
98 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 1, FEBRUARY 2012

A Pay-per-Use Licensing Scheme for Hardware IP
Cores in Recent SRAM-Based FPGAs

Roel Maes, Student Member, IEEE, Dries Schellekens, and Ingrid Verbauwhede, Senior Member, IEEE

Abstract—Currently achievable intellectual property (IP) pro-
tection solutions for field-programmable gate arrays (FPGAs)
are limited to single large “monolithic” configurations. However,
the ever growing capabilities of FPGAs and the consequential
increasing complexity of their designs ask for a modular devel-
opment model, where individual IP cores from multiple parties
are integrated into a larger system. To enable such a model, the
availability of IP protection at the modular level is imperative.
In this work, we propose an IP protection mechanism for FPGA
designs at the level of individual IP cores, by making use of the
self-reconfiguring capabilities of modern FPGAs and deploying a
trusted third party to run a metering service, similar to the work
of Güneysu et al. and Drimer et al. The proposed scheme makes
it possible to enforce a pay-per-use licensing scheme which holds
considerable advantages, both for IP core providers as well as for
system integrators. Moreover, the scheme has a minimal imple-
mentation overhead and is the first of its kind to be solely based
on primitives that are already available in recent commercially
available FPGA devices. This allows for an immediate and feasible
deployment, in contrast to earlier proposed solutions.

Index Terms—Cloning, design security, field-programmable
gate array (FPGA), hardware metering, intellectual property (IP)
protection, reverse-engineering, soft intellectual property (IP).

I. INTRODUCTION

F IELD-PROGRAMMABLE gate arrays (FPGAs) are the
principal type of reconfigurable logic integrated circuits.

The key idea of providing “in-the-field” (re)configurable
hardware primitives offers considerable advantages for design
cost and flexibility, time-to-market, unit price, etc., compared
to traditional ASICs. This is why FPGAs are considered a
game-changer in the silicon industry and their use is still
rapidly gaining in popularity; e.g., since recently, Intel is
selling a version of its Atom processor paired with an FPGA to
increase flexibility [3]. In recent years, manufacturing progress
has also enabled ever bigger and faster devices, with the very
latest high-end FPGAs containing well over one million logic
cells and an aggregate I/O bandwidth well over 1 Tb/s [4],
[5]. On the other hand, designing for such powerful devices

Manuscript received January 20, 2011; revised July 30, 2011; accepted
September 06, 2011. Date of publication September 29, 2011; date of current
version January 13, 2012. COSIC is a member of IBBT. This work was
supported in part by IAP Program P6/26 BCRYPT of the Belgian State and
by K.U.Leuven-GOA funding. The work of R. Maes was supported by an
IWT-Vlaanderen Ph.D. fellowship (71369). The associate editor coordi-
nating the review of this manuscript and approving it for publication was
Dr. Ramesh Karri.
The authors are with the COSIC Research Group, Department of Electrical

Engineering (ESAT), Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
(e-mail: roel.maes@esat.kuleuven.be; dries.schellekens@esat.kuleuven.be;
ingrid.verbauwhede@esat.kuleuven.be).
Digital Object Identifier 10.1109/TIFS.2011.2169667

becomes an incredibly complex task. Earlier reconfigurable
devices implemented relatively small single-task circuits which
were often designed by a single party using only one or a few
functional blocks and simple interfaces. However, modern
FPGAs can support entire high-end digital systems incorpo-
rating a multitude of modules and requiring advanced I/O
interfaces. Developing such systems from scratch has become
an insurmountable task for most developers and a system-level
design approach (re)using custom and third-party intellectual
property (IP) modules has become standard procedure. FPGA
vendors recognize this evolution and in recent versions of their
development tools such a modular design approach is more and
more supported, e.g., the Xilinx Plug-and-Play IP Initiative [6].
This is an important step towards enabling an FPGA IP core
market, wherein IP developers can build a business case selling
separate IP blocks and system developers can buy IP modules
from different vendors to integrate them in a system design.
Another critical issue which surfaced with the rise of increas-

ingly more complex and hence more valuable FPGA designs is
the protection of the IP contained in them. The very flexible and
volatile nature of an FPGA configuration is the key to many
of the advantages associated with FPGAs, but also opens the
door to IP abuse; e.g., copying an FPGA design is easy since an
FPGA’s configuration is effectively digital data. The FPGA ven-
dors’ main answer to this is to support configuration encryption
by providing an on-chip cryptographic decryption module and
secure key storage. This method is very effective against direct
cloning of FPGA configurations in commercial end products,
but its use is rather rigid and sacrifices part of the FPGAs flex-
ibility. The lack of a key management service makes installing
the decryption keys in the devices a tedious and security-sen-
sitive task for a system developer. Moreover, the offered pro-
tection is not adapted to the modular design approach discussed
earlier, since only a single “monolithic” FPGA design can be
encrypted. In a system-level FPGA design environment, inte-
grating many IP cores from different parties, the need for IP
protection at a modular level, in addition to the system level, is
evident.

A. Our Contribution

In the work at hand, we make use of the existing protection
primitives available on commercial FPGAs to build amore elab-
orate and feasible construction which offers IP protection both
at the module and at the system level. The main concepts which
enable the proposed scheme are the use of a trusted third party to
provide an independent metering service between IP providers,
system developers and customers, and the use of the self-re-
configuring techniques of modern FPGA devices to enhance the
FPGA’s protection primitives. Similar protocols based on these

1556-6013/$26.00 © 2011 IEEE

MAES et al.: PAY-PER-USE LICENSING SCHEME FOR HARDWARE IP CORES IN RECENT SRAM-BASED FPGAs 99

techniques have been proposed earlier [1], [2], but we specifi-
cally aim for a scheme which is more practical and can be de-
ployed on currently existing devices. Moreover, our proposal
allows us to enforce a “pay-per-use” licensing scheme where
system developers pay a small amount to the IP provider in
order to use a particular module only once, instead of a large
sum to use it indefinitely. This holds advantages, both for the
system developer and the IP owner. The IP owner keeps full
control over the use of its IP cores and is protected from un-
licensed over-use or redistribution, whereas system developers
who could not afford the expensive unlimited IP license are now
able to obtain a number of single instances of the required IP
cores at a much lower cost.

B. Outline

This work begins with a detailed introduction into the FPGA
design security problem in Section II and an overview of ear-
lier proposed solutions in Section III. The main contribution of
this work, a pay-per-instance active metering scheme for FPGA
designs, is provided in Section IV. Finally, some aspects of the
proposed scheme are discussed in more detail in Section V.

II. FPGA DESIGN SECURITY

A. FPGA Basics

An FPGA consists of a large array of configurable logic prim-
itives, such as lookup tables, registers and memory blocks, and
a configuration memory for storing their configuration. FPGA
types can be distinguished based on the nature of their configu-
ration memory. Nonvolatile FPGAs are relatively costly and are
intended for applications where reliability is critical, e.g., in mil-
itary and aerospace. Most commercial FPGA applications make
use of volatile SRAM-based FPGAs which are the focus of this
work.
An SRAM-based FPGA contains a dedicated controller

which loads design data into the configuration memory. The
design data is applied in a binary format called the bit stream,
which can be interpreted by this configuration controller.
The FPGA vendor’s design tools translate high-level design
descriptions (HDL) into digital bit streams. The bit stream’s
format is documented (e.g., [7]), but the exact interpretation of
the configuration data is not public and proprietary to the FPGA
vendor. Although there are no known methods to completely
reverse-engineer bit streams, extracting useful information
about the design from the bit stream data is not difficult [8].
Relying on the obfuscation offered by the bit stream’s encoding
to protect valuable or secret design information is considered
risky and will be avoided in this work.

B. FPGA Design Security Issues

Due to their digital nature, obtaining, investigating, and in
particular duplicating an FPGA’s bit stream is much easier for
an adversary than attacking a hard-wired ASIC design. Based
on his goals, a number of different attacker scenarios targeting
electronic hardware products in general and FPGA products in
particular can be distinguished.

Cloning: occurs when an adversary creates an exact copy
or clone of the original product. The cloned product can be
sold under a different label, or even under the same label as
the genuine producer. The latter is generally called counter-
feiting. Since the cloner bears minimal engineering costs and
time-to-market, he has a large and unfair market advantage.
The risks of cloning to the genuine manufacturer include re-
duced profits and market share, but also brand damage due to
the decreased reliability of the cloned products, leading to early
product failures and safety hazards. Since unconfigured FPGA
devices are off-the-shelve products and digital bit streams are
easy to eavesdrop and duplicate, FPGA designs are particularly
sensitive to cloning. It is clear that cloning is prohibited by law,
as stated by many national and international IP protection laws
and directives.
Overbuilding: is a special type of cloning, closely related to

an outsourced production model. Overbuilding is unauthorized
overproduction of the outsourced product, by the outsourcee
or by an illicit sister company. The overbuilt products are sold
through alternative channels (black market), usually at a lower
cost. Overbuilding holds the same risks as regular cloning. Pre-
venting or reacting to overbuilding (or cloning in general) on
a legal basis can be difficult, in particular when it happens off-
shore.
Reverse Engineering: is the act of analyzing an existing

product, be it an end product or a (soft) IP block, in order to
learn and reuse any innovative elements such as algorithm
optimizations, design decisions, and implementation strategies.
Doing this, an adversary can (re)create a competing product at
a much smaller research and development cost, which offers
him an unfair market advantage. Another goal of reverse en-
gineering is to bypass existing security measures, e.g., put in
place to protect the IP in the first place. The original designer
suffers from reduced income due to reverse engineering, but
possibly also from disclosure of his IP. Relying on the bit
stream’s obfuscation to protect against reverse engineering is
risky and does not offer any level of cryptographic security.
Tampering: is an extension of reverse engineering, where the

adversary also makes modifications to the design, e.g., to gain
unauthorized access to the product, to steal secret or protected
data stored or communicated by the device, or to sabotage the
functionality. A notable example of tampering is the addition
of hardware Trojans [9]. Tampering is of particular concern to
parties relying on the integrity of their product, e.g., military,
banks, pay-TV providers, etc.
Note that very similar problems are encountered in software

security. For software, protection measures are implemented at
a lower functional level, i.e., in the operating system or in the
code-executing hardware, e.g., the Trusted Computing initiative
[10]. For FPGA designs, such measures are not possible since
there are no underlying operation levels besides the actual sil-
icon. Any FPGA bit stream protection should originate from the
supporting hardware.
Adversaries can also be differentiated based on their capa-

bilities, i.e., the knowledge, tools, funds, etc. they are able to
invest in order to achieve their goal. No feasible IP protection
measure offers absolute security but should be evaluated with

100 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 1, FEBRUARY 2012

respect to the minimal required effort in order to bypass it. A
protection measure is adequate if the assumed effort to break
it supersedes the expected benefits of the attack scenario. The
classic taxonomy [11] for hardware security distinguishes be-
tween low class, middle class, and high class attacker profiles.
In reality, a more fine-grained classification might be necessary.
A Low Class Adversary (Clever Outsider): has only logical

access to the FPGA and possibly the development tools, doc-
umentation, and generated files. He has no insider knowledge
of the used systems and cannot afford methods to gain phys-
ical access to the internals of an integrated circuit. Assumably,
a low class adversary is able to extract design information from
a plaintext bit stream [8].1

A Middle Class Adversary (Knowledgeable Insider): has
varying degrees of knowledge about and access to the inter-
nals of the product. A typical example is the level of access
a system developer has to an external soft IP block that he
purchased, depending on the format of the IP block, or the
insider knowledge an FPGA vendor has about the exact details
of its proprietary bit stream format. Probing internal signals on
modern submicrometer FPGAs is beyond his capabilities.
A High Class Adversary (Funded Organization): has top-

level expertise in all the required fields and disposes of the most
high-end tools for attacking the product. He can also gain phys-
ical access to the internals of an FPGA such as on-chip busses
and memories [12].
The goal of this work is to realize a feasible modular soft IP

core protection scheme which prevents low and middle class
adversaries of cloning (and hence overbuilding) and reverse-
engineering obtained cores.

C. Parties Involved

Part of the complexity of the FPGA design security problem
are the different entities involved in the development process
of an FPGA product, each with their contributions, incentives,
and security risks. Naturally, we consider the same main par-
ties as described in earlier works on FPGA design security [1],
[13]–[15] and try to use consistent names and notations.
1) The FPGA Vendor (FV): develops and sells unconfigured
FPGA devices, generally as off-the-shelve products.2

2) The Core Vendor (CV): offers access to its soft IP cores,
i.e., innovative logical circuits for configuration on
FPGAs, by licensing other parties to use them. We focus
on pay-per-use licensing schemes with technical enforce-
ment measures.

3) The System Developer (SYS): develops FPGA-based sys-
tems comprising a number of soft IP cores. The developed
system can be an end system or an intermediate product to
be embedded in another system. It is also in the interest of
SYS to protect the FPGA bit stream of the end product in
order to avoid end product cloning or reverse-engineering.

1One has to foresee that bit stream reversal tools could come available at
any time in the near future, possibly under an open-source and hence low cost
license.
2Designing the actual FPGA ICs also involves considerable engineering ef-

fort and the protection of the IP generated in these steps is equally important.
In this work, we will not focus on the FPGA hardware itself, but on the IP pro-
tection of reconfigurable designs for FPGAs contained in bit streams, which we
will call soft IP.

4) The End User (EU): pays for and uses the developed end
system. He transforms the value of the product in money,
which flows back to SYS, CV, FV according to their re-
spective added value.

5) A Trusted Third Party (TTP): does not take part in the de-
velopment process, but its goal is to create trust relation-
ships between untrusting parties. The use of a TTP for
such purpose is general practice in cryptographic infra-
structures. The trust in a TTP is usually reputation based.

D. FPGA Protection Primitives

FPGA vendors already offer a number of increasingly
stronger protection measures in earlier and more recent de-
vices. We provide a short overview of the available primitives.
Earlier proposed soft IP protection schemes based on these
primitives and a discussion thereof can be found in Section III.
Our newly proposed scheme is described in Section IV.
1) Device Identifiers: Most FPGA devices from all series

and vendors have a public unique serial number burned-in at
manufacturing which can be used as a device ID (e.g., Xilinx
Device DNA [16]).
2) Nonvolatile FPGAs: A minor segment of the FPGA

market consists of nonvolatile memory-based FPGAs which
naturally offer a higher level of design security since the con-
figuration data does not need to be externally stored, alleviating
bus eavesdropping attacks. Vendors of SRAM-based FPGAs
also offer more costly products emulating this behavior by
tightly integrating a nonvolatile memory with a volatile FPGA
(e.g., Xilinx Spartan-3 AN Series [17]). We will only consider
purely volatile FPGAs in this work.
3) Bit Stream Integrity Checks: FPGA bit stream integrity

is of the utmost importance, since faulty bit streams will cause
erratic functionality and damage the FPGA. Cyclic redundancy
checks or CRC codes are, therefore, an integral part of all bit
stream formats. CRC works very well for random unintended
errors in the bit stream, but is not adequate to detect intentional
malicious changes. Some modern FPGA types offer more se-
cure bit stream integrity checks (e.g., Xilinx Virtex-6 series [7]),
using secure message authentication codes (MAC).
4) Decryption Support and Secure Key Storage: Many se-

curity problems with bit streams can be solved by encrypting
them. Bit stream encryption offers similar protection as non-
volatile FPGAs, while only having to securely store a relatively
short key. This is a typical security reduction achieved by using
cryptographic primitives. Most volatile FPGA venors offer a
hardwired on-chip decryption engine and secure key storage in
their more high-end devices, which are solely accessible by the
configuration controller and dedicated to bit stream decryption
only. The corresponding encryption process is supported by the
vendor’s design tools, as are the methods to program a decryp-
tion key into the device. Once programmed, the key can never
be read out externally and can internally only be accessed by the
bit stream decryption engine.
5) Configuration Readback: Some FPGA types support con-

figuration readback, i.e., the currently loaded bit stream can be
read back over the FPGA’s configuration pins, e.g., for debug-
ging purposes. In general this worsens the FPGA design secu-
rity problem since the FPGA configuration also needs protection

MAES et al.: PAY-PER-USE LICENSING SCHEME FOR HARDWARE IP CORES IN RECENT SRAM-BASED FPGAs 101

after it is loaded. Therefore, readback can be disabled explic-
itly and is for obvious reasons disabled automatically when bit
stream encryption is used.
6) Partial (re)configuration: An important trend in recent

FPGAs is partial configuration, i.e., to configure only a part of
the reconfigurable array using partial bit streams. This offers a
number of significant advantages, e.g., dedicated coprocessors
can be configured when needed and the used FPGA logic can
be released for other purposes afterwards. However, partial re-
configuration is known for causing a number of practical issues
in older parts and tools and introducing manual design over-
head. Luckily, recent development tools offer more and more
automated support [7] and even run-time partial reconfigura-
tion solutions become available [18]. Partial reconfiguration can
also be disabled when undesirable, e.g., in combination with bit
stream encryption.
7) Internal Configuration Access: In a number of recent

FPGAs, the configuration controller can also be accessed
internally by the FPGA’s reconfigurable logic. For Xilinx
FPGAs, this is done using the Internal Configuration Access
Port (ICAP) primitive. ICAP can access all the functionality
available to an external configuration port, including readback
and partial reconfiguration. The combination of ICAP and
partial reconfiguration leads to the particularly interesting
technique of self-reconfiguration, i.e., the FPGA logic is able
to reconfigure parts of itself. The ICAP primitive always has
full access to the configuration controller, even when external
access to readback and partial reconfiguration is disabled.

III. RELATED WORK

A number of solutions for (modular) IP protection on ASIC
devices have been proposed [19]–[23], but these are not directly
applicable to FPGA systems and are not discussed in more detail
here. Instead, in this section, we focus on earlier proposed FPGA
design security schemes. We first briefly discuss the schemes
proposed by the FPGA vendors and subsequently other related
research. Finally, we summarize the position of this work’s con-
tribution.

A. Commercial Proposals

1) IFF Copy Protection: A relatively simple proposed
scheme to protect FPGA bit streams against direct cloning
makes use of a so-called Identification Friend or Foe (IFF)
scheme [24]–[26]. The key idea of the IFF scheme is to ac-
company every FPGA with an external secure device bearing
a unique secret key. The FPGA checks the presence of its
companion before enabling its functionality. In this way, direct
cloning is prevented since the cloner, not knowing the secret
key, cannot clone the secure device. In practice, the external
device is a secure EEPROM implementing a keyed hash
function and a one-time-programmable secure key storage.
The same key is embedded in the FPGA’s bit stream and the
FPGA checks the presence of the secure device by means of
a challenge-response protocol with a random nonce. If the
secure device responds correctly, it is identified as a friend
and the FPGA is enabled, otherwise it is a foe and the FPGA
stops functioning. If the used key is secret and unique, only the
genuine secure EEPROM can calculate the expected response,

and a failure to do so indicates a cloned design. A number
of issues can be pointed out about this very simple scheme,
the most critical being the embedding of a secret key in the
plaintext bit stream. We mentioned before that the obfuscation
offered by the bit stream’s encoding is not sufficient to securely
store secret data like cryptographic keys.
2) Device ID Checking: An alternative simple scheme to

protect bit streams against direct cloning involves the unique
identifier burned in every FPGA. The identifier is read and pro-
cessed by a “security algorithm” into a check code. This check
code is compared to an externally stored reference code and the
design is only enabled if both codes match. Since the device
identifier is publicly accessible, the security of this scheme is
based on a secret element in the security algorithm, e.g., a keyed
hash function with the secret key embedded in the bit stream.
Simply cloning the bit stream and using it on another FPGA
will not work since the device identifier is different and the cal-
culated check code does not match the stored reference code.
In [27], Xilinx proposes a number of variants of this scheme
using the device DNA and additional nonvolatile public identi-
fier strings. The same security issue as in the IFF proposals still
hold, i.e., a secret is embedded in the bit stream and hence not
really protected.
3) Bit Stream Integrity Checking: A simple method to detect

tampering during operation of an FPGA design makes use of
internal configuration readback (see Section II-D). Using ICAP,
an FPGA design reads back its current configuration and calcu-
lates a short check code on this data. This check code is com-
pared with an externally stored reference check code to detect
whether (malicious) tampering occurred. In [27], a practical im-
plementation is proposed using a CRC code as a check. We
pointed out that CRC codes are not sufficient to provide pro-
tection against malicious tampering and, therefore, it is highly
recommended to use a secure cryptographic integrity check in-
stead. A second issue here is that the reference check code is not
authenticated. An adversary can tamper with the bit stream and
alter the reference check accordingly to pass the integrity test.
4) Bit Stream Encryption: Most SRAM-based FPGA ven-

dors provide bit stream encryption support for their high-end
devices, using standardized secure encryption algorithms,
and options to store a nonvolatile decryption key. Xilinx de-
vices support bit stream encryption [7], [28] starting from the
Virtex-II series and store the decryption key in a dedicated
battery-backed SRAM or, starting from their Spartan/Virtex-6
series, in a one-time programmable eFuse register. Xilinx
Virtex-6 FPGAs moreover support authenticated encryption
[29] of bit streams by also providing a dedicated secure HMAC
implementation. Altera devices offer bit stream encryption
[30], [31] starting from the Stratix-II series and developers
have the choice between battery-backed SRAM and one-time
programmable polyfuses to store the decryption keys. We note
that very recently a successful side-channel attack was found
for the bit stream decryption engines used on Xilinx Virtex-II
[32] and Virtex-4/5 FPGAs [33]. These results painfully high-
light the need for securely implemented cryptographic building
blocks on FPGA devices, since the successful deployment of
any secure soft IP protection scheme, including the one pre-
sented in this work, rests on the availability of such primitives.

102 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 1, FEBRUARY 2012

B. Academic Research

Modern FPGA applications often implement a micro-
controller running software in combination with application
specific coprocessors. The protection of this software’s IP
(SW-IP) from cloning is very similar to soft IP protection
discussed earlier. In [14], Simpson et al. introduce an au-
thentication scheme for SW-IP in reconfigurable systems like
FPGAs. Their proposal is a more lightweight alternative to
Trusted Computing [10], which is used in typical PCs for this
purpose, and succeeds both in protecting the IP rights of the
SW-IP provider and assuring the authenticity of the software
to the system developer. The implementation by Simpson et al.
makes use of a Physically Unclonable Function or PUF [34],
a hardware primitive able to produce an unclonable device
fingerprint. In [14], the PUF is used as a combined unique
device identifier and secure key generator which alleviates the
need for protected on-board nonvolatile key storage. Besides a
PUF, Simpson et al. also propose to use a TTP for authenticated
SW-IP distribution. Variants of this scheme are presented by
Guajardo et al. with additional security notions [15], [35]. Gua-
jardo et al. also propose concrete and practical FPGA-based
PUF constructions, whereas Simpson et al.merely assumed the
existence of a secure and reliable PUF on the FPGA.
Gora et al. in [36] present an alternative way for protecting

SW-IP in FPGAs by binding it to a hardware platform using a
PUF in the FPGA’s reconfigurable logic. Their proposedmethod
specifically protects software and assumes that the hardware
soft IP cores are securely configured by other means of pro-
tection. The scheme requires the secure embedding of a hash
value in the bit stream for integrity checking. They acknowledge
the possibility of bit stream reversal and investigate the safest
method to hide a value in the bit stream format. They propose
to use the bit stream’s routing information since this is presum-
ably the hardest to reverse accurately. However, this embedding
cannot be assumed to be of a cryptographically acceptable se-
curity level.
In [37], Bossuet et al. propose a solution which offers the

flexibility to provide a granular protection level of different
parts of the bit stream, based on the security-critical aspect
of the considered design modules. This is achieved by using
the partial configuration and internal configuration access
possibilities of Xilinx FPGAs, as discussed in Section II-D.
However, the proposed scheme does not distinguish between
soft IP providers (CV) and system developers (SYS). The
system developer knows all plaintext bit streams and hence
has full access to all implementation details. The proposal only
provides protection against cloning or reverse-engineering of a
complete FPGA configuration, but does not protect individual
soft IP cores.
Güneysu et al. [1] propose a volume licensing scheme for

FPGA bit streams which requires only small changes to the con-
figuration controller, i.c., a secondary secure key register and
the use of authenticated bit stream encryption. Their proposal
points out the lack of a convenient key transport and installation
scheme with the available bit stream encryption options, which
prevents flexible protection methods. They solve this problem
by using a public-key-based key agreement protocol between

TABLE I
OVERVIEW OF DIFFERENT FPGA DESIGN SECURITY SOLUTIONS

the soft IP provider and the FPGA and also make use of a trusted
third party, i.c., the FPGA vendor. The solution is limited to
the protection of full FPGA configurations and the protection
of partial soft IP cores is labeled as a significant open problem.
Drimer et al. [2] discuss a possible extension to this proposal
for the protection of multiple cores. Our proposal is closely re-
lated to the work of Güneysu et al. and Drimer et al. but we
aim to solve some of the open problems and provide a more
practical implementation. Therefore, we provide a comparative
analysis between both in Section V-E, after we have introduced
our scheme.

C. Position of Our Contribution

The contribution presented in this work is a flexible and cryp-
tographically secure scheme for the protection of soft IP ma-
terial of both SYS and CV, against cloning and reverse-engi-
neering by low class and middle class adversaries. Moreover,
the proposed scheme is feasible in recent commercially avail-
able devices. This is in contrast to the proposals from [1], [2],
[14], [15], [35], and [37] which all require modifications to the
FPGA hardware such as PUFs, extra key registers, or additional
cryptographic primitives, none of which are currently supported
by any FPGA vendor.
The commercial proposals are obviously achievable using

current devices but suffer from a number of security-related
weaknesses that have been discussed in Section III-A. The only
commercial solution which offers cryptographic security is bit
stream encryption, but in its current form has some practical
drawbacks related to key management as also pointed out in [1]
and [38]. Moreover, bit stream encryption only secures mono-
lithic bit streams and does not protect against unauthorized use
of individual soft IP blocks, e.g., by a system developer. As sum-
marized in Table I, none of the discussed earlier solutions are
both secure and feasible in current devices, as well as flexible
enough to offer modular soft IP protection. The scheme as pro-
posed in this work aims to close this gap.

MAES et al.: PAY-PER-USE LICENSING SCHEME FOR HARDWARE IP CORES IN RECENT SRAM-BASED FPGAs 103

IV. FLEXIBLE ACTIVE METERING SCHEME

A. Preliminary

Notation: By b(IP) we mean the (partial) bit stream repre-
sentation of a soft IP core design IP. Encryption of a message
using a key is denoted as and the corre-

sponding decryption as . We use B(IP) to denote
encrypted bit streams: and to denote
encrypted keys: . symbolizes an FPGA de-
vice. Identifier values denoted as or are used to
uniquely refer to a particular FPGA or soft IP core.
1) Device Capabilities: For our scheme, we consider FPGA

devices with the following capabilities:
• is uniquely identifiable by means of a public identifier

. This can be, e.g., a printed serial number or an
embedded unique bitstring.

• supports bit stream decryption by means of a securely
implemented and dedicated on-chip engine which can
only be accessed by the configuration controller. It is also
assumed that external (re)configuration and configuration
readback are disabled.

• is able to store a bit stream decryption key for the on-chip
decryption engine in a secure nonvolatile memory. We
distinguish between blank devices where no key has
been programmed yet and enrolled devices with a pro-
grammed nonvolatile key. The act of programming a non-
volatile decryption key in a blank FPGA device is
denoted as .

• supports partial bit stream (re)configuration.
• is able to internally access its configuration controller
through an ICAP primitive.

We remark that currently FPGA devices are for sale which sup-
port all these capabilities, notably Xilinx’ Virtex-6 [7] series
which support AES-256 bit stream decryption, are able to store
a 256-bit AES key in eFuses or battery-backed SRAM and sup-
port partial reconfiguration and ICAP primitives.

B. Metering Authority (MA)

The proposed scheme is based on a TTP which provides a
metering service for soft IP. From here on we will refer to this
party as the metering authority (MA). MA plays a central role
in the scheme and is explicitly trusted by all other parties to run
a correct and secure service.
1) Role of the Metering Authority: The key idea of the pro-

posed scheme is that MA acts as a trusted party, linking FPGA
devices and soft IP cores. The protocol which implements this
idea is shown in Fig. 1 and described in detail in Section IV-C.
It consists of three main parts:
1) FVs enroll their FPGA devices with MA [Fig. 1(a)].
2) CVs enroll their soft IP cores with MA [Fig. 1(b)].
3) SYS (or EU) interacts with MA in order to obtain a license
for the activation of a particular soft IP core on a particular
FPGA device [Fig. 1(c)].

Instances of a soft IP core are activated on a per-device basis
and obtaining an activation license requires an explicit contact
with MA. MA can hence keep track of exactly how many in-
stances of the IP core are activated. This is called active me-
tering of the IP core.

2) Metering Bit Stream : A compact custom me-
tering design is required in order to bootstrap the secure con-
figuration of protected soft IP cores on enrolled FPGA devices.
The metering bit stream , provided by MA, imple-
ments the following modules, as shown in Fig. 2:
a) A custom decryption module implementing a secure sym-
metric cipher.3 Note that the on-chip bit stream decryption
engine provided by the FPGA vendor cannot be reused in
the metering bit stream, since it does not allow us to use
an alternative key and it is not directly accessible from the
FPGA’s configurable logic.

b) Two key registers for the decryption module. The first one
is called the metering key register and is preloaded with
a device-unique metering key which is embedded in
the metering bit stream by MA. We do not assume any
obfuscation properties of the metering bit stream with
respect to the embedded metering key. Instead, we will
make sure that the metering bit stream is only transferred
in encrypted form to protect the metering key explicitly.
The second key register is the IP key register which is
empty upon initial configuration but is loaded with an ap-
propriate IP key during the activation sequence of a pro-
tected IP core as shown in Fig. 4.

c) An ICAP interface, which is usually an instantiation of a
custom library primitive provided by the FPGA vendor.

C. Description of the Protocol

1) FPGA Device Enrollment: To enable the proposed
scheme, MA has to have physical access to the FPGA devices
once in a secure environment; this is called device enrollment.
For every device which is enrolled, MA has to do two things:
a) MA programs a secret bit stream decryption key in
the dedicated and secured nonvolatile key register in the
device. This key is called the device key and is unique for
every device.

b) MA provides each enrolled device with a unique
encrypted metering bit stream

. The metering bit stream imple-
ments the metering design and embeds a unique
metering key .

To prevent unenrollment of devices, can be stored in one-
time programmable memory. is stored in external
nonvolatile memory and it is automatically decrypted and con-
figured on immediately after device power-up. Note that
failure to retain or to configure does not break
the scheme’s security, but merely disables to load any soft
IP which is actively metered by MA. MA keeps track of the
devices and the corresponding device and metering keys which
it has enrolled, by maintaining a device database with entries

. The device enrollment protocol is shown in
Fig. 1(a). Note that the device key is not explicitly needed
in the metering scheme anymore after device enrollment, but it
is stored by MA for service reasons, e.g., to provide future up-
dates of the metering bit stream.

3To completely protect the integrity of a design, e.g., as a countermeasure for
bit stream tampering, the use of a decryption module which supports authenti-
cated decryption is recommended.

104 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 1, FEBRUARY 2012

Fig. 1. Soft IP core active metering protocol. (a) FV enrolls devices with MA and sells devices to SYS. (b) CV enrolls soft IP with MA and distributes soft IP to
SYS. (c) MA licenses soft IP to SYS or EU.

Fig. 2. Modules implemented by the metering bit stream .

2) Soft IP Core Enrollment: A CV who wants to enroll a soft
IP core in the active metering service offered by MA has to
pick a unique and secure encryption key linked to this piece
of soft IP. is called the IP key and is communicated to the
MA over a secured channel together with a unique reference for

this IP core: . MA registers the enrolled soft IP core as
an entry in its IP database. Now, when CV re-
ceives a request from SYS to obtain the soft IP core , CV
sends a protected version of the bit stream of by encrypting
it with the corresponding IP key: .
This protocol is shown in Fig. 1(b).4 SYS cannot directly inte-
grate the obtained IP in its system since he cannot decrypt it. We
say needs a license to be activated.
3) Soft IP Core Licensing: It is clear that SYS needs a li-

cense containing the correct IP key in order to activate the
protected bit stream . However, SYS should not be able
to see directly, since that would allow him to obtain the

4Note that in practice, the bit stream needs to meet a number of cus-
tomer specific requirements; e.g., detailing the size, location, and interface of
the IP core in the customer’s system. Therefore, is generated upon re-
quest for a particular SYS.

MAES et al.: PAY-PER-USE LICENSING SCHEME FOR HARDWARE IP CORES IN RECENT SRAM-BASED FPGAs 105

Fig. 3. Simplified overview of communications between involved parties. In the example shown, SYS produces an FPGA system containing two soft IP core bit
streams (BS) from different core vendors.

plain text bit stream and circumvent the active metering
control. Therefore, is encrypted with the metering key of
: . This encrypted IP key serves as

the license to activate the protected soft IP core. Since it is still
encrypted, SYS does not learn the actual value of . The li-
censing protocol is shown in Fig. 1(c). The only party able to
generate valid licenses is MA since he holds the database of
both enrolled devices, containing and the corresponding
metering key , as well as a database of the enrolled soft IP
cores, containing and the corresponding IP key .

D. System Integration and Soft IP Core Activation

To develop an FPGA-based product, a system developer ob-
tains an FPGA device with accompanying metering bit stream
from an FPGA vendor [following Fig. 1(a)], the required third-
party soft IP cores from core vendors [following Fig. 1(b)] and
the required licenses for these cores from the metering authority
[following Fig. 1(b)]. A simplified overview of all these com-
munications between the involved parties is shown in Fig. 3 for
an example where two different IP cores are obtained from two
different core vendors. Once SYS has all these elements, he is
able to integrate them in the end system by putting the metering
bit stream, the protected IP core bit streams, and their accom-
panying licenses in a nonvolatile memory next to the FPGA de-
vice. When the system is powered on, the activation sequence,
as shown in Fig. 4, loads the protected cores in the reconfig-
urable FPGA fabric. First the metering bit stream containing the
metering key is loaded [Fig. 4(a)]. In the second step, the
license is decrypted to the IP key which is temporarily
loaded in the IP key register [Fig. 4(b)]. Next, the first protected
bit stream is loaded directly into the metering logic (not
to the configuration controller). The metering bit stream de-
crypts to with the loaded IP key . Finally, the
decrypted soft IP core bit stream is sent to the configu-
ration controller, using the internal ICAP interface, and config-
ured in the designated location of the reconfigurable logic array
[Fig. 4(c)]. The activation scheme is repeated for every indi-
vidual IP core for which a license is available, i.c., for IP core 2
[Fig. 4(d) and (e)].

V. DISCUSSION OF THE PROPOSED METERING SCHEME

A. Security Evaluation of the Scheme

When the metering scheme, as shown in Fig. 1, and the ac-
tivation sequence, as shown in Fig. 4, are executed correctly,
the considered soft IP core is protected from cloning and re-
verse-engineering by low and middle class adversaries. All data
transferred between parties in Fig. 1, and all data stored exter-
nally to the FPGA device in Fig. 4 are encrypted using secure
algorithms and keys.5 All security sensitive operations are per-
formed either in a protected environment, e.g., at the site of
MA or CV, or inside the FPGA device. Since low and middle
class adversaries are not able to gain physical access to the
FPGA’s internals, the protected bit streams remain secret. Since
IP core licenses are unique to a particular device/IP core
pair , there is no advantage in duplicating them for use
with another device and/or IP core.
The scheme does not protect against high class adversaries

since theymay be able to extract a device key ormetering key by
probing the FPGA internals. This is a costly attack, but since it
allows the adversary to decrypt former and even future protected
bit streams, it might be worthwhile. There is not much to be
done about the loss of protection of former bit streams when
a metering key is leaked. However, when a disclosed metering
key is detected,6MA is at least able to protect future soft IP cores
by revoking the particular metering key; i.e., MA will not grant
licenses for this device any longer. In order to decrypt future
protected bit streams, the adversary needs to rerun the costly
attack on a different FPGA. By revoking broken metering keys,
partial protection against high class adversaries is obtained.
Finally, we note that the integrity of the metering bit stream

in our scheme is not strictly protected. An adversary might
hence alter the metering bit stream; however, he does not
learn the contents. To offer complete security against cases
where an adversary is able to make meaningful alterations to
the encrypted metering bit stream, authenticated encryption

5For the communication of the IP key from CV toMA [step 2 in Fig. 1(b)], we
assume that the channel is secured using conventional cryptographic methods.
6We will not go into detail concerning cloning detection methods such as IP

watermarking; see, e.g., [39] for a survey.

106 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 1, FEBRUARY 2012

needs to be used. Currently, Xilinx Virtex-6 devices support
authenticated encryption by implementing an HMAC based on
SHA-256. However, even if there is no on-board support for
bit stream authentication, it is still possible to protect against
design alterations by having a design check its own integrity
using bit stream readback, as detailed in Section III-A3.

B. Practical Issues

1) Partial Reconfiguration Issues: In this work, we assume
an ideal scenario where all the practical details concerning par-
tial reconfiguration are transparent to the involved parties. In
reality, this is unfortunately not (yet) the case. Using partial re-
configuration will produce nonnegligible overhead, both in de-
sign effort as well as silicon resources. As the capabilities of
FPGA development tools progress, it is expected that the im-
pact of this overhead will decrease up to the point where it does
become transparent. For now, however, it needs to be taken into
account when implementing the scheme in practice. The prac-
tical implications of using partial reconfiguration have no effect
on the security or applicability of the proposed scheme and are
outside the scope of this work.
2) Development Flow and Simulation Issues: IP protection

methods for hardware cores in general often stand in the way
of common development flows, in particular an encrypted form
of a core’s description restricts simulation, verification, or of-
fline testing. Solutions to this problem are based on encrypted
netlists and the availability of trusted design tools and are hence
in the scope of secure software research. The development and
application of trusted design tools should be considered orthog-
onal to this work. Using standardized bus interfaces and proto-
cols and providing detailed core specifications will also relax
the needs for offline simulation and verification. We note that
a core vendor is able to allow online simulation by providing
a number of core licenses at no cost for simulation purposes.
There is no risk of IP abuse in this case since these licenses are
device-locked.

C. Variants of the Scheme

1) End User Activation: The licensing and activation of a
protected soft IP core can be done by the end user EU as well.
SYS has the possibility to embed a protected, but not yet acti-
vated soft IP core, e.g., as an extra feature of the product. If EU
wishes to use this feature, he has to acquire the license fromMA
and run the activation himself.
2) Master Keys Instead of Key Databases: At a number of

instances in the proposed scheme, keys are randomly generated
and linked to a corresponding device or IP core by means of
storing and retrieving them from a database indexed by an iden-
tifier [step 3 in Fig. 1(a), steps 1, 3, and 7 in Fig. 1(b), and step 3
in Fig. 1(c)]. In these steps, the use of database storage can be re-
placed by a secure deterministic key derivation algorithm based
on the identifier and a secret master key from the considered
party. A secure keyed MAC algorithm would be an appropriate
choice, e.g., in step 3 in Fig. 1(a): ,
with MA’s metering master key. When MA requires a par-
ticular device’s metering key later on, e.g., in step 3 in Fig. 1(c),
he can regenerate it using his metering master key and the key

Fig. 4. Activation sequence of an FPGA system containing multiple protected
soft IP cores. (a) Initialize metering: load the metering bit stream .
(b) License IP Core 1: load IP Core 1 decryption key . (c) Configure IP Core
1: load protected IP Core 1 bit stream B . (d) License IP Core 2: load IP
Core 2 decryption key . (e) Configure IP Core 2: load protected IP Core 2
bit stream B .

MAES et al.: PAY-PER-USE LICENSING SCHEME FOR HARDWARE IP CORES IN RECENT SRAM-BASED FPGAs 107

derivation algorithm, lifting the need for a metering key data-
base. In case of IP keys, a secret IP master key needs to be se-
curely shared between CV and MA. Note that the latter variant
also reduces the online communication overhead between CV
and MA, i.e., step 2 in Fig. 1(b) is not necessary anymore and
the soft IP core enrollment is done implicitly. The security of
the used key derivation algorithm and the secrecy of the master
keys are in this variant of great importance.
3) Reducing Back-End Load for CV: In the current scheme,

CV also maintains a database of IP cores and generates pro-
tected IP core bit streams upon request. This allows him
to keep full control over the bit stream, e.g., he can issue up-
dates to without having to recontact MA, as long as he uses
the same IP key. However, maintaining such a database service
might be an expensive back-end load for a small CV. An al-
ternative would be that CV encrypts once, registers the
IP key with MA and publishes , e.g., on a website. In
that case, CV does not have to keep an IP core nor an IP key
database. Parties which wish to use the IP core can download it
publicly and acquire a license fromMA. This variant minimizes
the back-end service for CV but also reduces the flexibility since
updates have to be made explicit and no SYS-specific require-
ments can be included.

D. Performance Evaluation

At the device side, the overhead of using the proposed scheme
is minimal. The only significant addition is the metering bit
stream. The resource usage of the metering bit stream, as shown
in Fig. 2, is very low since it only implements two key registers
and a decryption module.7 The size of the decryption module
depends on the algorithm used, but secure and efficient imple-
mentations of block ciphers exist for FPGAs [40], [41]. All to-
gether, the metering bit stream can be implemented occupying
only a marginal fraction of the reconfigurable resources on re-
cent high-end FPGAs. At the back-end side, i.e., for the MA
and CV, the overhead mainly consists of secure database man-
agement, and this can even be substantially reduced according
to the suggested variants proposed in Section V-C.

E. Comparison to Previous Proposals

As a final discussion topic, we compare our scheme to similar
previously proposed soft IP protection schemes, in particular the
work of Güneysu et al. [1] and the extension for multiple cores
as proposed by Drimer et al. [2]. These schemes focus on the
same problem and are also based on the use of a TTP and par-
tial reconfiguration techniques. A major difference is that these
schemes make use of public key cryptography for key distribu-
tion which typically introduces a much larger implementation
overhead than the symmetric primitives used in our scheme.
The proposed ECDH core in [1] requires 2706 slices whereas
an AES block cipher which is sufficient to support our scheme
can be implemented in as few as 124 slices [40]. The use of
public key primitives does simplify the required interactions in
their protocols and they only need a TTP during the enrollment
phase and for revocation. However, the transaction size of their

7The ICAP primitive is a hard-wired element and does not occupy any recon-
figurable logic primitives.

interactions during the distribution phase can become incred-
ibly large (“multiple gigabytes” [2]) since a different encrypted
IP core is required for every FPGA device. In our scheme, the
interactions are slightly more complex, but the size of the com-
munications is kept minimal since the same protected bit stream
is used for every FPGA device. Only the licenses are unique but
these are very small. Finally, as pointed out in Section III-C, the
previous schemes do require (albeit small) changes to the FPGA
hardware in the form of additional key registers, whereas our
scheme can be implemented on existing devices without any
hardware modifications.

VI. CONCLUSION

In this work, we have proposed an active metering scheme for
the protection of FPGA configurations at the level of individual
IP cores and argued why such a scheme is indispensable in a
system-level development model for modern FPGAs. The use
of an active scheme allows the IP provider to implement a pay-
per-use licensing model. The proposed solution is, moreover,
the first known construction for this level of IP protection which
is realizable in existing FPGA devices.

REFERENCES

[1] T. Güneysu, B. Moller, and C. Paar, “Dynamic intellectual property
protection for reconfigurable devices,” in Proc. Int. Conf. Field Pro-
grammable Technology (ICFPT), 2007, pp. 169–176.

[2] S. Drimer, T. Güneysu, M. G. Kuhn, and C. Paar, Protecting Mul-
tiple Cores in a Single FPGA Design 2008 [Online]. Available: http://
www.cl.cam.ac.uk/~sd410/papers/protect_many_cores.pdf.

[3] Intel atom processor E6x5C series Intel Product Preview Datasheet,
324602-001US, Dec. 2010.

[4] Xilinx redefines power, performance, and design productivity with
three new 28 nm FPGA families: Virtex-7, kintex-7, and artix-7
devices (v1.0) Xilinx White Paper 373, Jun. 2010.

[5] Stratix V FGPAS: Built for bandwidth Altera Brochure, 2010.
[6] AXI4 interconnect paves the way to plug-and-Play IP (v1.0) Xilinx

White Paper 379, Oct. 2010.
[7] Xilinx Virtex 6 Configuration User Guide (v3.2) 2010.
[8] J. B. Note and E. Rannaud, “From the bitstream to the netlist,” in Proc.

ACM/SIGDA Symp. Field-Programmable Gate Arrays (FPGA), Nov.
2008, pp. 264–264.

[9] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan tax-
onomy and detection,” IEEE Des. Test Comput., to be published.

[10] D. Grawrock, Dynamics of a Trusted Platform: A Building Block Ap-
proach, 1st ed. U.S.: Intel Press, 2009.

[11] D. G. Abraham, G. M. Dolan, G. P. Double, and J. V. Stevens, “Trans-
action security system,” IBM Syst. J., vol. 30, pp. 206–229, Mar. 1991.

[12] R. Torrance and D. James, “The state-of-the-Art in IC reverse engi-
neering,” in Proc. Workshop on Cryptographic Hardware and Em-
bedded Systems (CHES), 2009, pp. 363–381.

[13] T. Kean, “Cryptographic rights management of FPGA intellectual
property cores,” in Proc. ACM/SIGDA Symp. Field-Programmable
Gate Arrays (FPGA ’02), 2002, pp. 113–118.

[14] E. Simpson and P. Schaumont, “Offline hardware/software au-
thentication for reconfigurable platforms,” in Proc. Workshop on
Cryptographic Hardware and Embedded Systems (CHES), 2006, pp.
311–323.

[15] J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls, “FPGA intrinsic
PUFs and their use for IP protection,” in Proc. Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES), 2007, pp. 63–80.

[16] Security solutions using Spartan-3 generation FPGAs (v1.1) Xilinx
White Paper 266, Apr. 2008.

[17] Spartan-3 AN FPGA family data sheet (v4.0) Xilinx Data Sheet 557,
Dec. 2010.

[18] D. Koch, C. Beckhoff, and J. Teich, “ReCoBus-builder—A novel tool
and technique to build statically and dynamically reconfigurable sys-
tems for FPGAs,” in Proc. Int. Conf. Field-Programmable Logic and
Applications (FPL 08), Heidelberg, Germany, Sep. 2008, pp. 119–124.

108 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 1, FEBRUARY 2012

[19] Y. Alkabani, F. Koushanfar, and M. Potkonjak, “Remote activation of
ICs for piracy prevention and digital right management,” in Proc. Int.
Conf. Computer-Aided Design (ICCAD), 2007, pp. 674–677.

[20] Y. Alkabani and F. Koushanfar, “Active hardware metering for intel-
lectual property protection and security,” in Proc. USENIX Security
Symp., 2007, pp. 291–306.

[21] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending piracy of
integrated circuits,” in Proc. Design Automation and Test in Europe
(DATE), 2008, pp. 1069–1074.

[22] J. A. Roy, F. Koushanfar, and I. L.Markov, “Protecting bus-based hard-
ware IP by secret sharing,” in Proc. Design Automation Conf. (DAC),
2008, pp. 846–851.

[23] R. Maes, D. Schellekens, P. Tuyls, and I. Verbauwhede, “Analysis and
design of active IC metering schemes,” in Proc. IEEE Workshop on
Hardware-Oriented Security and Trust (HOST), 2009, pp. 74–81.

[24] FPGA IFF copy protection using dallas semiconductor/maximDS2432
secure EEPROMS (v1.1) Xilinx App. Note 780, May 2010.

[25] An FPGA design security solution using a securememory device (v1.0)
Altera White Paper 01033, Oct. 2007.

[26] FPGA design security solution using MAX II devices (v1.0) Altera
White Paper M2DSGN, Sep. 2004.

[27] Advanced security schemes for Spartan-3 A/3 AN/3 A DSP FPGAs
(v1.0) Xilinx White Paper 267, Aug. 2005.

[28] Using high security features in Virtex-II series FPGAs (v1.0) Xilinx
App. Note 766, Jul. 2004.

[29] S. Trimberger, J. Moore, and W. Lu, “Authenticated encryption for
FPGA bitstreams,” in Proc. ACM/SIGDA Symp. Field-Programmable
Gate Arrays (FPGA), 2011, pp. 83–86.

[30] Protecting the FPGA design from common threats (v1.0) Altera White
Paper 01111, Jun. 2009.

[31] Design security in Stratix III devices (v1.5) Altera White Paper 01010,
Sep. 2009.

[32] A. Moradi, A. Barenghi, T. Kasper, and C. Paar, On the Vulner-
ability of FPGA Bitstream Encryption Against Power Analysis
Attacks—Extracting Keys From Xilinx Virtex-II FPGAs Cryptology
ePrint Archive, Rep. 2011/390, 2011.

[33] A. Moradi, M. Kasper, and C. Paar, On the Portability of Side-Channel
Attacks—AnAnalysis of theXilinxVirtex 4 andVirtex 5 BitstreamEn-
cryption Mechanism Cryptology ePrint Archive, Rep. 2011/391, 2011.

[34] R. Maes and I. Verbauwhede, “Physically unclonable functions:
A Study on the state of the art and future research directions,” in
Towards Hardware-Intrinsic Security, ser. Security and Cryptology,
D. Naccache and A. R. Sadeghi, Eds. New York: Springer, 2010, pp.
3–37.

[35] S. S. Kumar, J. Guajardo, R. Maes, G. J. Schrijen, and P. Tuyls, “The
butterfly PUF: Protecting IP on every FPGA,” in Proc. IEEEWorkshop
on Hardware-Oriented Security and Trust (HOST), 2008, pp. 67–70.

[36] M. Gora, A. Maiti, and P. Schaumont, “A flexible design flow for soft-
ware IP binding in commodity FPGA,” in Proc. IEEE Symp. Industrial
Embedded Systems (SIES), Jul. 2009, pp. 211–218.

[37] L. Bossuet, G. Gogniat, and W. Burleson, “Dynamically configurable
security for SRAM FPGA bitstreams,” Int. J. Eng. Sci., vol. 2, no. 1/2,
pp. 73–85, 2006.

[38] S. Drimer, “Security for Volatile FPGAs,” Ph.D., Univ. of Cambridge,
Cambridge, 2009.

[39] A. T. Abdel-Hamid, S. Tahar, and E. M. Aboulhamid, “A survey on
IP watermarking techniques,” Des. Autom. Embedded Syst., vol. 9, pp.
211–227, 2004.

[40] T. Good and M. Benaissa, “AES on FPGA from the fastest to the
smallest,” in Proc. Workshop on Cryptographic Hardware and Em-
bedded Systems (CHES), 2005, pp. 427–440.

[41] M. Sbeiti, M. Silbermann, A. Poschmann, and C. Paar, “Design space
exploration of PRESENT implementations for FPGAs,” in Proc.
Southern Conf. Programmable Logic (SPL), 2009, pp. 141–145.

Roel Maes (S’11) received the electrical engineering
degree from the Katholieke Universiteit Leuven
(K.U.Leuven), Belgium, in 2007. He is currently
working toward the Ph.D. degree at the Computer
Security and Industrial Cryptography (COSIC) Lab-
oratory, Electrical Engineering Department (ESAT),
K.U.Leuven.
His research interests include physically unclon-

able functions (PUFs) and hardware design security.

Dries Schellekens received the electrical engi-
neering degree from the Katholieke Universiteit
Leuven (K.U.Leuven), Belgium, in 2002. He is
currently working toward the Ph.D. degree at the
Computer Security and Industrial Cryptography
(COSIC) Laboratory, Electrical Engineering Depart-
ment (ESAT), K.U.Leuven.
His research interests include trusted computing

and hardware design security.

Ingrid Verbauwhede (M’92–SM’00) received
the electrical engineering degree and the Ph.D.
degree from the Katholieke Universiteit Leuven
(K.U.Leuven), Belgium, in 1991.
From 1992 to 1994, she was a postdoctoral

researcher and visiting lecturer at the University of
California, Berkeley. From 1994 to 1998, she worked
for TCSI and ATMEL in Berkeley, CA. In 1998,
she joined the faculty of University of California,
Los Angeles (UCLA). She is currently a professor at
the K.U.Leuven and an adjunct professor at UCLA.

At K.U.Leuven, she is a codirector of the Computer Security and Industrial
Cryptography (COSIC) Laboratory. Her research interests include circuits,
processor architectures and design methodologies for real-time embedded
systems for security, cryptography, digital signal processing, and wireless
communications. This includes the influence of new technologies and new
circuit solutions on the design of next-generation systems on chip. She was the
program chair of the Ninth International Workshop on Cryptographic Hardware
and Embedded Systems (CHES 07), the 19th IEEE International Conference
on Application-Specific Systems, Architectures and Processors (ASAP 08),
and the ACM/IEEE International Symposium on Low Power Electronics and
Design (ISLPED 02). She was also the general chair of ISLPED 2003. She was
a member of the executive committee of the 42nd and 43rd Design Automation
Conference (DAC) as the design community chair.

