Dynamic Intellectual Property Protection for Reconfigurable Devices

Tim Giineysu, Bodo Mbdller, Christof Paar

Horst Gortz Institute for IT Security, Ruhr-Universitt Bochum, Germany
{gueneysu, bmoeller, cpaarf@crypto.rub.de

Abstract

The distinct advaniage of SRAM-based Field Pro-
grammable Gate Arrays (FPGA) is their flexibility for
configuration changes. However, this opens up the
threat of theft of Intellectual Property (IP) since the
system corfiguration is stored in easy-ro-access Flash
memory. To prevent this, high-end FPGAs have already
been extended with symmetric-key decryption engines
used to load an encrypied version of the configuration
that cannot simply be copied and used without knowl-
edge of the secrer key. However, such protection systems
based on straightforward use of symmetric cryptogra-
phy are not well-suited with respect to business and li-
censing processes, since they are lacking a convenient
scheme for key wransport and installation.

We propose a new protection scheme for the IP of
circuits in configuration bit files thar provides a sig-
nificant improvement ro the current unsatisfying situa-
tion. Ir uses both public-key and symmetric cryprogra-
phy, but does not burden FPGAs with the usual overhead
of public-key cryptography: While it needs hard-wired
symmetric cryptography, the public-key functionality is
moved info a temporary configuration bit stream for a
one-time setup procedure. This approach requires only
very few modifications to current FPGA technology. Us-
ing five basic stages, the new protection scheme allows
new accounting models for volume licensing of IP, with
automated key installation on FPGAs taking place at the
customer’s site.

Keywords: [P protection, secure configuration, FPGA,
embedded security

1 Introduction

When Field Programmable Gate Arrays (FPGA) were
first introduced in the 1980s, this was a revolutionary
step from static ASIC and VLSI solutions to flexible
and maintainable hardware applications. It has become
possible to avoid the static designs of standard VLSI
technology, and instead to compile electrical circuits for
arbitrary hardware functions into configuration bit files
used to program a fabric of reconfigurable logic. A new

1-4244-1472-5/07/825.00 © 2007 IEEE

market has evolved where companies have specialized
on the development of abstract hardware functions that
can be distributed and licensed to system integrators by
using only a logical description file. However, the flex-
ibility of SRAM-based FPGAs also brings up the issue
of protecting the Intellectual Property (IP) of such cir-
cuit layouts from unauthorized duplication or reverse en-
gineering. Unfortunately, a configuration bit file of an
FPGA can easily be retrieved from a product and used
to clone a device with only little effort. Furthermore, 1P
vendors that deliver configuration bit files to licensees
do not have any control over how many times the TP is
actually used.

Previous Work. To cope with these problems, various
approaches have been proposed. A simple “security by
obscurity” approach is to split the TP among multiple
FPGAs and create a unique timing relationship between
the components [4]. This type of mechanism, however,
will not protect proprietary IP from more intensive at-
tacks. Moreover, such techniques force IP vendors sell-
ing only bit files to deal with the customer’s board layout
as well.

In a smarter approach, IP vendors can insist on in-
stalling their configuration bit file only on encryption-
enabled FPGA devices using a previously inserted secret
key. Common high-end FPGA types like Virtex 2, Vir-
tex 4 and Virtex 5 from Xilinx [25] as well as Altera’s
Stratix I GX and Stratix IIT [2] devices provide decryp-
tion cores based on symmetric 3DES and AES blockci-
phers. With an encrypted configuration file, the IP can
only be used on a device that has knowledge of the ap-
propriate secret key. But here the issue of key transfer
arises. One approach is to ship FPGAs to the IP owner
for key installation: The IP owner installs secret keys in
the devices such that these keys are available to decrypt
configuration bit streams but remain otherwise unacces-
sible; after key installation, the devices are returned to
the customer. The high logistical effort makes this a very
unsatisfying solution to the problem.

Further solutions are based on separate security chips
that dongle the TP to a specific FPGA by exchanging
cryptographic handshaking tokens between the compo-
nents [1]. Similarly, this approach requires modification

FPT 2007

to the customer’s board layout, additional hardware, and
a secure domain for installing the secret parameters; so
it provides only a partial solution at a high cost.

In the literature, there are only very few suggestions
to enhance this situation. In [11, 12], a strategy was pro-
posed based on a static secret key already inserted dur-
ing the manufacturing process. The issue of key transfer
is solved by including cores both for encryption and for
decryption in the FPGA: an FPGA specimen containing
the appropriate key can be used to encrypt a configu-
ration file, vielding a configuration that will work for
itself and for other FPGAs sharing the same fixed key.
In [13, 22], more complex protocols have been proposed
for a more complete solution. Both approaches require
the implementation of additional security features in the
FPGA. They also require the participation of the FPGA
manufacturer (as a trusted party) whenever a bit stream
is to be encrypted for a particular FPGA, meaning that
such transactions cannot be kept just between the IP ven-
dor and the customer.

Our Contribution. In this paper, we propose a new pro-
tection scheme for configuration bit files that provides
IP vendors with means for exact tracking and control of
their licensed designs without any need for additional
hardware components or major modifications of recent
FPGA technology. Instead of demanding a crypto com-
ponent for key establishment in the static logic as needed
by [13, 22], we use the reconfigurable logic for a setup
process based on public key cryptography. Besides ex-
act tracking of the number of licensed IP, our solution
provides the invaluable advantage of off-site IP installa-
tion: The installation of the designs can be performed
by the licensees without any shipping of hardware; our
approach does not require the continuing participation
of a third party (such as the FPGA manufacturer) either.
To enable FPGAs for these new features, only marginal
modification are required on recently available FPGA
models.

Outline. Our new protection scheme is described in the
following section. This includes assumptions and re-
quirements as well as the description of the protocol and
its components. In Section 3, we describe security as-
pects of our proposal with respect to practical attacker
models and objectives. Section 4 discusses implemen-
tation aspects and the impact of necessary changes on
current FPGA types. Finally, we conclude with an out-
look for further research options.

2 Protection Scheme

In this section, we infroduce a new protection scheme
for the IP in configuration files for FPGAs.

2.1 Participating Parties

Our idea assumes a use case with three participating
business parties. The first contributor is the Hardware
Manufacturer (HM), who designs and produces FPGA
devices. A second participant is the Intellectual Prop-
erty Owner (IPO), who has created some novel logic de-
sign for a specific problem. This IP is synthesized as a
configuration bit file for a specific class of FGPAs man-
ufactured and provided by the HM. The PO wants to
distribute the configuration bit file using a special cost
or licensing model, usually on a per-volume basis. The
final participant is a System Integrator (SI), who intends
to use the TPO’s design in products employing the HM’s
FPGA devices. To support a volume licensing model,
we want to allow the IPO to limit the number of FPGAs
that can use the design.

2.2 Cryptographic Primitives

For a protection scheme that is not just based on obscu-
rity, we need to use cryptography to achieve security.

Symmetric Cryptography: For design protection
and configuration confidentiality, some FPGAs already
implement symmetric encryption based on well-known
blockciphers like AES and 3DES [2, 25]. Such crypto-
graphic functionality can actually be used for more than
just confidentiality: In the CMAC construction [19], a
computational process mostly identical to that of CBC
encryption with a blockcipher is used to generate a
one-block message authentication code (MAC). Thus,
to keep the footprint of the crypto component small,
an implementation of a single blockcipher can be used
both for decryption and for MAC verification, using a
CBC scheme in both cases. Using separate blockcipher
keys, a combination of such a MAC with encryption can
achieve authenticated encryption [5]: we simply have to
provide a MAC of the CBC-encrypted ciphertext. (This
will provide security in the sense of the IND-CCA and
INT-CTXT notions as explained in [5]; thus a party that
does not know the keys cannot hope to derive a new
ciphertext that would be accepted as valid.) We can
consider the pair of such keys a single (Ionger) key k.
Throughout this paper, we will write exncy (x) for authen-
ticated encryption of a value x (the plaintext) vielding a
ciphertext including a MAC value, and decy(v) for the
reverse step of decryption of a ciphertext v while also
checking for an authentication error based on the MAC
value provided as part of the ciphertext.

The use of CBC for confidentiality with CMAC
for authentication is just an example of a convenient
scheme. Alternatively, we could use any suitable sym-
metric cryptographic scheme that provides authenticated
encryption in an appropriate sense. As an implemen-

tation note regarding the particular combined scheme
using CBC with CMAC, note that an implementation
of either blockcipher encryption or blockcipher decryp-
tion is sufficient in the FPGA: we can arrange to use
the blockcipher “in reverse” for one of the two crypto-
graphic steps, e.g. use a CMAC based on blockcipher
decryption rather than on blockcipher encryption.

Asymmetric Cryptography: If we want to use sym-
metric data encryption, this means we have the issue of
establishing a shared key k between the parties (usually
over an untrusted communication channel). With asym-
metric (or public-key) cryptography, a pair of keys con-
sisting of a public (PK) and a private (SK) component is
used to overcome the key transport deficiencies of sym-
metric methods, at the cost of higher system and compu-
tation complexity. The first publicly known example of
public-key cryptography was the Diffie-Hellman (DH)
scheme [9], which can be used to establish keys for sym-
metric cryptography. Appropriately used in conjunction
with a key derivation function (KDF) based on a crypto-
graphic hash function, the DH scheme remains state of
the art. An important variant of this is the DH scheme
using elliptic curve cryptography [8], ECDH. See [20]
for elaborate recommendations on the proper use of DH
and ECDH.

Public-key cryptography can also be used for authen-
tication through digital signatures. These authentication
features are beneficial for our purposes, although their
exact use in authenticated communication is outside of
the scope of the present paper.

2.3 Key Establishment

For the protocol interactions, we define the set of parties
as
7 = {HM,IPO,SI,FPGA},

which corresponds to the participants introduced in Sub-
section 2.1 plus any specific FPGA device, here consid-
ered a party in its own right. A key for symmetric cryp-
tography chosen by party z € Z is denoted K,. Keys for
asymmetric cryptography are given in pairs (PK;, 5K;)
where PK, is the public key component (which may be
known by anyone), and SK, is the private, or secret,
component (which generally should only be known by z,
but may sometimes be shared with specific other par-
ties).

A key establishment scheme based on Diffie-Hellman
(including the ECDH variant for elliptic curve cryptog-
raphy) is described in detail in [20]. Given any two par-
ties” public and private keys PK;,SK,, PK,, 8K and an
additional bit string Otherlnfo, where the keys are under-
stood to have been generated based on common domain
parameters, these parties can determine symmetric key
material by evaluating key(PK.,SK,,Otherlnfo) and

key(PK_,SK, OtherInfo) where key is a function com-
bining the basic DH primitive (possibly in the ECDH
variant) with a key derivation function (KDF). Each
party uses the other party’s public key and its own se-
cret key as input to the Diffie-Hellman primitive, which
then will vield identical intermediate results for both
parties. To get the final output, the KDF is applied to the
given inputs: by varying the Orherinfo value (which di-
rectly becomes part of the KDF input), static-key Diffie-
Hellman can be used to generate many seemingly inde-
pendent symmetric keys. (The recommendations in [20]
for static-key Diffie-Hellman settings additionally re-
guire the use of a nonce in the KDF input for each invo-
cation of the key establishment scheme. This use of non-
repeated random values ensures that different results can
be obtained based on otherwise identical inputs. How-
ever, we do not need this nonce here: for our application,
the reproducibility of key establishment results is a fea-
ture, not a deficiency.)

2.4 Prerequisites and Assumptions

For realizing our protection scheme, we assume the fol-
lowing prerequisites (P).

P1. Trusted Party. We assume the FPGA hardware
manufacturer (HM) as a commonly trusted party.
All other participating and non-involved parties in
the protocol can assume the HM to be trustworthy
and unbiased, i.e., the HM will neither share any
secrets with other parties nor unfairly act in favor
of someone else. All other parties, however, are
regarded per se as untrusted, and may try to cheat.

P2. Secure Cryptography. Furthermore, we assume
that all cryptographic primitives to be computa-
tionally secure, i.e., no attacker with a practical
amount of computational power will likely be able
to compute any secret keys or otherwise break the
cryptography in any reasonable amount of time.
This includes the symmetric and asymmetric cryp-
tographic primitives as well as the auxiliary crvp-
tographic hash function. Moreover, implementa-
tions used for the protocol are assumed to be fault-
tolerant, tamper-resistant (cf. [21]) and to remain
secure against side-channel attacks over multiple
executions, i.e., it must not be possible to learn any
further information concerning a secret key by ana-
lyzing observations from multiple independent pro-
tocol runs.

P3. FPGA Security Environment. For the scheme,
we assume an FPGA with an integrated symmetric
decryption engine that is able to handle encrypted

configuration files. This reference device is ex-
tended with the following features:

(i) A unique device identifier ID (an [-bit value)
is assigned by the hardware manufacturer
(HM), accessible from the fabric.

(ii) A symmetric key Ky (an m-bit value) that
is statically integrated by the HM during the
manufacturing process, and which can only
be read by the internal decryption engine, not
from the FPGA fabric.

(iii) A symmetric key store Kppga (also an m-
bit value) that is implemented as non-volatile
memory and allows for storing a variable key.
The key stored in Krpga can either be updated
using an external interface (e.g., JTAG, Se-
lectMap) or via an internal port from the re-
configurable logic of the FPGA; however, it
can only be read from the internal decryption
engine (not from the fabric).

{(iv) A data exchange register that can be ac-
cessed via a standardized configuration inter-
face like JTAG as well as from the reconfig-
urable fabric using a dual-ported logic. This
feature is already available on many common
FPGAs based on user-defined instructions in
the JTAG protocol.

(v) Tamper-resistant control and security compo-
nents that can withstand invasive and non-
invasive attacks on the device. Particular
protection mechanisms should cover the in-
tegrated keys Kgyv and Kppga, the decryp-
tion engine and the FPGA controller distribut-
ing the unencrypted configuration bits in the
fabric of the FPGA after decryption. Hence,
a readback of the plain configuration bits or
partial reconfiguration must not be possible
on a device with an encrypted configuration
loaded. Possible physical threats to security-
enabled devices as well as side-channel at-
tacks have been discussed more thoroughly in
[16, 7, 24].

We assume that the decryption engine can be in-
voked such that, at the user’s choice, either Kip or
Kppga is emploved to decrypt a configuration file
for subsequent use.

2.5 Steps for IP-Protection

This section covers the steps performed by each party
according to an ideal protection protocol, i.e., assuming

that all parties behave as desired without any fraud at-
tempts or protocol abuse. We have five main stages in
our scheme (described in detail further below):

A. SETUP. On the launch of a new class of FPGA
devices, the HM creates a specific bit stream for
them, a Personalization Module (PM) that later will
be used in the personalization stage. An encrypted
version of this PM is made available to all partici-
pants, together with a public key associated to it.

B. LICENSING. When an [PO offers licenses to an
ST, it provides a public key of its own. The device
identifier ID of each FPGA on which the ST intends
to use the licensed IP is transferred to the IPO.

C. PERSONALIZATION. A personalization stage is
performed for each FPGA device in the domain of
the SI. The PM is used to install a device-specific
key in each FPGA on which it is executed.

D. CONFIGURATION. Using the device informa-
tion, the IPO sends copies of the configuration file
containing its IP to the SI, specifically encrypted
for each FPGA.

E. INSTALLATION. The SI installs the IP in each
FPGA (using the appropriate encrypted copy).

The information exchange between the parties is sim-
ple. Figure 1 shows the data flow between the partici-
pants. Steps 1 through 3 can be considered one-time op-
erations (these are part of the setup and licensing stage);
steps 4 and 5 (part of the licensing and configuration
stage) are required to be performed repetitively for each
FPGA that should make use of the protected IP.

— 2.Encrypted
personalization
module Pae

1. Public key PKimg

3. Public key PKIPO

~— 4, Device identifier ID ——
5. Respense [Peye in

Figure 1. Data flow between parties

2.5.1 SETUP Stage (A)

The setup stage, described in the following, is performed
once by the HM for each FPGA class to be enabled for
the proposed security features. Note that it is reasonable
to artificially keep each FPGA class relatively small by
splitting a large series of otherwise identical FPGAs into

multiple separate classes. This limits the potential dam-
age done if an FPGA’s permanent secret Kipy or the se-
cret SKipv is compromised (cf. Section 2.4). Any such
class should be treated as independent from any other
class; i.e., the results of the setup stage as described be-
low cannoct be shared between classes. For practical rea-
sons, a specific part of the device 1D should be used to
denote the class that a given FPGA belongs to.

Al. The HM generates a symmetric key Ky and an
asymmetric key pair (SKi, PKinv) for key estab-
lishment.

A2 The HM creates a specific bit stream P for the
FPGA class such that P implements a key es-
tablishment scheme, as described below in 2.5.3.
P includes the private key SKipg. All compo-
nents emploved should be fault-tolerant and in-
clude countermeasures against external tampering
[16]. The bit stream P acts as a personalization
module and implements the FPGA behavior that
we will present in Subsection 2.5.3.

A3. After the configuration bit file P has been built, it
is encrypted using the secret kev Kipy, vielding the
encrypted configuration file Pane = encg,, (P).

A4. The secret key Ky is statically integrated in each
FPGA (cf. Subsection 2.4) during the manufactur-
ing process.

After these setup steps have been completed, the HM
distributes the encrypted personalization bit stream Pape
and the public key component PKipy to all participating
parties.

The other parties (notably IPO) must convince them-
selves that PKip actually originates from HM. How
this authentication is performed in detail is outside of
the scope of the present paper; however, we remark that
if HM supports many different FPGA classes, then a
public-key infrastructure (PKI) can be very useful.

2.5.2 LICENSING Stage (B)

The licensing stage can be regarded as a first interac-
tion between IPO and SI. To use external IP, the ST signs
a contract with the TPO (usually for a volume license).
Then, the following steps are required.

B1. The IPO creates a key pair (SKipo,PKipo) and
sends the public component PKipo to the ST

B2. SIprovides TPO with a list of the /D> values of those
FPGAs for which the SI intends to obtain a license.

Again, authentication of the communication between
TPO and ST is not explicitly covered by this paper since
well-known solutions do exist (e.g., digital signatures).
It should be remarked that anthentication is required to
avoid any abuse of the license model; again, a PKI, can
be very useful.

2.5.3 PERSONALIZATION Stage (C)

In contrast to current solutions, our scheme allows for a
key installation that is done in the untrusted domain of
the SI, thanks to the secret key Kipy available in the spe-
cific FPGAs from the setup stage. The following steps
need to be performed for every FPGA intended to be op-
erated with the TP from the TPO. They can be automated
very efficiently. The personalization and the key estab-
lishment within an FPGA makes use of the encrypted
configuration Py, performing the (one-time) key setup
in logic residing in the fabric. Compared with the option
of demanding static security components for this step in
the static part of an FPGA, this provides huge efficiency
advantages since it limits the resources that have to be
permanently allocated in the FPGA device.

C1. Using a programming interface, the FPGA is con-
figured with the encrypted personalization module
Py made available by the HM, which is decrypted
using the statically integrated key Ki.

C2. Then, the data exchange register of the FPGA is
loaded with the public key PK1pg via a common
interface {e.g., JTAG), thus initiating the computa-
tion process.

C3. The personalization module that has now
been loaded determines a symmelric key
key(PKpo, SKiv, ID) using the integrated
key agreement scheme, and stores the resulting
symmetric key in Kppga. From now on, the FPGA
can decrvpt designs that are encrypted using this
key.

The security properties of the key establishment scheme
imply that knowledge of either SKpgy or SKipo is re-
quired to compute the key now stored in Kgpga; thus,
ST cannot determine Kppga. Including ID in the KDF
input ensures that Kppga will differ for different FPGA
instances. For further implementation aspects, see Sec-
tion 4.

2.54 CONFIGURATION Stage (D)
For each FPGA ID for which ST has bought a license,
the TPO returns a corresponding configuration file to the

ST usable only on the specific FPGA. This mechanism
allows the IPO to easily track the number of FPGAs that

have been configured to use the licensed IP. In detail, the
TPO performs the following steps to generate the FPGA-
specific configuration file.

D1. The IPO recovers the specific key Kppga using its
own secret key and the HM’s public key:

Krpaa = key(PKyv, SKipo,ID)

D2. The IPO encrypts the plain IP configuration bit file
using the secret key, thus binding the IP to a specific
FPGA device:

IPenc,ID = enCKFPGA (IP).

TPO then transmits this encrypted file to ST.

By the properties of the key establishment scheme, we
have key(PKlpo,SKm,ID) = key(PKpm,SKlpo,ID),
so they key Kppga as determined by the PO is identi-
cal to the key Kppga as determined by the FPGA in the
personalization stage.

2.5.5 INSTALLATION Stage (E)

After having received IPuyyp, the SI configures the
FPGA with the personalized IP.

El. ST configures the flash memory of the specific
FPGA denoted by identifier ID with IPy sp to op-
erate the device.

Since Kppga is available in the FPGA from the per-
sonalization stage, this step enables the FPGA to
use the IPO’s configuration bit file IP by computing
decKppGA (IPE!I]C,ID) .

3 Security Aspects

We assumed the implementations of cryptographic el-
ements integrated in the personalization module to be
fault-tolerant and tamper-resistant. This is mandatory
since an attacker might take physical influence on the
device while security-relevant processes are performed.
Hence, countermeasures against device tampering are
required to check if the module is executed under uncon-
ventional conditions, e.g, over-voltage, increased tem-
perature or clock frequency. A fairly easy approach to
detect operational faults caused by such conditions is to
use multiple, identical cryptographic components in the
personalization module operated at different clocks or
clock shifts. When all computations are finished, all re-
sults are compared which will detect any injected faults
and operational irregularities. With the option to inte-
grate a multitude of countermeasures [3, 16], we are
willing to rely on the FPGA behaving as specified. Then,
the protocol is a rather straightforward application of

well-known cryptographic mechanisms: symmetric en-
cryption in the sense of authenticated encryption, and a
key establishment scheme.

Only for authenticated encryption, we require a hard-
wired implementation within the FPGA device. As
sketched in Section 2.2, this can be done based on a sin-
gle blockcipher such as AES or 3DES. Authenticated
encryption ensures integrity of configuration bit strings,
i.e., a user cannot modify the encrypted configuration to
obtain another (related) configuration that would be ac-
cepted by FPGA device and modify part of the intended
behavior, which would be the case for unauthenticated
encryption (such as mere CBC-mode encryption using
AES or 3DES).

Finally, we want to emphasize that special care
should be taken for the realization of the personaliza-
tion module because of its exposed application in an
untrusted domain. Luckily, such a fault-tolerant and
tamper-resilient design has to be developed only once
and should be easily portable between different FPGA
classes.

4 Implementation Aspects

We will give some brief suggestions and implementation
details how to realize the participating components, and
discuss their expected system costs.

4.1 Implementing the Personalization Module

In the following we will demonstrate the feasibility of
the personalization module that incorporates the imple-
mentation of a key establishment scheme as specified by
the protection scheme in Section 2.

Several public-key algorithms have successfully been
implemented in FPGAs. Low footprint RSA/Diffie-
Hellman implementations have been proposed in [10,
14, 18] and are already available in ready-to-use IP cores
by FPGA vendors like Altera.

Taking the smallest Virtex-4 XC4VEFX12 FPGA with
an integrated AES-256 bit stream decryption core as a
reference device, we have implemented the key estab-
lishment scheme for the personalization module. For
this proof-of-concept implementation, we realized an
ECC core over prime fields, which forms the basis for
an Elliptic Curve Diffie-Hellman (ECDH). Parameters
for this implementation have been chosen by a trade-off
of long-term security and efficiency: We designed an
ECDH component over GF(p) and log, p = 160 bits,
which is sufficient for mid-term security nowadays. For
details, Table 1 presents requirements of logical ele-
ments and data throughput of our implementations.

For the implementation of the KDF according to [20],
we integrated an implementation of the SHA-1 as cryp-

L]
= ROM ¢ Hash Output
h% Shift Repister
e 0%00000000
< ECDH Core 000000001 - $
160 320
© | GFp). 160 Bit 82
=W
Ry 150 320 | HASH
SHA-1 (5)

320$ ¢16O 128
256

ITAG ROM Select
Shift Repister SKim MAP
FPGA ID J St
Keystore

L PKipokey JTAG)

Figure 2. Simplified schematic of a person-
alization module for Xilinx Virtex-4 FPGAs
with a 256-bit decryption key

tographic hash function z(x) with an output bit length
of 160 bits. During key generation, the SHA-1 hash
function is executed twice using three different inputs:
Given two 32-bit counter values (effectively, two con-
stants) cg,c1, a 128-bit FPGA 1D and the ECDH result
E, a 256-bit AES key Kppga can be derived as follows:

H — k(| E|ID)foric {0,1}
Krpca = S(Ho| H),

where S(x)} is a selection function choosing the first 256
out of 320 input bits and where || denoctes concatenation.
The data exchange between the personalization module
and an external party (SI) was realized using a shift reg-
ister which is writable from the ITAG interface. Beside
a ROM for storing the secret key of the HM and con-
stants cg,¢1, a SelectMAP controller is required to pro-
gram the key storage of the FPGA, which was provided
by Berkeley’s Bee2 project [6]. The schematic of the
implemented personalization module is sketched in Fig-
ure 2.

For this proof-of-concept work, the SelectMAP core

Compenent Logical Elements Data Throughput
ECDH Core 2706 slices 186Khit/s
SHA-1 Core 716 slices T30Mbit/s
ROM 112 slices —_
JTAG Register 160 slices —
SelectMAP Core 159 slices —

Table 1. Data throughput and logic require-
ment of personalization components on a
Xilinx Virtex-4 FPGA

needs to be externally connected with the FPGA's Se-
lectMAP interface since a direct configuration from the
fabric is not yet available. It should be remarked that
all implementations have been developed for an opti-
mal area-time product so that reductions in logical el-
ements can still be achieved if data throughput is not
a primary issue. Concluding, the implementations at
hand are small enough to fit even the smallest Virtex-
4 XC4VFX12 device (providing a total of 5472 slices of
which less than 4000 are required) with some remaining
logical resources to add functionality providing tamper
resistance and fault tolerance.

4.2 Additional FPGA Features

To use our proposed key scheme on commen FPGA de-
vices, an additional key storage with a fixed key needs
to be added to the static design. This is no technical and
big financial issue since it can be integrated by the HM
either directly in the circuit layout, or using antifuses, or
by using similar techniques in a post-production step.

Such a strategy based on laser inscriptions or anti-
fuses can also be used to provide each FPGA with a
unique identification number. Alternatively, so called
Physically Unclonable Functions (PUF) implemented
using a coating or delay technique might be an option
to create a unique identification of each chip [17].

A further additional requirement for our scheme is
access from the fabric to the key store via an internal
(write-only) interface. This is obviously no problem
since it only requires some internal component reposi-
tioning and some dedicated internal I/O pins.

Moreover, for advanced bit stream protection in the
FPGA, we require the decryption direction of authenti-
cated encryption as explained in Section 2.2. A single
blockceipher engine can be used both for authentication
and for decryption, and such reuse means that only little
modification are needed for current FPGA architectures
already containing a symmetric blockeipher engine.

To achieve tamper resistance against invasive attack-
ers, most HMs have already taken efforts to hide away
critical parts from observation and manipulation, i.e., by
distracting those components over multiple layers and
locations. Moreover, strategies known from smart cards
[16] could be applied to strengthen FPGAs against phys-
ical and invasive attacks.

5 Conclusions and Outlook

We proposed a new protection scheme for IP of cir-
cuits for FPGAs that provides a significant improvement
to the recent unsatisfying situation, with only very few
modifications to current FPGA devices and correspond-
ing infrastructures. Due to a resource-preserving per-

sonalization module temporarily located in the reconfig-
urable logic, for a one-time key-establishment, the new
protection scheme is suitable for nearly every modem
FPGA type with just minor modifications to the func-
tion set and architecture.

An open issue is the protection of partial designs,
e.g., functional cores that are used as a subcomponent
in a configuration of an FPGA. One could make use of a
protection scheme with multiple keys Kfpy 4 per FPGA,
where protected subdesigns are loaded into well-defined
fabric areas of the FPGA using a feature of partial re-
configuration.

Instead of integrating a static ID into each FPGA, the
HM might use a Random Number Generator (RNG) that
is additionally included in the personalization module.
This RNG can generate a random value taken as input
to the KDF and used to bind an encrypted configuration
IPenc,rv to a specific FPGA. Implementations for cryp-
tographically secure RNGs in FPGAs are already avail-
able [23, 15]. The RNG implemented in the reconfig-
urable logic might be an additional option to reduce the
number of modifications with respect to current FPGA
architectures to implement our protection scheme.

References

[1] Altera Corp. FPGA design security using MAX II
reference design. http://www.altera.com/end-markets/
refdesigns/sys-sol/indust mil/ref-des-secur.html

[2] Altera Corp. Stratix IT GX and Stratix 11T FPGAs, 2006.
www.altera.com/products/devices/

[3] R. Anderson, M. Bond, I. Clulow, and S. Skorobogatov.
Cryptographic processors — a survey. Proceedings of the
IEEE, 94(2):357- 369, Feb 2006.

[4] T. Barraza. How to Protect Intellectnal Property in
FPGA Devices Part II. Design and Reuse Online: In-
dustry Articles, 2005. http:/www.us.design-reuse.com/
articles/article11240.html

[5] M. Bellare and C. Namprempre. Authenticated en-
cryption: Relations among notions and analysis of the
generic composition paradigm.

[6] Berkeley University. Bee2 project. http:/bee2.eecs.
berkeley.edu

[7] L. Bossuet, G. Gogniat, and W. Burleson. Dynamically
configurable security for SRAM FPGA bitstreams. In-
ternational Journal of Embedded Systems, 2(1-2).73-85,
2006.

[8] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange,
K. Nguyen, and F. Vercauteren. Handbook of Ellip-
tic and Hyperelliptic Curve Cryptography. CRC Press,
2006.

[9] W. Diffie and M. E. Hellman. New directions in cryp-
tography. IEEE Transactions on Information Theory,
22(6):644-654, 1976.

[10] J.Frvand M. Langhammer. RSA & Public Key Cryptog-
raphy in FPGAs. Technical report, Altera Corp., 2005.

[11] T. Kean. Secure configuration of field programmable
gate arrays. In In proceeding of 11th International Con-
Jfervence on Field-Programmable Logic and Applications,
FPL2001, Belfast, United Kingdom, 2001.

[12] T. Kean. Secure configuration of field programmable
gate arrays. In IEEE Symposium on Field Programmable
Custom Computing Machines (FCCM), Rohnert Park
CA, 2001,

[13] T. Kean. Cryptographic Rights Management of FPGA
Intellectual Property Cores. In Proceedings ACM Con-
Jerence on FPGAs, Monterey, CA, 2002,

[14] C. K. Ko¢. RSA hardware implementation. Technical
report TR801, RSA Drata Security, Inc., Aug. 1995,

[15] P. Kohlbrenner and K. Gaj. An embedded true ran-
dom number generator for FPGAs. In R. Tessier and
H. Schmit, ed., FPGA, pp. 71-78. ACM, 2004,

[16] O. Kommerling and M. G. Kuhn. Design principles for
tamper-resistant smartcard processors. In Proceedings of
the USENIX Workshop on Smartcard Technology, 1999.

[17] D. Lim. Extracting secret keys from integrated circuits.
Master’s thesis, 2004,

[18] A. Mazzeo, L. Romano, G. PaoloSaggese, and N. Maz-
zocca. FPGA-based implementation of a serial RSA pro-
cessor. Design, Automation and Test in Europe Confer-
ence and Exposition, pp. 10582-10589, 2003.

[19] National Institute of Standards and Technology (NIST).
Recommendation for block cipher modes of operation —
the CMAC mode for authentication. NIST Special Pub-
lication SP 800-38B, 2005.

[20] National Institute of Standards and Technology (NIST).
Recommendation for pair-wise key establishment
schemes using discrete logarithm cryptography. NIST
Special Publication SP 800-56A, 2006.

[21] S.B. Ors, E. Oswald, and B. Preneel. Power-analysis at-
tacks on an FPGA — first experimental results, In CHES
2003, LNCS vol. 2779, pp. 35-50, 2003.

[22] E. Simpson and P. Schaumont. Offline hard-
ware/software authentication for reconfigurable plat-
forms. In CHES 2006, LNCS vol. 4249, pp. 311-323,
2006.

[23] B. Sunar, W. J. Martin, and D. R. Stinson. A provably
secure true random number generator with built-in toler-
ance to active attacks. IEEE Trn Computers, 56.1:109—
119, January 2007.

[24] T. Wollinger and C. Paar. How secure are FPGAs in
cryptographic applications, 2003,

[25] Xilinx Corp. Virtex2, Virtex 4 and Virtex 5 FPGAs,
2006, www.xilinx.com/products/silicon’ solutions/

