltage/current, a large power dissipation in a small area will melt a thin insulating

dielectric between polysilicon and diffusion electrodes and form a thin, permanent,

and resistive silicon link. The programming performed after manufacturing is

irreversible and permanent in antifuse cells, which will be used in our AF-based

sensor to store the usage time of ICs.

The AF-based sensor is composed of counters with usage time of ICs when

power-on stored in an embedded antifuse OTP memory block during the chip

operation. Otherwise, the data may be erased or altered in power-off mode by

attackers. The reasons for using an antifuse block in the AF-based sensor are

[63]: (i) it consumes less power to program or read compared with other types

of OTP structures, such as electrical fuse or CMOS floating gate, (ii) the area of

an antifuse is much smaller than an efuse, and (iii) it does not require additional

mask or manufacturing handing steps during fabrication.

However, most antifuse memories are programmed in a programming envi-

ronment with relatively high voltage/current. Therefore, integrated charge pumps
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Fig. 6.4: (a) Frequency of a 5-stage RO varying with process variations, (b)

Frequency degradation of a 5-stage RO aging for one year varying with

process variations, (c) Frequency of a 21-stage RO varying with process

variations, and (d) Frequency degradation of a 21-stage RO varying

with process variations.
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or voltage multipliers are used to provide sufficiently high voltage/current [64] [65]

in embedded antifuse OTP memories. With those charge pumps or voltage mul-

tipliers, no additional power supply is required during programming. The typical

interface of the embedded antifuse memory is shown in Figure 6.5 [64] [65], includ-

ing Power supply, Address, Prog, and Data signals. We will use existing antifuse

blocks with the interface shown in Figure 6.5 instead of designing a new embedded

antifuse structure in our AF-based sensor since embedded antifuse memory is only

a small part of the sensor.

6.2 Recycled-IC Detection Sensors

Two different sensors to identify recycled ICs are proposed in this chapter. RO-

based sensor is based on the aging differences between two ring oscillators to record

the usage time of ICs. RO-based sensor does not require any memory element to

store the usage time since it is hidden in the degraded RO frequency because

of aging. AF-based sensors count the system clock or the switching activity of

signals in the design and store the usage time in an antifuse OTP block. The two
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sensors will be discussed in detail in the following.

6.2.1 RO-based Sensor

Our main objectives in designing the RO-based sensor are: (i) the sensor must

age at a very high rate to help detect ICs used for a short period of time, (ii)

the sensor must experience no aging during manufacturing test, (iii) the impact

of process variations and temperature on RO-based sensor must be minimal, (iv)

the sensor must be resilient to attacks, and finally (v) the measurement process

must be done using low-cost equipment and be very fast and easy.

As mentioned earlier, aging effects could slow down the frequencies of ROs

embedded into ICs. With an embedded RO, these recycled ICs could be identified

based on its frequency, which will be lower than that of a new IC. However, there

are many parameters impacting the frequency of an RO, such as temperature and

process variations. Our RO-based sensor uses a Reference RO and a Stressed RO

to separate the aging effects from process/environmental variations.

Figure 6.6 shows the structure of our RO-based sensor, which is composed

of a control module, a Reference RO, a Stressed RO, a MUX, a timer, and a

counter. The counter measures the cycle count of the two ROs during a pre-

specified time period, which is controlled by the timer. System clock is used in

the timer to minimize the measurement period variations due to circuit aging. The

MUX selects which RO is going to be measured, and is controlled by the ROSEL
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Fig. 6.6: The structure of the RO-based sensor.

signal. The Reference and Stressed ROs are identical; both are composed of HVT

components. The inverters in Figure 6.6 could be replaced by any other types of

gates (NAND, NOR, etc) only if they can construct a RO. It will not change the

effectiveness of the RO-based sensor significantly. We use smaller-stage ROs in

our RO-based sensor considering the counter’s measurement speed limits given a

technology. For example, in our 90nm technology, a 16-bit counter can operate

under frequency of up to 1GHz; an inverter-based RO of at least 21 stages is then

required.

Sleep transistors are used to connect the ROs to the power supply in the RO-

based sensor; PMOS sleep transistors control the connection between V DD and

the inverters and NMOS sleep transistors control the connection between V SS and

the inverters. Both the Reference RO and the Stressed RO work in three modes

that are controlled by the Mode signal: (i) when the IC is in manufacturing test

mode, the Reference RO and Stressed RO will be disconnected from the power
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supply and experience no aging. This mode only lasts a short time, depending

on the test procedures of the IC. (ii) when the IC is in normal functional mode,

the Reference RO will be disconnected from V DD and V SS but the Stressed RO

will be gated on and will age. The frequency of the Stressed RO will drop while

the Reference RO will not change a lot. ICs will spend most of their time in this

mode. (iii) when the IC is in authentication mode (i.e., when an IC is taken from

market and its authenticity is to be verified), both the Reference RO and Stressed

RO will be gated on by connecting to the power supply. The timer and counter

will be enabled to measure ROs’ cycle count and ROSEL signal will select which

RO to measure. The rest of the functionality of the IC would be turned off by

Mode signals and the authentication process takes a very short period of time.

The three modes of operation ensure that (i) the frequency difference between the

Reference RO and Stressed RO will be larger over time since the Reference RO

cannot be gated on alone, and (ii) it is extremely difficult for adversaries to force

the RO-based sensor to operate in authentication mode when it is supposed to be

in its normal functional mode, which would eliminate the aging difference. The

only method to do that would be to modify the original RO-based sensor module,

which is impossible during a simple recycling process.

As shown in Figure 6.6, the inverters of the Reference RO and the Stressed

RO are placed physically next to each other, designed as a single small module.

The process and environmental variations between them should be very small.



132

Therefore, for a new IC, the frequency difference between the Reference RO and

the Stressed RO would be within a certain small range. In a recycled IC, the

Stressed RO will have suffered aging from its own oscillation since the chip has

been working in normal functional mode for a long time. However, the Reference

RO will not have experienced as much aging since it was gated off. The frequency

difference between the Reference RO and the Stressed RO will grow larger as

the chip operates longer, which is demonstrated by our simulation and silicon

results. If the frequency difference is outside of the new ICs’ frequency difference

range considering process variations, we can conclude with high confidence that

the CUT was recycled from used boards. The area overhead of our RO-based

sensor is negligible when compared to the millions of gates in modern ICs. Power

consumption is also limited to that consumed by the Stressed RO in the RO-based

sensor.

6.2.2 AF-based Sensor

In the RO-based sensor, the inverters of the Reference RO and the Stressed RO are

placed physically next to each other to minimize the impact of intra-die process

variations. However, it may still be difficult to completely exclude the impact of

inter-die process variations on the sensor. In addition, RO-based sensor provides

only an approximation of the usage time in a form of aging in the stressed RO.

Therefore, the sensitivity (the minimum usage time of recycled ICs detected by
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sensors) of the RO-based sensor is limited. For example, it may not identify

recycled ICs used shorter than one month based on our simulation. In order to

eliminate the issue of process variations, provide a more accurate usage time, and

identify recycled ICs that are only used for a very short period of time (such as 1

day), we propose two AF-based sensors: CAF-based sensor and SAF-based sensor.

CAF-based sensor

Figure 6.7 shows the structure of the CAF-based sensor, which is composed of

two counters, a data read module, an adder, and an antifuse OTP memory block.

counter1 is used to divide the high frequency system clock to a lower frequency

signal, as shown in Figure 6.7. counter2 is used to measure the cycle count of the

lower frequency signal. The size of the two counters can be adjusted accordingly
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depending on the measurement scale (Ts: defined as the time unit reported by the

sensor) and the total measurement time (Ttotal). For example, if Ts is 1 hour and

Ttotal is 1 year based on the specification of an IC, a 38-bit counter1 will meet the

requirement to count the usage time from 20ns (assume system clock=50 Mhz)

to 1 hour and a 14-bit counter2 will count the usage from 1 hour to 8760 hours (1

year).

Since the data stored in registers (counters) could be lost or reset when

power supply is off, non-erasable memory is required in this sensor. An embedded

antifuse OTP block is used instead of a field programmable read-only memory

(FPROM) to store the usage time information because FPROM could be tam-

pered or altered by attackers. In the antifuse block, Prog is assigned to be 1′b1 if

the value in counter2 increases by ”1”. By connecting the output of counter2 to

Address in the antifuse block directly, the related antifuse cell will be programmed

as ”1”. Therefore, the largest address of the cell whose content is ”1” will be the

usage time of CUT based on the measurement scale setup by counter1.

However, program and read operations share the same Address signals in

antifuse block. Therefore, a MUX (MUX1 in Figure 6.7), controlled by data read

module, is used to select the address (antifuse cell) to be read or programmed.

Every time power supply is on, the antifuse block will work in read mode for a short

period of time. During this time, the read address generated by data read module

will go through MUX1 and all the antifuse cells will be traversed based on the
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Algorithm for Data Read

01: initial address = (N/2);

02: for (i = log(N/2), i > 0, i−−) {

03: if ([address] == 1)

04: address = address+ 1;

05: if ([address] == 0)

06: address = address− 1, $stop;

07: else

08: address = address− 1;

09: address = address+ 2(i−1);

10: else

11: address = address− 2(i+1);

12: }

Fig. 6.8: Algorithm for “data read” in CAF-based and SAF-based sensors.
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traversing binary tree principle. Figure 6.8 shows the algorithm for data read in

a N-bit antifuse block. From Figure 6.8, we can see that there are log(N/2) loops

in the algorithm. The address is increased or decreased by 2i−1(i = 0, ...log(N/2))

for the ith loop based on the value in the address. If the value stored in the

address is ”1” ([address] == 1) and the value stored in the next address is ”0”,

the address will represent the usage time before power-on based on Ts. The read

operation will last less than log(N/2) + 1 system clock cycles, depending on the

value stored in the antifuse block; this time will be recorded by counter1, as well.

Once we get the previous usage time, it will be stored in register Reg3 and

sent to the adder. The reason for using an adder here is that counters start

from ”0” every time the power is turned on and the previous usage time must be

considered when we calculate the total usage time. In addition, Reg1 is used to

sample the data in adder, Reg2 delays the data in Reg1 with one system clock,

and XOR gates are used to compare the data in Reg1 and Reg2. If they are

different (denoting the usage time increased), the antifuse OTP block will work

in program mode and the data in Reg1 will go through MUX1 to the Address

in the antifuse block. Therefore, combined with the value in counter2 (the usage

time after power-on), the new total usage time will be stored in the antifuse OTP

block by programming a new antifuse cell with a larger address. From the above

discussion, we can see that the antifuse OPT block is programmed internally.

By designing our sensor in this way, we can reduce the probability of altering or
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tampering attacks on the AF-based sensor.

In order to eliminate the need for additional pins for authentication purposes

on the chip, our CAF-based sensor uses a MUX (MUX2) and an authentication

(Aut.) pin to send the usage time to the output pins of ICs. This way, no extra

output pins will be added to the original design. When the IC works in normal

functional mode, original primary outputs (OPOs) will go through MUX2. If

the IC is in authentication mode by enabling the authentication signal, the data

read module will set the antifuse IP in read mode and the usage time will go

through MUX2. In addition, when the IC works in manufacturing test mode, the

functionality of our CAF-based sensor will be disabled and structural fault test

patterns will be applied to the sensor.
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SAF-based Sensor

With two counters, the area overhead of CAF-based sensor could still be consid-

ered large for smaller designs. In order to reduce the area overhead, we proposed

SAF-based sensor based on signals’ switching activity (SW) as shown in Figure 6.9.

Comparing Figure 6.9 with Figure 6.7, we can see that the structure of SAF-based

sensor is similar to that of CAF-based sensor. The difference is that CAF-based

sensor counts the cycle of system clock to record the usage time of ICs while SAF-

based sensor counts the switching activity (positive edge) of a certain number of

nets in the design. With simulations, a certain number of nets are selected to be

the input of an AND gate. The rule of nets selection is that the switching activity

of the output of the AND gate must meet the requirement of the measurement

scale. For example, if Ts is 1 hour, one of the choices could be four nets with

SW (N 1) = 30/60mins, SW (N 2) = 24/60mins, SW (N 3) = 25/60mins, and

SW (N 4) = 24/60mins, respectively. However, with different functional inputs,

the signals’ SW could be significantly different. Therefore, only the signals with

consistent SW under different inputs are selected when we design a SAF-based

sensor. From the analysis, we can see that the net selection could be adjusted

based on different designs and measurement scales. Then the positive pulse of the

output of the AND gate (SS signal in Figure 6.9) will be counted by counter2 in

the sensor.

In order to further reduce the area overhead, a 1-bit right shifter is used
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to divide the value in counter2 by 2 and then the largest address of antifuse

cells with ”1” will represent [SW/2]. A 1-bit left shifter is used to calculate the

switching activity by [SW/2] * 2. The recorded SW will represent usage time of

ICs. Therefore, the number of antifuse cells in SAF-based sensor will be reduced

compared with CAF-based sensor. However, the accuracy of SAF-based sensor is

lower than CAF-based sensor because (i) it is based on the switching activity of

a certain number of nets in the netlist while CAF-based sensor counts the cycle

count of the system clock, and (ii) the SAF-based sensor loses part of the usage

time information due to the shifters.

Compared with RO-based sensor, the area overhead of the two AF-based

sensors is larger because of the counters and the antifuse OTP block. However,

it is still negligible when compared to the millions of gates in modern ICs. The

major advantage of AF-based sensor over RO-based sensor is that the usage time

stored in the AF-based sensors to identify recycled ICs will not be impacted by

technologies (i.e., older technology designs do not age as much as the new ones

do), packages, assemblies, or process variations. Even if the design was fabricated

at different time in different foundries, the AF-based sensor could still indicate

how long chip under test has been used. In addition, AF-based sensors could

identify recycled ICs used for a very short period of time, such as 1 day, due to

the small measurement scale.
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6.3 Results and Analysis

In this section, we will present the experimental results of the RO-based sensor

and AF-based sensor including simulation results and silicon results from test

chips. Attack analysis on the two sensors will also be discussed.

6.3.1 RO-based Sensor

Figure 6.10 shows the proposed measurement flow using RO-based sensor for

identifying recycled ICs in our experiments. This is done only for the purpose

of validation of our proposed sensor. The way RO-based sensor is designed, it

eliminates the need for a golden IC, especially when chip is used for a long period
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of time in the field. First, a certain number of random, new ICs are used as

sample chips to generate a fingerprint. The samples can come from the same

or from different wafers and lots. The larger this sample is, the more process

variation space will be covered, reducing the probability that new ICs with large

process variations will be identified as recycled ICs. 1000 sample chips are tested

in our simulation. In authentication mode, the Reference RO and Stressed RO’s

frequency is measured. We acknowledge that temperature variation should not

impact the identification results significantly, since the Reference RO and Stressed

RO will experience the same environmental temperature.

Once the sample chips have been measured, the frequency difference between

the Reference RO and Stressed RO would be calculated, with Fdiff = Fref −

Fstr, where Fref is frequency of the Reference RO and Fstr is frequency of the

Stressed RO. With 1000 sample chips, the range of Fdiff will be determined using

distribution analysis, creating a fingerprint for new ICs. If Fdiff of the CUT is

out of the range of the new ICs’ fingerprint, there is a high probability that the

CUT is a recycled IC. Otherwise, the CUT is assumed to be a new IC. The longer

the CUT has been used, the more aging effects it will have experienced, making

it easier to identify. The entire measurement procedure for each CUT should take

only a very short amount of time (less than few seconds).
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Simulation Results

In order to verify the effectiveness of the RO-based sensor, we implemented and

simulated it using 90nm technology [62]. HSPICE MOSRA from Synopsys is used

to simulate and measure the impact of aging on the RO-based sensor. The nominal

supply voltage is 1.2V. During simulation, in the stress phase, the Reference RO

was gated off and the Stressed RO was gated on, experiencing NBTI and HCI

aging. The stress for the Stressed RO comes from its own oscillation. In the

authentication phase, the Reference RO and Stressed RO were both gated on and

measured one by one, selected by the ROSEL signal. The measurement time was

set up in the timer as 100µs in our simulation. Since the clock of the counter in

the RO-based sensor is from the RO, the cycle count of each RO is given by the

counter. The frequency of RO is equal to the cycle count divided by measurement

time. The following simulation analysis is based on inverter ring oscillators.

Stage Analysis: RO-based sensors with 21-stage and 51-stage ROs were simu-

lated at 25◦C with 2% Tox, 5% Vth, and 5% L inter-die and 1% Tox, 5% Vth, and

5% L intra-die process variations (PV0 in Table 6.1). 1000 chips were generated

using Monte Carlo simulation by HSPICE and the total aging time was set at 24

months with a one month step.

Figure 6.11(a) shows the frequency difference Fdiff range between the 21-

stage Reference RO and Stressed RO, where, in the legend, AT denotes aging

time, M represents month, and Y represents years. From the figure, we can see
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Fig. 6.11: Frequency difference distribution of RO-based sensor with PV0 using

(a) 21-stage ROs, and (b) 51-stage ROs.

that the frequency difference in new ICs (AT = 0) could be larger or smaller than

0, which is dependent on the process variations between the two ROs. In addition,

the process variations of the CUTs are different from that of the 1000 sample new

ICs, but the frequency differences still follow an identical distribution. The range

of frequency differences in the new sample ICs is used as the fingerprint. After

being used for one month, the Stressed RO suffered from aging effects and its

frequency became lower. The lowest frequency difference between the Reference

RO and the Stressed RO is larger than the largest frequency difference present

in the new IC set. Therefore, the recycled IC detection rate for ICs aged for

one month or longer is 100%. At 6 months, 1 year, and 2 years, the frequency

difference between the Reference RO and the Stressed RO becomes larger and

larger. The variation of the frequency difference becomes larger as well. This is

because the aging rate is different from chip to chip due to process variations;
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some ICs aged faster and some others aged slower.

RO-based sensors with 51-stage ROs were also implemented using the same

temperature and the same process variations. Figure 6.11(b) shows the simula-

tion results. Comparing Figure 6.11(a) and Figure 6.11(b), we observe that the

frequency difference between aged and new ICs is smaller when we use the larger-

stage ROs. However, the frequency difference variation becomes smaller as well,

which means that the RO-based sensor could still detect fully recycled ICs that

had been used for one month with a 100% detection rate. If the RO-based sensor

uses large-stage ROs, it may impact the absolute value of the frequency differ-

ence between the Reference RO and the Stressed RO, but the detection rate will

not be impacted significantly. For different technologies, the stage count of the

ROs could be adjusted based on the speed of the counter. In the following, we

use RO-based sensors with 21-stage ROs according to the 90nm technology for

further analysis.

Process Variations and Temperature Analysis: The effectiveness of the

RO-based sensor is partly dependent on the variations between the Reference

RO and the Stressed RO. With lower rates of variation, the RO-based sensor

could identify recycled ICs that aged for a shorter period of time. However, the

variations between the Reference RO and the Stressed RO are determined by intra-

die process variations. The smaller the intra-die variations, the more effective the

RO-based sensor will be. Table 6.1 shows the different process variation rates
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Table 6.1: Process variations.

Inter-die Intra-die

Vth L Tox Vth L Tox

PV0 5% 5% 2% 5% 5% 1%

PV1 8% 8% 3% 7% 7% 2%

PV2 20% 20% 6% 10% 10% 4%

used in our simulation to analyze their impact on detection. Moving from PV0

to PV2, inter-die and intra-die variations both become larger. RO-based sensors

with 21-stage ROs were simulated at 25◦C using these process variation rates.
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Fig. 6.12: Frequency difference distribution of RO-based sensor with 21-stage

ROs with (a) PV1 and (b) PV2.

By designing the sensor as a small module (hard macro), the Reference

RO and the Stressed RO were placed physically close and the variations between

them were minimal. The simulation results of 1000 chips with PV1 and PV2
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are shown in Figure 6.12(a) and Figure 6.12(b), respectively. Comparing Figure

6.11(a), Figure 6.12(a), and Figure 6.12(b), we can see that the variation of the

frequency differences between the Reference RO and the Stressed RO in new ICs

becomes larger with larger process variations. For the 1000 ICs with PV2, the

detection rate of recycled ICs aged for one month is 95.2%. However, for recycled

ICs that aged for six months, the detection rate is 100%. The RO-based sensor

identifies shorter-aged recycled ICs with smaller intra-die process variations as in

PV0, PV1, and PV2.

The 1000 circuits generated using Monte Carlo were also simulated with

both process and temperature variations. Figure 6.13(a) shows the frequency

difference occurrence rate between the 21-stage Reference and Stressed ROs with

process variations PV1 (shown in Table 6.1) and temperature variations of ±10◦C

around room temperature. Figure 6.13(b) shows the simulation results with pro-

cess variations PV2 and temperature variations of ±20◦C around room temper-

ature. The results in Figure 6.13(a) and Figure 6.12(a) are from chips with the

same process variations but different temperature variations. We can see that the

frequency difference variations in Figure 6.13(a) are slightly larger than those in

Figure 6.12(a) due to temperature variations. The same conclusion can be made

by comparing Figure 6.13(b) and Figure 6.12(b). For the 1000 chips with PV2

and ±20◦C temperature variations, the detection rate of recycled ICs aged for

one months is 92.3% but it is still 100% for recycled ICs aged for six months,
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Table 6.2: Structure of RO-based sensors in the test chip.

ROs in RO-based sensors

Reference RO Stressed RO RO Structure Vth

RO-based1 R RO1 S RO1 1 NAND + 200 BUFs SVT

RO-based2 R RO2 S RO2 1 NAND + 200 BUFs HVT

RO-based3 R RO3 S RO3 201 NANDs HVT

demonstrating that our RO-based sensor is effective even with large process and

temperature variations. Note that we do not expect such a large variation in tem-

perature and process in practice when authenticating a CUT. The temperature

difference and process variations between the two ROs in RO-based sensor will be

negligible since they are placed physically near each other.
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Fig. 6.13: Frequency difference distribution of RO-based sensor with (a) PV1

and ±10◦C and (b) PV2 and ±20◦C.
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Silicon Results

Our RO-based sensor is also verified through analysis of test chips fabricated

using a 90nm technology. The test chip was originally designed to verify the

effects of aging on the frequency of ROs. In this work, we use it to demonstrate

the effectiveness of our RO-based sensor. In total, there are 96 delay chains in the

chip which can work in ring oscillator mode by controlling different input signals

[40]. Six of these ring oscillators were selected to construct three RO-based sensors

as shown in Table 6.2.

• RO-based1 contains two identical ROs (R RO1 and S RO1) with one SVT

NAND gate and 200 SVT BUFs;

• RO-based2 is composed of two identical ROs (R RO2 and S RO2) with one

HVT NAND gate and 200 HVT BUFs

• RO-based3 includes ROs (R RO3 and S RO3) with 201 HVT NAND gates.

where R RO1, R RO2, and R RO3 are Reference ROs while S RO1, S RO2, and

S RO3 are Stressed ROs, respectively.

Comparing ROs included in the test chip with those used for HSPICE sim-

ulation, there are two main differences: (1) the stage of ROs in the test chip is 201

while the stage of ROs used in Monte Carlo simulation is much smaller (e.g. 21).

The much larger number of stages in test chip was used to make the measurement

and observation possible with low-end oscilloscopes. (2) the gates in ROs in the
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test chip are complex gates (BUFs, NANDs, etc.) while inverter-based ROs were

used in simulation. That is because we aim at analyzing the impact of aging

on different types of gates in the test chip. However, the number of stages and

gate type of ROs do not present a significant impact on the effectiveness of the

RO-based sensor.
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Fig. 6.14: Frequency difference distribution in (a) RO-based1, (b) RO-based2,

and (c) RO-based3.

Currently, we only have 15 test chips in our lab and all of them are used in

this experiment to present the impact of process variations and aging. To replicate

the RO-based sensor’s stressed mode, S RO1, S RO2, and S RO3 were enabled
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and experienced accelerated aging for 80 hours at 135◦C with an elevated supply

voltage (1.8V instead of 1.2V). The reason we used accelerated aging is that it

takes a long time (usually weeks/months) to observe aging effects under normal

conditions. The remaining three ROs were gated off and experienced no aging.

In authentication mode, all of the ROs were enabled and the temperature was

brought back to room temperature (around 25◦C). With the 15 new test chips, the

average frequency of ROs is about 7.5Mhz. Figure 6.14 shows the experimental

results of the three RO-based sensors over the test chips. The red bars in the

figure show the frequency difference between Reference RO and Stressed RO in

each RO-based sensor at time zero (new/unused ICs). Similarly, the yellow bars

are the frequency difference between the two ROs after 80 hours of aging.

Since a much larger number of stages are used in these sensors compared

to those used in our simulations, the mean frequency of the ROs in the test chip

and the frequency difference values are quite different from that in simulations.

However, even with 201 gates in these ROs, the detection rates of recycled ICs

that aged 80 hours using RO-based1, RO-based2, and RO-based3 are all still

100%, which demonstrates that the RO stage count in RO-based sensor does

not have a significant impact on the sensor’s effectiveness in detecting recycled

ICs. According to our detailed results, the average frequency degradation of the

stressed ROs in RO-based1, RO-based2 and RO-based3 (shown in Figure 6.14) is

3.2%, 4.0%, and 3.8%, respectively, Comparing Figure 6.14(a) and Figure 6.14(b),
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we can see that the frequency difference gap between new chips and aged chips

in RO-based2 is larger than that in RO-based1. This is due to the fact that

RO-based sensors with HVT gates (RO-based2) will be more effective than those

with SVT gates (RO-based1), which is also demonstrated in Figure 6.1(c) through

simulation results. Comparing detection rates in Figure 6.14(b) using RO-based2

(composed of HVT buffers) and Figure 6.14(c) using RO-based3 (composed of

HVT NAND gates), we can see that the gates used in the RO can slightly change

the effectiveness of RO-based sensor but not significantly.

Note that the ROs in the RO-based sensors in the test chip were not placed

as close as they were supposed to. For instance, the results at time zero show that

for RO-based1 and RO-based2, the R ROs are faster than S ROs in most cases

while this is not the case for RO-based3. This could be because of the spatial

variations that exist between the ROs not placed near each other, which made

some ROs faster than others. For a RO-based sensor to be the most effective,

it is recommended to place both ROs in a single localized module to reduce the

variation between them. Limited by the amount and structure of the test chips,

we cannot perform the same analysis with silicon data as we did with the Monte

Carlo simulations, however, the silicon results from these test chips demonstrate

the effectiveness of the RO-based sensor.



152

6.3.2 AF-based Sensors

From the above analysis, we can see that detection of a recycled chip depends on

the amount of degradation caused by aging, workload, process and environmental

variations. However, if the chip is used for a very short period of time or if the chip

is designed and fabricated using an older technology node, it will not experience

much degradation, thus negatively impacting the effectiveness of detection. For

AF-based sensor, since the usage time of the ICs is calculated by counters and

stored in the antifuse block, process and temperature variations cannot impact

the data in antifuse cells. Therefore, the only step required to know how long

the IC has been used is to read the antifuse block by enabling authentication

signal. Note that a non-zero usage time from an AF-based sensor in a CUT does

not suggest that it is a recycled IC due to the burn-in process. The CUT can

be identified as a recycled one only if the usage time is longer than the time for

burn-in process. Therefore, recycled ICs used for a very short period of time can

still be detected by the AF-based sensors.

Area Overhead Analysis: In order to verify the effectiveness of AF-based sen-

sors, we analyzed the area overhead on the implementation of a design (named as

CSAFTEST) with about 500K gates and 12KB in-system programmable memory.

Table 6.3 shows the area overhead caused by RO-based, CAF-based, and SAF-

based sensors with different measurement scales and total measurement time.

From the table, we can see that the area overhead caused by AF-based sen-
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Table 6.3: Area overhead caused by RO-based, CAF-based, and SAF-based sen-

sors on CSAFTEST.

Measurement Area Overhead

Scale (Ts) Total Time (Ttotal) RO-based CAF-based SAF-based Reduction

1 minute 1 month - 7.37% 3.72% 49.5 %

1 hour 1 year - 1.57% 0.82% 47.8%

1 day 1 year - 0.18% 0.12% 33.3%

1 day 4 years - 0.37% 0.21% 43.2%

- - 0.025% - - -

sors change with Ts and Ttotal since the structure of AF-based sensors change

with measurement resolutions. For CAF-based sensor, the size of counter1 de-

pends on Ts while the size of counter2 and the size of the antifuse memory block

both depend on Ttotal/Ts. For SAF-based sensor, the area overhead is much

smaller than that of CAF-based sensor due to the shifters. The reduction, calcu-

lated by {Overhead(CAF-based)-Overhead(SAF-based)}/Overhead(CAF-based), is

shown in the sixth column in Table 6.3. For example, with Ts=1 hour and Ttotal=1

year (8760 hours), CAF-based sensor was designed with 20-bit counter1, 14-bit

counter2, and 8760-bit antifuse memory block. The area overhead of this CAF-

based sensor is 1.57% while the area overhead caused by SAF-based sensor is

0.82% and the reduction is 47.8%. However, if Ts=1 minute & Ttotal=1 month

and Ts=1 day & Ttotal=1 year, the area overhead of CAF-based sensor are 7.37%
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and 0.18%, respectively.

From the above analysis, we can see that the area overhead caused by AF-

based sensors depends on the application and specification of ICs. For example,

if an IC is used in a system that requires a small Ts and a large Ttotal, the area

overhead would be large. Otherwise, the overhead would be small (less than

1%). On the other hand, the time recorded by our AF-based sensors is power-on

time and the intervals between power-on are not calculated. Therefore the usage

time stored in the sensor (Ttotal) is usually shorter than the time with power-off

intervals. With a smaller Ttotal, the size of the antifuse memory block in our AF-

based sensors will be smaller and accordingly the area overhead will be smaller.

Furthermore, comparing RO-based sensor with AF-based sensors, we can see

that (i) the area of RO-based sensor is much smaller than that caused by AF-based

sensors and also stays constant because the number of gates used in RO-based

sensor does not vary with designs. Here, the RO-based sensor was about 0.025%

area overhead, which is negligible. (ii) the accuracy of RO-based sensor is lower

than that of AF-based sensors since it only provides an approximation of the usage

time in a form of aging in the stressed RO.

Usage Time Analysis: Since the AF-based sensor only records usage time larger

than Ts, if the power-on time of an IC is smaller than Ts, part of the usage time

will be lost during the measurement. In order to verify the usage time, CAF-based

and SAF-based sensors are analyzed with different Ts. Take the worst case for
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example, if every time the IC is turned on, the power-on time (Tpon) is shorter than

Ts, then the AF-based sensors will not record any usage time. The value stored

in the antifuse memory will always be equal to the time for burn-in process. Our

AF-based sensors will be ineffective in this case, which should be avoided when

we design an AF-based sensor.

With appropriate Ts, N = [Tpon/Ts] will be recorded in counter2 every

time power is on and combined with previous usage time to be stored in the

antifuse memory block in CAF-based sensor. Figure 6.15(a) shows the estimated

usage time under different usage situations using CAF-based sensor. The X axis

represents the worst case when Tpon < Ts. In this case, the estimated usage time

recorded by the sensor is always zero. The solid line represents the ideal case

when the estimated usage time (Tesm) is equal to the actual usage time. The

range between the dashed line and solid line represents the estimated usage time

when Tpon > Ts. Similarly, the range between the dash-dot line and solid line

represents the estimated time when Tpon > 10 ∗ Ts. From the figure, we can see

that the longer the chip is used on each power-on, the more accurate estimated

usage time will be recorded by CAF-based sensor.

For SAF-based sensor, the estimated usage time under different usage situ-

ations is shown in Figure 6.15(b). Comparing Figure 6.15(b) with Figure 6.15(a),

we can see that the accuracy of SAF-based sensor is slightly lower than that of

CAF-based sensor. For example, when Tpon > Ts, the usage time recorded by
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CAF-based sensor would be Test = [Tpon/Ts]∗Ts while the usage time recorded by

SAF-based sensor would be Test = [Tpon/2Ts] ∗ 2Ts. In addition, since SAF-based

sensor is based on the switching probability of several nets in the netlist, the es-

timated usage time shown in Figure 6.15(b) is based on a probability. Assuming

that the output of the AND gate in SAF-based sensor (SS signal in Figure 6.9)

switches once during Ts with probability p, then SS will switch more than once

with probability 1 − p. Note that the case that SS does not switch during Ts

will not be considered since this situation should be avoided when we design a

SAF-based sensor. With this assumption, when Tpon > 2∗Ts, the estimated usage

time will be in the range between the dashed line and solid line with probability

p, shown in Figure 6.15(b).

Note that even with time lost during the measurement by using AF-based

sensors, we can still identify a recycled IC since the usage time recorded by the

antifuse memory block in used ICs will be longer than the time for burn-in process.

After the burn-in process and before being sent to market, the AF-based sensor

in all CUTs report almost identical usage time. However, when ICs are used in

the field, the usage times recorded by the sensor in CUTs would be larger and

different from each other based on the usage conditions before recycling.
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Fig. 6.15: Usage time analysis using (a) CAF-based sensor and (b) SAF-based

sensor.
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6.3.3 Attack Analysis

Considering the capability of professional recyclers, we will discuss about a couple

of attacks circumventing RO-based and AF-based sensors. The first attack to RO-

based sensor could be removal and tampering attacks. However, it is inherently

difficult for the recycler to remove the sensor, due to the expected measurement

results from the two ROs. The second attack could be that the recycler tries to

intentionally age the Reference RO to mask the difference between the ROs in

the RO-based sensor. Similarly, it is impossible to do that since Reference RO

cannot be gated on alone. However, one can argue that attackers with unlimited

resources may be able to remove the chip package, modify the original design,

and tamper with the RO-based sensor. For such ICs where additional security is

required, alterations could be made to the RO-based sensor to prevent these kinds

of attacks. The RO-based sensor could be obfuscated inside the IC by multiplexing

functional gates. This modification would make it more difficult for an attacker

to analyze the IC, and make it more difficult to tamper with the sensor or modify

it in any way.

For AF-based sensors, attackers would try to mask the usage time of ICs

by disabling the sensor. However, the AF-based sensor will automatically run

whenever power is on and the usage time will be stored in the antifuse memory

directly. Therefore, it is impossible for attackers to disable the sensor without

removing the package and breaking the chip. The second attack could be erasing
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and alteration of antifuse cells; this is not possible because the memory used in

our sensors is an antifuse OTP block. The most important advantage of antifuse

OTP technique is its ability to resist all existing reverse engineering methods

because the oxide breakdown in antifuse cells occurs in a random location within

a bounded enclosure and is extremely small [63]. Therefore, the state of a bit

cell stays well hidden in the silicon atoms, which makes it extremely difficult for

attackers to tamper with the memory. The third attack could be modification of

counters or signals connection in the sensor. However, with limited resources and

without access to the original design, attackers cannot modify the nets connection.

Decapping, professional cleaning, and remarking would not help attackers either.

6.4 Conclusions

In this chapter, we proposed two techniques using light-weight on-chip sensors to

detect recycled ICs. The frequency difference between the Reference RO and the

Stressed RO in the RO-based sensor makes identification of recycled ICs easily

possible. The usage time stored in the antifuse memory using AF-based sensors

could indicate how long an IC has been used and then identify a recycled IC.

Experimental results and analysis demonstrated the effectiveness of these sensors.



Chapter 7

Path-Delay Fingerprinting for Identification of Recycled

ICs

In Chapter 6, we proposed several light-weight on-chip sensors to detect recycled

ICs based on the degradation of ring oscillators and usage time reported by coun-

ters. There are very effective for recycled ICs detection. However, they only work

best for designs already with those sensors but cannot address detection of existing

and legacy ICs that have no such sensors embedded in them. In order to address

this issue, we proposed a new technique based on path-delay fingerprinting.

For new ICs, the delay distribution of paths will be within a certain range.

The fingerprint of the new ICs can be generated during manufacturing test of

these ICs and stored in a secure memory for future use when identifying recycled

ICs. Due to aging effects, such as NBTI and HCI, the path delays in recycled

ICs will be larger than those in new ICs. For a chip under authentication (CUA),

the larger the path delays are, the higher the probability there is that the CUA

has been used and is a recycled IC. In this chapter, we propose a fingerprinting

160
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and authentication flow for accurately identifying recycled ICs. Statistical data

analysis is used to distinguish the path delay changes caused by process and tem-

perature variations from those caused by aging. Since the path delay information

is measured during the manufacturing test process, no extra hardware circuitry

is required for this technique. In addition, there is no change required in current

industrial design and test flows. Finally, this technique presents no area overhead,

no power consumption, and is resilient to attacks.

7.1 Path-Delay Degradation Analysis

When a chip is used in the field, aging effects could cause some of its parameters

to shift over time. NBTI increases the absolute value of the PMOS threshold

voltage and results in decreasing transistor current and increasing gate delay [57]

[59] [60]. HCI creates traps at the silicon substrate/gate dielectric interface, as

well as dielectric bulk traps, and therefore degrades device characteristics including

voltage threshold [57] [59] [60]. Since recycled ICs have been impacted by all of

these aging effects, the path delay of recycled ICs will be different from those of

new ICs.

In order to demonstrate the impact of aging on path delay in ICs, in a

simple manner, different gate chains were simulated using a 45nm technology [66]

as shown in Figure 7.1(a). The simulation was conducted by HSPICE MOSRA

[67] with the built-in aging model [67] and combined NBTI and HCI aging effects
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Fig. 7.1: (a) An illustrative circuit with NAND, NOR, XOR, and INV chains

and (b) Delay degradation of the chains.

at a temperature of 25◦C. Standard threshold voltage (SVT) INVX1, INVX32,

NAND, NOR, and XOR gate chains of different lengths were simulated for up

to 2 years of usage. Figure 7.1(a) shows that all chains are experiencing stress

from a 500MHz clock. Any other stress (e.g., DC stress which is a constant ”0”

or ”1”, or AC stress with different duty ratios) and usage time could be used in

this simulation. Figure 7.1(b) presents the delay degradation caused by 2 years

(24 months) of aging. From the figure, we can see that different gate chains age

at slightly different rates, which depends on the structure of the gates. The XOR

gate chain has the fastest aging rate amongst these chains. Comparing the delay

degradation rates of the INVX1 and INVX32 chains, we can conclude that larger

gates will age at a lower rate than smaller gates with the same stress. In addition,

the workload (input value and the switching frequency of each gate) also has a

significant impact on the aging rate. ICs may be recovered from different used
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Fig. 7.2: (a) Delay degradation of path Pi and (b) Pi delay increases with in-

creased temperature.

boards from different users who may have applied different workloads to the IC

at different times. It is practically impossible to know the exact input vectors

applied by the user. We will discuss this and the impact workload has on a chip’s

path delay degradation in detail later.

Figure 7.2(a) shows the delay of a randomly selected critical path Pi (this

path includes 22 gates) from the ISCAS‘89 benchmark s38417 with stress from a

random workload (functional patterns) applied to the primary inputs. The path

was aged for 4 years with NBTI and HCI effects at room temperature 25◦C. From

the figure, we can see that the degradation of path Pi used for 1 year is around 10%

while if the circuit is used for 4 years, the degradation is about 17%, indicating

that most aging occurred at the early usage phase of the design. Therefore, if

there are no environmental or process variations, such degradation should provide

great opportunities to identify recycled ICs by measuring one path delay from the
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circuit. However, these variations have a significant impact on the path delay. On

the other hand, different paths age at different rates as demonstrated earlier in this

section. Figure 7.2(b) shows the delay of path Pi under different temperatures at

different aging times. In the figure, AT denotes aging time, M represent months,

and Y denotes years. From Figure 7.2(b), we can see that the delay of path Pi

increases as we increase the temperature and paths age at different speed under

different temperature.

To analyze variations’ impact on Pi’s delay, we perform Monte Carlo simu-

lation using HSPICE on s38417. 300 Monte Carlo simulation results of Pi at 25
◦C

are shown in Figure 7.3(a), with 3-sigma 2% Tox, 5% Vth, and 5% L inter-die and

1% Tox, 5% Vth, and 5% L intra-die process variations. We can see that Pi’s delay

varies around 12% due to process variations. In addition, process variations also

have a significant impact on the aging rate of path delay, as shown in Figure 7.3(b).

Pi’s delay degradation in the 300 ICs varied around 8% (4% ∼ 12%) for one year

of aging. These variations evidently make the detection difficult, thus, the path

delay shifts caused by aging effects in recycled ICs must be separated from those

caused by process variations in new ICs if we are to use path-delay fingerprints to

identify recycled ICs.
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Fig. 7.3: (a) Delay of path Pi with process variations and (b) Delay degradation

of path Pi changing with process variations.

7.2 Path-Delay Fingerprinting Considering Aging

Figure 7.4 shows our flow for identifying recycled ICs using path-delay fingerprints

and statistical analysis. The proposed flow is divided into three major steps. First,

paths are simulated and selected according to their aging rate. Next, the delay

information of these paths are measured by a clock sweeping technique in new ICs

(either during manufacturing test on all ICs or during authentication on a sample

of new ICs) and in any available CUAs. Finally, statistical analysis is used to

decide whether the CUAs are recycled ICs or not.

• Step 1. Path Selection: Due to the large number of critical and long

paths in a circuit, in this step, we select paths which age at faster rates by ana-

lyzing the gate types in different paths and simulating the circuit with different

workloads. Paths with higher rates of aging are preferred for fingerprint genera-
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tion, since the differences in the delay of those paths between recycled ICs and

new ICs will be much larger than the differences in paths which degrade slower.

Fingerprints generated by fast-aging paths could help identify recycled ICs used

for a shorter time. However, there are several parameters impacting the aging

rate of a path, including the type of gates composing the path and the workload.

Based on these parameters, and the observations made from simulation shown in

Figure 7.1, we propose the following rules to select fast-aging paths: (i) paths with

more fast-aging gates, such as NOR or XOR gates, will be selected, and (ii) paths

that experience more zeros and more switching activity will be selected. More

zeros in the path will increase the effect of NBTI on the PMOS transistors, and

a high switching frequency will increase the HCI effects on gates, increasing the

path delay degradation more significantly.

Paths with more fast-aging gates would be identified by analyzing the type

of gates composing the paths. However, it is very difficult to identify paths that

experience more zeros and more switching activity without knowing the specific

workload. Therefore, in this work, different workloads (input combinations) are

applied to ICs’ primary inputs during logic simulation. For each gate on a critical

path, the average switching activity and the zeros it has experienced are calcu-

lated. Paths with more switching activity and zeros are then selected using our

flow. These paths, along with those composed of the more fast-aging gates, are

used to generate fingerprints to identify recycled ICs. The number of selected
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Fig. 7.4: Recycled IC identification flow.

paths could be adjusted according to the design and its testing procedure. In our

simulation, we select the top 50 paths with fast-aging gates and the top 50 paths

experiencing more switching activity and zeros in the benchmark circuit.

• Step 2. Silicon Measurement: The second step in Figure 7.4 is to

collect the selected paths’ delay from the ICs. Note that the fingerprint generation

can be done during manufacturing test of a large sample of ICs before shipping
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them to the market or on a number of new ICs from each production kept by

the design house for the purpose of authentication or recycled ICs identification.

The larger the size of sample is, the wider of a range of process variations will

be included in the fingerprint, reducing the probability that we identify new ICs

with large process variations as recycled ICs. Path delay information from the

new ICs is measured by performing test procedures on the ICs. Traditionally, test

patterns are generated by ATPG before fabrication to detect path and transition

delay faults. These patterns will be applied to all new ICs using clock sweeping

techniques [68] to measure the path delay of the targeted paths. Note that using

clock sweeping is a common practice in industry for speed binning of ICs [68].

Figure 7.5 shows the flow of the clock sweeping technique. The delay test

patterns are applied to ICs at different clock frequencies (f1, f2, ... fn). Under

different frequencies, the paths could pass or fail. If the time period ti of the

frequency fi (ti =
1
fi
) is larger than the path delay, the path will pass. Otherwise,

the path will fail. When a path fails, the largest passing frequency will deter-

mine the path delay. The frequency step size (∆f = fi − fi−1), which depends

on the tester, will determine the accuracy of path delay measurement results of

silicon chips. For example, with the Ocelot ZFP tester [69], the main frequency

is 400MHz and the frequency step size is 1MHz. In our simulation, a 5MHz step

size around 1.0GHz circuit frequency is used for the clock sweeping technique.

The measurement environment should keep the temperature as stable as possible,
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which can be controlled by the manufacturing test environment.

• Step 3. Identification: Once the path delay in all sample chips are

measured, statistical data analysis will be used to generate a fingerprint for new

ICs. For a circuit under authentication (CUA) taken from the market, the same

test patterns will be applied in a near-identical environment. The path delay

information of the CUA will be processed by the same statistical data analysis

methods. In a simple analysis, if the fingerprint of the CUA is outside of the range

of the new ICs’ fingerprint, there is a high probability that the CUA is a recycled

IC. Otherwise, the CUA is likely a new IC. The longer the CUA has been used,

the more aging effects it will have experienced, making it easier to identify.

Without extra hardware circuitry embedded into the ICs, our recycled IC

identification technique imposes no area or power overhead. It provides a negligi-

ble test time overhead during manufacturing test on a sample of ICs, since only

a few patterns must be applied several times at different frequencies. Also, there
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is no change in the current IC design and test flow since there is no additional

circuitry in the IC used for detection. In addition, this method is resilient to

tampering attacks. It is inherently difficult for recyclers to mask the impact of

aging on the recycled ICs’ path-delay fingerprints during the recycling process.

7.3 Statistical Data Analysis

Two statistical data analysis methods are used in this chapter: simple outlier

analysis (SOA), and principal component analysis (PCA). When performing SOA,

we randomly select a single path from the selected path set, and use its delay range

in new ICs to generate a fingerprint. The process variations of the CUA may or

may not be the same as those within the sample ICs. The selected path delay

of the CUA and sample ICs will follow the same distribution, which makes SOA

effective in certain conditions. However, a single-path based analysis will not be

very effective, due to the limited aging information collected. In general, this

method is expected to be effective in distinguishing recycled ICs used for a long

time from new ICs with small process variations.

In order to improve the effectiveness of our technique, we also use PCA to

separate the aging effects on path delay from process variations. The path delay

information of all selected paths, which have been measured by clock sweeping,

will be processed by PCA. In our simulations, the top 100 paths with faster aging

rates were selected to generate fingerprints. The delay of each path is one of the
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variables for PCA to use. Therefore, with N ICs, the dimension of the data set

for PCA to generate fingerprint is N*100. The first three components of PCA

in all new ICs were plotted, and a convex hull was created as the fingerprint for

new chips. The path delay information of the CUA was also analyzed by the

same process and plotted in the same figure. If the CUA is outside of the convex

created by the new ICs, there is a high probability that the CUA is a recycled IC.

7.4 Results and Analysis

In order to verify the effectiveness of our recycled IC identification flow and data

analysis methods, we implemented it using 45nm technology on a few bench-

marks. HSPICE MOSRA [67] is used to simulate the effects of aging on the

path delay of different benchmarks. The supply voltage of the 45nm technology

is 1.1V. Random workloads (random functional input patterns) were applied to

several ISCAS‘89 benchmarks. Path delay information was collected using clock

sweeping at different aging times. Different process and temperature variations

were also simulated to analyze their impact on the effectiveness of our recycled

IC identification method.

7.4.1 Process and Temperature Variations Analysis

Table 7.1 shows the three process variations rates we used in our simulations.

Moving from PV0 to PV2, inter-die and intra-die variations both become larger.
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Table 7.1: Process variation rates.

Inter-die (3σ) Intra-die (3σ)

Vth L Tox Vth L Tox

PV0 3% 3% 2% 2% 2% 1%

PV1 5% 5% 2% 5% 5% 1%

PV2 8% 8% 2% 7% 7% 2%

PV1 represents a realistic rate of process variations that a foundry might have.

Four sets of Monte Carlo simulation (MCS) were run using different levels of vari-

ations, as shown in Table 7.2. For each set of MCS, 300 Monte Carlo simulations

were run to generate 300 chips. During the simulations, the aging effects of NBTI

and HCI were simulated with random stress for the benchmark s38417. From

the top 500 paths, the paths P1, P2,..., P50 with fast-aging gates and the paths

P51, P52, ..., P100 with more zeros and higher switching activities were selected to

generate fingerprints.

Analysis using SOA: First, 300 Monte Carlo simulations were run in

MCS1. The maximum aging time is 2 years. Here, SOA was used to process

the path delay information. 3 paths (P1, P2, and P51) were selected to show the

results of SOA. Figures 7.6(a), 7.6(b), and 7.6(c) show the path delay distribution

of the 3 paths from 300 ICs used for different aging times. Similar results were

obtained for the other 97 paths as well. For each path, the range of the path

delay at AT=‘0’ is the fingerprint of the new ICs. If the path delay of the CUA is
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Table 7.2: Simulation setup.

Experiments Process Variations Temperature

MCS1 PV0 25◦C

MCS2 PV1 25◦C

MCS3 PV2 25◦C

MCS4 PV1 25◦C ±10◦C

out of that range, there is a high probability that IC is a recycled one. Note the

300 different Monte Carlo simulations are used for recycled ICs from those used

as sample new ICs. From these figures, we can see that the delay distribution of

each path in recycled ICs shifts to the right, relative to the distribution of delays

in new ICs. This is because path delay in recycled ICs increases due to aging.

The longer the ICs have been used, the more path delay degradation they will

have experienced. In addition, we see that the path delay variation increases as

the aging time increases. The reason for this is that ICs with different process

variations age at different speeds, and the path delay variations become larger as

we increase the aging time.

Figure 7.6(a) shows the distribution of path P1’s delay, and we can see that

the smallest delay of P1 in recycled ICs used for 1 month is smaller than the largest

delay in new ICs. Therefore, the detection rate of recycled ICs used for 1 month is

less than 100% (98.3%) when we use the fingerprint generated by SOA from path

P1. However, the detection rate of recycled ICs used for 3 months or longer is
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100%, which demonstrates that it is easier to detect recycled ICs that have been

used for longer amounts of time. If we choose path P2 to detect recycled ICs, the

detection rate of ICs used for 1 month (95.7%) is slightly less than when using

path P1. However, if path P51 is used, which has the fastest aging rate among the

100 paths, the detection rate is 100% even if the ICs are only used for one month.

P51 is the most effective path for identifying recycled ICs in this benchmark. From

the above analysis, we can see that different paths generate different fingerprints

due to their different aging speeds, which makes SOA slightly less effective.

(a)
(a)

(b)
(b)

(c)
(c)

Fig. 7.6: Path delay distribution in ICs with PV0 in MCS1 at different aging

times (a) Path P1, (b) Path P2, and (c) Path P51.
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Figures 7.7(a) and 7.7(b) show the delay distribution of path P51 across 300

Monte Carlo simulations in MCS2 and MCS3. Overall, Figures 7.6(c), 7.7(a), and

7.7(b) present the delay distribution of the same path (P51) in ICs with different

process variations. By comparing these figures, we can see that the larger the

process variations are, the larger the path delay variations in new ICs will be,

which makes it more difficult to detect recycled ICs. Even when using the most

effective path P51, the detection rates of ICs used for 1 month with PV1 and PV2

drop from 100% with PV0 to 78.0% and 50.7%, respectively. A 100% detection

rate could be achieved if the ICs were used for 1 year or longer with PV1, or

longer than 2 years with PV2.

300 Monte Carlo simulations were also run with ±10◦C temperature varia-

tion during the aging process in MCS4 as shown in Figure 7.7(c). The measure-

ment temperature is 25◦C. It shows the delay distribution of path P51 and the

detection rate of ICs used for 1 month using it is 67.7%. Comparing Figure 7.7(c)

and Figure 7.7(a), we can see that the larger the temperature variation is, the

larger the path delay variation is, which makes it more difficult to detect recycled

ICs.

Analysis using PCA: A similar analysis is done using PCA for different

MCSs. Figure 7.8(a) shows the PCA results of the 100 paths in s38417 with 300

chips in MCS1. FC denotes the first component from PCA, SC represents the

second component, TC is the third component, and DR denotes the detection
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(a)
(a)

(b)
(b)

(c)
(c)

Fig. 7.7: Path P51 delay distribution in ICs at different aging times (a) in MCS2,

(b) in MCS3, and (c) in MCS4.
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rate. The convex is built up from new IC data, and represents the fingerprint for

new ICs. The red asterisks represent chips used for 1 month. From the figure,

we can see that the 300 used ICs were completely separated from the signature

of the new ICs. Thus, the detection rate using path delay fingerprints generated

by PCA is 100% for recycled ICs used for 1 month. For recycled ICs used for a

longer time, the detection rate will obviously be 100% as well.
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Fig. 7.8: PCA results of ICs under 25◦C (a) used for 1 month with PV0 in MCS1,

(b) used for 1 month with PV1 in MCS2, and (c) used for 3 months

with PV1 in MCS2.
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The path delay information from the remaining three sets of MCSs were

also analyzed by PCA. Figure 7.8(b) shows the analysis results of new chips and

recycled ICs used for 1 month in MCS2. From the 3-dimensional figure, we can see

that some of the recycled ICs are close to the new ICs’ fingerprint. The detection

rate is 96.3%, which is much higher than using SOA. Comparing Figure 7.8(b)

and Figure 7.8(a), we can see that (i) the convex hull built up from new ICs in

MCS2 is much larger than that in MCS1 (note that the convex hull in MCS1

looks larger than MCS2 due to its small scale of axes), and (ii) the recycled ICs in

MCS2 are closer to new ICs than those in MCS1, which makes the detection rate

in MCS2 less than that in MCS1. The path delay information of 300 ICs used for

3 months in MCS2 were also processed, and the results are shown in Figure 7.8(c).

Comparing Figures 7.8(b) and 7.8(c), we can see that the longer the chips have

been used, the farther they will be from the new ICs’ fingerprint. The detection

rate of recycled ICs used for 3 months or longer with PV1 at 25◦C is 100%.

Figure 7.9 shows the PCA results of ICs in MCS3. The detection rate of

recycled ICs used for 1 month, 3 months, 6 months, and 1 year are 72.7%, 89.3%,

99.3%, and 100%, respectively. The figures of PCA results of recycled ICs used

for 1 month and 3 months are not shown here since the detection rates are so

far from 100%. Figures 7.9(a) and 7.9(b) show the new ICs’ fingerprint and the

recycled ICs used for 6 months and 1 year, respectively. The recycled ICs used for

longer times are easier to detect, as seen by comparing Figures 7.9(a) and 7.9(b).
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Comparing the detection rates in these simulations, we can see that it is more

difficult to detect recycled ICs which have higher levels of process variations. The

99.3% detection rate of ICs used for 6 months and the 100% detection rate of ICs

used for 1 year in MCS3 shows the effectiveness of our technique. We acknowledge

that PV2 is an extremely high variation compared to what is expected in practice

(e.g., PV1).
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Fig. 7.9: PCA results of ICs with PV2 under 25◦C in MCS3 used for (a) 6 months

and (b) 1 year.

With the same measurement temperature 25◦C, ±10◦C temperature varia-

tion is used in MCS4 during the aging process. The detection rate of ICs used for

1 month, 3 months, and 6 months in MCS4 are 90.6%, 100%, and 100%, respec-

tively. The new ICs’ fingerprint and the detected recycled ICs used for 3 months

and 6 months are shown in Figure 7.10. Comparing Figure 7.10(a) with Figure

7.8(c), we can see that the recycled ICs used for 3 months in MCS4 are closer to

the fingerprint than recycled ICs used for 3 months in MCS2. This phenomenon
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Table 7.3: Recycled IC detection rates for s38417.

SOA PCA

1M 3M 6M 1Y 1M 3M 6M 1Y

MCS1 100% 100% 100% 100% 100% 100% 100% 100%

MCS2 78% 96.7% 99.7% 100% 96.3% 100% 100% 100%

MCS3 50.7% 76.3% 85.3% 95.6% 72.7% 89.3% 99.3% 100%

MCS4 67.7% 93.3% 98% 100% 90.6% 100% 100% 100%

demonstrates that temperature variations could increase the path delay variations

in new ICs and make it more difficult to detect recycled ICs. However, the 100%

detection rates of ICs used for 6 months in MCS4 demonstrates the effectiveness

of our method with process and temperature variations.
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Fig. 7.10: PCA results of ICs with PV1 and ±10◦C temperature variations in

MCS4 used (a) 3 months, and (b) 6 months.

Figures 7.7 through 7.10 presented some detailed results relating to using

this technique on s38417 with SOA and PCA. Table 7.3, however, tabulates these
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Table 7.4: Recycled IC detection rates - benchmark comparison under MCS4

using PCA.

Benchmark 1M 3M 6M 1Y

s9234 88% 100% 100% 100%

s13207 89.6% 100% 100% 100%

s38417 90.6% 100% 100% 100%

results in addition to some other results obtained using both statistical analysis

approaches. These results clearly demonstrate that PCA is more effective than

SOA when it comes to identifying ICs used for shorter periods of time.

7.4.2 Benchmark Analysis

In addition to s38417, the ISCAS‘89 benchmarks s9234 and s13027 were also

simulated to demonstrate the efficiency of this technique on different designs.

The process variation and temperature variation rates used in MCS4 were applied

to these two benchmarks. The aging stress causing NBTI and HCI degradation

in these benchmarks comes from random workloads. 300 MCS were run for each

benchmark for a maximum 2 years of aging. The path selection method was also

applied to these benchmarks, and 100 paths from each benchmark were used to

run statistical data analysis using PCA.

Table 7.4 shows the recycled IC detection rate for all three benchmarks

under MCS4 for up to a year of aging. The detection rate for ICs used for 3
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months in the benchmarks s9234 and s13207 is 100%, which matches the results

obtained from s38417.

The results shown in this section clearly demonstrate that our recycled IC

detection method using a path delay fingerprint generated by PCA is very effec-

tive, even in designs with large process and temperature variations.

7.5 Conclusions

We presented a recycled IC identification method using path-delay fingerprinting

in this chapter. Paths with fast aging speed were selected to generate a fingerprint

for the chip under authentication. The path delay signature from a recycled IC is

beyond those from new ICs due to aging. With no additional hardware circuitry

required, this method provides no overhead on area and power consumption. The

simulation results of different benchmarks with different process and temperature

variations demonstrated the effectiveness of our method.



Chapter 8

High Performance True Random Number Generator

True random number generator is another important security module integrated

in most ICs for secure data communication and storage. TRNG is frequently used

in the generation of (i) public/private keypairs for cryptographic protocols, such

as RSA, DSA, and Diffie-Hellman; (ii) initialization vectors or seeds for random-

ness requirement structures; (iii) private keys for digital signature algorithms;

(iv) challenges to be used in entity authentication mechanisms; (v) values to be

used in key establishment protocols; and (vi) passwords, padding bytes, blinding

value, cookies and nonces. In order to improve the security of ICs, we propose

novel TRNGs to generate random numbers with better randomness for different

applications in this chapter.

8.1 Basic structure of TRNG

Generally, true random number generators produce randomness by using a non-

deterministic source, such as resistance noise, atmospheric noise, or nuclear decay.

They usually follow a generic structure, composed of noise source, digitizer, post-

183
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Fig. 8.1: The generic structure of TRNG.

processing module, and output interface (shown in Figure 8.1) [32]. Normally,

noise source uses some non-deterministic physical phenomenon to generate analog

signal, which is digitized by a digitizer. The purpose of the post-processing module

is to make sure that the probability distribution of the internal random sequence is

close to uniform distribution. The post-processing module is also used to increase

the randomness of the generated sequence by applying a compression function on

its input. One of the typical post-processor is XOR corrector, which will be used

in our proposed TRNG. The output interface slows down the bitstream and sends

out the random sequence.

The randomness of the data generated by TRNG is traditionally evaluated

by statistical tests provided by National Institute of Standards and Technology

(NIST) [34] or other test suites. If statistical tests from NIST are used, a P-value

(0 =< P − value =< 1) will be generated to indicate randomness of sequence

under test: (i) if P-value=1, the sequence appears to be perfectly random; (ii)

if P-value=0, the sequence appears to be completely non-random; and (iii) if a

P-value>=0.01, the sequence is considered to be random [34]. Therefore, when we

design a TRNG, we would like increase the P-value of random sequence generated

by the proposed TRNG.
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Fig. 8.2: B-TRNG.

A TRNG structure (B-TRNG) sampling the phase jitter of digital ring os-

cillators was proposed to generate true random numbers in [33] (shown in Figure

8.2). Due to the unstable balance and small stimulus such as process and en-

vironmental noise, the ring oscillator will enter metastability state and start to

oscillate. The metastability will also create uncertainty of the ring oscillator, re-

sulting in phase jitter. In order to verify that, we run simulations using HSPICE

with 90nm technology. The simulated circuit is composed of two 13-stages ring

oscillators, an XOR gate, and one flop-flop (FF). Power supply noise shown in

Figure 8.3 is used in the simulation, changing from 1.2v to 0.9v within 10ns. The

waveform of different signals in B-TRNG are shown in Figure 8.4. From the fig-

ure, we can see that the phase of ring oscillators is approximately random due

to the randomness of the noise. XOR gate and the FF are used to capture the

randomness and generate a random sequence.
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Fig. 8.3: Power supply noise for B-TRNG

Fig. 8.4: The waveform of signals in B-TRNG
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8.2 Proposed TRNG

In order to increase the randomness of the sequence, we propose two new TRNG

structures to generate random numbers based on increased environmental varia-

tions: (i) benchmark noise TRNG (BN-TRNG) increases the randomness of the

generated sequence by capturing random noise created by the benchmark and (ii)

ring oscillator noise TRNG (RN-TRNG) increases the randomness of the gener-

ated sequence by capturing random noise created by surrounding ring oscillators.

The generic structure of the proposed BN-TRNG is shown in Figure 8.5. The

BN-TRNG is composed of an LFSR, a set of ring oscillators, XOR gates, and

FFs. The LFSR is used to generate random patterns to invoke different functions

of the circuit. This causes an increase in temperature variations, power supply

noise, and cross talk, which will in turn increase the randomness of the sequence.

The structure of the proposed RN-TRNG is shown in Figure 8.6. It is com-
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posed of an LFSR, noise ring oscillators (NROs), random ring oscillators (RROs),

an XOR gate, and a FF. One of the inverters in these ring oscillators is replaced

with a NAND gate so that they can be enabled or disabled separately to reduce

power consumption. When RN-TRNG works in the random number generation

mode, NROs will be enabled or disabled randomly by the LFSR. Therefore, more

random power supply noise and temperature variations will be introduced to the

circuit since these NROs are oscillating at a very high frequency. Then RROs

will capture these random noise and the randomness of their phase jitter will be

increased. In addition, NROs are placed around RROs to increase the impact of

NROs on RROs. Consequently, compared to BN-TRNG, the sequence generated

by RN-TRNG have higher randomness due to noise introduced by NROs. Fur-

thermore, the area overhead caused by RN-TRNG is negligible in modern designs

with millions of gates. Power consumption of RN-TRNG is also limited since all

ring oscillators are disabled when RN-TRNG is disabled.
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Fig. 8.7: Experimental Setup

8.3 Experimental Results and Analysis

In order to verify the effectiveness of our proposed structures, we implement our

BN-TRNG and RN-TRNG on Xilinx Spartan-3E FPGA boards. The experimen-

tal setup is shown in Figure 8.7. An Atmel Atmega328P microcontroller is con-

nected to the FPGA to facilitate in the collection of generated random sequence.

In our experiments, the sequence collected from the FPGA boards will be eval-

uated by test suite sts-2.1.1 provided by NIST [34]. Based on the specification,

the suite should be invoked with a stream length of 1,000,000 bits [34]. Therefore,

1,000,000 bits will be collected from the FPGA boards from each measurement.

With the test suit sts-2.1.1, different algorithms could be used to evaluate

the randomness of generated random sequence. Figure 8.8 shows part of the report



190

generated by sts-2.1.1. From the figure, we can see that different algorithms (sta-

tistical tests) reports different P-values for a given sequence. In our experiments,

we will report the P-value generated by serial statistical test due to its popularity.

If the P-value of the 1,000,000 bit stream is close to ”1”, it demonstrates that our

proposed TRNGs can generate random numbers with high randomness.

Four test cases with different configuration of BN-TRNG and RN-TRNG

are implemented in our experiments to evaluate and compare the randomness of

generated sequence: (i) Case 1: BN-TRNG is implemented on benchmark AES

with LFSR disabled. (ii) Case 2: BN-TRNG is implemented on benchmark AES

with LFSR enabled. (iii) Case 3: RN-TRNG is implemented without benchmark

with LFSR disabled. (iv) Case 4: RN-TRNG is implemented without benchmark

with LFSR enabled.

From the above description, we can see that (i) the same BN-TRNG struc-

ture is implemented in Case 1 and Case 2, and (ii) the same RN-TRNG structure

is implemented in Case 3 and Case 4. The difference is related to LFSR. In Case

1 and Case 3, LFSR is disabled while in Case 2 and Case 4, the LFSR is enabled.

Since LFSR will create more random noise in the circuit, we expect the cases with

LFSR enabled to give higher P-values. The feedback polynomial of the LFSR

used in our experiments is

X7 +X3 + 1 (8.1)

The 8-bit LFSR supplies random patterns for benchmark AES in Case 1 and Case
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01: P-value Statistical Test

02: 0.000000 Frequency

03: 0.008879 LongestRun

04: 0.122325 Rank

05: 0.066882 FFT

06: 0.739918 Serial

07: 0.213309 LinearComplexity

... ... ... ...

Fig. 8.8: Part of P-value report generated by test suite sts-2.1.1

2. It is also used to enable or disable the noise generation ring oscillators in Case

3 and Case 4. The seeds for the LFSR are stored in RAM in the FPGA board.

For each case, 1 million bits of data are collected and analyzed by test suite

sts-2.1.1. The evaluation results are shown in Table 8.1. From the table, we can

see that the sequence generated by RN-TRNG with LFSR disabled has the lowest

randomness due to limited random noise introduced by the original environment.

When LFSR is disabled (noise ring oscillators are quite), the RN-TRNG is reduced

to a B-TRNG. Therefore, we can conclude that B-TRNG generates sequence with

the lowest randomness. By comparing the P-value in Case 1 and Case 2, we can

see that random patterns generated by LFSR can introduce more random noise

to the circuit, thereby increasing the randomness of generated sequence. The

table also shows that the P-value of the sequence generated in Case 4 is 0.9114,

which is very close to 1. That means that with LFSR enabled, RN-TRNG could
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Table 8.1: Evaluation results of different TRNGs by using sts-2.1.1.

Case # TRNG LFSR Benchmark Noise Data Size P-value

Case 1 BN-TRNG Disable AES Original environment 1 million bits 0.3505

Case 2 BN-TRNG Enable AES Original environment 1 million bits 0.7399

+Benchmark Noise

Case 3 RN-TRNG Disable - Original environment 1 million bits 0.1223

Case 4 RN-TRNG Enable - Original environment 1 million bits 0.9114

+ Noise generated by NROs

generate sequence with almost perfect randomness. The reason for that is the

noise generation ring oscillators in RN-TRNG controlled by the LFSR introduce

lots of random noise into ICs.

8.4 Conclusions

In this chapter, we presented two TRNGs that can generate sequence with high

randomness We used noise generation ring oscillators and benchmarks to introduce

more random noise into the TRNG. The improved TRNG has very small area

and power overhead compared to the basic TRNG. Using test suite from NIST to

evaluate the randomness of the generated sequence, we found that our proposed

TRNG structure can generate sequences with much higher randomness than the

basic TRNG.



Chapter 9

Conclusions and Future Research

ICs are becoming increasingly vulnerable to malicious activities and alterations

due to the globalization of the semiconductor design and fabrication process. To

address this issue, we have presented several techniques for hardware Trojan detec-

tion, recycled ICs detection, and true random number generation to improve the

trustworthiness, security, and reliability of ICs in this thesis. The major contribu-

tions of the thesis will be presented in this chapter. Future research for hardware

Trojan detection, recycled IC detection, and true random number generator will

also be discussed.

9.1 Summary of Contributions

9.1.1 Hardware Trojan Detection

Hardware Trojan Detection in 3PIPs: due to the complexity of IP trust

problem , there is no silver bullet available. In this thesis, we conducted the first

case study for hardware Trojan detection in 3PIPs based on formal verification
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and code coverage analysis. For 3PIPs, the only trust source is the specification

from IP buyers. Each item in the specification is translated into a property in the

test bench. Functional coverage reports whether the assertion, translated from the

property, is successful or not. Code coverage reports which lines and statments

in the design are executed during verification. If the code coverage is 100% and

all the assertions in the test bench are successful, we can conclude that the 3PIP

is Trojan-free. Otherwise, the uncovered parts are suspicious. Then redundant

circuit removal, sequential ATPG, and equivalence theorems are used to reduce

the number of suspicious parts in the design.

This work is the first time that formal verification and code coverage analysis

are used to verify the trustworthiness of 3PIPs. The case study and proposed flow

not only focus on the RTL-level verification, but also on the gate-level analysis

and ATPG, thereby extending the research area for hardware Trojan detection

in 3PIPs. More solutions could be developed by following our case study and

proposed flow.

Hardware Trojan Detection in ICs: we proposed an effective structure

to detect hardware Trojans inserted into ICs. The RON architecture generates

a power fingerprint, used to identify malicious alterations. We also proposed a

framework combining the improved RON with off-chip current measurements. In

the improved RON, the n-stage ROs were placed with one component located in

each of the n rows of the standard cell design. All the rows in the design are
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covered by ROs to ensure complete coverage of the power distribution network.

We showed that our technique has the capability of detecting very small Trojans

with very little contribution to circuit transient current. Advanced outlier anal-

ysis algorithm was developed to distinguish the effects of hardware Trojans from

process variations.

In addition, the proposed RON structure was analyzed using 38 ICs contain-

ing the ISCAS s9234 benchmark circuit fabricated using the IBM 90nm process.

We showed that ring oscillator frequencies increase with increasing Trojan partial

activity and that ring oscillators which share power lines with nearby Trojans will

be most impacted. The silicon results also demonstrated that even in the presence

of obfuscating process variations, measurement noise, and environment variation

ICs may still be effectively classified using a PCA-based classification technique.

9.1.2 Recycled ICs Detection

In this thesis, we defined the recycled ICs problem and proposed three light-weight

on-chip sensors and a path-delay fingerprinting flow to detect recycled ICs. The

frequency difference between the Reference RO and the Stressed RO in the RO-

based sensor makes recycled ICs identification possible. We showed that the

RO-based sensor is very effective to detect recycled ICs by placing the two ROs

next to each other. In addition, the usage time stored in AF-based sensors could

indicate how long an IC has been used and then identify the recycled IC. The
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effectiveness of AF-based sensors will not be impacted by technologies, packages,

assemblies, or process variations. Even if the design was fabricated at different

time in different foundries, AF-based sensors can still indicate how long the chip

under test has been used.

We also presented a recycled ICs identification method using path-delay fin-

gerprinting. With no additional hardware circuitry required, this method provides

no overhead on area and power consumption. The simulation results of different

benchmarks with different process and temperature variations demonstrated the

effectiveness of our methods.

9.1.3 True Random Number Generator

Based on the generic structure of TRNG, we proposed two TRNGs that can

generate sequence with high randomness. The noise generation ring oscillators

and benchmarks, both of which are randomly controlled by LFSR, introduce more

random noise to the circuit. We demonstrated that the random noise can increase

the randomness of generated sequences.

9.2 Future Research

The security and reliability of ICs will be of utmost importance in the future due

to the fast IC development. More issues might appear and cause damages to ICs

and their applications. However, currently most research still focuses on hardware



197

Trojan detection, IC authentication, and recycled ICs detection. In this section,

we will share our ideas about future research directions of these topics.

9.2.1 Hardware Trojan Detection

Hardware Trojan Detection in 3PIPs: for hardware Trojan detection in

3PIPs, there are several reseach directions:

• Improving test benches to achieve 100% code coverage. With 100% code

coverage and assertion analysis, suspicious parts could be easily identified.

• Extending the research area. In this thesis, the trustworthiness of 3PIPs

was verified not only by RTL-level verfication but also by gate-level analysis.

More solutions could be developed by following this direction. On the other

hand, software Trojan detection methods could be used to detect hardware

Trojans in 3PIPs since software Trojans and hardware Trojans in 3PIPs are

both inserted into codes.

Hardware Trojan Detection in ICs: future research about hardware

Trojan detection in ICs includes:

• Developing methods to detect hardware Trojans without golden ICs. In this

thesis, we assume that a signature for Trojan-free ICs could be generated

from trusted ICs. However, hardware Trojans could be inserted into all the

fabricated ICs, which makes the generation of the Trojan-free signature is
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impossible. Without Trojan-free ICs (golden ICs), new techniques need to

be developed. Inserting reference circuits into ICs could be one solution.

• Proposing new techniques to prevent hardware Trojan insertion. Right now,

most research focuses on hardware Trojan detection. However, it would be

better if we can prevent hardware Trojan insertion during IC fabrication

process.

9.2.2 Recycled ICs Detection:

Since recycled ICs is a very new problem, there are several research directions

related to this topic.

• Classifing recycled ICs into different categories. Since different recyclers

could recycle ICs in different ways, recycled ICs could be classified into

simple cleaned recycled ICs, professional remarked recycled ICs, and altered

recycled ICs. With such classification, the future work for recycled ICs

would be easier.

• Developing recycled ICs detection using other side-channel information, such

as leakage current and transient current. In this thesis, we focus on the path-

delay fingerpriting flow to identify recycled ICs. We believe that our flow

could also be effective by using leakage current and transient current.

• Proposed techniques to detected recycled analog and memory devices. Since
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these recycled devices have been used, techniques based on performance

degradation must be effective to detect them.

9.2.3 True Random Number Generator

In the future, TRNGs with P-value ”1” will need to be developed by increasing

random noise. Each component in the generic structure could be improved to in-

crease the randomness of the generated sequence, such as digitizer, post-processing

module, and output interface.

9.3 Conclusions

This thesis is devoted to developing on-chip structures and techniques to improve

the security, trustworthiness, and reliability of ICs. Hardware Trojan insertion and

recycled ICs counterfieting are the two major malicious activities that endanger

ICs used in critical applications. Since the presence of hardware Trojans can have

an impact on certain parameters of their neighboring cells and the entire circuit, it

is possible to detect them based on the impact. However, the impact of hardware

Trojans with a very small number of gates could be too small to be measured by

using off-chip equipments. A verification based flow and on-chip structures were

developed to address this issue. Trojan-inserted 3PIPs and ICs can be identified

by using our techniques. The area overhead and test overhead of our methods are

negligible compared to modern designs with millions of gates. Moreover, recycled
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IC problem is defined in this thesis. Performance degradation in recycled ICs

provides an opportunity to identify them. Our proposed on-chip sensors and path-

delay fingerprinting flow can easily identify whether the chip under authentication

is used or not. In conclusion, we presented different techniques and strategies to

solve hardware Trojan and recycled IC problems in this thesis. However, there

still can be future research directions to improve the security, trustworthiness, and

reliability of ICs. Researchers can bring IC security to the next level by developing

new solutions.
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