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Abstract—EDA vendors have proposed a standard for the
sharing of IP among vendors to be used in the design and
development of IP for FPGAs. Although, we do not propose
any attacks, we show that there are easy ways in which
the security of the whole process can be enhanced by using
standard cryptographic techniques such as secret sharing
and public-key based key exchange. We also explore the
advantages that newer primitives have such as All-Or-Nothing
Transforms and Physical Unclonable Functions. We show that
the protocols proposed would significantly reduce the effects
that the leakage of a single key would have over the whole system.

Index Terms— Security, IP Protection, EDA Tools, FPGAs,
Secret Sharing Schemes, All-Or-Nothing Transforms

I. I NTRODUCTION

Field Programmable Gate Arrays (FPGAs) have gained
widespread acceptance as substitutes for ASICs in many
applications. In fact their re-programmability has made them
very attractive in the embedded market, where software and
functionality updates are common and desirable by customers.
As a result of this shift, it is increasingly the case that the
functionality of an embedded system is presented in the form
of a bit configuration file or, in the case of microprocessors,in
the form of a program. Notice that the very property that makes
FPGAs so attractive (their programmability) also makes it very
easy for counterfeiters to copy an IP developer’s configuration
file and create a similar product without the up-front cost
of Intellectual Property (IP) development. This problem has
been recognized most recently by Simpson and Schaumont
[1], however, early references to the problem and suggested
solutions date back to at least the late 90’s (e.g. [2], [3]).
Simpson and Schaumont [1] showed that by using a Physical
Unclonable Function (PUF) on an FPGA they could develop
protocols that allow binding of a particular IP to a particular
FPGA. Their protocols also allow proving authenticity of the
IP to the hardware platform. Guajardo et al. [4] reduced the
computation and communication complexity of the protocols
in [1] and introduced the idea of Intrinsic-PUFs based on
the start-up values of SRAM memory values. Both works
based their protocols on symmetric-key primitives. In [5],the
authors observe that by introducing public-key cryptography,
the corresponding private-key does not need to ever leave the
FPGA, even during the enrollment stage, thus increasing the
security of the overall system. A common characteristic of
all PUF-based protocols in [1], [4], [5] is the derivation ofa
key(s) from the PUF, which is used to encrypt a piece of IP

and authenticate its origin. In the remainder of the paper, we
will refer to the encrypting operation for ease of presentation
but it is clear that our discussion extends to the computation
of Message Authentication Codes (MACs) and/or signatures
on a particular IP block.

Most of the solutions described until now implicitly assume
that the entire IP block programmed in the FPGA has been de-
veloped or owned by a single party. However, the fast time-to-
market and smaller product cycles have made external silicon
intellectual property (IP) providers for various organizations
a very attractive option compared to internal development.
Companies which specialize in creating IP for external parties
require that their IP is not misused (their internal detailsremain
confidential) since they resell the IP to multiple customers.
Such IP vendors also require contractual obligations for pric-
ing based on the usage model. Notice that as a consequence
of this “IP market,” in a real FPGA development environment,
the system integrators (who program the FPGA) do not own
the entire IP. Thus, it is clear that there is a need for security
solutions aimed at protecting the interests of the IP providers.

Electronic Design Automation (EDA) tool providers have
recognized this need. As a result, Synplicity suggested an open
IP encryption standard [6] aimed at guaranteeing that the IP
blocks developed by third parties are protected throughout
the design cycle. Notice that the standard allows for the
integration of multiple IP blocks originating from different
IP providers into a single design. More recently, Drimer et al.
[7], propose a solution to the integration of multiple IP blocks
in a single design by modifying (albeit the modifications
are minor) the FPGA fabric to allow for multiple keys (as
opposed to a single key as is common in today’s FPGAs)
to be securely stored. The work of Drimer et al. builds on
work by Güneysu et al. [8], who introduce the concept for
single blocks. Their approach makes use of keys derived from
secrets and identifying information for a particular FPGA.
They make use of public-key cryptography for this purpose.
Their methods seem appropriate for FPGAs with secure non-
volatile storage and enough resources to implement public-key
crypto primitives.

A. Our Contributions

In this paper, we focus on strengthening the security of
Synplicity’s open IP flow [6]. In particular, we notice that
the leakage of a single key from a single EDA tool in the
whole chain, would have disastrous consequences. We thus



try to minimize the effects that such leakage would have for
the whole system. We emphasize that we donot propose an
attack against the standard in [6]. From a security perspective,
minimizing risks makes sense, specially if the system will
be used extensively and throughout the industry, as such a
standard would. We show that we can improve the security of
the system significantly using standard cryptographic schemes
as well as newer primitives which are gaining acceptance such
as Physical Unclonable Functions.

B. Organization

The remainder of this contribution is organized as fol-
lows. Section II provides the reader an overview of notation,
background information on the Diffie-Hellman key exchange
protocol and Physical Unclonable Functions (PUFs). The aim
is to be self contained for the reader not familiar with these
concepts. Then in Sect. III, we describe in detail the core
distribution problem, the protocols proposed in [6] and some
potential weaknesses of the scheme. We end this section
specifying some requirements that we would like the new flow
to comply with, for purposes of enhanced security. SectionsIV
and V describe solutions based on symmetric-key and public-
key cryptography, respectively. Section V introduces a pro-
tocol, which makes use of PUFs to link the IP block to the
hardware platform. We contend that this is the most promising
way of guaranteeing pay-per use licensing models for FPGAs.
We end with some conclusions in Sect. VII.

II. PRELIMINARIES

In the following, we will assume familiarity with standard
cryptographic blocks such as symmetric-key primitives (e.g.
the AES, DES, triple-DES), hash functions (e.g. MD5, SHA-
1, SHA-2) and public-key based primitives (RSA, elliptic
curves). We will denote the operation of encrypting a valueX
using a symmetric cipher scheme (e.g. AES in CBC mode) and
key K by SE(K; X) and similarly for asymmetric ciphers as
AE(Kpub; X). The corresponding inverse operations (decryp-
tion) will be written asSE−1(K; Y ) andAE−1(Kpriv; Y ),
respectively. For authentication in the public-key setting, we
will write Sig(Kpriv; X) for the operation of signing data
X with the private keyKpriv andVer(Kpub; Y ) for the cor-
responding verification operation using the public keyKpub.
When we mean the encryption of a single block using a
symmetric-key primitive, we will writeAES(K, X), where
we have essentially assumed use of the de-facto standard, the
AES, as the block cipher of choice. Computing a Message
Authentication Code (MAC) or keyed hash function will be
written MAC(K, X), while verifying it will be denoted by
MAC−1(K, Y ). We will write {Si}

t
i=1 to mean the set of

Si’s wherei = 1, 2, · · · , t.

A. Basic Diffie-Hellman Key Exchange Protocol

Public key cryptography was born with the introduction of
Diffie and Hellman’s famous key exchange protocol [9]. The
key exchange protocol works as follows: Letg be an element
of a finite groupG of prime orderp, then userA generates

a random valuex, computesKA = gx mod p and sendsKA

to userB, who in turn generates a random valuey, computes
KB = gy mod p, and sendsKB to A. Both A and B can
then compute the session key asKAB = (KB)x = (KA)y ≡
gxy mod p. The security of the protocol lies on the hardness
of computing a discrete logarithm in a finite group. Notice
that we have written the protocol in terms of exponents but
the same protocol can be straightforwardly implemented over
other structures such as elliptic curves.

B. Physical Unclonable Functions

In 2001, Pappu et al. [10], [11] introduced the concept of
Physical Random Functions or Physical Unclonable Functions.
Physical Unclonable Functions consist of inherently unclon-
able physical systems. When a stimulus is applied to the
system, it reacts with a response. Such a pair of a stimulusCi

and a responseRi is called achallenge-responsepair (CRP).
Thus, we write: Ri ← PUF(Ci). PUFs have essentially
two parts: i) a physical part and ii) an operational part. The
physical part is a physical system that is very difficult to
clone. It inherits its unclonability from uncontrollable process
variations during manufacturing. In the case of PUFs on
an IC such process variations are typically deep-submicron
variations such as doping variations in transistors. Examples
of PUFs include optical PUFs [10], silicon PUFs [12], coating
PUFs [13] and intrinsic PUFs [4], [14], [15]. The operational
part corresponds to a circuit designed to take care of the noise
present in PUF responses as well as their non-uniform nature.
This is called a helper data algorithm or fuzzy extractor [16],
[17]. Efficient implementations of fuzzy extractors have been
studied in [18].

C. Parties Involved

Previous works in IP protection for FPGAs [19], [3], [5]
have extensively discussed the parties involved in the overall
IP protection chain. In this work, we simply make use of
previous terminology. In particular, we consider the following
parties: the end user, the FPGA customer, the system integrator
or designer (SYS), the hardware IP-Provider or core vendor
(IPP), the hardware (FPGA) manufacturer (HWM) or vendor,
the CAD software or EDA vendor (EDA), and a Trusted
Third Party (TTP). Notice that Drimer et al. [7] use similar
terminology but different abbreviations for the parties. Also,
in the work of [7], the authors assume that the TTP and the
HWM correspond to the same party, whereas we allow for
them to be different.

III. T HE CORE DISTRIBUTION PROBLEM

IP providers who build specialized circuits (IP cores) and
license them to multiple external parties require that their
internal design remains confidential to guarantee profitability.
Presently, an IP provider charges a one-time large fee and
provides unlimited use of the encrypted IP block to the system
integrator. The disadvantage with this approach is that the
system integrator has to make a large up front payment to be
able to use the IP block. Alternatively, a pay-per-use model
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Assumptions and Notation:
• IP provideri has secret keyKIPi

• Each EDA vendor (EDAj) publishes a certified public keyKEDApubj
and the corresponding private keyKEDAprivi

is embedded in a secure
manner in the corresponding tool.

• The connection SYS-IPP is authenticated.
Secure Flow:

1) Transfer of IP block to EDA tools for processing

EDA Tool j SYS IPP
yi = SE(KIPi

; IPi)
zji = AE(KEDApubj

;KIPi
)

yi, zij
�

yi, zij
�

KIPi
= AE−1(KEDAprivj

; zij)

IPi = SE−1(KIPi
; yi)

2) ProcessIPi block and generate corresponding flow outputNj . The netlist might be divided into portionsNi corresponding to the original
IPi block.

3) This whole netlistN or some of its componentsNi are encrypted again withKIPi
to producey′

i
= SE(KIPi

;Ni).
4) EDA vendorj tool encrypts keyKIPi

with the public-key of EDA vendork, i.e. zki = AE(KEDApubk
;KIPi

)
5) Both y′

i
andzki are forwarded to the next tool flow.

Fig. 1. Synplicity’s Open IP Protocol [6].

would be highly beneficial to the system integrator but also to
the IP vendor, by making his IP blocks available to parties that
would otherwise be unable to pay large upfront fees. In the
FPGA domain this is presently done in two different ways: (i)
using proprietary encryption techniques from different EDA
tool vendors and (ii) using encryption at the FPGA device
level. However, proprietary solutions in general, assume that
one system integrator has access to IP originating from a
single source (in addition to the code/IP developed in house).
This creates problems for IP integrators who combine IP from
different IP vendors with their own IP using multiple EDA
tools. Synplicity (an EDA vendor) has therefore suggested an
open IP encryption scheme [6]. This would enable all EDA
vendors to use a similar technique for IP encryption/decryption
in their tools but with different keys.

A. The Typical Design Flow

Before introducing the encrypted design flow proposed in
[6], it is necessary to understand what the typical hardware
design flow (without encryption) for FPGA looks like. During
the design process, a system integrator gets third party IP
blocks from IP providers, typically in the form of a RTL,
and combines them with its own (in house) RTL blocks.
The design team then uses any one of the different EDA
vendor’s synthesis tool to generate a gate-level netlist. At this
point, the design team might simulate their design and verify
that the functionality as well as constraints from the design
specifications are met. If this is not the case, then this firstflow
of designing and synthesizing is iterated several times until
constraints and functionality are according to specification.
Notice that synthesis and simulation tools might be provided
by different EDA vendors. This (final) netlist is, in turn,
provided to the FPGA vendor’s place and route tools to
generate a configuration file, which is programmed onto the
FPGA.

B. Synplicity’s Open IP Encryption Architecture

Figure 1 shows the overall scheme where an IP vendor en-
crypts his IP block using a symmetric cryptographic algorithm
with a secret key (KIP ). This secret key is then encrypted
using a public-key (asymmetric) cryptosystem using public
keys for each EDA tool vendor. These encrypted keys are then
embedded in the IP code. Therefore, the EDA tools (for which
the IP vendor had encrypted the keys) first decrypts the key
used to encrypt the IP block. This is possible as the secret
key pair of the public key cryptosystem is embedded in the
EDA tool. Once the IP vendor’s key is decrypted, the tool can
decrypt the IP block. Notice that this protocol allows the IP
provider to decide ahead of time which tools will have access
to his IP by encrypting the IP provider’s key with the public
key of each “authorized” EDA tool.

Although in theory the solution is secure, there are several
drawbacks with the proposed solution, which seem evident
to the security practitioner. The following is an explicit list
of such problems or potential weaknesses with the proposed
scheme. Notice that we arenot claiming to break the system.
Rather, we are attempting to be on the safe side and make
sure that the proposed protocol is more robust against potential
attackers:

• IP vendors have to completely trust the EDA vendors
for the protection of their IP since the EDA vendor can
decrypt any key used to decrypt an IP. This problem is
further magnified with the proposed scheme as the IP
vendor has to trustall the EDA tools used to process
the IP block (here the same key is encrypted with public
keys of multiple EDA vendors). Therefore, a weakness
in any single tool of any vendor would be sufficient to
compromiseall the IP from all IP vendors.

• The encrypted IP block could be leaked by a licensee
making it available to other unlicensed parties, who can
perform all the above operations on the encrypted IP
block and integrate the IP into a different design. The
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main reason this is possible is that there is no binding
of the encrypted IP to the licensed system integrator. In
other words, anyone with a copy of the software tools
can in principle use the flow and the IP block.

• In addition, during the flow if the entire IP output (com-
bination from the different IP cores) has to be encrypted
with only one of the manyKIPi

that was used as input
IP blocks to the tool, then the output of the EDA tool
can be compromised by choosing a knownKIPi

with a
bogus IP.

C. Requirements and Assumptions

Given the previous discussion, one may ask what would we
put forward as requirements of such a system? In this section,
we briefly summarize these requirements from a security point
of view. In particular, we would like to minimize the impact
that a single key disclosure has on the system. In other words,
if the secret key of an IP provider or the private key of an EDA
tool is leaked to the outside, the effect that this disclosure has
should be minimized in the overall system. Moreover, from an
IP provider’s point of view, it is desirable to have tools that
could enforce a pay-per-use business model.

In our discussion, we assume implicitly that the environment
in which the EDA tools operate is a secure environment
or, alternatively, that the tools themselves use techniques to
guarantee that the keys (and their use) present at any one time
in memory are protected. We also assume that if the EDA
tools contain legitimate and authentic secret keys then thetools
are trusted. This is extremely important since if the keys are
compromised (in particular the private key of the EDA tool
vendor), then the overall security of the system falls apart. We
cannot emphasize enough the importance of this last statement.
Notice that our “software-based” solutions all suffer fromthis
drawback. The way1 that we find to get around this is to use
the FPGA and link the IP directly to the FPGA. Assuming
that the private keys of the EDA tools remain safe, we discuss
in the next sections techniques to mitigate the exposure of the
other keys used in the system.

Observe that in this model, an attacker who writes fake
tools has no chance of success as long as the legitimate
secret keys remain out of his reach. Similarly, we assume
that only legitimate tool vendors will be able to get their
keys certified. This certification can be performed either by
a trusted third party designated by the industry or by the
vendor itself by simply publishing its public keys on the
EDA tool vendor’s website, for example. Here it is implicitly
assumed that the vendor’s reputation and possibly its brand
will act as the (implicit) certifying agent (i.e. by buying a
tool from market leader AAA, we implicitly say that we
trust its brand). In this work, the solutions presented make
use of standard cryptographic techniques only. However, itis
clear that these standard techniques can be combined with

1Clearly, one way to guarantee the overall process to be secure is to require
the EDA tools to run on trusted hardware. This, however, we think is not
realistic. We do not explore in this work the possibility of relaxing this and
allowing for only part of the computation to occur in trusted hardware.

software obfuscation techniques or (for example) whitebox
cryptography to improved the security of the system. We
caution that such techniques are still an area of research in
its infancy.

IV. STRENGTHENINGTHE OPEN IP FLOW

A. Using Secret-Sharing

Introduced independently by Shamir [20] and Blakley [21]
in 1979, secret-sharing is a well-known technique to minimize
the effects of key exposure. The idea is thus very simple. We
follow the original flow but instead of re-encrypting part of
the netlist with the key of the IP provider, we first split the
output of EDA toolj into shares, such that the attacker has to
compromise all keys before gettingany information about the
output of the EDA tool. Thus, this approach also strengthens
the security at the “interface” between EDA tools. The overall
flow is shown in Figure 2.

Notice that in Step 6, we could encrypt eachKIPi
sepa-

rately. We assume that for the encryption of the secret keys
KIPi

of each IP provider, we have used a semantically secure
encryption scheme [22]. Such schemes make use of nonces,
which we do not show explicitly in the protocols for ease of
presentation. Also in Fig.2, we have used the simplest form
of secret sharing scheme. However, any secret-sharing scheme
will work as well at the cost of additional hardware resources.

The proposed scheme as specified in the previous section
results in ans fold increase in the communication complexity.
In other words, if a normal netlist occupies 1 MByte of
memory space, in the present scheme we will have to transmit
s MBytes. To reduce this complexity, we can applyt-out-s
secret sharing scheme where we only uset shares (instead
of s). Then, only t shares are required and our memory
requirements are reduced accordingly.

B. Using All-Or-Nothing Transforms

In [23] Rivest introduces a method intended to make it more
difficult to perform exhaustive key searches on symmetric-
key ciphers. Improvements to the efficiency of the All-Or-
Nothing Transform (AONT) are known as well [24], which
reduce the overhead from two encryptions to just one (i.e. the
AONT would then require a few XOR operations together with
an encryption operation). The AONT construction presented
by Desai [24] is shown in Algorithm 1. We will denote the
application of Algorithm 1 with input messageN as N ′ =
AONT (N). Notice that once the AONT has been performed

Algorithm 1 The AONT from Desai [24].
Require: A messageN split into blocksN1, N2, N3, · · · , Nt

Ensure: t + 1 encrypted blocksY1, Y2, · · · , Yt+1

1: Choose a randomK ′

2: for i = 1 to t do
3: N ′

i = Ni ⊕AES(K ′, i)
4: end for
5: N ′

t+1 = K ′ ⊕N ′

1 ⊕N ′

2 ⊕ · · · ⊕N ′

t

6: return N ′ = N ′

1, N
′

2, · · ·N
′

t+1
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Assumptions and Notation:
• IP provideri has secret keyKIPi

• Each EDA vendor (EDAj) publishes a certified public keyKEDApubj
and the corresponding private keyKEDAprivi

is embedded in a secure
manner in the corresponding tool.

• The connection SYS-IPP is authenticated.
Secure Flow:

1) Transfer of IP block to EDA tools for processing

EDA Tool j SYS IPP
yi = SE(KIPi

; IPi)
zji = AE(KEDApubj

;KIPi
)

yi, zij
�

yi, zij
�

KIPi
= AE−1(KEDAprivj

; zij)

IPi = SE−1(KIPi
; yi)

2) ProcessIPi block and generate corresponding flow outputNj . The netlist might be divided into portionsNi corresponding to the original
IPi block. This, however, is not relevant in the new flow.

3) Assume that there ares different IP providers i.e.i = 1, 2, 3, · · · , s. Then, the EDA tool generatess−1 random sharesR2, R3, R4, · · · , Rs.
4) The EDA tool computesN ′ = N ⊕ R2 ⊕ R3 ⊕ R4 ⊕ · · · ⊕ Rs.
5) The EDA tool encryptsN ′ and each of theRi with each of thes KIPi

to obtain y′

1
= SE(KIP1

; N ′) and y′

i
= SE(KIPi

; Ri) for
i = 2, 3, · · · , s

6) EDA vendor toolj encrypts key(s)KIPi
with the public-key of EDA vendork, i.e. zk = AE(KEDApubk

;KIP1
, KIP2

, KIP3
, · · · , KIPs

)
7) Both y′

i
for i = 1, · · · , s andzk are forward to the next tool flow.

Fig. 2. Strengthened Synplicity’s Open IP Protocol with Secret Sharing.

on dataN , the outputN ′ is subsequently encrypted, resulting
in Y = SE(K, N ′). The strength of the AONT idea is that an
attacker must decryptall the message blocksN ′

i before he can
obtain the entireN or any information on the partsNi of N .
In addition, the message expansion is only one extra encrypted
block (i.e. in the case of AES only 128-bits extra). However,
this is at the expense of performing two rounds of encryption.
Integrating Algorithm 1 into the open IP flow then is straight
forward. In particular, the following steps are performed:

1) Perform Steps 1 and 2 in Fig. 2. At the end of these
steps we have output of EDA toolj, is N , which can
be divided into blocks (of size specified by the block
cipher to be used, i.e. 128-bit blocks if AES is used)Ni

for i = 1, 2, · · · , t.
2) The EDA tool generatesone random keyK ′. This key

does not need to be shared with anyone.
3) ComputeN ′ = AONT (N), whereN ′ is the concate-

nation of blocksN ′

i for i = 1, 2, · · · , t, t + 1.
4) The EDA tool encryptsr = ⌈(t + 1)/s⌉ blocks

N ′

i with each of thes keys KIPi
to obtain Yi =

SE(KIPi
; N ′

(i−1)s+1, N
′

(i−1)s+2, · · ·N
′

(i−1)s+s
) for i =

1, 2, · · · , s. In other words, we partition thet+1 blocks
N ′

j into s groups each containingr blocks, except
possibly the last group. Each group ofr blocks is then
encrypted with a different keyKIPi

.
5) EDA vendor j’s tool encrypts key(s)KIPi

with
the public-key of EDA vendor k, i.e. zk =
AE(KEDApubk

; KIP1
, KIP2

, KIP3
, · · · , KIPs

)
6) All Yi andzk are forwarded to the next tool flow.

The overhead of two encryption operations (instead of only
one) seems a reasonable trade-off considering that encryption
will only be performed at the beginning and at the end of each
tool flow.

C. Discussion

The solutions so far strengthen the open IP flow by making
it harder for an attacker to extract information from the inter-
mediate outputs sent between one tool flow and the next. The
first solution does this by using secret-sharing on the output of
one tool and re-encrypting with the keys originally provided
by the IPP. The cost is an increase in the communication
complexity since now, the EDA tool needs to encrypts outputs
(or a subset of it), wheres is the number of IP blocks
originating from different IP providers2. The second solution,
based on AONTs, has similar properties to the first one. It
reduces the communication complexity to a fraction of the
output of each EDA tool at the cost of increased computational
complexity. In other words, instead of performing one round
of encryption per block of the EDA tool output, we need to
perform two rounds.

The previous protocols can be strengthened to minimize
the effect of key leakage between different EDA tools,
by having each EDA tool generate new keys, call them
{KRe−encrypti

}si=1, and re-encrypt their outputs with these
keys instead of re-using{KIPi

}si=1. Notice that in this case,
the system needs to take care of encrypting these keys with
public keys approved by the IPP in advance3.

Although, the solutions described in this section reduce the
effect of key leakage between EDA tools, drawbacks remain.
In particular, if an IP block is leaked (in encrypted form)
to the outside world anyone with a legal set of design tools

2Here we have made the implicit assumption that IP blocks corresponding
to the same IP provider have been encrypted with the same key.Clearly, the
proposed system can support different IP blocks encrypted with different keys
developed by the same IP provider. Simply treat each IP blockindependently
as being developed by a different provider.

3In the original scheme [6], the IPP encrypts his key with the public keys
of those tools, which he allows to process his code. Notice that this is done
in advance, thus, essentially providing an implicit license.
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(which have knowledge of the private key of the EDA vendor)
will be able to use the encrypted block. It appears hard to
completely solve this problem unless you link the IP block to
the specific hardware platform, e.g. using PUFs as in [1], [4],
[5] or modifying the hardware platform as in [7]. What we
can do is reduce the ability of an attacker to use an IP block
in multiple EDA tool flows owned by different organizations.
In the following we explore possible solutions to this problem.

V. PUBLIC-KEY CRYPTOGRAPHYBASED VARIANTS

In this section, we consider ways in which we can limit
the distribution of encrypted IP. In particular, notice that
a dishonest system integrator does not necessarily need to
get access to the IP block keyKIPi

(corresponding to IP
provider i) to be able to integrate this IP into his design.
In particular, given that theKIPi

has been encrypted with
the public keyKEDApubj

of EDA tool j, then any tool with
the corresponding private keyKEDAprivj

, will have access to
KIPi

. This implies that one system integrator can provide the
encrypted IP block to another system integrator with the same
tools and the second system integrator will be able to use the
IP block, since he has a legal copy of the EDA toolj.

Several possible solutions come to mind. One could try an
approach in which the IPP uses a differentKIPi

for every
SYS. This will clearly not solve the problem because of
the same reasons described in the previous paragraph. Using
a different public-key/private-key pair for each EDA tool
provided to each SYS would solve the problem but it would
essentially be an “almost” symmetric-key cryptosystem. In
particular, we loose the advantage of having a single publicly
available and global public keyKEDApubj

, which can be used
by everyone desiring to encrypt a message to the owner of the
corresponding private keyKEDAprivj

. The EDA tool vendor
would have to make available theKEDApubj

to the IPP , in
a secure and authenticated manner, every time that the IPP
desires to provide its IP blocks to a different SYS. In doing
this the EDA vendor would act as an intermediary, which
might not be desirable from a security point of view but also
an economic/strategic point of view. For example, the EDA
vendor would know the IPP customer lists, which might not
be acceptable to the IPP. Fortunately, standard cryptographic
techniques can be used to solve this problem. Figure 3 shows
the initial part of the protocol, which is critical for the security
of the overall protocol. Once the key used to encrypt the
IP block has been derived, one of the protocols previously
described in Sect.IV can be used. Thus, we follow ideas similar
to [7], [8] but this time at the EDA tool level, which has the
advantage of not requiring changes to the hardware platform
(FPGA chip).

In Figure 3 the most involved part is the authenticated key
exchange protocol, which is due to Diffie et al. [25] and it is
known as the Station-To-Station protocol. Notice that we just
chose a well-known and studied protocol but other protocols,
which achieve the same exist as well (see e.g. [26]). Observe
also that we use a Key Derivation Function, denotedKDF ,
which is not defined. This is left on purpose this way as there

is currently work to standardize methods to do this (see [27],
[28] for proposals). The basic method, however, essentially
derives the session key by computing several hashes/MACs of
the Diffie-Hellman session key. To summarize, what Figure 3
shows is how to perform an authenticated key exchange and
subsequently, use the agreed key to encrypt the IP block.
Implicitly we make the assumption that the IPP performs this
key exchange once with the first tool that his IP block will
interact with and at the same time he certifies the public keys
of the tools to which his IP can be forwarded.

Notice that this solution partially solves the problem of a
licensee leaking an IP block and making it available in en-
crypted form to other (legal) EDA tool licensees. In particular,
we create a key which is specific to a particular EDA tool
instantiation (by instantiation we mean the particular piece
of software that the SYS gets from the EDA tool provider)
using theKDF and assuming that there is a unique identifier
which cannot be removed or tampered with in the EDA tool.
Such unique identifier could be implemented with tamper
resistance tokens or a TPM, for example. A protocol would
have to run between the tool and the token to guarantee that
the unique identifier is indeed the expected value. Assuming
that the attacker cannot tamper with the identifier then our
protocol guarantees that every EDA Tool instantiation will
have access to a different key and therefore, leaking the IP
block in encrypted format would not be of use, since other
tools will not know the agreed key.

VI. SECURE INTEGRATION OFMULTIPLE IP-BLOCKS

BASED ON PUFS

As mentioned in Sect. III, during the integration phase, the
various IP blocks undergo different design phases. Firstlythey
are simulated to ensure they fulfill the required criteria. Then
they are integrated into a single design by synthesizing, place
and route tools.

In this section, we sketch a solution requiring that the IP
vendors provide a simulation library unencrypted for their
IP which allows the integrator to test the IP block with
other IP (and his own design). Such a simulation library is
already commonly distributed during the evaluation phase in
the industry and it does not allow to obtain a synthesizable core
from it. The real IP that goes onto the FPGA is sent to the
SYS as an encrypted pre-routed hard macro. Such macros are
also already in use today (for e.g. Altera’s incremental compi-
lation). The difference here is that the key for the decryption is
not available to the tools but only inside the FPGA (and hence
would require modification to the configuration controller of
the FPGA which will be described later). The macro is thus
encrypted using a key derived from the PUF responses during
the enrollment phase of the FPGA. For specific protocols,
describing how to perform the enrollment and how to integrate
it with symmetric key and public-key primitives in the context
of IP protection for FPGAs, we refer to [4], [5], respectively.
Notice that the public-key based protocols described in [5]do
not require that any secret information leave the FPGA, which
is an added advantage. It is only required that the public key
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Assumptions and Notation:
• IP provideri has a private-public key pair(KIPprivi

, KIPpubi
).

• Each EDA vendor (EDAj) publishes a certified public keyKEDApubj
and the corresponding private keyKEDAprivi

is embedded in a secure
manner in the corresponding tool. Thus, each IP provideri has a certified copy of the EDA tool vendor’s.

• The EDA vendor has provided IP provideri with a signed certificate on his public key Cert(InfoIPi
) = (InfoIPi

,Sig(KEDAprivj
; InfoIPi

)),
where InfoIPi

= (IDIPi
, KIPpubi

)
• A Key Derivation Function, denotedKDF .

Secure Key Exchange [25]:

EDA Tool j SYS IPP
Generate randomy

KAi
� KAi

= gy mod p
Generate randomx
KBj

= gx mod p

Kij = KDF (KAi
, KBj

, IDIPi
, IDEDAj

)
YBAji

= SE(Kij ;Sig(KEDAprivj
;KBj

, KAi
))

KBj
, YABji

-

Kij = KDF (KAi
, KBj

, IDIPi
, IDEDAj

)

T ′ = SE−1(Kij ; YBAji
)

Ver(KEDApubj
;T ′). If correct continue, otherwise abort

YABij
= SE(Kij ;Sig(KIPprivi

;KAi
, KBj

))
YABij

�

T ′′ = SE−1(Kij ; YABij
)

Ver(KIPpubi
;T ′′)

If correct continue, otherwise abort.

IP Block Transmission:
Yi

� Yi = SE(Kij ; IPi)
IPi = SE−1(Kij ;Yi)

Fig. 3. Public-key Based IP Sharing Shared Key Protocol.

corresponding to the private key derived from the PUF and
stored in the FPGA be certified by a trusted authority, which
could be the FPGA manufacturer.

Once the designer is sure that the IP works in the overall
design (based on the simulation results), the integrator can
position the black box encrypted IP at a particular positionon
his FPGA. The interfacing of this block is made possible by
the exact position of the interface signal pins made available by
the IP provider. Since the encrypted black boxes are pre-routed
for a particular FPGA, the final bitfile that is used to program
the FPGA can set aside these resources on the FPGA. Thus,
the bitfile contains tags for which IP block (when decrypted)
goes to which empty position and the required helper data
position in external flash to decrypt the block. The overall
programming file for the FPGA then includes this bitfile, the
encrypted IP blocks and their associated helper data.

By using the techniques described, we can ensure that the
IP vendor has an end-to-end security of his IP. The details
of the IP are never decrypted in any EDA tool. In particular,
decryption only occurs inside the FPGA. The secret key for
the decryption is also unknown to any other user (including the
system integrator) because it is based on the PUF responses
which are specific to the FPGA.

As mentioned before the configuration controller on the
FPGA also needs to be modified to take care of partially
programming parts of the FPGA (this is already possible

for some Xilinx FPGAs but under different circumstances).
The modified configuration controller (CC) functions in the
following way:

1) The CC first loads the bitfile and programs areas of
the FPGA which can be done without any decryption,
leaving out the empty blocks for the decrypted IP.

2) The CC then reads the tags to program the empty areas
with the appropriate IP block.

3) Based on the tag information it then reads the helper data
for the encrypted block and based on the PUF response
of the FPGA to derive the necessary key to decrypt the
IP.

4) The CC then decrypts the IP block and programs the
empty positions.

5) CC continues to perform (3) and (4) until all encrypted
IP blocks are programmed onto the FPGA.

The keys that are used to encrypt different IP blocks from
different IP vendors can be kept different (even though they
are for the same FPGA). It is imperative that the keys be
derived from different PUF blocks if traditional techniques
for fuzzy extractors [17], [16] are used. In particular, there are
recent attacks [29] which allow to derive the original PUF key
based on the availability of different helper data (derivedfrom
the same randomness). The algorithmic circuitry to derive the
keys from the PUF and the helper data can be built-in by
the FPGA manufacturers onto the configuration controller. A
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single crypto decryption can be used if all IP vendors decideto
choose a standardized algorithm and this can also be included
within the configuration controller (which is already being
done for high end FPGAs).

VII. C ONCLUSIONS

IP protection for FPGA cores have previously considered a
single IP owner model. However in a real FPGA development
environment, multiple IP providers are involved whose cores
are part of the final design. Hence EDA tools play a central
role in any IP protection framework. The Synplicity’s Open
IP Protocol is a first step in the direction of creating an open
environment for different tools to inter-operate with eachother
while protecting the IP from various vendors. Our contribution
has shown possible weaknesses in the proposed protocol and
suggested modifications that allow robust protection of IP.We
have also presented a solution for IP rationing (i.e. limit the
use) using PUFs. The proposed solution is extremely important
to guarantee per use royalty for IP when multiple IP from
different vendors needs to be integrated into a single design.
This solution also makes sure that the confidentiality of the
IP is in one single chain rather than having to trust EDA tool
vendors and possible weakness in a parallel chain.
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and R. Wolters, “Read-Proof Hardware from Protective Coatings,” in
Cryptographic Hardware and Embedded Systems — CHES 2006, ser.
LNCS, L. Goubin and M. Matsui, Eds., vol. 4249. Springer, October
10-13, 2006, pp. 369–383.

[14] S. S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P.Tuyls, “The
Butterfly PUF: Protecting IP on every FPGA,” inIEEE International
Workshop on Hardware-Oriented Security and Trust — HOST 2008,
M. Tehranipoor and J. Plusquellic, Eds. IEEE Computer Society, June
9, 2008, pp. 67–70.
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