
Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Hardware IP Protection during Evaluation
Using Embedded Sequential Trojan

Seetharam Narasimhan, Case Western Reserve University
Rajat Subhra Chakraborty, Indian Institute of Technology, Kharagpur
Swarup Bhunia, Case Western Reserve University

Abstract—
Evaluation of hardware Intellectual Property (IP) cores is an important step in an IP-based system-on-chip
(SoC) design flow. From the perspective of both IP vendors and Integrated Circuit (IC) designers, it is
desirable that hardware IPs can be freely evaluated before purchase, similar to their software counterparts.
However, protection of these IPs against piracy during evaluation is a major concern for the IP vendors.
Existing solutions typically use encryption and vendor-specific toolsets, which may be unacceptable due to
lack of flexibility to use in-house or third-party design tools. We propose a novel low-cost solution for
hardware IP protection during evaluation, by embedding a hardware Trojan inside an IP in the form of a finite
state machine (FSM) with special structure. The Trojan disrupts the normal functional behavior of the IP on
occurrence of a sequence of rare events, thereby effectively putting an “expiry date” on the usage of the IP.
The Trojan is structurally and functionally obfuscated, thus protecting against potential reverse engineering
efforts that target isolation of the Trojan circuit.

Keywords – Hardware IP Protection, IP Evaluation, Hardware Trojan, IP Piracy

I. INTRODUCTION

Reuse-based System-on-Chip (SoC) design using hardware Intellectual Property (IP) cores has
become a pervasive practice in the industry to realize bug-free complex SoCs under aggressive time-to-
market target [1]. These IP cores usually come in the form of synthesizable Register Transfer Level (RTL)
descriptions (Soft IP), or gate-level designs directly implementable in hardware (Firm IP), or GDS-II
design database (Hard IP). During the life-cycle of an integrated circuit (IC), these IPs are vulnerable to
various security issues as shown in Fig. 1(a). The cost of IP infringement in the United States was
estimated to be crossing $1 billion per day in 1998 [2] with a large contribution coming from hardware IPs.
These IPs are highly vulnerable to piracy issues at different stages. Other security threats include
reverse-engineering efforts to facilitate cloning, counterfeiting, or re-marking of ICs as well as malicious
alterations by untrusted third-party vendors. Existing solutions to protect IPs from piracy and reverse-
engineering include passive defenses like watermarking [1] as well as active defenses like encryption
(coupled with requirement to use vendor-specific tools) [9], hardware metering [7], and obfuscation [12].

Often, the IP vendors allow evaluation versions of their IPs to be downloaded and evaluated by the IC
designers [3]. This is an important part of their business, because it enables wide publicity of their product
leading to increased market share. It also helps them to get feedback about their product from potential
customers. From the designers’ perspective, IP evaluation is an important step as well, since it helps
them explore alternative IP cores with regard to correctness, quality (power, performance, die-area),
configurability, testability, and compatibility with other modules in an SoC design. Although the practice of
IP evaluation before licensing is simultaneously encouraging to both IP vendors and SoC designers,
unfortunately it makes the IP highly vulnerable to piracy. It creates the possibility of a design house
illegally using an IP in an IC design or selling it to external parties without paying the license fee to the IP
vendor.

To prevent IP piracy, the IP vendors traditionally enforce a binding licensing agreement with the
design house. Alternatively, they provide an IP in encrypted form. The decryption process is
accomplished with a vendor-specific design platform for simulation and synthesis [4], as illustrated in Fig.
1(b). The latter approach is prevalent in Field Programmable Gate Array (FPGA) based design framework
[9]. On the other hand, some IP vendors allow simulation of the downloaded IP, but do not allow it to be
synthesized to gate-level designs or bit-streams (for FPGA platforms) [3]. Such practices, however, force
an SoC designer to evaluate only the IP’s functional behavior, but not the important quality parameters.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

To overcome the shortcomings of existing IP evaluation practices, a recent industry initiative has resulted
in a design platform, which allows designers to download and use encrypted IPs from vendor websites.
The synthesis and simulation tools in this design platform are capable of working in a user-transparent
manner based on a technology undergoing IEEE standardization [5]. However, it mandates the use of a
particular design platform throughout the design flow, which may not be acceptable for modern SoC
designers, who typically use different software tools from diverse vendors as well as in-house design
tools.

Sequential Trojan
Insertion

IP Evaluation

IP Licensing
IP Piracy

Legal IP Use

SoC Design w/
Pirated IP

Illegal SoC
Malfunction

IPi with h/w Trojan
based disablerIP

Designer

SoC
Designer

Malicious
Modification

IP Piracy Reverse
Engineering

Cloning

Re-marking

During
Evaluation

After-sale Counterfeiting

Hardware IP Security Issues (a)

(c)

HDL Source
(Soft or Firm IP)

Encryption tool

Encryption
License

Encrypted Design File
(Protected IP)

IP Author End

Protected IP

SoC

Sim
Tool

Decryption
License

Synth
Tool

Layout
Tool

IP User End

Vendor-Specific Tool Suite

IP Design

SoC

(b)

Fig. 1: (a) Taxonomy of hardware IP security issues; (b) traditional IP protection approach using
encryption and vendor-specific toolset; (c) the proposed design flow for protecting hardware IP
during evaluation.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

In this paper, we propose a novel low-cost IP protection technique during IP evaluation. It effectively
enables a vendor to impose an expiry date on the evaluation copy of a hardware IP. It mimics the
protection approach for evaluation versions of commercial software, which can be downloaded from
vendor websites. The proposed technique is based on embedding a specially-crafted Finite State
Machine (FSM), which follows the structure of a sequential hardware Trojan (SHT) in the evaluation copy
of a hardware IP. An SHT represents a malicious design alteration, realized by an FSM that triggers
abnormal functionality on a sequence of rare events inside a design [11]. Fig. 1(c) illustrates the proposed
design flow. An illegal SoC containing a pirated evaluation copy of an IP would cease to follow the
specified functionality after the evaluation period due to the presence of a sequential Trojan, which acts
like a “hardware time-bomb”. To prevent potential reverse engineering of the modified IP aiming to isolate
the Trojan, we implement low-overhead design obfuscation techniques. We also propose two options for
an IP vendor to distinguish the legally sold version of an IP from its evaluation version containing Trojan:
(a) a mechanism to de-activate the Trojan at power-on using a disabling key, or (b) providing a Trojan-
free version. The proposed approach is language and platform-independent and, hence, can be used in
all forms of IP.

II. BACKGROUND

A. Related Work on Hardware IP Protection

With increasing vulnerability of hardware IPs to piracy, investigation of IP protection techniques has
become an emerging area of research. Recent investigations have targeted hardware IP protection
benefiting IP vendors [1], [6], IC designers [7], or both [12]. A well-researched passive approach is digital
watermarking which incorporates a hard-to-remove digital signature in an IP. It helps to establish the
ownership in case of litigation [1]. Some soft IP protection methods perform string modifications of the
RTL plain-text to obfuscate it by affecting its human comprehensibility [6]. However, they do not affect the
black-box functionality of the IP. In [7], an IC protection technique ensures that every instance of an IC
manufactured in the foundry requires an instance-specific enabling pattern from the IC designer to be
operational. It prevents the manufacturing of illegal clones of an IC in a fabrication house. In [12], a gate-
level IP obfuscation technique has been proposed that allows the IP to be used only after a pre-defined
initialization key (sequence of input vectors) is applied.

Note that these IP protection techniques are not directly applicable for protecting evaluation versions
of an IP. The technique proposed in [6] does not prevent an SoC designer from stealing the IP, cloning it,
or performing illegal fabrication, while the digital watermark [1] does not affect the functionality and
usability of a stolen IP. The techniques in [7] and [12] are only useful for protection of an IP post-
evaluation, because the initialization key is provided to a trusted design house after legal purchase. In this
work, we propose a low-cost protection technique for evaluation version of hardware IP. It provides a
designer adequate flexibility to evaluate it, while protecting the interest of the IP vendors.

B. Hardware Trojan

The issue of hardware Trojan has emerged recently due to the widely prevalent industrial practice of
fabrication of ICs in potentially untrusted foundries [11]. Hardware Trojans are malicious modifications of
a circuit that can cause it to fail during deployment, with potentially disastrous consequences. These
Trojans would typically evade detection during conventional post-manufacturing test because they trigger
malfunction only under extremely rare conditions unlikely to be exercised during test. Moreover, the
Trojans can be tiny relative to the original circuit which makes them difficult to detect by side-channel
measurements [11]. Some Trojan circuits, referred to as sequential Trojans, represent FSM structures,
which go through a sequence of state transitions before getting activated. On activation, they trigger
malfunction, typically by altering logic values at some payload nodes or by leaking secret information.

III. METHODOLOGY

In this work, we leverage sequential hardware Trojans for the beneficial purpose of IP protection to
prevent illegal usage of the evaluation version of a hardware IP in chip fabrication. The proposed method
consists of three major steps: (a) Trojan Design; (b) Trojan Insertion and (c) Trojan Obfuscation. The
design flow is shown in Fig. 2. In the first step, a pool of Trojans is designed for insertion into different IP
instances. In the second step, the IP designer judiciously integrates the Trojan with the IP netlist, such

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

that the inserted Trojan allows a sufficient evaluation period before it is activated. Finally, the inserted
Trojan is well-hidden by circuit obfuscation to make it difficult for an adversary to reverse engineer. Next
we describe these three steps in detail.

Trojan
Pool

2.1 Compute internal
node probability

2.2 Find rare trigger
conditions

2.4 Find Trojan payload
nodes

1. Trojan Design

Comb Logic

Trigger
Points

Payload

TROJAN

Comb Logic

Original IP

IP with Trojan

Obfuscated IP with
hidden Trojan

2.3 Find unused states

2. Trojan Insertion

Re-synthesis

3. Trojan Obfuscation

FFs

FFs

Fig. 2: Major steps in the proposed design flow for the protection of evaluation version IPs.

A. Trojan Design

First, the IP designer needs to design one or more Trojans which will let the circuit function properly
during the evaluation phase and trigger only after a large number of clock cycles have elapsed. Note that,
unlike evaluation copies of software, there is no way to assign a deterministic “expiry date” in the absence
of an always-on global timer. A counter circuit [9] which triggers malicious modifications after a fixed
number of clock cycles needs to contain a large number of flip-flops, leading to unacceptable design
overhead. Besides, these counters can be easily located and isolated by an attacker.

Fig. 3(a) shows the FSM of an example Trojan. At power-on, the state machine starts at the initial
state S0. It moves from state Si−1 to state Si if the condition Ci is satisfied. Since Cis are chosen to be rare
conditions, the number of cycles required to reach the “Trojan activation state” (ST) can be significant,
even for small state machines. After traversing some intermediate states during which normal operation of
the circuit is ensured, the circuit enters a state (ST) where the Trojan is activated and its output can be
used to modify several payload nodes of the circuit. To avoid self-loops in the state diagram where the
Trojan flip-flops can be identified due to lack of activity, one can expand each state into a group of states
as shown in Fig. 3(b). By increasing number of Trojan activation states and Trojan output nodes which
are alternately asserted after activation, such Trojans can cause maximum impact to the circuit while
avoiding detection. If the evaluation copy of the IP is the same as the sale version, the IP vendor needs to
keep a provision for disabling the Trojan state machine by providing a disabling sequence {Pi} at the
primary inputs, denoted as the “key”. This key will be provided to an IP customer who legally acquires the
IP post-evaluation. Note that a possible attack model to bypass the Trojan would be to detect the Trojan
effect and reset the FSM. However, such repeated error detection followed by system reset during
deployment of an SoC containing the stolen IP would adversely affect design overhead and user
experience.

The activation time of the inserted Trojan depends on the actual Boolean logic used as Trojan state
transition condition and the input vectors. Let the Trojan activation time (tactive) be a random variable
following a probability distribution p(tactive) with maxima μ, as shown in Fig. 3(c). The Expected Time of
Trojan Activation (Tmean) is defined as the mean number of clock cycles after which an embedded Trojan

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

is activated, during simulation or during post-fabrication deployment. The minimum evaluation period Teval
should satisfy the condition:

P1 = P(tactive Teval) = p 	d < ε1 (1)
Similarly, the upper limit Tmax needs to satisfy the condition:
P2 = P(tactive Tmax) = p 	d

∝
 < ε2 (2)

The goal is to design a Trojan such that ε1 and ε2 are minimized for a given Teval and Tmax. This can be
ensured by a proper choice of triggering nodes. Suppose the probability of the Trojan transitioning from
Si−1 to Si is given by pi, 1 i N + 1. This is essentially a Markov Process. Hence, the probability of Trojan
activation, is simply the product of all state transition probabilities. Once in state Si−1, the probability of the
Trojan staying there is 1 − pi. Hence, on average, the Trojan spends (1 − pi) · 2

M cycles in state Si−1,
where M is the total number of primary inputs and state elements in the original circuit. Hence,
Tmean = ∑ . 2 (3)
For instance, with a modest number of states N = 20, pi = 10−5 ∀i and M = 50, Tmean ≈ 2.25 × 1016 cycles.

C1
CN

S00

S01

S03S0n

S02

ST0

ST1

ST3STn

ST2

SN0

SN1

SN3SNn

SN2

CN+1

Ss0

Ss1

Ssn

Ss2

SM1

SM2

SMn

P1

P2

Pn+1

Safe States

Start

S0

S1 S2 SN
C1

C2 C3 CN

Start

SM1

P1

{C1, C2, … CN+1} → Trojan Activation Sequence

{P1, P2, … Pn+1} →Trojan Disabling Sequence

ST
CN+1

Invalid
Operation

SS
Pn+1

Trojan Disabled
Safe State

Normal Operation

Intermediate
States for

Disabling Trojan

Normal Operation Invalid
Operation

(a) (b)

Trojan Activation
State

Ss3

tactiveμ

p(tactive)

Teval Tmax(c)

Trojan
Output

Trojan
Outputs

Trojan Activation Time

Trojan Activation States

Fig. 3: (a) Trojan state diagram: The sequence of rare conditions C1, C2, . . . ,CN+1 causes the state
machine to reach the Trojan state ST. Application of the disabling sequence P1, P2, . . . , Pn+1 on
power-on causes the circuit to reach a safe state SS. (b) To avoid identification of stuck-at states
in the Trojan state machine, each state with a self-loop can be expanded into a group of states
with non-rare transitions within the group. (c) Probability distribution of Trojan Activation Time
tactive can be represented by a bell-shaped curve where μ may not be equal to Tmean.

B. Trojan Insertion

Once the Trojan design is complete, the Trojan is inserted by judicious choice of trigger and payload
nodes for the Trojan from among the internal circuit nodes.
Trojan trigger: To determine the Trojan trigger nodes, a set of random vectors is generated; the circuit is
simulated using this set of vectors, and the signal probability of the internal nodes is estimated. The
nodes with signal probability below a given threshold are defined as rare nodes. From this set of rare
nodes, the required number of trigger nodes for the Trojan are chosen with corresponding rare logic
values, to construct the Trojan state transition conditions.
Trojan payload: Next, the fanout (FO) and fanin (FI) cones of each internal node are enumerated and a
weighted normalized metric (Pn) [12] based on their sizes is used for ranking them.

0.5
| |

	 | |

| |

	 | |
 (4)

Nodes with a higher value of Pn are chosen for modification, to ensure that the effect will be propagated to
large parts of the IP. The payload nodes can be selectively inverted upon Trojan activation using XOR
gates. On the other hand, they can be set to reveal a pre-determined signature indicating that the IP has
crossed its “expiry date”. One way to do this would be to force the state elements to an originally
unreachable” state [8] upon Trojan activation. To increase the malicious effect of the inserted Trojan,
multiple groups of state elements can be forced to unreachable states by the different Trojan outputs.
This also helps in obfuscating the Trojan and makes it difficult to bypass the Trojan using error detection
and reset circuit.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

C. Trojan Obfuscation
After the Trojan is inserted, it is important to hide it effectively inside the IP to prevent an adversary

from reverse-engineering the IP and isolating the Trojan. This is done by resynthesizing the modified
design to generate a single flattened netlist. The logic optimization and resource sharing steps during re-
synthesis help in reducing the area and performance overhead. A potential adversary can resort to the
following possible approaches of unveiling the inserted Trojan:

1) Functional simulation based identification of Trojan circuitry: By using high-speed simulation or
hardware emulation, the malfunction due to the Trojan can be observed after a time interval T « Tmean for
a typical clock frequency. Then the adversary has to “unroll” the entire state machine in the IP back in
time, in order to identify the Trojan circuitry. However, such “FSM unrolling” usually involves Boolean
justification of enormous combinational circuits, which is computationally an NP-complete problem.
Because of the inter-mingled Trojan flip-flops in the flattened netlist, it becomes even more challenging to
detect the correct state of the unmodified IP.

Functional simulation can also be used to identify rare nodes as potential Trojan triggers. However,
the adversary needs to identify the particular rare event that triggers the Trojan, which is derived by
combining many such nodes. The number of such rare events is an exponential function of circuit nodes.
For example, in case of an 8-bit ALU circuit (c880) with 451 internal nodes and about half of them having
signal probability of 0.2 or less, the total number of rare conditions comprising of 4 nodes or less is ~109.
Moreover, a rare event can be derived by combining both rare and non-rare events, which significantly
increases the number of possible rare Trojan trigger conditions.

2) Side-channel analysis or logic testing based Trojan detection: The logic testing based approaches
[11] aim to cause rare events at internal nodes to trigger arbitrary Trojans while the side-channel based
approaches [11] aim at observing Trojan effect on a physical parameter, such as the power trace or the
critical path delay. It should be noted that, here, the attacker is trying to identify the Trojan and disable it
so that the IP can be used illegally. Hence, it is not enough to simply detect that the IP contains a Trojan.
Moreover, in the absence of a golden design, it is difficult to understand which gates of the circuit are
“original” and which belong to the Trojan.

3) Structural analysis through formal verification: This is the best possible attack scenario for an
adversary to identify the Trojan-related design modifications, assuming he/she has a functionally
equivalent design (e.g. an earlier generation sale version of the IP). First, the adversary derives the F
failing nodes using formal verification. For each failing node the node modification scheme is given by fmod
= f · + g · en, where en is the Trojan output which modifies the node f to the function g (= , for XOR).
To detect the effect of a particular en signal, the adversary should be able to represent the Reduced
Ordered Binary Decision Diagram (ROBDD) of the modified node with the en signal as the root node.
Finding the correct ROBDD representation for a node with fanin cone size fi has a computational
complexity of O(2fi). Next, establishing equivalence for one of the sub-graphs of the root node en with the

graph for f through graph isomorphism has a computational complexity 2 	 	 . The combined

problem of complexity O (2fi·2). must be solved for each of the F nodes failing formal
verification. Due to semantic obfuscation whereby the node names are changed, the adversary has to
perform compare point matching to identify each of the failing verification nodes in the original circuit,
which has an added complexity of (SN)! combinations, where SN is the number of failing state elements.

Hence, the computational complexity of this approach can be quantified as an Obfuscation Metric:

MD = F · 2 ·2
	 	 	

+ (SN)! (5)
where is the average fanin-cone size of each node failing formal verification. Any increase in the value
of this metric implies increase in the computational effort required by an attacker to isolate the Trojan,
which in turn is indicative of the obfuscation achieved by the scheme. Based on this metric, the following
guidelines can be used by the IP designer to design a well-obfuscated Trojan:

• Those nodes which have larger fanin cones should be preferably modified.
• Forcing unreachable states on the state elements of the original circuit upon Trojan activation

increases the practical computational complexity of its detection, since the inputs of the modified state
elements would contribute in increasing fi.

• Modification of a larger number of nodes increases F, which in turn increases the level of obfuscation.
• A Trojan with larger number of flip-flops increases its obfuscation level slightly because SN increases.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

From these observations, it is evident that more complex Trojan design and insertion to attain high
levels of obfuscation incur greater design overhead. Hence, the IP designer has to make a trade-off
between design overhead and the level of security achievable through obfuscation.

In the case where the sale copy of the IP still contains the Trojan and a disabling key is provided to
the IP customer who legally acquires it, the attacker will try to get hold of the disabling key to illegally use
the IP or distribute the key. The first step to prevent this is to use a different random key for different
evaluation instances of an IP. Another way to thwart such malicious attempts is to use Trojans with
varying structure, randomly chosen from the pool of Trojans, in different evaluation copies.

IV. RESULTS

To demonstrate the feasibility of the proposed approach, we applied it to several sequential
benchmark circuits (ISCAS-89) as well as two open-source Verilog IP cores - the Advanced Encryption
Standard (AES) and the 2-D Discrete Cosine Transform (DCT) from [10]. Sequential Trojans of three
different sizes (number of states - 4, 16 and 64, respectively) were designed and inserted in the
synthesized gate-level circuits. These Trojan designs are referred to as Trojans Type I, II and III. Table I
shows the area and power overhead for these Trojans at iso-delay for some of the benchmark circuits.
The circuit delay was kept unaffected by avoiding Trojan insertion in critical timing paths and by
specifying the same delay constraint for both original and modified versions of the circuits during re-
synthesis. We can note from Table I that the area overhead increases with the size of the Trojan circuit,
while the area overhead decreases with an increase in the size of the original IP. Hence, the size of the
original circuit should guide the choice of the Trojan to be inserted.

TABLE I: Area and power overhead results for five ISCAS-89 benchmark circuits and two open-
source IP cores with different Trojan sizes, and Obfuscation metric (log MD) for two different
payload schemes: Case I selects the nodes randomly, Case II selects nodes with higher Pn.

IP
Trojan Type

(No. of states)
Overhead (%) Obfus. Metric

Area Power Case 1 Case 2

s5378
Trojan I (4) 2.05 -12.29

166.3 247.9 Trojan II (16) 6.24 -6.75
Trojan III (64) 31.04 6.61

S9234
Trojan I (4) 3.31 1.08

101.3 248.9 Trojan II (16) 13.31 5.14
Trojan III (64) 35.96 18.57

S15850
Trojan I (4) 0.91 0.97

498.7 819.5 Trojan II (16) 1.84 0.52
Trojan III (64) 5.69 0.77

S35932
Trojan I (4) 0.34 4.53

1202.2 2050.4 Trojan II (16) 0.76 4.66
Trojan III (64) 2.25 2.42

S38584
Trojan I (4) 0.20 0.88

877.3 3624.5 Trojan II (16) 0.62 -0.28
Trojan III (64) 2.13 1.13

DCT
Trojan I (4) 0.70 2.78

12.3 57.4 Trojan II (16) 0.94 2.68
Trojan III (64) 2.07 2.60

AES
Trojan I (4) 0.34 0.05

10.8 69.1 Trojan II (16) 0.44 0.02
Trojan III (64) 0.66 0.01

To estimate the level of obfuscation achieved by the proposed method, we performed formal

verification using Synopsys Formality tool between a benchmark and its modified version. We observed
large number of verification failures for different Trojan payload schemes, such as XOR-ing internal nodes
and forcing state elements to unused states. This shows that the resultant design after Trojan insertion

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

and obfuscation has significant structural difference from the original. We also evaluated the values of the
obfuscation metric MD (in logarithmic scale), as presented in Table I for F = 10. The log MD values show
that a judicious choice of payload nodes with high fanins (Case II) provides higher level of obfuscation.
We observed similar increases in log MD for increasing F, while it was almost independent of the number
of Trojan flip-flops.

To get an estimate of the number of cycles required for activation, the DCT IP core with different
inserted Trojans was simulated with 100,000 random input vectors. The state transition condition was
formed using nine rare node values. The number of cycles it took for the Trojan to activate (i.e. the
“activation cycles”) in each case is plotted in Fig. 4(a) in logarithmic scale vs. the number of bits in the
Trojan state machine. This plot clearly demonstrates the exponential dependence of activation cycles on
the number of bits in the Trojan state machine.

Since the number of activation cycles is also a function of rareness of the state transition condition, it
can be increased by changing the number of Trojan trigger nodes. We calculated the probability of the
rarest condition that could be achieved using different number of rare nodes in a single IP. Fig. 4(b)
shows that activation probability decreases with increase in the number of trigger nodes, which increases
the number of cycles for Trojan III activation for the ISCAS-89 circuit s35932. Similar trends were
observed for other benchmark circuits and IPs. From these results, we can infer that the proposed
approach is capable of providing high levels of security at nominal area and power overhead. The level of
security as well as overhead can be adjusted through choice of Trojan design parameters.

0.1

1

10

100

1000

2 4 6 8 10 12
of State Elements in Trojan State Machine

(b)

0

5

10

15

20

25

0

0.1

0.2

0.3

3 4 5 6 7 8 9

Tr
oj

an
 T

ri
gg

er
 C

yc
le

s
(x

 1
E

6)

A
ct

. P
ro

ba
bi

lit
y

(x
 1

E
-3

)

of Trigger Nodes

Prob. Cycles

(a)

Fig. 4: (a) Dependence of activation cycles on size of inserted Trojan. (b) Dependence of activation
probability of trigger condition on number of trigger nodes and corresponding number of
activation cycles for Trojan III.

V. CONCLUSION

We have presented a low-cost design approach for protecting the evaluation version of hardware IPs
from potential piracy. It exploits the properties of sequential hardware Trojan circuits, which are activated
through a sequence of rare events. The proposed approach is suitable for all forms of hardware IP and
for both SoC and FPGA design platforms. It allows a designer to evaluate an unencrypted IP using a

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

preferred design flow and toolsets. Judicious choice of triggering condition can help to control the Trojan
activation time, thus ensuring sufficient time to evaluate an IP. The Trojan remains well-obfuscated in the
IP which makes it computationally challenging for an adversary to isolate it using functional or structural
analysis.

The Trojans can be designed to produce recognizable signature at the primary outputs which can
help an evaluator identify the expected wrong behavior. Potential use of an evaluation copy in a
fabricated IC can be detected during the prolonged system integration and testing step. It helps us avert
possible harm to innocent end-users due to illegal IP usage. The proposed approach also provides
additional benefit of embedding a digital watermark or authentication feature at minimal design overhead
to increase the level of post-sale security. Finally, the approach can be combined with other IP protection
techniques such as key-based IP locking to achieve comprehensive IP security.

REFERENCES

[1] E. Castillo, U. Meyer-Baese, A. Garcia, L. Parrilla and A. Lloris, “IPP@HDL: Efficient Intellectual Property
protection scheme for IP cores”, IEEE Trans. on VLSI, pp. 578-590, 2007.
[2] VSI AllianceTM White Paper, “Intellectual Poperty Protection: Schemes, Alternatives and Discussion”. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.9058&rep=rep1&type=pdf
[3] R. Goering, “Synplicity initiative eases IP evaluation for FPGAs”. [Online]. Available:
http://www.scdsource.com/article.php?id=170
[4] T. Batra, “Methodology for protection and licensing of HDL IP”. [Online]. Available:
http://www.us.design-reuse.com/news/?id=12745\&print=yes
[5] “Recommended practice for encryption and [Use Rights] management of electronic design Intellectual Property
(IP)”. [Online]. Available: http://www.eda.org/twiki/bin/view.cgi/P1735/WebHome
[6] “ThicketTM family of source code obfuscators”. [Online]. Available: http://www.semdesigns.com
[7] Y. Alkabani, F. Koushanfar and M. Potkonjak, “Remote activation of ICs for piracy prevention and digital right
management”, Intl. Conf. on CAD, 2007.
[8] H.-C. Liang, C.-L. Lee and J.-E. Chen, “Invalid state identification for sequential circuit test generation”, Asian Test
Symposium (ATS), 1996.
[9] Altera Corporation, “US Patent 7234159 - Method and apparatus for controlling evaluation of protected intellectual
property in hardware”. [Online]. Available: http://www.patentstorm.us/patents/7234159.html
[10] [Online] http://www.opencores.org
[11] M. Tehranipoor and F. Koushanfar, “A survey of hardware Trojan taxonomy and detection”, IEEE Design and
Test of Computers, vol. 27, no. 1, pp. 10-25, 2010.
[12] R.S. Chakraborty and S. Bhunia, “HARPOON: An obfuscation based SoC design methodology for hardware
protection”, IEEE Trans. on CAD of Integrated Circuits and Systems, Oct. 2009.

Seetharam Narasimhan is pursuing a PhD in computer engineering at Case Western Reserve University, Cleveland,
Ohio. His research interests include low power and robust design, implantable electronics and hardware security. He
has a BE in electronics and telecommunication engineering from Jadavpur University, India.

Rajat Subhra Chakraborty is an assistant professor of computer science and engineering at Indian Institute of
Technology, Kharagpur, India. His research interests include hardware security and low power and robust design. He
has a PhD in computer engineering from Case Western Reserve University with a focus on hardware IP protection
and hardware Trojan detection.

Swarup Bhunia is an assistant professor of electrical engineering and computer science at Case Western Reserve
University, Cleveland, Ohio. His research interests include low power and robust design, hardware security and
implantable electronics. He has a PhD in electrical engineering from Purdue University with a focus on yield-aware,
low-power and testable design approaches.

S. Narasimhan is with the Department of Electrical Engineering and Computer Science, Case Western
Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, USA - 44106. E-mail: sxn124@case.edu.
R.S. Chakraborty is with the Department of Computer Science and Engineering, Indian Institute of
Technology, Kharagpur, West Bengal, India. E-mail: rschakraborty@cse.iitkgp.ernet.in.
S. Bhunia is with the Department of Electrical Engineering and Computer Science, Case Western
Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, USA - 44106. E-mail: skb21@case.edu.
Phone: +1-216-3685550 Fax: +1-216-3686039

