A NOVEL METHOD FOR SECURE INTELLECTUAL PROPERTY DEPLOYMENT IN
EMBEDDED SYSTEMS

Sunil Malipatlolla and Sorin A. Huss

Center for Advanced Security Research Darmstadt
Technische Universitit Darmstadt
Darmstadt, Germany
email: sunil.malipatlolla@cased.de, sorin.huss@cased.de

ABSTRACT

The configuration data sequence of a Field Programmable
Gate Array (FPGA) is an Intellectual Property (IP) of the
original designer. With the increase in deployment of FP-
GAs in modern embedded systems, the IP protection of FPGA
has become a necessary requirement for many IP vendors.
There have been already many proposals to overcome this
problem using symmetric encryption techniques but these
methods need a cryptographic key to be stored in a non-
volatile memory located on FPGA or in a battery-backed
RAM as done in some of the current FPGAs. The expenses
with the proposed methods are, occupation of larger area
on FPGA in the former case and limited lifetime of the de-
vice in the latter. In contrast, we propose a novel method
which combines the Dynamic Partial Reconfiguration (Dy-
namic PR) feature of an SRAM-based FPGA with the Public
Key Cryptography (PKC) to protect the FPGA configuration
files without the need of fixed key storage on FPGA or ex-
ternal to FPGA. The proposed method, is secure against the
known attacks such as the Man-In-The-Middle (MITM) at-
tack and replay attack. Therefore, the method can be used
for secure deploying of IPs from local and remote vendors.
Also, using this novel method not only high-end FPGAs but
also low-end FPGAs with PR capabilities are secured.

1. INTRODUCTION

Currently SRAM-based FPGAs are becoming increasingly
popular as building blocks of electronic systems because of
advantages such as easy design modification (reconfigura-
bility), rapid prototyping, economical cost for low volume
production, and availability of sophisticated design and de-
bugging tools. Applications of FPGAs in the area of con-
sumer electronics include, for example, television circuits,
communication and video processing devices, and software-
defined radios.

This work was supported by CASED (www.cased.de)

978-1-4244-8846-9/11/$26.00 ©2011 |EEE

Since FPGAs are becoming so important for the elec-
tronic industry, it is necessary to think about the security
of FPGA-based systems. Two possible security measures
include are, protecting the FPGA data and the FPGA de-
sign itself. In the former case it is necessary to protect the
FPGA application i.e., the data inside the circuit and the data
transferred to/from the peripheral circuits during the com-
munication. Whereas in the latter, the concerns are against
cloning and reverse engineering which is the IP protection
problem. Concerning SRAM-based FPGAs it corresponds
to the way to protect the bitstream so the FPGA configura-
tion. In essence, the problem of design security is simple,
the designer doesn’t want that a competitor could be able to
pirate his design.

There are two types of piracy: cloning and reverse en-
gineering. Cloning is when a competitor makes a copy of
the design, and when he is able to make a copy of the pi-
rated system. With FPGAs it is very simple to clone an un-
protected design as the bitstream can be copied to another
FPGA’s configuration memory. In the case of reverse engi-
neering the design is copied by reconstructing a schematic
or netlist level representation. As demonstrated in [1], meth-
ods intended to convert FPGA bitstreams into netlists are
relatively easy to apply and may soon deliver widely usable
results. These two correspond to different attacks, and the
design security must protect the system against both these
attacks. The papers [2] and [3] give some information about
these different attacks.

The two types of attacks are: non-invasive and invasive.

o The non-invasive attacks gather all the methods that
use external means. For example the attackers can
use all the possibilities of the circuit inputs in order
to obtain all the different outputs and draw the system
truth table, this method is called “black box attack”.
In the case of an SRAM-based FPGA a simple attack
method can be, intercepting the bitstream between the
root ROM and the FPGA when the power is switched
on. More complex attacks can use power and elec-

203



tromagnetic changes and measures like the simple or
differential power analysis [4].

e The invasive attacks (- or physical attacks) are char-
acterized by the necessity to destroy the integrated cir-
cuit (component package) to study the chip (design
inside the component) using some complex methods.
For example, it is possible to use a laser cutter micro-
scope in order to split the chip in several slices and
understand the chip layout [5].

In this paper we consider the protection of FPGA con-
figuration files against the non-invasive attacks only. Espe-
cially, the proposed method protects the bitstream against
interception by an attacker on the communication channel
(Internet/Non-Internet based) between IP vendor (local or
remote) and system developer (local or remote). One ap-
plication scenario for the proposed method can be a secure
IP deployment in an embedded system design in the auto-
motive electronics. The rest of this paper is organized as
follows. Section 2 gives an overview about the related work
done to address the problem of FPGA configuration file (bit-
stream or an IP) protection. Section 3 briefly explains the
PKC and the Dynamic PR feature supported by the state of
the art FPGAs. Section 4 compares the conventional scheme
with our own proposed novel scheme for bitstream protec-
tion by considering some possible attack scenarios on the
proposed scheme and giving some solutions against the at-
tacks. In section 5, an analysis of the feasibility in imple-
mentation of the proposed method is given while section 6
concludes the paper and gives an outlook into future work.

2. RELATED WORK

There are generally two approaches possible to address the
problem of FPGA IP protection. The first solution to protect
the device against piracy is the legal solution. The defini-
tion of efficient laws, the regulation and the management of
intellectual properties are parts of this solution. The second
proposal to improve the security level of SRAM-based FP-
GAs is by bitstream encryption. In this section we mostly
address the related work done using the second approach
only. For example, Xilinx Virtex series devices support con-
figuration with an encrypted bitstream. Virtex devices have
a built-in bitstream decryption unit on them. Virtex-II and
Virtex-1I Pro support Triple-DES [6] with a 56-bit key, while
Virtex-4 and Virtex-5 support AES [7] with a 256-bit key.
The secret key for the bitstream decryption is stored in a
dedicated volatile memory inside the FPGA which must al-
ways be supplied with power through an external battery,
thus limiting the lifetime of the device. Additionally, the
on-board decryption unit and the corresponding key occupy
a considerable amount of space which is very crucial in re-
source constraint embedded systems.

In order to overcome the problem of an additional bat-
tery in Xilinx’s solution, Tom Kean of the Algotronix soci-
ety proposed ideas to store the cryptographic secret key on
FPGA, such as using laser to program a set of links during
manufacture [8]. However, in his method the encryption and
decryption circuits are embedded inside the FPGA which
causes less available silicon area for developed applications.
Also, the encryption and decryption circuits are fixed, so
it is not possible to upgrade them. In contrast, Kun-Wah
Yip et al. proposed the IP protection scheme using partial-
encryption (PE) technique [9]. Their method argues that the
PE technique outperforms the full-encryption technique in
terms of the reverse engineering cost. Whereas, Jorge Gua-
jardo et al. proposed a different scheme, using FPGA’s in-
trinsic physical unclonable functions (PUF) and PKC for IP
protection. Though their method uses PKC-based authen-
tication protocol which does not need the private key to be
stored on the FPGA, they did not make use of the advan-
tages provided by partial reconfiguration. In addition the
PUF implementation and its analysis on an FPGA is in itself
a challenging task [10].

There are other techniques proposed for FPGA IP pro-
tection like watermarking as in John Lach et al., where they
apply a watermark to the physical layout of a digital circuit
when it is mapped onto an FPGA which uniquely identifies
the circuit origin and yet difficult to detect [11]. In con-
trast, Tim Giineysu et al. used both public key and symmet-
ric key cryptography to dynamically protect the IP of cir-
cuits in configuration files. In their method the symmetric
cryptography is hard-wired and the public-key functional-
ity is moved into a temporary configuration bitstream for a
one-time setup procedure [12]. Also, Bossuet et al. pro-
posed a scheme where an embedded key is accessible to the
user logic and uses partial reconfiguration to encrypt and
decrypt the bitstream [13]. Here, an on-chip key is used
to encrypt the main design’s bitstream before storing it in a
PROM where a decryption bitstream is also stored. In [14],
Simpson et al. proposed an offline authentication scheme
for secure delivery of IP modules in non-networked envi-
ronments of FPGA design. Their scheme implements a mu-
tual authentication of IP modules and the hardware platform,
thereby enabling the authentication and integrity assurances
to both system developer and IP provider.

As mentioned above, all these methods need a secret
key to be stored on an FPGA which in itself is a challenge
in SRAM-based FPGAs as the memory on these devices is
volatile. In contrast, we may store the keys in a non-volatile
memory placed on an FPGA, but this has two drawbacks:
One being necessity for an extra space on the FPGA, which
is crucial for embedded systems as they are area constrained,
and the other being the possible extraction of stored cryp-
tographic keys by an attacker which makes the device less
secure. However, to the best of our knowledge, the idea of

204



PRM1

PRM2

Fig. 1. Partial Reconfiguration in FPGAs

using Dynamic PR and PKC for FPGA bitstream protection
has not yet been addressed.

Our method utilizes the special feature of SRAM-based
FPGAs, the partial reconfiguration, and the well-known pub-
lic key cryptography to protect the FPGA bitstreams. The
novelty of our method is that it does not need any fixed key
storage, either on the FPGA or outside of FPGA, for encryp-
tion and decryption of bitstreams as the keys are generated
on the fly. There is no threat of the private key being stolen,
as it is stored (temporarily) deep inside the memory blocks
which are erased when the device is turned off. Also, as the
keys for encryption and decryption of bitstreams are gener-
ated on the FPGA, unlike the single symmetric key in previ-
ously referenced papers, to be sent to the host for bitstream
(IP) encryption, it is possible to address the problem of load-
ing IPs from different vendors. So, different vendors can use
on the fly generated keys to encrypt their IPs, before sending
them to the FPGA for secure deployment in the field, where
they will all be placed on a single System-on-Chip (SoC).
In the following a brief introduction to Dynamic Partial Re-
configuration (Dynamic PR) and Public Key Cryptography
(PKCQ), the techniques used in the proposed scheme, is given
before delving into more details about the actual method for
bitstream protection.

3. DYNAMIC PR AND PKC OVERVIEW

3.1. Partial Reconfiguration Overview

Some of the SRAM-based FPGAs support a special feature
called Partial Reconfiguration (PR) in which a portion of
the FPGA’s fabric is reconfigured while the rest resumes
its work. The portion being reconfigured is the dynamic
part and the portion resuming the work is the static part
of the FPGA. If the configuration of the FPGA is changed
at run-time i.e., the system is neither stopped nor switched
off, then its called as Dynamic PR. Additionally, if the sys-
tem triggers the reconfiguration by itself then it is a self-
reconfigurable system which does not require the use of in-
ternal FPGA infrastructure. The area of the FPGA that is
reconfigured is called the Partially Reconfigurable Region
(PRR). A PRR typically consists of a number of Config-
urable Logic Blocks (CLBs) and functional blocks. The
module to be placed inside the PRR is called a Partially
Reconfigurable Module (PRM), which is the specific con-

Plaintext
Key Generation

PublicKey ~ ———( f = Ciphertext

|
l

Private Key f = Plaintext

Security Boundary

Fig. 2. Asymmetric Key Cryptography

figuration of the PRR and at least two PRMs are needed per
PRR. In many cases the assignment of PRMs to PRR is fixed
(non-relocatable) though in principle, a PRM may be config-
ured to different PRRs.

In figure 1, we see that two PRMs which are mutually
exclusive in time will be placed in the PRR inside the FPGA
i.e., only one PRM can be assigned to a given PRR at a given
time. The remaining region in the FPGA which is outside
the PRR is the static region, where the application which
needs to be run uninterruptedly, is placed. The configura-
tion files placed in the PRR are called as partial bitfiles. The
partial reconfiguration of an FPGA is done through the Inter-
nal Configuration Access Port (ICAP), a built-in hard core
IP module available on the FPGA. The ICAP module is con-
trolled by the software driver for the processor (Xilinx's Mi-
croblaze or IBM's PowerPC) on the FPGA. In our scenario,
the static logic contains the asymmetric algorithm (RSA or
ECC), which generates the public-private key pair. The re-
configurable (dynamic) logic is populated with the partial
bitstreams through ICAP, which are the actual FPGA ap-
plications to be implemented, after an on-board decryption
process.

3.2. Public Key Cryptography Overview

Public (or Asymmetric) key cryptography (PKC) uses asym-
metric key algorithms like RSA and ECC. Unlike symmetric
key algorithms, they do not require a secure initial exchange
of key between the sender and the receiver. The asymmet-
ric key algorithms are used to create a mathematically re-
lated key pair: a secret private key and a published public
key. Messages are encrypted with the recipient’s public key
and can only be decrypted with the corresponding private
key, which is known only to the receiver. In figure 2, we
see that all of the functions in the “dashed box” (named as
security boundary) can be implemented within the physi-
cal package of the FPGA. The plaintext and the private key
information never leave a well-protected container i.e., the
security boundary.

205



Host (PC)

AES ?(l;ys
itfil Ke
Ll?f)ralgy [y

Az

¥
AES Dec

External D
Interface— Logic —

Fig. 3. Conventional Scheme for Bitstream Protection

4. FPGA BITSTREAM PROTECTION

This section compares the conventional scheme with the pro-
posed novel scheme for bitstream protection in FPGAs.

4.1. Conventional Scheme

The conventional scheme uses the bitstream encryption to
protect the bitstream from potential threats as shown in fig-
ure 3.. The Host (PC) first encrypts the bitstream with a
symmetric encryption algorithm such as AES using a secret
key before sending it to the FPGA. On the FPGA side the
bitstream is decrypted using the same secret key, stored on
FPGA, and the corresponding decryption unit. For example,
the Xilinx Virtex-5 device consists of a software-based bit-
stream encryption (on the PC side) and an on-chip bitstream
decryption with dedicated memory for storing the symmet-
ric key (on the FPGA side). The drawback with the con-
ventional scheme is the additional key storage space on the
FPGA and its possible extraction.

4.2. Proposed Novel Scheme

A very secure method for protecting the FPGA configura-
tion files can be built when Dynamic PR and PKC are com-
bined. By using these two basic methods we propose a novel
technique to protect FPGA IP without the need to store any
cryptographic keys in a dedicated storage. The architecture
of the proposed method is outlined in figure 4 and the corre-
sponding communication protocol is given in figure 5. The
considered FPGA supports the dynamic PR, and we divide
the FPGA’s logic into two parts: static area and dynamic
area. The initial bitfile (full bitstream) to be loaded onto the
FPGA in the static area is an unencrypted design that does
not feature any proprietary information. It only contains the
algorithm to generate the public-private key pair and the in-
terface between the Host, FPGA, and ICAP. The commu-
nication medium between the Host and the FPGA uses the
UART protocol. The partial bitstreams are the configura-
tions that are loaded into the dynamic part of the FPGA and
are secured against the attacks with our scheme as shown in
figure 5.
Following are the advantages of the proposed scheme:

e The public-private key pair may be regenerated at any

206

FPGA

Dynamic Logic
ial bitfil
Static Logic (full bitfley P27t Ditile)

Host (PC) Generate Key Pair

Public Private

" Key Key
Bitfile Public
Library Key
Configl 4 L
Encrypt External Decrypt R
— processT | Interfacer— Process —— ICAP

Fig. 4. Proposed Scheme for Bitstream Protection

time. If a new configuration is downloaded from the
host it may be encrypted with a different public key
and decrypted with the corresponding new private key.
Even if the FPGA is configured with the same partial
bitfile later, such as after a power-on-reset, a different
public/private key pair is used even though it is the
same bitfile.

There is no need of any non-volatile memory to store
the key (as for symmetric key in previously mentioned
scheme) for decrypting the bitfiles as the private key
is generated on the fly. In addition, the private key
generated by the asymmetric algorithm running on
the FPGA is stored in the SRAM and if the FPGA
loses power then the private key no longer exists as
the SRAM memory is volatile.

In general, the partial bitfile contains the vast major-
ity of the FPGA design with the logic in the static de-
sign consuming a very small percentage of the overall
FPGA resources. So, most of the FPGA resources are
allocated to the actual applications contained in the
partial bitstreams.

Even if at some point of time it is found that the asym-
metric algorithm being used is no more secure, one
can replace it with a new algorithm as it just requires
loading a new full bitstream into the static region of
the FPGA.

Even if the system is stolen and the FPGA remains
powered it is extremely difficult to find the private key,
because it is stored in the general purpose FPGA fab-
ric, but not in a special purpose register.

The issue of loading IPs from different vendors onto
a single SoC is addressed.

This scheme can be used to protect the IPs of low-end
FPGAs too, which support the partial reconfiguration
feature.



Host (PC) FPGA

Bitfile Library

(full and partial) Send the full

bitstream

Configure FPGA
with full bitstream
(RSA/ECC)
Generate public-
rivate key pair
Request the L P
public key
Send the
public key

Encryprt the partial
bitfile with the

public key
Send the encrypted

partial bitfile

Decrypt the partial
bitfile with the
private key

'
Configure the FPGA
with the partial
bitfile using ICAP

Fig. 5. Protocol for secure FPGA Configuration

There are also certain disadvantages with this scheme,
like the implementation of asymmetric key algorithm (RSA)
on an FPGA consumes a lot of resources which can be avoided
by considering efficient asymmetric key algorithms like ECC
instead of RSA. Although the generation of partial and full
bitstreams for the FPGA is cost expensive, time expensive,
and exhausting at the moment, the FPGA vendors claim that
it will be much easier on top of their newer versions of
tools. In the following we consider a few attack scenarios
against the proposed method and define the corresponding
solutions.

4.3. Possible Attack Scenario and Solution

The main objective of the proposed scheme is to protect the
FPGA configuration files without the fixed storage of keys
in/out of FPGA. However, we can use Flash-based FPGAs
over SRAM-based FPGAs for key storage but the former are
not in common use yet. The proposed system works well
when we consider an in-house scenario i.e., the PC and the
FPGA are directly connected to each other and the loading
of IPis local i.e., from PC to FPGA over a JTAG/USB cable.
But when the bitstream (IP) is to be loaded from a remote
location or over Internet then there is a possibilty of an at-
tack on the system such as the Man-In-The-Middle (MITM)
attack.

In MITM attack, an adversary tries to intercept the com-
munication channel between the IP provider (PC in our case)
and the system developer (FPGA onto which the IP is to be
deployed). Here the adversary can decieve the system in two
possible ways. In one case, he can pose himself as the FPGA

IP Vendor System Developer

Bitfile (IP) Library

Request the
public key
Send the public
key over mobile
phone link

Encryprt the IP

with the

ublic ke;
P Y Send the en-

crypted IP

Decrypt the IP
with the
private key
J
Configure the FPGA
with the new IP

Fig. 6. Security Protocol against MITM Attack

system (IP receiver) and send his own generated public key
to the PC system (IP vendor) for encryption inorder to de-
crypt it later, with his private key, to know the application (or
IP) to be loaded onto the FPGA, thereby compromising the
privacy of the whole system. In the other case, he can pose
himself as the IP provider to receive the public key from the
FPGA system and send back encrypted malicious bitstreams
to the FPGA which on after loading on to the system would
destroy the device. These two attacks clearly show that there
is a lack of mutual authentication for data origin in the sys-
tem.

One solution to avoid the MITM attack is by providing
an additional, non-Internet based channel for transmission
of the public key from FPGA system to the IP vendor. The
FPGA armed PC workstation (system developer) must ex-
ploit an UMTS stick for a mobile phone link to the configu-
ration files server (IP vendor) as shown in figure 6. Thereby,
only the IP vendor and the FPGA (IP receiver) would know
the public key being transmitted over the channel, which
guarantees the IP origin. However, there are other solutions
available in the literature for thwarting MITM attack.

5. IMPLEMENTATION RESULTS

Algorithms ECC, AES, and RSA have been implemented
on a Xilinx VSLX110T platform and their resource require-
ments are compared to show the feasibility of implementa-
tion of the proposed scheme. The resource consumptions for
the algorithms and other modules needed by the scheme are
summarised in table 1. Obviously, the number of resources
(slice LUTs and slice registers) occupied by the public key

207



Table 1. Synthesis Results

Module LUTs | Registers | BRAMs | Delay
ECC 2466 | 1207 2 5.142 ns
AES 853 536 5 3.870 ns
RSA 16319 | 12080 2 7.442 ns
PR ICAP | 168 170 2 -

UART 753 442 - -

algorithm (RSA) is much higher compared to the symmetric
key algorithm (AES) but the ECC resource consumption is
approximatable with AES. Also, the calculation time delay
for each of the algorithms is measured at a speed grade of
“-1” of the FPGA device. So, the use of ECC algorithm for
decrypting the incoming encrypted partial bitstream instead
of an on-board AES decryption unit is justified with refer-
ence to the overall advantages gained as mentioned in the
previous section.

6. CONCLUSION AND FUTURE WORK

In this paper we proposed a novel design method to protect
the FPGA configuration files which avoids the need to store
the cryptographic keys in registers of the FPGA or in an ex-
ternal non-volatile memory. The proposed scheme uses the
special feature of SRAM-based FPGAs, i.e., dynamic par-
tial reconfiguration and the well-known public key cryptog-
raphy scheme to secure the IP of the design. In addition,
we considered how to avoid the MITM attack by proposing
a security protocol against it thereby providing a complete
solution for secure loading of the IPs supplied from differ-
ent vendors onto a single SoC. The feasibility of the im-
plementation of the proposed scheme on a Xilinx Virtex-5
FPGA platform was shown with resource consumption val-
ues of algorithms used in the scheme. As a part of future
work there is a need to reduce the number of resources be-
ing consumed by public key algorithms through algorithm
optimization and also to strengthen the system against other
possible attacks.

7. REFERENCES

[1] J.-B. Note and E. Rannaud, “From the bitstream to
the netlist,” in Proceedings of the 16th ACM/SIGDA
nternational Symposium on Field Programmable
Gate Arrays, ser. FPGA ’08. New York, NY,
USA: ACM, 2008, pp. 264-264. [Online]. Available:
http://doi.acm.org/10.1145/1344671.1344729

R. Anderson and M. Kuhn, “Tamper resistance: a cau-
tionary note,” in Proceedings of the 2nd conference on
Proceedings of the Second USENIX Workshop on Elec-
tronic Commerce - Volume 2, 1996, pp. 1-1.

[10]

[12]

[13]

208

[3] ——, “Low cost attacks on tamper resistant devices.”
Springer-Verlag, 1997, pp. 125-136.

[4] S.Mangard, “A simple power-analysis (SPA) attack on
implementations of the AES key expansion,” in Pro-
ceedings of the 5th international conference on Infor-
mation security and cryptology. Berlin, Heidelberg:

Springer-Verlag, 2003, pp. 343-358.

G. Canivet, R. Leveugle, J. Clediere, F. Valette, and
M. Renaudin, “Characterization of Effective Laser
Spots during Attacks in the Configuration of a Virtex-
I FPGA,” in Proceedings of the VLSI Test Symposium,
2009. VTS’09. 27th IEEE. 1EEE, 2009, pp. 327-332.

=

in Xilinx Corporation. Virtex-II platform FPGA Hand-
book.

in Xilinx Corporation. Virtex-5 FPGA configuration
guide.

T. Kean, “Secure configuration of field programmable
gate arrays,” in Proceedings of the International Con-
ference on Field Programmable Logic and Applica-
tions. Springer-Verlag, 2001, pp. 142-151.

[9] K. Yip and T. Ng, “Partial-encryption technique for
intellectual property protection of FPGA-based prod-
ucts,” IEEE Transactions on Consumer Electronics,

vol. 46, no. 1, pp. 183-190, Feb. 2000.

J. Guajardo, S. S. Kumar, G. Schrijen, and P. Tuyls,
“Physical unclonable functions and Public-Key crypto
for FPGA IP protection,” in Proceedings of the In-
ternational Conference on Field Programmable Logic
and Applications, 2007, pp. 189-195.

J. Lach, W. H. Mangione-smith, and M. Potkon-
jak, “Signature hiding techniques for fpga intellectual
property protection,” in Proceedings of the IEEE/ACM
International Conference on Computer Aided design,
1998.

T. Guneysu, B. Moller, and C. Paar, “Dynamic intellec-
tual property protection for reconfigurable devices,” in
Proceedings of the International Conference on Field
Programmable Technology, 2007, pp. 169—-176.

L. Bossuet, G. Gogniat, and W. Burleson, “Dynam-
ically configurable security for SRAM FPGA bit-
streams,” in Proceedings of the 18th International Par-
allel and Distributed Processing Symposium, 2004,
Santa Fe, NM, USA, pp. 146-153.

E. Simpson and P. Schaumont, “Offline Hard-
ware/Software authentication for reconfigurable plat-
forms,” in Proccedings of the Cryptographic Hard-
ware and Embedded Systems CHES 2006, 2006, pp.
311-323.



