
Periodic Licensing of FPGA Based Intellectual
Property

Nathaniel Couture 1, Kenneth B. Kent 2

Faculty of Computer Science, University of New Brunswick
Fredericton, New Brunswick, Canada

1l394e@unb.ca
2ken@unb.ca

Abstract— This work describes a method of licensing IP on
FPGAs based on techniques derived from software licensing
schemes. Current software and hardware licensing techniques
are described in detail, including a survey of current research
in the fields of FPGA security, secure memory technologies, and
cryptography. A licensing architecture for FPGA IP is proposed,
and an implementation on a Xilinx Vertex 2 FPGA demonstrates
that expiration of FPGA based IP can be achieved. Future
work includes the development of a hardware architecture for
consumer products that supports licensable IP cores as well as
their delivery.

I. INTRODUCTION

Profits generated from the sale of IP targeting FPGAs are

currently made from single sales to large manufacturing com-

panies. These sales, typically closed under a legal agreement,

make the IP available to the customer in an unrestricted fashion

[1]. Under this type of agreement, the customer may reuse the

IP as many times as desired for an unspecified amount of time.

This prevents any future sale of the IP to this client, with the

exception of new product releases. This situation is undesirable

for two reasons. The price of the IP must be set prohibitively

high, limiting sales, and the IP vendor/creator loses control

over the use of its IP.

This research investigates the feasibility of physically en-

forced periodic licensing of FPGA IP. The goal is to design

a hardware architecture to support licensable FPGA IP cores

targeting consumer products [2]. This situation would allow

the creators of FPGA IP to profit from individual sales of their

IP to consumers, rather than limited sales to manufacturers

under a Sign Once agreement [1]. The goal of this research is

to develop a proof of concept prototype that demonstrates how

FPGA IP can be made to expire based on license enforcement

techniques taken from software. By demonstrating that custom

IP can be made to expire while in use on an FPGA, future

work can be done in order to achieve a standardized hardware

architecture that will support licensable IP cores. The scope of

this research is limited to the creation of a secure architecture

for circuit expiration but does not address the delivery of this

technology to consumers.

II. RELATED WORK

A license enforcement scheme is a method of ensuring that

IP users are adhering to the laws and policies set out in a

licensing agreement. A license agreement, when present, is

a document that a user must agree to prior to using an IP

stating that the user must use a valid, legally obtained copy

of the IP and only use it for a specified period of time.

However, users do not necessarily obey licensing agreements

[3]. Enforcing licensing agreements often requires a combina-

tion of techniques. Some software license enforcement tech-

niques include: watermarking and/or fingerprinting for fraud

identification, code partitioning, software/hardware tokens and

dynamic code decryption [4], [5], [6], [3].

A. Hardware License Enforcement

Current hardware licensing techniques are less varied than

those used by the software industry. This is due to the

expensive nature of reverse engineering hardware designs

in comparison to software designs [7]. Similar to software

licensing schemes, the licensing of hardware IP often involves

a license agreement combined with a separate component

used for physical protection of the design. Using such a

combination provides a more robust and secure licensing

scheme [8].

Kean suggests a pay-per-use licensing scheme where IP

blocks can be purchased for one-time use only [9]. Taking

advantage of on-chip cryptography the IP can be transferred to

the FPGA chip securely from a trusted third-party for use in a

single design without providing the source code for the IP. The

majority of the techniques used to protect IP on FPGAs are

derived from this technique, and use cryptography in various

ways to protect the IP. By encrypting the designs, they can be

downloaded and decrypted inside the FPGA with the goal of

preventing source code exposure to malicious users [10], [8].

The majority of FPGA IP vendors are preventing illegiti-

mate use of the IP by implementing generic legally binding

contracts between the vendors and the customers. An example

is the Xilinx SignOnce initiative [1]. Under this agreement

the customer pays once for the IP, and can use it with few

restrictions. Although this provides a means to profit from

FPGA IP, there is nothing in place to physically protect the

IP itself. In addition, this licensing scheme makes IP very

expensive [9] since an IP vendor can only profit once from

each client. To support the SignOnce contract, watermarking

and fingerprinting techniques are used in the identification of

theft, but can only be loosely enforced worldwide [9].

357 FPT 20060-7803-9729-0/06/$20.00  2006 IEEE

B. FPGA Security

A licensing scheme enforced within a design is only as

secure as its environment. In order for the proposed licensing

architecture to be valid it must be shown to be secure. The

security attacks on FPGA designs can be grouped into 3

classes of attacks: Class 1, Class 2, and Class 3 [11]. The

majority of attacks, Class 1, come from clever outsiders

with negligible resources. Class 2 attacks include industry

insiders with access to some sophisticated resources, such as

university students. The information discovered by this class

is very technical and only usable by the same class of attacker

or higher. Class 3 attacks are funded organizations with a

determined team of experts. These groups can often crack

anything, e.g. FBI, CIA, NSA, and any other large commercial

or government organization [11].

A secure FPGA design must thwart attacks from Classes 1

and 2 as well as pose a challenge to Class 3. Physical attacks

using highly sophisticated probes to dismantle and reverse

engineer designs will not be considered for the purpose of this

paper since it is far too costly for typical users. The remaining

attacks include: Black-Box attacks [12], [13], bitstream reverse

engineering [12], [13], read-back attacks [12], physical attacks

[12], [14], design cloning[12], [13], power analysis attacks

[15], etc.

C. Physical Uncloneable Functions

Physical Uncloneable Functions or Physical Random Func-

tions, known by the acronym PUF, can be used to prevent

unauthorized access to a physical device, i.e. memory. A PUF

is defined as a function that maps challenges to responses,

is embodied by a physical device and has the following two

properties[16]: easy evaluation and hard to characterize.

Provided an IC is equipped with a secret key k, a pseudo-

random hash function h, and k is impossible to extract from

the IC, the function x → h(k,x) is a Digital PUF. If control

logic is added to disable/erase the IC when tampered with then

it is called a Controlled Physical Random Function or CPUF.

The security of these CPUFs has been shown to be weak in

defending against physical tampering that would reveal the

key. This would allow the device to be cloned, which is highly

undesirable [16]. The Silicon PUF (SPUF) is a more secure

alternative and exploits the statistical variations in the delays

of devices within the IC [16].

III. PROPOSED SOLUTION

The proposed solution is based on the token approach used

in software products [3]. For this, a token is used to store the

licensing information: life span/expiration data, usage counter

and site information. Under this model, if the IP does not have

access to a valid token, the product only functions partially

or not at all. However, a different environment means the

supporting licensing architecture will require different security

mechanisms for storing a token, disabling the IP, tracking

the usage (life span) and preventing successful attacks on the

architecture.

One of the challenges of using a token based licensing

scheme is keeping the token secure. The other challenge is

disabling the user design when the life of the license has

ended. A high level view of the proposed solution is shown

in Figure 1. In this figure, the licensed IP is shown as User
Design. The Licensing Component contains the logic to

perform the expiration of the connected IP.

Fig. 1. Licensing Architecture Components

To address the token storage, a secure memory element must

be added to store the token. This can be a PUF secured external

non-volatile memory, or an internal non-volatile memory. Both

will provide the storage required to maintain the licensing

information of the token, and keep it inaccessible.

In addition to the memory, an encryption engine must be

used to encrypt and decrypt the licensing information prior

to storing it. The secure memory allows the device to power

off/on as desired without losing the licensing information,

while the encryption prevents the data from being compro-

mised in the event that an attack managed to penetrate the

secure memory.

Furthermore, an additional feature must be added to the

FPGA itself. This feature is a laser encoded key inside the

FPGA fabric in order to uniquely identify the chip [9]. This

is used to prevent a malicious user from cloning the FPGA

configuration in order to use a licensed product on another

FPGA.

IV. LICENSING ARCHITECTURE

The expiration of the user design depends on a single

component, the licensing component, as shown in Figure

1. This component encompasses several parts: License Con-

troller, Real Time Timer, Non-Volatile Secure Memory, and

the Encryption Component.

1) License Controller: The license controller is the engine

of the licensing architecture. This component has four primary

tasks: i) update the usage parameter in the license token; ii)

verify the validity of the license; iii) verify the laser encoded

key; and iv) expire the licensed IP. The overall goal of this

component is to expire an IP core after a period of time has

elapsed. For this, it relies on the timer component to keep

track of the elapsed time. At regular intervals, the elapsed time

is stored in non-volatile storage. As a result, sudden power

outages, which are common in battery powered electronics,

will not cause the licensing component to lose track of the

358

elapsed time. When the device is powered on, the value is

retrieved from the non-volatile storage and is used to initialize

the timer. The license controller therefore acts as a controller

for the various reads/writes to/from memory. Additionally,

it uses the encryption engine to encrypt the data prior to

performing a write, and decrypt the data after performing a

read.

To prevent the use of illegitimate licensing components the

licensing architecture is designed to target a single unique

FPGA. Therefore, the FPGA must be uniquely identifiable.

For this, a laser encoded key is embedded at manufacture time

into the FPGA [9]. When the design is synthesized it contains

within it the value of the laser encoded key. This value must

match the actual laser encoded key throughout the duration of

the license. If at any point in time, the keys do not match -

indicating IP theft, the design is expired immediately.

This component also ensures that the license is valid by

verifying the time elapsed has not exceeded what is specified

in the license token. The licensing controller will immediately

expire the licensed IP if any of the following conditions is

met: the elapsed time exceeds the licensing period, the laser

encoded key does not match the design’s hard-coded key, or

the token is tampered with and has been detected.

2) Timer: For timed expiration to take place, a means to

measure the usage of the device must be in place. For this,

there are two possibilities: the licensing component can keep

track of the real time elapsed since the device was programmed

or track another usage parameter, such as actual run time or

a usage counter. Applicability of either scheme is dependent

upon the IP under license.

The timer must continue counting time using a previously

stored value, which will be read in from secure memory. It

will need to provide the current time in order for it to be

stored continuously in the event of a power failure in which

the licensing component would be required to provide up to

date current time to the licensing controller upon future power-

up.

3) Non-Volatile Memory: Using existing technology we

must assume that the only non-volatile storage available to

the FPGA must be external to the FPGA fabric. Therefore we

must ensure that the memory containing our licensing token

can not be duplicated. The data within the component will be

encrypted using a secure encryption algorithm thus removing

any doubt that the data itself will be modified. Once the data

is encrypted, it is also necessary to prevent its duplication,

as this would allow a user to bypass the memory with a

copy made when the license was new. Silicon PUFs, allow

us to uniquely identify our memory such that it cannot be

reproduced. Using this type of PUF, the memory controller

can run several challenge-response pairs and verify that this

memory is indeed the original valid memory [16].

4) Encryption Unit: The encryption component is required

unless internal non-volatile storage is provided inside the

FPGA, currently unavailable in FPGA technologies. Thus,

the ability to protect data stored external to the FPGA is

required. A solution to this problem would be to implement an

encryption component that would encrypt/decrypt data using a

secure cipher for the purpose of protecting sensitive data such

as the license token and the elapsed time.

By encrypting the time values prior to storing them, the goal

is to prevent theft/tampering of the overall system via token

data modification. Using a publicly known algorithm such as

AES, RC5 or TEA, should provide adequate security since

they have been widely studied. As shown in [13] a version of

TEA will provide security at a relatively low cost in terms of

FPGA design space. The amount of hardware space or CLBs

taken could be adjusted by changing the length of the key, the

number of rounds and/or the amount of data being encrypted

[13].

A. Additional Design Issues

Keys are required for both the encryption engine and the

unique chip identifier. Encryption key management is rather

simple. There is no need for the encryption key to be known

outside the FPGA. Prior to synthesis, the design will have

a random key embedded into the design. During the very

first power-on, the token data will be encrypted and stored

using this new key. During every subsequent memory action,

the same key will be used to encrypt and decrypt the data;

however this key will remain as part of the original FPGA

bitstream design which will also be encrypted to avoid reverse

engineering. [18]

The unique chip identifier is a laser encoded key as pre-

sented by [9]. This key is very difficult to modify and duplicate

[10]. Once the device is manufactured and is encoded with

a unique identifier, this identifier will be shipped with the

device. When the ”programmer” of the device wants to target

a licensable design to this device it simply embeds this key

into the design. The design will verify throughout operation

that the embedded code matches the chip identifier.

A technique to expire a license is to take over the clock

signal and prevent it from powering the user design. A typical

design contains one or more DCMs providing clock inputs to

various components within a design, therefore, controlling the

state of the main DCM of a user design can create the effect

of an expired circuit. By putting the DCM in an idle state,

thus not providing a main clock signal to the user design, the

design will not function. Controlling the expiration through

the DCM will allow a proprietary design/core, to which the

source code would not be given, to be used.

V. PROTOTYPE IMPLEMENTATION

This section describes the implementation of the licensing

architecture implemented on a Xilinx Vertex II (XC2V2000)

FPGA. The fact that the proposed design relies on new

technology, unavailable in commercial format (research stage

only), implies that the prototype built as a proof of concept

must be modified to work, using commercially available

equipment. The resulting adapted prototype demonstrates that

the concept works but will not provide all of the security

features of the original design. The missing components are

359

the non-volatile secure memory with built in PUF, and the

laser encoded key.

The license controller is the heart of the licensing architec-

ture, and as such acts as the overall system controller for all

of the components. It makes use of an instance of the timer

component by loading it with the value for elapsed time stored

in memory. It also ensures that the license is valid by verifying

that the time elapsed has not exceeded what is specified in

the license token, and also verifies that the laser encoded key

matches the hard coded key. It also ensures that the current

time is stored in memory regularly. Finally, it outputs the state

of the license which enables or disables the user design.

The timer is responsible for keeping track of real time inside

the FPGA. The timer outputs the current time count constantly

in order for the licensing controller component to have the

exact time at any given moment. This value is used by the

licensing component to determine if the license is expired.

The timer is also able to start up at a predetermined value to

allow stopping the device and restarting it (power off/power

on). The current time is stored in memory in short intervals.

When the device re-loads, the time stored in memory will be

loaded, and used as the starting point.

The memory used in the prototype is a block RAM internal

to the FPGA. Ideally, the internal RAM would be non-volatile.

However, the design specification also suggests the use of an

external non-volatile memory with PUF functionality.

The encryption component is an implementation of the TEA

encryption algorithm. An instance of this component is used

by the memory controller in order to encrypt and decrypt data

before/after reading/writing to/from memory. The design space

using 128 bit key and 64 rounds is 5% of the entire chip.

The full licensing component has only two I/O pins, the

clock, and the license valid signal. The valid signal output

connects to the DCM, which will toggle the DCM from a

working state to a non-working (idle) state in order to expire

a user design. Any user design can connect to the outgoing

clocks on the DCM in order to be made licensable.

To validate the design, a System-on-Chip implementation

of an MP3 decoder is used [19]. The core of this design is the

Xilinx Microblaze (MB) soft core processor [18]. The MP3

decoder has multiple components: Discrete Cosine Transform,

Fast Fourier, Multipliers and many other small peripherals.

Once the licensing core is added to the MP3 player project,

it can be connected to the DCMs used in the user design.

The MP3 player has two DCMs, a primary DCM to power

the MB processor and one to power the Zero Bus Turnaround

(ZBT) Ram. The main DCM powers many of the peripherals

and cores attached to the user design. By connecting the valid

signal from the licensing component to the external reset signal

of the main DCM, the licensing component can expire the MP3

player by denying its main clock signals.

VI. CONCLUSIONS AND FUTURE WORK

Periodic licensing of IP targeting FPGAs was achieved

and demonstrates the expiration of an mp3 player [19]. The

prototype lacks many of the features required in order to

provide a secure means of licensing IP. However, by imple-

menting the proposed architecture on a secure FPGA [20],

the concept could become a very useful component in the

creation of consumer electronics that allow custom hardware

to be sold directly to consumers. By providing features such

as internal non-volatile storage and laser encoded keys in next

generation FPGAs, FPGA vendors would make it possible

for this architecture to be developed commercially. Ideally,

it would be beneficial to provide this licensing technology as

firmware built into the FPGA fabric.

REFERENCES

[1] Xilinx. Common license consortium for intellectual property. [Online].
Available: www.xilinx.com/ipcenter/signonce.htm

[2] N. Couture, “Self-expiring licensing architecture for intellectual prop-
erty on fpgas,” Master’s thesis, University of New Brunswick, New
Brunswick, Canada, September 2005.

[3] P. Devanbu and S. Stubblebine, “Software engineering for security: a
roadmap,” Future of Software Engineering, Special volume published
in conjunction with ICSE 2000, Limerick, Ireland, 2002.

[4] J. Lach, W. Mangione-Smith, and M. Potkonjak, “Fpga fingerprinting
techniques for protecting intellectual property,” in Custom Integrated
Circuits Conference (CICC’98), 1998.

[5] A. Corporation, “Protecting your intelectual property from the pirates.”
[Online]. Available: www.actel.com

[6] A. K. Jain, L. Yuan, P. R. Pari, and G. Qu, “Zero overhead watermark-
ing technique for fpga designs,” in Great Lakes Symposium on VLSI
2003(GLSVLSI’03), Washington, DC, April 2003, pp. 147–152.

[7] M. Dalpasso, A. Bogliolo, and L. Benini, “Hardware/software ip protec-
tion,” in Design Automation Conference 2000, Los Angeles, CA, 2000,
pp. 593–596.

[8] T. Kean, “Cryptographic rights management of fpga intellectual property
cores,” Field Programmable Gate Array 2002, February 2002.

[9] ——, Cryptographically Enforced Pay-Per-Use Licensing of FPGA
Design Intellectual Property, Edinburgh, UK, 2002.

[10] ——, “Secure configuration of field programmable gate arrays,” in Lec-
ture Notes in Computer Science. Proceedings of the 11th International
Conference on Field-Programmable Logic and Applications. London,
UK: Springer-Verlag, 2001, pp. 142–151.

[11] D. G. Abraham, G. M. Dolan, G. P. Double, and J. V. Stevens,
“Transaction security system,” IBM Systems Journal, vol. 30, no. 2, pp.
206–229, 1991.

[12] T. Wollinger and C. Paar, “How secure are fpgas in cryptographic
applications,” in International Association for Cryptologic Research,
Cryptology ePrint Archive, Limerick, Ireland, June 2003.

[13] T. Wollinger, J. Guajardo, and C. Paar, “Cryptography on fpgas: State of
the art implementations and attacks,” ACM Transactions in Embedded
Computing Systems (TECS), 2004, special Issue on Embedded Systems
and Security.

[14] Y. Ishai, A. Sahai, and D. Wagner, “Private circuits: Securing hardware
against probing attacks,” in Lecture Notes in Computer Science: Ad-
vances in Cryptology - CRYPTO 2003, vol. 2729. Springer Berlin /
Heidelberg, 2003, pp. 463–481.

[15] F. Standaert, L. van Oldeneel tot Oldenzeel, D.Samyde, and
J. Quisquater, “Differential power analysis of fpgas : How practical is
the attack?” in Lecture Notes in Computer Science: FPL 2003, vol. 2778.

[16] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Controlled phys-
ical random functions,” in 18th Annual Computer Security Applications
Conference (ACSAC ’02), Las Vegas, Nevada, December 2002, p. 149.

[17] Y. Ko, S. Hong, W. Lee, S. Lee, and J. Lim, “Related key differential
attacks on 26 rounds of xtea and full rounds of gost,” in Fast Software
Encryption Workshop ’04. Springer-Verlag, 2004.

[18] Xilinx. Xilinx: The programmable logic company. [Online]. Available:
www.xilinx.com/

[19] U. of Toronto, “Soc mp3 decoder source code.” [Online]. Available:
www.eecg.toronto.edu

[20] L. S. Corporation. Fpga design security issues: Using the ispxpga
family of fpgas to achieve high design security. [Online]. Available:
www.latticesemi.com

360

