
Techniques for Increasing
Security and Reliability of IP

Cores Embedded in FPGA and
ASIC Designs

Der Technischen Fakultät der
Universität Erlangen-Nürnberg

zur Erlangung des Grades

D O K T O R - I N G E N I E U R

vorgelegt von

Daniel Michael Ziener

Erlangen 2010



Als Dissertation genehmigt von der Technischen
Fakultät der Universität Erlangen-Nürnberg

Tag der Einreichung: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 02. Juni 2010
Tag der Promotion: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27. Juli 2010
Dekan: . . . . . . . . . . . . . . . . . . . . . . . . Prof. Dr.-Ing. Reinhard German
Berichterstatter: . . . . . . . . . . . . . . . . . . . . Prof. Dr.-Ing. Jürgen Teich

. . . . . . . Prof. Dr. sc.techn. Andreas Herkersdorf



Acknowledgments

I would like to express my sincere gratitude to my advisor, Professor Jürgen Teich,
for his guidance, and encouragement throughout this work. His scientific, technical,
and editorial advice was essential for my work as an academic researcher. I would
also thank Professor Andreas Herkersdorf for the fruitful cooperation with him and
his chair and for agreeing to be the co-examiner of this work. My thanks also go to all
my colleagues for the discussions of my research work, especially Marcus Bednara,
for the numerous scientific and editorial advises, and Moritz Schmid for his critical
review of this thesis and his fruitful feedback and discussion. Finally, I would like
to thank my family and friends for their support and encouragement during the past
years.

Daniel Ziener
Erlangen, May 2010

iii



iv



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Dependability and its Attributes . . . . . . . . . . . . . . . 13
1.2.2 Fault, Error, Failure . . . . . . . . . . . . . . . . . . . . . . 16
1.2.3 Fault and Error Categorization . . . . . . . . . . . . . . . . 17
1.2.4 Means to Attain Dependability . . . . . . . . . . . . . . . . 18
1.2.5 Security Flaws and Attacks . . . . . . . . . . . . . . . . . . 20
1.2.6 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.7 IP Cores and Design Flow . . . . . . . . . . . . . . . . . . 23

1.3 Faults in Embedded Systems . . . . . . . . . . . . . . . . . . . . . 25
1.3.1 Degeneration Faults . . . . . . . . . . . . . . . . . . . . . 25
1.3.2 Manufacturing Faults . . . . . . . . . . . . . . . . . . . . . 26
1.3.3 Design Faults . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.4 Single Event Effects . . . . . . . . . . . . . . . . . . . . . 27

1.4 Attacks on Embedded Systems . . . . . . . . . . . . . . . . . . . . 29
1.4.1 Code Injection Attacks . . . . . . . . . . . . . . . . . . . . 31
1.4.2 Invasive Physical Attacks . . . . . . . . . . . . . . . . . . . 33
1.4.3 Non-Invasive Logical Attacks . . . . . . . . . . . . . . . . 35
1.4.4 Non-Invasive Physical Attacks . . . . . . . . . . . . . . . . 35

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.5.1 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . 40

2 Related Work 43
2.1 Security: IP Protection . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.1 Encryption of IP Cores . . . . . . . . . . . . . . . . . . . . 46
2.1.2 Additive Watermarking of IP Cores . . . . . . . . . . . . . 48
2.1.3 Constraint-Based Watermarking of IP Cores . . . . . . . . . 51
2.1.4 Other Approaches . . . . . . . . . . . . . . . . . . . . . . 55

2.2 Security: Defenses Against Code Injection Attacks . . . . . . . . . 56
2.2.1 Methods using an Additional Return Stack . . . . . . . . . 57
2.2.2 Methods using Address Obfuscation and Software Encryption 57

v



Contents

2.2.3 Safe Languages . . . . . . . . . . . . . . . . . . . . . . . . 58
2.2.4 Code Analyzers . . . . . . . . . . . . . . . . . . . . . . . . 59
2.2.5 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . 60
2.2.6 Compiler, Library, and Operating System Support . . . . . . 61

2.3 Reliability: Measures against Faults and Errors . . . . . . . . . . . 64
2.3.1 Hardware Redundancy Methods . . . . . . . . . . . . . . . 65
2.3.2 Time Redundancy Methods . . . . . . . . . . . . . . . . . 66
2.3.3 Information Redundancy Methods . . . . . . . . . . . . . . 69
2.3.4 Prevention and Detection of Single Event Effects . . . . . . 73

2.4 Reliability and Security: Control Flow Checking . . . . . . . . . . 74
2.4.1 Software-Based Methods . . . . . . . . . . . . . . . . . . . 74
2.4.2 Methods using Watchdog Processors . . . . . . . . . . . . . 76

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3 IP Core Watermarking and Identification 83
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.2 Theoretical Watermark Model . . . . . . . . . . . . . . . . . . . . 87

3.2.1 General Watermark Model . . . . . . . . . . . . . . . . . . 87
3.2.2 IP Core Watermark Model . . . . . . . . . . . . . . . . . . 92
3.2.3 IP Core Identification Model . . . . . . . . . . . . . . . . . 97

3.3 Bitfile Watermarking and Identification . . . . . . . . . . . . . . . 98
3.3.1 Lookup Table Content Extraction . . . . . . . . . . . . . . 99
3.3.2 Identification of Netlist Cores by Analysis of LUT Contents 102
3.3.3 Identification of HDL Cores by Analysis of LUT Contents . 109
3.3.4 Watermarks in LUTs for Bitfile Cores . . . . . . . . . . . . 112
3.3.5 Watermarks in Functional LUTs for Netlist Cores . . . . . . 115

3.4 Power Watermarking . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.4.1 Verification over Power Consumption . . . . . . . . . . . . 122
3.4.2 Communication Channel . . . . . . . . . . . . . . . . . . . 125
3.4.3 Basic Method . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.4.4 Enhanced Robustness Encoding Method . . . . . . . . . . . 140
3.4.5 BPSK Detection Method . . . . . . . . . . . . . . . . . . . 142
3.4.6 Correlative Detection Methods . . . . . . . . . . . . . . . . 146
3.4.7 Multiplexing Methods . . . . . . . . . . . . . . . . . . . . 149

3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 155
3.5.1 Identification of Netlist Cores by Analysis of LUT Contents 155
3.5.2 Identification of HDL Cores by Analysis of LUT Contents . 156
3.5.3 Watermarks in LUTs for Bitfile Cores . . . . . . . . . . . . 159
3.5.4 Watermarks in Functional LUTs for Netlist Cores . . . . . . 160
3.5.5 Power Watermarking . . . . . . . . . . . . . . . . . . . . . 163

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

vi



Contents

4 Control Flow Checking 179
4.1 Introduction and Scope . . . . . . . . . . . . . . . . . . . . . . . . 179

4.1.1 AIS Project Overview . . . . . . . . . . . . . . . . . . . . 180
4.1.2 AIS Work Packages Overview . . . . . . . . . . . . . . . . 181

4.2 Fault Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
4.2.1 Intentional Fault Injection . . . . . . . . . . . . . . . . . . 184
4.2.2 Random Fault Injection . . . . . . . . . . . . . . . . . . . . 185

4.3 Methods for Control Flow Checking . . . . . . . . . . . . . . . . . 186
4.3.1 Branches and Jumps . . . . . . . . . . . . . . . . . . . . . 186
4.3.2 Methods for Checking Direct Jumps/Branches . . . . . . . 187
4.3.3 Methods for Checking Indirect Jumps/Branches . . . . . . . 197
4.3.4 Methods for Handling a Corrupt Control Flow . . . . . . . 200
4.3.5 IP Core Control Flow Checking . . . . . . . . . . . . . . . 201

4.4 Architectures for Control Flow Checking . . . . . . . . . . . . . . 203
4.4.1 Handling Direct Jumps and Branches . . . . . . . . . . . . 203
4.4.2 Handling Indirect Jumps and Branches . . . . . . . . . . . 207
4.4.3 Handling Interrupts and Traps . . . . . . . . . . . . . . . . 210
4.4.4 Checking Conditional Branches . . . . . . . . . . . . . . . 212
4.4.5 Instruction Integrity Checker . . . . . . . . . . . . . . . . . 213
4.4.6 Repairing a Corrupt Control Flow by Re-Execution . . . . . 215
4.4.7 Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . 216
4.4.8 IP Core Control Flow Checking . . . . . . . . . . . . . . . 218
4.4.9 Fault Coverage . . . . . . . . . . . . . . . . . . . . . . . . 221
4.4.10 Overhead Discussion . . . . . . . . . . . . . . . . . . . . . 222

4.5 Prototypical Implementation . . . . . . . . . . . . . . . . . . . . . 228
4.5.1 The SPARC V8 Instruction Set Architecture . . . . . . . . . 228
4.5.2 An Overview of the Leon3 Processor Architecture . . . . . 233
4.5.3 Integration of the Control Flow Checker Architecture . . . . 234
4.5.4 A Tool for Program Analysis . . . . . . . . . . . . . . . . . 242
4.5.5 Interaction between Control Flow Checking and Data Path

Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
4.5.6 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
4.5.7 Simulation and Verification . . . . . . . . . . . . . . . . . 252
4.5.8 Synthesis and Implementation . . . . . . . . . . . . . . . . 254

4.6 Case Study: Turbo Decoder . . . . . . . . . . . . . . . . . . . . . . 257
4.6.1 The AIS Demonstrator . . . . . . . . . . . . . . . . . . . . 257
4.6.2 Control Flow Checking Contribution . . . . . . . . . . . . 259

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

5 Conclusions 263

A German Part 267

vii



Contents

Bibliography 275

Symbols 311

Curriculum Vitae 317

viii



1
Introduction

The focus of this work are faults and attacks in embedded systems, as well as methods
to cope with their associated overhead. This chapter gives a motivation for the topic
of this thesis. Also, terms and definitions in the field of security and reliability are
given. Finally, the major contribution of this work are summarized.

1.1 Motivation

Since the invention of the transistor, the complexity of integrated circuits continues to
grow rapidly. First, only basic functions like discrete logic gates were implemented
as integrated circuits. With improvements in chip manufacturing, the size of the
transistors was drastically reduced and the maximum size of a die was increased.
Now, it is possible to integrate more then one billion transistors [Xil03] on one chip.

In the beginning, electric circuits (e.g., a central processing unit) consisted of dis-
crete electronic devices which were integrated on printed circuit boards (PCBs) and
consumed a lot of power. The invention of integrated circuits in the end of the 1950s
laid also the cornerstone of the development of embedded systems. For the first time,
the circuits were small enough and consumed less power, so that applications embed-
ded into a device, like production machines or consumer products became possible.
An embedded system is considered as a complete special purpose computer that may
consist of one or more CPUs, memories, a bus structure and special purpose cores.

The first integrated circuits were able to integrate basic logic functions (e.g., AND-,
OR-gate) and flip-flops. With further integration, complex circuits, like processors,
could be implemented into one chip. Today, it is possible to integrate a whole system

1



1. Introduction

with processors, buses, memories and specific hardware cores on a single chip, a so
called system-on-chip (SoC).

These small, power and cost efficient, but manifolded applicable embedded sys-
tems finally took off on their triumphal course. Today, embedded systems are in-
cluded in most electrical devices, from the coffee machine over stereo systems to
washing machines. The application field of embedded systems spans from consumer
products, like mobile phones or television sets, over safety critical applications, like
automotive or nuclear plant applications, to security applications, such as smart cards
or identity cards.

As integration density grew, problems with heat dissipation arose. The embedding
of electronics into systems with small place and reduced cooling possibility, or the
operation in areas with extreme temperature, intensify this problem. Furthermore,
an embedded system which is integrated into an environment with moving parts is
exposed to shock. Thermic and shock problems have a high influence on the relia-
bility of the system. On the other hand, a system that steers big machines or controls
a dangerous process must have a high operational reliability. These are all reasons
that design for reliability is gaining more and more influence on the development of
embedded systems.

However, what is the need for reliability, if everyone may alter critical parameters
or shut down important functions? To solve these problems, we need access control
to the embedded system. But, today, embedded systems are also used to grant access
to other systems or buildings. One example are chip cards. Inside these cards, a
secret key is stored. It is important that no unauthorized persons or systems are able
to read this secret key. Thus, an embedded system should not only be reliable but
also secure.

Integration of functions for the guarantee of reliability and security features in-
creases also the complexity of the integrated system enormously and thus design
time. On the other hand, the market requires shorter product cycles. The only solu-
tion is to reuse cores, which have been designed for other projects or were purchased
from other companies. The number of reused cores constantly increases. The advan-
tages of IP core (Intellectual Property cores) reuse are substantial. For example, they
offer a modular concept and fast development cycles.

IP cores are licensed and distributed like software. One problem of the IP cores
distribution, however, is the lack of protection against unlicensed usage, as cores can
be easily copied. Future embedded systems should also be able to prevent the usage
of unlicensed cores or the core developers should be able to detect their cores inside
an embedded system from third party manufactures.

Considering todays embedded systems, the integration of reliability and security
increasing functions depends on the application field. In the area of security-critical
systems (e.g., chip cards, access systems, etc.), several security functions are im-
plemented. We find additional reliability functions in systems where human life or
valuable assets are at stake (e.g., power plants, banking mainframes, airplanes, etc.).

2



1.1 Motivation

On the other hand, the problem of all these additional functions is the requirement
for additional chip area. For cost-sensitive products which are produced in huge vol-
umes, like mobile phones or chip cards, the developer must rethink to integrate such
additional functions.

Today, CMOS technologies for integrated circuits have reached the deep-submi-
cron area. CMOS designs manufactured in deep-submicron technologies are very
sensitive against ionized radiation (which may cause soft errors), operating point
variation by means of temperature or supply voltage fluctuations, as well as parasitic
effects, which results in statical leakage currents [ITR07] [Mic03].

Future circuits manufactured in deep-submicron technology can be integrated with
a much higher complexity and more cores than with today’s technologies. To achieve
a short time to market of future products, the usage of IP cores become more and
more important. This will boost the trade with IP cores, which also arises the ques-
tion of their security against unlicensed usage. Also, the percentage of costs for area
overhead for additional security and reliability functions will decrease with increas-
ing chip area. These facts show that reliability and security of IP cores will become
more and more important for future system development. They have motivated this
thesis entitled: “Techniques for Increasing Security and Reliability of IP Cores
Embedded in FPGA and ASIC Designs”

Why Security?

Security becomes more and more important for computers and embedded systems.
With the ongoing integration of personal computers and embedded systems into net-
works and finally into the Internet, security attacks on these systems arose. These net-
worked, distributed devices may now compute sensitive data from the whole world
and the attacker does not need to be physically present. Also, the increased complex-
ity of these devices increases the probability of errors which can be used to break
into a system. Figure 1.1 shows a classification of different types of attacks related to
computer systems. This information is obtained form the CSI Computer Crime and
Security Survey [Ric08], where 522 US-companies reported their experience with
computer crime. Further, the integration of networking interfaces into embedded
devices, for which it would not be obviously necessary lead to strange attacks, for
example that someone can break into the coffee machine over the Internet and alter
the composition of the coffee [Wri08].

Within the last decade, the focus of the embedded software community paid more
attention onto security of software-based applications. Today, most of the software
updates fix security bugs and provide only little additional functionality. At the same
time, the number of embedded electronic devices including at least one processor is
increasing.

The awareness of security in digital systems lead to investigation of secure com-
munication standards, for example SSL (Secure Socket Layer) [FKK96], the im-

3



1. Introduction

Denial of service

Laptop theft

Telecom fraud

Unauthorized access

Virus

Financial fraud

Insider abuse

System penetration

Sabotage

Theft/loss of proprietary info

Abuse of wirless network

Web site defacement

Misuse of Web application

Bots

DNS attacks

Instant messaging abuse

Password sniffing

Theft/loss of customer data

0 5 10 15 20 25 30 35 40 45 50
Percentage of Respondents (out of 522)

Figure 1.1: Security attacks reported in the CSI Computer Crime and Security Sur-
vey [Ric08], where 522 US-companies reported their experience with
computer crime for the year 2008.

plementation of cryptographic methods, for example AES (Advanced Encryption
Standard) [Fed01], a better review of software code to find vulnerabilities, and the
integration of security measures into hardware. Nevertheless, Figure 1.2 shows that
the vulnerability of digital systems increased rapidly over the last years. The main
cause for vulnerability are software errors through which a system may be compro-
mised. The software of embedded systems moves from monolithic software towards
module-based software organized and scheduled by an operating system. By means
of modern communication structures like the Internet, the software on embedded
systems may be updated, partially or completely. These update mechanisms and the
different communication possibilities open the door for software based attacks on the
embedded system. For example, the number of viruses and trojans on mobile phones
increased rapidly over the last years. One main gateway for these attacks are buffer
overflows. A wrong jump destination or a wrong return address from a subroutine
might cause an execution of infiltrated code (see also Section 1.4.1).

However, also hardware errors can lead to the vulnerability of a system. For exam-
ple, Kaspersky shows that it is possible that the execution of appropriate instruction
sequences on a certain processor can lead to an adoption of control of the system

4



1.1 Motivation

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Year

V
ul

ne
ra

bi
lit

ie
s 

C
at

al
og

ed

Figure 1.2: Vulnerability of digital systems reported to US-CERT between 1995
and 2007 [US-08].

by an attacker [KC08]. In this case, it does not matter which operation system or
software security programs are running on the system.

A common objective for attackers are sensitive data, which are stored inside a dig-
ital system. To reach this objective, attackers are not only bound to software attacks.
Hardware attacks, where the digital system is physically penetrated to gather infor-
mation over the security facilities, or extract sensitive information are also practical.
If an embedded device stores secure data, like a cryptographic key, attackers may try
to read out this secret data by physically manipulating the processor on the embedded
device. This may be done by differential fault analysis (DFA) [BS97] or by specific
local manipulation on control registers inside the processor (see also Section 1.4.2).
The attackers goal thereby is to execute infiltrated code or deactivate the protection
of the secured data which may result from the manipulation of the program counter.

Another relevant security aspect in embedded systems is intellectual property pro-
tection (IPP). In this work, mainly copyright is in focus. Due to shorter design cycles,
many products can only be developed with acquired hardware cores or software mod-
ules. Those companies selling these cores and modules naturally have a high interest
in securing their products against unlicensed usage. Figure 1.3 shows the estimated
percentage of unlicensed software used in different areas of the world. Also, calcu-
lated revenue losses are shown. Additionally, many unlicensed hardware IP cores are

5



1. Introduction

Asia
- P

acif
ic

Cent
ra

l &
 E

as
te

rn
 E

uro
pe 

La
tin

 A
m

er
ica

M
id

dle
 E

ast 
& A

fri
ca

Nor
th

 A
m

er
ica

W
es

te
rn

 E
ur

op
e

0

10

20

30

40

50

60

70

80
un

lic
en

se
d 

so
ftw

ar
e 

us
ag

e 
in

 %

Asia
- P

ac
ific

Centra
l &

 E
aste

rn
 E

uro
pe 

Lat
in

 A
m

eric
a

M
id

dl
e 

Eas
t &

 A
fri

ca

Nor
th

 A
m

eric
a

W
es

te
rn

 E
uro

pe

0

2000

4000

6000

8000

10000

12000

14000

16000

Lo
ss

es
 (

$M
)

Figure 1.3: On the left side, the percentage of the usage of unlicensed software is
shown in different areas of the world. On the right side the correspond-
ing losses in million US-Dollars are depicted [All07].

used in products. At the RSA conference in 1998, it was estimated, that the adversity
of the usage of unlicensed IP cores approaches 1 Billion US$ per day [All00].

Why Reliability?

In an integrated circuit, permanent errors and transient faults may occur. The dif-
ference between defects, faults, and errors is described in Section 1.2.2. Permanent
errors are known since the invention of integrated circuits. Major causes of perma-
nent errors are production defects and design errors. On the other hand, a transient
fault corrupts the correct value of a signal for a short period of time. After the ef-
fect’s duration, the correct value is usually recovered and the circuit is not physically
damaged. Transient faults can be caused by on-chip perturbations, like power supply
noise or external noise [NX06]. The main cause for external noise inside the earth’s
atmosphere are high energy neutrons from cosmic ray interactions and alpha parti-
cles from nuclear reactions. In space, the main source for radiation are high energy
cosmic rays and high energy protons from trapped radiation belts [Joh00]. Transient
faults caused by radiation are also called soft errors in the literature (see also Section
1.3.4).

Dynamic memory structures are particularly sensitive to transient faults. Since the
1970s, developers have dealt with soft errors in large dynamic memory structures
[GWA79]. With the ongoing shrinkage of transistor sizes and on-chip structures and
the reduced power supply voltage (see Figure 1.4), the problem of transient faults

6



1.1 Motivation

becomes even more important. Meanwhile, transient faults do not only occur in
memories, even logic and registers in IP cores suffer from a decreased reliability
caused by transient faults. Mitra and others [MSZ+05] show that the contribution of
the estimated soft error rate (SER) of various elements for typical modern designs
(e.g., microprocessors, network processors, and controllers) is:

• 49% for sequential elements, like flip-flops or latches,

• 40% for unprotected SRAM (Static RAM), and

• 11% for combinatorial logic elements.

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
0

10

20

30

40

50

60

70

80

0

0,2

0,4

0,6

0,8

1

1,2

structure size Gate length
structure size Metal 1 (M1)
Vdd

Year

st
ru

ct
ur

e 
si

ze
 [n

m
]

V
dd

 [V
]

Figure 1.4: Estimated shrinkage of structure sizes and reduction of supply power
(Vdd) for future integrated circuits. The values are taken from the High-
Performance Logic Technology Requirements Table in [ITR07].

Baumann shows in [Bau05] that the system soft error rate (which can be compared
to soft errors per area) for DRAMs (dynamic RAMs) is mostly independent from tech-
nology scaling (transistor and structure size). The system soft error rate for SRAMs
and combinatorial/sequential logic is dramatically increased with the reduction of the
feature size in new technologies. The multi bit soft errors rate is also increasing with
further technologies [SSK+06]. This shows us that transient faults and soft errors are
not limited to dynamic memory structures, and in the future, IP cores must deal with
an increased soft error rate.

7



1. Introduction

Another challenge to build reliable embedded systems in the future is the increas-
ing process variability. The random dopant fluctuation of transistors will increase in
future technologies, because of the discreteness of dopant atoms in the gate channel
[Bor05]. The left side of Figure 1.5 shows the mean number of dopant atoms in a
transistor channel over varying technology sizes. In the 32 to 16 nm technology gen-
eration, we will have only tens of dopant atoms. A small variation of dopant atoms
may cause a huge variation of the transistor properties. The second source for tran-
sistor variations is sub-wavelength lithography, which results in line-edge roughness
and several other effects, which may cause transistor variations [Bor05]. The right
hand side of Figure 1.5 shows possible transistor variation increasing in the future.

Figure 1.5: On the left side, the mean number of dopant atoms in a transistor chan-
nel is shown over different technologies. The right side shows the actual
and the possible future variation of the threshold voltage Vt of transis-
tors. Both figures are taken from [Bor05].

Also, the power dissipation density will increase into dimensions of over 100 W
cm2 .

Future technologies expand the distribution of physical parameters (e.g., tox, Le f f ,
We f f , doping, Vt) disproportionately. The timing is only predictable in a small range
because of the variation of the wire delays by increased synchronization errors. These
errors are caused by different voltage or clock islands, and by massive capacitive/in-
ductive crosstalk. The consequences are decreased reliability and a lifetime of com-
plex, very large scale integration systems and dramatically decreasing yield of todays
strategies. A design flow assuming the worst-case is not applicable in the future, be-
cause this results in a design with a large power consumption which has a high impact
on reliability.

This shows us that transistors will get more and more unreliable in the future. The
great challenge is to design reliable systems from unreliable components [Bor05].
In conclusion, reliability in embedded systems is getting increasingly important. In
the past, the need for additional functions to improve the reliability of the system
by monitoring and correcting errors was only given for safety-critical systems which
must have a high fault tolerance like banking mainframes, control systems of nuclear

8



1.1 Motivation

plants or chip cards. In the future, the need for reliability-preserving and -increasing
techniques will also become substantial for consumer products, like personal com-
puters or, in our case, embedded systems.

Why IP Cores?

With every new chip generation, the logic density and thus the chip complexity in
terms of transistors per chip rapidly increases (see Figure 1.6). This growth is higher
than the design productivity increase of the last years. Additionally, the market re-
quires shorter product cycles, which intensify this problem. This creates the design
productivity gap between what we are able to build and what we can design. To close
the gap, many innovations in design technologies are applied to increase the produc-
tivity. One of these innovations is the reuse of IP cores, which boosts the productivity
of a design team by 200% according to [ITR07]. Only by reusing IP cores are we
able to keep up future design productivity with the technologies improvements in
chip manufacturing (see Figure 1.6).

2005 2006 2007 2008 2009 2012 2015 2018
0

500

1000

1500

2000

2500

0

2

4

6

8

10

12

14
transistor density 
[Mtransistor/cm^2]
productivity [Mtranistors/
(100*designer*year)]
design cycle [month]

Year

M
ill

io
n 

Tr
an

si
st

or
s

m
on

th

Figure 1.6: The increasing transistor density in MTranistors
cm2 and the productivity in

MTransitors per design year with a team of 100 designers are shown.
Also, the design cycle in months is depicted [ITR05].

Previously designed cores, like CPUs, buses, or cryptographic cores can be reused
by new projects or sold as IP cores to other users. The advantage besides the increased
productivity is that designers or whole companies have the possibility of specializing

9



1. Introduction

on specific cores which may introduce an additional unique feature. Many companies
base their business model on the sale of IP cores (e.g., ARM). Figure 1.7 shows the
trend of rising core reuse in digital designs.

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
0

10

20

30

40

50

60

70

Year

de
si

gn
 r

eu
se

 [%
]

Figure 1.7: The percentage of reused IP cores compared to all designed logic will
be raised in the future [ITR07].

IP cores can be delivered at different design levels. Possible distribution levels are
RTL (e.g., VHDL or Verilog code), logic (e.g., EDIF netlists), or device level (e.g.,
layouts for ASICs or bitfiles for FPGAs). To improve the design and trade of IP cores
as well as the interface between IP cores, the Virtual Socket Interface (VSI) Alliance
was founded in 1996 [See99]. The VSI Alliance accounts for significant barriers
for the trade with IP cores. One of these barriers is the lack of protection against
unlicensed usage [All00].

Future IP cores should not only be resistant against unlicensed usage. They should
also integrate state of the art reliability and security features at IP core level, such as
autonomic error detection and correction methods.

Why FPGAs?

FPGAs (Field Programmable Gate Arrays) have their roots in the area of PLDs (Pro-
grammable Logic Devices), such as PLAs (Programmable Logic Arrays) or PALs
(Programmable Array Logics). Today, FPGAs have a significant market segment in
the microelectronics and, particularly in the embedded system area. The advantages
of FPGAs over ASICs are their flexibility, the reduced development costs, and the
short implementation time. Also, developers have a limited implementation risk, a),
because of the easy possibility to update an erroneous design and b), because of the

10



1.1 Motivation

awareness, that the silicon devices are proofed and the underlying technology oper-
ates correctly under the specified terms.

The main advantage of FPGAs is their reconfigurability. The demand for flexi-
bility through reconfigurability will rise according to ITRS [ITR07] from 28% of all
functionalities in 2007 until to an estimated 68% in the year 2022. Note that ITRS
also takes into account software running on a microprocessor which can be updated.
Furthermore, many FPGA devices support dynamic partial reconfiguration, which
means that during runtime, the design or a part of it can be reconfigured. With this
advantage, we can envisage new designs with new and improved possibilities and
properties, like an adaptive design, which can adapt itself to a new operation envi-
ronment. Unfortunately, dynamic reconfiguration is currently used rarely due to the
lack of improved design tools which increases the development costs for dynamic re-
configuration. But now, improved design tools for partial reconfiguration are starting
to become available, like the ReCoBus-Builder [KBT08, KHT08] or Xilinx Plana-
head [DSG05]. Nevertheless, dynamic reconfiguration for industrial designs is in its
infancy, and it will take several years to use all the great features of FPGAs.

In the last years, the main application area of FPGAs were in small volume em-
bedded systems and rapid prototyping platforms, where ASIC designs can be im-
plemented and verified before the expensive masks are produced. Nevertheless, the
FPGA usage in higher volume market rises, mainly due to lower FPGA price, higher
logic density and lower power consumption. Furthermore, due to shorter time-to-
market cycles (see Figure 1.6) and rising ASIC costs, FPGAs are breaking more and
more into traditional ASIC domains. On the other hand, FPGAs are becoming com-
petitors in the (reconfigurable) DSP domain with multi-core and coarse-grain recon-
figurable architectures, as well as from graphic processing units (GPU) where DSP
algorithms are adapted to run on these architectures. Nevertheless, these architec-
tures suffer from the lack of flexibility and today, only FPGA technology is flexible
enough to implement a heterogeneous reconfigurable system-on-a-chip.

Why ASICs?

Besides the advantages and the success of FPGAs, there still exists a huge market for
traditional ASICs (Application Specific Integrated Circuit). ASICs are designed for
high volume productions, where small cost-per-unit is important, as well as in low
power and high performance applications and designs with a high logic density.

The implementation of a core on an ASIC instead of an FPGA (both 90 nm tech-
nology) may require 40 times less area, may speed up the critical path by a factor
between 3 and 4, and may reduce the power by a factor of about 12 [KR06]. Here,
we see that the big advantage of ASICs over FPGAs is the higher logic density, which
results in significantly lower production cost per unit. The disadvantages of ASICs
are the higher development and the higher initial production costs (e.g., masks, pack-
age design, test development [Kot06]). Therefore, the decision for using ASICs or

11



1. Introduction

FPGAs due to minimization of the total costs is highly dependent on the produc-
tion volume. Figure 1.8 shows a comparison of the total costs between ASICs and
FPGAs in different technology generations over the production volume. The ASIC
graphs start with higher costs due to the high initial production costs, but with a lower
slope due to cheap production costs per unit. The initial cost of ASICs increases from
technology generation to generation, mainly because of the increasing chip and tech-
nology complexity and logic density. FPGA designs have lower initial costs, but
higher costs per unit. In summary, the total costs of a design using FPGA technology
is lower until reaching a certain production volume point. However, according to Xil-
inx [RBD+01] this point is shifting for each technology generation in the direction
of higher volumes.

Figure 1.8: This figure from [RBD+01] shows a comparison of the total costs of
FPGAs and ASICs in different technology generations over the produc-
tion volume. With every new technology generation, the break even
point between the total costs of FPGAs and ASICs designs is shifted
more and more to the ASIC side. As on implication, one may expect
the market for FPGAs to grow.

Nevertheless, besides the total costs discussion, there exist many design solutions,
especially in the area of embedded systems, which can only be implemented using
ASIC technology. Examples include very low power designs and high performance
designs.

Before summarizing the major contributions of the thesis with respect to the above
topic, a set of definitions is in order.

12



1.2 Definitions

1.2 Definitions

In this section, we introduce necessary definitions of terms with respect to security
and reliability of embedded systems that will be throughout this thesis. First, defi-
nitions in the field of dependability and the difference between defects, faults, and
errors are outlined. After the categorization of faults and errors, definitions stem-
ming from the area of security attacks are presented. Finally, different types of over-
head, which are indispensable for additional security and reliability functions, are
described.

1.2.1 Dependability and its Attributes

The dependability of a system is defined by the IFIP 10.4 Working Group on De-
pendable Computing and Fault Tolerance as: “... the trustworthiness of a comput-
ing system which allows reliance to be justifiably placed on the service it delivers
...” [IFI90]. According to Laprie and others [ALR01], the concept of dependabil-
ity consists of three parts: the threats to, the attributes of, and the means by which
dependability is attained (see Figure 1.9).

Dependability Means

Attributes

Threats

Safety

Reliability

Availability

Maintainability

Integrity

Confidentiality

Fault Prevention

Fault Forecasting

Fault Removal

Fault Tolerance

Failures

Errors

Faults

Figure 1.9: The relationship of dependability between attributes, threats and means
[ALR01].

The attributes of dependability are a way to assess the trustworthiness of a sys-
tem. The attributes are: availability, reliability, safety, confidentiality, integrity, and
maintainability.

13



1. Introduction

Availability

The availability is considered as the readiness for correct service [ALR01]. This
means that the availability is a degree of the possibility to start a new function or
task of the system. Usually, the availability is given in the percentage of time that
a system is able of serving its intended function and can be calculated using the
following formula:

Availability =
Total Elapsed Time−Down Time

Total Elapsed Time
(1.1)

Availability is also often measured in “nines”. Two nines means an availability of
99%, three nines means 99.9% and so on. Table 1.1 shows the maximal downtime
within a year for different availability values.

Availability Percentage 8-hour day 24-hour day
Two nines 99% 29.22 hours 87.66 hours

Three nines 99.9% 2.922 hours 8.766 hours
Four nines 99.99% 17.53 mins 52.60 mins
Five nines 99.999% 1.753 mins 5.260 mins
Six nines 99.9999% 10.52 secs 31.56 secs

Table 1.1: The maximal annual downtime of a system for different values of avail-
ability, running either 8 hours or 24 hours per day [Rag06].

Reliability

Reliability is defined as the ability of a system or component to perform its required
functions under well-defined conditions for a specified time period [Ger91]. Laprie
and others transcribe the reliability with the continuity of correct service [ALR01].
Important parameters of reliability are the failure rate and its inversion, the MTTF
(mean time to failure). Other parameters, like the MTBF (mean time between fail-
ures) include the time which is necessary to repair the system. The MTBF is the sum
of MTTF and the MTTR (mean time to repair).

Safety

Safety is the attribute of a safe system. This means that the system cannot lead to
catastrophic consequences for the users or the environment. Safety is relative, the
elimination of all possible risks is usually impossible. Furthermore, the safety of
a system cannot be measured directly. It is rather a subjective confidence of the
system. Whereas availability and reliability avoid all failures, safety avoids only the
catastrophic failures, which are only a small subset.

14



1.2 Definitions

Confidentiality

The confidentiality of a system describes the absence of unauthorized disclosure of
information. The International Organization of Standardization (ISO) defines the
confidentiality as “ensuring that information is accessible only to those authorized
to have access” [ISO05]. In many embedded systems (e.g., cryptographic systems),
it is very important to secure the information (e.g., the secure key) stored inside the
system against unauthorized access. But also the prevention of unlicensed usage of
software programs or hardware cores are topics of confidentiality. Confidentiality is,
like safety, subjective and cannot be measured directly.

Integrity

Integrity is the absence of improper system state alternation. This alternation can
be an unauthorized access to alter system information inside the system, which are
necessary for the correctness of the system. Furthermore, the system state alternation
can also be a damage or modification of the system. System integrity assures that no
part of the system (software or hardware) can be altered without the necessary privi-
leges. Also, the IP core verification to ensure the correct creator and the absence of
unauthorized supplementary changes can elevate the integrity of a system. Integrity
is the precondition for availability, reliability and safety [ALR01].

Maintainability

Maintainability is the ability to undergo repairs and modifications. This can be done
to repair errors, meet new requirements, make further maintenance easier, or to cope
with a changed requirement or environment. A system with a high maintainability
may have a good documentation, a modular structure, is parameterizable, uses asser-
tions and implements built-in self tests.

Security

Security is defined as a combination of the attributes (1) confidentiality (the preven-
tion of the unauthorized disclosure of information), (2) integrity (the prevention of
the unauthorized amendment or deletion of information), and (3) availability (the
prevention of the unauthorized withholding of information) [ITS91]. An alternative
definition for security could be the absence of unauthorized access to the system state
[ALR01]. The prevention or detection of the usage of unlicensed software or IP cores
can also be seen as a security aspect (confidentiality) as well as the prevention of the
unauthorized alteration of software or IP cores (integrity). Like safety, security shall
prevent only a class of failures which are caused by unauthorized access or unautho-
rized handling of information.

15



1. Introduction

1.2.2 Fault, Error, Failure
Faults, errors, and failures are the threats which affect the dependability (see Figure
1.9).

Failure

A system is typically composed of different components. Each component can be
further subdivided into other components. All of these system components may have
internal states. If a system delivers its intended function, then the system is working
correctly. The intended function of a system can be described as an input/output
or interface specification which defines the behavior of the system on the system
boundaries with its users or other systems.

The system interface specification may not be complete. For example, it is spec-
ified that an event occurs on the output of the system, but the time of this event to
occur is not exactly specified. So, the system behavior can vary without violating the
specification. If the specification is violated, the system fails. A failure is an event
which occurs when the system deviates from its interface specification (see Figure
1.10).

 

System

Fault
cause of error

unintended state:
Error 

ma
y l

ea
d t

o

inputs outputs

unintended interface
behavior:
Failure

Figure 1.10: Faults may lead to an error, which may also lead to a system failure.

Errors

If the internal state of a component deviates from the specification (the specification
of the states of the component), the component is erroneous and an error occurs.
An error is an unintended internal state whereas a failure is an unintended interface

16



1.2 Definitions

behavior of the system. An error may lead to a failure. But it is also possible that
an error occurs and does not lead to a system failure, because of the component is
currently not used or the error is detected and corrected fast enough. Errors can be
transient or permanent. Transient errors caused by transient faults usually occur in
systems without feedback. In systems with feedback, an error might be permanent
by affecting all following states. In this case, the error only disappears by a reset or
by shut down of the system.

Faults

A fault is defined as a defect that has the potential to cause an error [Jal94]. All errors
are caused by faults, but a fault may not lead to an error. In the latter case, the fault
is masked out and has no impact on the system.

For example, consider the control path of a processor core. A fault like a single
event transient fault, caused by an alpha particle impact, occurs on one signal of the
program counter between two pipeline stages. If the time of occurrence is near the
rising active clock edge, an error may occur. Otherwise, if the time of occurrence
is far away form the rising edge of the clock, the fault does not lead to an error.
The erroneous program counter value can now lead to a system failure, if the wrong
subroutine is executed and the interface behavior differs from the specification. Oth-
erwise, if an error detection technique, like a control flow checker, as introduced later
in Chapter 4, is used, the error can be detected after the fault appearance, and the
error may be corrected by a re-execution of the corresponding instruction. But, this
additional re-execution needs several clock cycles to restore the error free state. For
real-time systems with very critical timing requirements, the possible output events
might be too late and the system thus might still fail.

1.2.3 Fault and Error Categorization

Faults can be categorized into different classes. The main classes are: persistence,
nature, and origin (see Table 1.2) [ALRL04, Kop97].

Faults Errors
persistence nature origin location effect
permanent chance development e.g. data path value

sporadic transient intentional runtime control path timing
periodic transient memory

Table 1.2: An overview of different faults and error classes.

The persistence of a fault can be permanent or transient. The class of transient
faults can be further subdivided into sporadic and periodic faults. A permanent fault

17



1. Introduction

is, for example, a broken wire. Alpha particle radiation on a chip can cause sporadic
transient faults, and jitter in a clock signal is a periodic transient fault. It is important
to know that transient faults can also lead to permanent errors. The nature of the
fault can be chance or intentional. A chance fault occurs randomly with a specific
probability, like faults from radiation. An intentional fault can be a security attack to a
system or a faulty operation from the user. Intentional faults can be further subdivided
into malicious intentional faults and non-malicious intentional faults (more about this
in Section 1.2.5). The origin of a fault can be in the development phase of the system
or at runtime. Physical phenomena like lightning strokes belong to runtime faults,
whereas, design faults are caused in the development phase.

Errors can be categorized into different error classes (see Table 1.2). Here, we dis-
tinguish between the location and the effect class. Errors can be classified according
to the location or components of their occurrence, for example, data path or control
path errors. Value errors and timing errors belong to the effect class. For example,
a value error occurs when an incorrect value of a register is caused by a single event
upset, whereas a timing error occurs if the delay of a signal is too large, caused, for
example, by a too high temperature.

There exist many other definitions of fault and errors classes in literature. The
presented classes above present a minimal intersection between these different defi-
nitions.

1.2.4 Means to Attain Dependability

Means are ways to increase the dependability of a system. There exist four means,
namely fault prevention, fault tolerance, fault removal, and fault forecasting.

Fault Prevention

Fault prevention deals with the question “How the occurrence or introduction of faults
can be prevented?”. Design fault might be prevented with quality control techniques
during the development and manufacturing of the software and hardware of a system.
Fault prevention is further closely related to maintainability. Transient faults, like
single event effects, might be reduced by shielding, radiation hardening, or larger
structure sizes. Attacks might be prevented by security measures, like firewalls or
user authentication. To prevent the usage of unlicensed programs or IP cores, the code
(source, binary, or netlist code) could be delivered encrypted and only the authorized
customer has the right cryptographic key to decrypt the code. To prevent the impart
of the key, techniques like dongles or an authentication with MAC-Address can be
used.

18



1.2 Definitions

Fault Tolerance

A fault-tolerant system does not fail, even if an erroneous state is reached. Fault
tolerance enables a system to continue operation in the case of one or more errors.
This is usually implemented by error detection and system recovery to an error-free
state. In a fault tolerant system, errors may occur, but they must be handled correctly
to prevent a system failure.

The first step towards a fault tolerant system is error detection. Error detection
can be subdivided into two classes: concurrent error detection and preemptive error
detection [ALR01]. Concurrent error detection takes place at runtime during the
service delivery, whereas preemptive error detection runs in phases where the service
delivery is suspended. Examples for concurrent error detection are error codes (e.g.
parity or CRC), control flow checking, or razor flip-flops [ABMF04].

Also, redundancy belongs to this class of error detection. One may distinguish
three types of redundancy: hardware, time and information redundancy. To detect
errors with hardware redundancy, we need at least two units where both results are
finally compared. If they divert, an error occurred. On time redundancy, the system
executes the same inputs twice, and both results are compared after the second ex-
ecution. Information redundancy uses additional information to detect errors (e.g.,
parity bits). More information about redundancy methods can be found in Section
2.3.

BISTs (Built In Self Tests) or start-up checks belong to the preemptive error detec-
tion class.

The next step is the recovery from the erroneous state. Recovery consists of two
steps, namely error handling and fault handling. Error handling is usually accom-
plished by rollback or rollforward. Rollback is done by using error-free states which
are stored on certain checkpoints to restore the state of the system to an older error-
free state. Rollback is attended by delaying the operation. This might be a problem
in case of real-time applications. Rollforward uses a new error-free state to recover
the system.

If the cause of the error is a permanent or periodic temporal fault, we need fault
handling to prevent the system from running into the same error state repeatedly. This
is usually done by fault diagnosis, fault isolation, system reconfiguration and system
reinitialization. For example, in case at permanent errors in memory structures, the
faulty memory column is identified and this column is switched to a reserved spare
column. After the switch over, the column content must be reinitialized.

It is important to notice that fault tolerance is a recursive concept. The techniques
and methods which provide fault tolerance should obviously themselves be resistant
against faults. This can, for example, be done by means of replication.

19



1. Introduction

Fault Removal

During the development phase and during the operational runtime, fault removal
might be performed. At the development phase, fault removal consists of the fol-
lowing steps: verification, diagnostics, and correction [ALR01]. This is usually done
by debugging and/or simulation of software and hardware. For the verification of
fault tolerant systems, fault injection (see Section 4.2) can be used.

Fault removal during the operational runtime is usually done by maintenance.
Here, faults can be removed by software updates or by the replacement of faulty
system parts.

Fault Forecasting

Fault forecasting predicts feasible faults to prevent or avoid the fault or decrease
the effect of the fault. This can be done by performing an evaluation of the system
behavior with respect to fault occurrence and effects. Modeling and simulation of the
system and faults are a common way to achieve this evaluation.

1.2.5 Security Flaws and Attacks

Faults affecting the security of a system are also called flaws [LBMC94]. In this
work, the term flaw is used as a synonym of a fault, which leads to the degeneration
of the security of a system. A flaw is therefore a weakness of the system which
could be exploited to alter the system state (error). A threat is a potential event
which might lead to this alternation and therefore to a security failure. The process of
exploiting the flaw by a threat is called an attack (see Figure 1.11). A security failure
occurs when a security goal is violated. The main security goals are the dependability
attributes integrity, availability, and confidentiality. The difference between a flaw
and a threat is that a flaw is a system characteristic, whereas a threat is an external
event.

A flaw can be intentional or inadvertent. Intentional flaws can further be mali-
cious or non-malicious. An intentional malicious flaw is, for example, a trojan horse
[And72]. An intentional non-malicious flaw could be a communication path in a
computer system which is not intended as such by the system designer [LBMC94].
An inadvertent flaw could be, for example, a bug in a software program, which en-
ables unauthorized persons with specific attacks to read protected data.

Like other faults, flaws can also be further categorized using the origin of the flaw
and the persistence. The origin can be during the development (e.g., the developer
implement a back door to the system), or during operation or maintenance. Usually,
the flaws exist for a longer period of time (e.g., from the flaw arise until the flaw is
disappeared by a security update). But also special flaws exists, which only appear on
certain situations (e.g., the year 2000 problem; switching from year 1999 to 2000).

20



1.2 Definitions

 

System

Flaw
Security Fault

unintended state:

Error 

may le
ad to

inputs outputs

unintended interface
behavior:

Security
Failure

Attack

Flaw

Flaw

Figure 1.11: Flaws are security faults, which lead to errors if they are exploited by
attacks. The state alternation in case of an attack may lead to a security
failure.

Attacks can be classified using the security goals or objective of the attack into
integrity, availability, and confidentiality attacks. Integrity attacks break into the
system and change part or the whole system (software or hardware) or of the data.
The goal of availability attacks is to make a part or the whole system unavailable
for user requests. Finally, the goal of confidentiality attacks is to gather sensitive or
protected data from the system.

Furthermore, if an attack is successful, new flaws can be generated as a result from
the attack. For example, a flaw in software is exploited by a code injection attack (see
Section 1.4) and the integrity of the system is injured by adding a malicious software
routine. This software routine opens now intentional malicious flaws, which can be
used by confidentiality attacks to gather sensitive data.

To describe all attacks using this terminology is not easy. For example, a copyright
infringement where someone unauthorized is copying an IP core. The result of the
attack is a reversal of confidentiality. Here, the sensitive data is the core itself. The
erroneous state is the unauthorized copy of the IP core. But what is the flaw which
makes the attack possible? Here, we must assume that the ability to easily copy an IP
core is the flaw. This example teaches us that flaws exist even on reasonably secure
systems and cannot be easily removed. On every system we must deal with flaws,
which might affect the security as well as other faults which might affect the other
areas of dependability.

21



1. Introduction

1.2.6 Overhead
Methods for increasing security and reliability in embedded systems often have the
drawback of additional overhead. To evaluate the additional costs of these methods,
we can use the following criteria:

• Area overhead (hardware cost overhead),

• Memory overhead, and

• Execution time overhead (CPU time).

Analysis and quantification of the additional costs significantly depends on the
given architecture and the implementation on a specific target technology.

Area Overhead

The straightforward method for measuring the area overhead of an additional core is
to measure the chip area occupied by the core. Unfortunately, this method can only
compare cores implemented in the same technology with exactly the same process
(lateral dimensions). To become independent of this process, the transistor count
may be used. However, information about the area of the signal routing is not in-
cluded here. In most of the technologies and processes, signal routing requires little
additional area because of the routing layers are above the transistors (in the third
dimension). This also depends on the specific process.

The number of transistors, however, is a reasonable complexity indicator, only if
the compared cores use the same technology (e.g., CMOS, bipolar). To compare the
hardware costs of a core mapped onto different technologies, the gate count can be
used. Here, the number of logical (two input) gates is used to describe the hardware
costs. For comparing cores between ASIC and FPGA technologies, the count of
primitive components or operations, like n-bit adders or multipliers, can be used.

Using primitive components or operations for the description of the overhead, one
is independent of the underlying technology and process. Describing hardware cost
in a higher hierarchy level, like primitive components or operations, however, is more
inaccurate with respect to the real hardware costs than describing the overhead in chip
area. The resulting chip area of the used primitive components depends highly on the
technology and process and also on the knowledge of the chip designer or the quality
of the tools.

Memory Overhead

The memory overhead for methods increasing the security and reliability can be mea-
sured by counting the additional ram bits used by the corresponding method. Mem-
ories embedded on the chip, so called internal memories, use hardware resources on

22



1.2 Definitions

the chip and so they contribute to the area overhead. Nevertheless, the content of
memories can be relatively easily shifted to a cheaper external memory, for example
an off-chip system DRAM. So, we decided to handle the memory overhead sepa-
rately. It must be taken into account that internal memory has higher hardware costs
at the same size, but a lower latency. External memory is usually cheaper, but it in-
volves additional hardware costs on the chip, as for example a DRAM controller. If a
DRAM with the corresponding controller already exists on the chip, these resources
might be shared to reduce the hardware cost.

Execution Time Overhead

Some methods for increasing the security and reliability have additional latency. This
means that the result of the protected core or software appears later on the outputs
than on the unprotected one. For hardware cores, latency is usually counted in ad-
ditional clock cycles. For software programs, latency can be expressed in additional
instructions which must be executed by the processor or in additional execution time
of the processor. For example, some existing methods for control flow checking
[GRRV03] generate additional instructions that are inserted into the original program
running on the processor which is monitored. This might cause a timing impact for
the user program which impact can be measured by additional execution time of the
processor. The execution time depends on the processor and the number of executed
additional instructions.

Also, if no additional software is executed on the processor and the processor is
enhanced with additional hardware, some methods can stall [ZT09] the processor
pipeline, slow down the execution of the user program, or insert additional pipeline
steps [Aus99] without executing additional instructions.

For processor architectures, the execution time overhead can be measured by count-
ing the additional pipeline steps. If the processor architecture executes one instruc-
tion in one pipeline step (in the best case one clock cycle), the number of additional
executed instructions are also given in the number of additional pipeline steps.

1.2.7 IP Cores and Design Flow

The reuse of IP cores is an important step to decrease the productivity gap, which
emerges from the rapid increase of the chip complexity and the slower growth of the
design productivity. Today, there is a huge market and repertoire of IP cores which
can be seen in special aggregation web sites, for example [Reu] and [Est], which
administrate IP core catalogs.

The delivery format of IP cores is closely related to the design flow. The design
flow consists of different design flow or abstraction levels which transfer the descrip-
tion of the core from the level where the core is specified into the final implementa-

23



1. Introduction

tion. The design flow is dependent from the target technology. The FPGA and the
ASIC design flow look similar, however, there exist differences at some steps.

Figure 1.12 shows a general design flow for electronic designs with FPGA and
ASIC target technologies. This design flow view can be embedded into a higher
system model view for hardware/software co-design, for example the double roof
model introduced by Teich [TH07]. The depicted design flow implements the logic
synthesis and the following steps in the double roof model. Furthermore, the different
abstraction levels are derived from the Y-diagram, introduced by Gaijski [GDWL92].

RTL level
HDLs, e.g., 
VHDL, Verilog

Logic level

Device level

Synthesis

Implementation

Netlists, 
e.g., EDIF

Bitfiles (FPGA), 
Layouts (ASIC), 
e.g., Mask files, ...

Figure 1.12: A general design flow for FPGA and ASIC designs with the synthesis
and implementation steps and the different abstraction levels.

The different abstraction levels are the register-transfer level, the logic level, as
well as the device level. Designs specified at the register-transfer level (RTL) are usu-
ally described in Hardware Description Languages (HDLs) like VHDL or Verilog,
whereas designs at the logic level are usually represented in netlists, for example,
Electronic Design Interchange Format (EDIF) netlists. At the device level, FPGA
designs are implemented into bitfiles, while ASIC designs are usually represented by
their chip layout description. The transformation of an HDL-model into an netlist-
model is called logic synthesis, whereas the transformation of a netlist-model into a
target depended circuit is called implementation. The implementation consists of the
aggregation of the different netlist cores and subsequent place and route step. The
technology mapping can be done in the synthesis or in the implementation step, or
in both. For example, the Xilinx FPGA design flow maps the logic to device de-
pendent primitive cells (LUT2, FF, etc.) in the synthesis step, whereas the mapping
of these primitive cells to slices and configurable logic blocks (CLBs) is done in the
implementation step [Xilb].

24



1.3 Faults in Embedded Systems

IP cores can be delivered at all different abstraction levels in the corresponding
format: on the RTL as VHDL or Verilog code, on logic level as EDIF netlist, or
on the device level as mask files for the ASIC flow or as FPGA depended (partial)
bitfiles.

IP cores can be further categorized into soft and hard cores. Hard cores are ready
to use and are offered into a target depended layout or bitfile. All IP cores which are
delivered into an HDL or netlist format belongs to the soft cores. These cores need
further transformations of the design flow to be usable. The advantages of soft cores
are their flexibility for different target technologies and their can be parameterizable.
However, the timing and the area overhead are less predictable compared to hard
cores due the impact of the needed design tools. Analog or mixed signal IP cores are
usually delivered as hard cores.

1.3 Faults in Embedded Systems

The faults inside a system-on-chip can be categorized into permanent degeneration
faults, manufacturing faults, and design faults, as well as transient faults. Transient
faults are single event effects (SEE) or temporary conditions on the chip, like power
fluctuation or interconnect noise (see Table 1.3). Security flaws can be both, perma-
nent or transient (see Section 1.4).

fault fault class error class
persistence nature origin effect

hot-carrier effect permanent chance runtime timing/value
electromigration permanent chance runtime timing/value

TDDB permanent chance runtime timing/value
manuf. stuck-at faults permanent chance manufacturing value
manuf. delay faults permanent chance manufacturing timing

design faults permanent chance development timing/value
SEU, SET transient chance runtime value

SEL permanent chance runtime value
internal noise transient chance runtime value

Table 1.3: Categorization of different faults which may appear in an embedded sys-
tem.

1.3.1 Degeneration Faults

Degeneration faults are, for example, caused by the hot-carrier effect [GHB07],
by electromigration [CRH90], or by time-dependent dielectric breakdown (TDDB)

25



1. Introduction

[San]. All these faults are permanent chance runtime faults which at first lead to tim-
ing errors and later, particularly electromigration, to value errors like open or short
circuits.

Electromigration is caused by ion movement in the direction of the current flow
[NX06, CRH90]. This leads to voids, which are able to open signal lines as well as
mounds which have the ability to short the signal with an adjacent signal. Especially
power signal lines suffer from electromigration, but also other signals are affected by
the phenomenon. High temperature accelerates this effect.

Due to gate channel shrinking in every new process generation, the electrical field
strength is increasing as well. This along with higher temperature leads to a higher
tunneling rate of electrons or holes into the gate oxide. This so called hot carrier
effect [NX06, GHB07] can lead to a drift of the threshold voltage of the transistor,
which affects the timing behavior. If the transistor switching behavior of the critical
path in a design is affected, this effect can lead to timing errors.

Another degeneration effect is time-dependent dielectric breakdown (TDDB) [San,
Cro79]. During the operation of a CMOS transistor, the gate oxide is exposed to
an electrical field. Caused by irregulations of the structure of the oxide, charges
are trapped inside the oxide. This leads to a disturbed electrical field, where the
field strength is intensified or alleviated locally. During the lifetime of the chip, this
disturbance is increasing, due to more trapped charges. Localized, the electrical field
can reach a extremely higher field strength, which leads to the dielectric breakdown
after reaching a certain threshold value. This means that the oxide is destroyed by an
electrical and a thermal runaway. Also this effect is accelerated by higher electrical
fields and higher temperature.

1.3.2 Manufacturing Faults

Manufacturing faults are caused by permanent physical defects, which occur during
the manufacturing process. These defects are, process defects, like missing contact
windows, parasitic transistors, or oxide breakdown, as well as material defects, like
bulk defects (crack, crystal imperfections), or surface impurities [BA02]. Also pack-
aging defects, like seal leaks belong to the manufacturing defects. These physical
defects lead to stuck-at-0, stuck-at-1 or stuck-at-open faults as well as bridge faults
[BA02] which may lead to value errors.

Also, signals which are after manufacturing too slow to meet given timing con-
straints are manufacturing faults which may cause timing errors. All manufacturing
faults are permanent chance faults but emerge during the manufacturing process.

26



1.3 Faults in Embedded Systems

1.3.3 Design Faults

Design faults are permanent chance development faults which are caused by an in-
correct specification or implementation of the developer. However, also design tools
can cause design faults.

Design faults may occur in different abstraction levels, from the system architec-
ture to the transistor level. A design fault in higher abstraction levels has naturally
a higher impact on the system, e.g., a too slow microprocessor then on the RTL, or
transistor level.

1.3.4 Single Event Effects

Single event effects (SEE) are sporadic chance runtime faults which are mainly caused
by different types of energetic external radiation. This radiation can cause transient
faults, like single event upsets (SEU) or single event transient (SET) [GSB+04], as
well as permanent faults, like single event latch-ups (SELs) [MW04]. These faults
usually cause value errors.

An SEU is a bit flip in a memory cell or register caused by the impact of an en-
ergetic particle, which generates a charge disturbance in the transistor channel. This
effect is only of temporal nature and is non-destructive to the transistor. Mainly
DRAM and SRAM suffer from these effects, but also registers and latches in IP
cores are affected.

If the impact is located into combinatorial logic, a transient pulse on a combina-
torial signal may occur. If this pulse is wider than the logic transition time, which is
possible in current CMOS technologies, the pulse is propagated through the combi-
natorial logic to a register or a latch [AAN00, GSB+04]. This effect is called single
event transient (SET). Due to the characteristics of the combinatorial logic, these
faults can be masked out. If we have an AND gate and one input is set to zero, SETs
on the other inputs are blocked. On the other hand, SETs can also be duplicated by
combinatorial logic if the SET propagates over many paths with different delays to
the register. Reaching the register or the latch, the SET pulse manifests only into an
error, if the time of arrival and the pulse width overlaps with a clock impulse. There-
fore, the error rate of SETs is in contrast to SEUs highly dependent on the clock
frequency but also on the characteristics of the combinatorial logic. Buchner and
others [BBB+97] show that for cores which operate at a high clock frequency, the
errors caused by SETs dominate the errors caused by SEUs.

SEUs and SETs are also called soft errors, because of the transient, non-destructive
nature of these effects. Compared to other faults, soft errors are responsible for most
failures of electronic systems [MW04].

Beside the two transient soft error types, the permanent single event latch-up (SEL)
effect exists. Because of the different doped layers of an CMOS circuit, an inherent
parasitic thyristor might exist. This parasitic thyristor has no effect on the circuit if

27



1. Introduction

it is not active. However, the thyristor can be ignited by a heavy ionized particle
impact. The result is an shortcut from the power supply signal to ground which exists
as long the power is switched on. If the fault is not detected fast enough, the circuit
is destroyed by thermal runaway.

The sources of SEEs inside the earth’s atmosphere are low-energy alpha particles,
high-energy cosmic particles, and thermal neutrons [MW04]. Outside the earth’s
atmosphere, the sources of SEEs are high energy cosmic rays and high energy protons
mainly from trapped radiation belts [Joh00].

The low-energy alpha particles are generated from decay of radiation elements
which are inside of mold compounds and in lead bumps, used for flip-chips. These
alpha particles have an energy of 2 to 9 MeV (million electron volt). To generate
an electron-hole pair in silicon, 3.6 eV are required. Therefore, an impact of one of
these alpha particles can generate approximately one million electron-hole pairs in its
wake [MW04] (see Figure 1.13). This leads to a charge drift in the depletion region
and a current disturbance. If the charge drift is high enough, the transistor state is
inversed and, for example, a memory cell is flipped.

Figure 1.13: An alpha particle hits a CMOS transistor. The particle generates
electron-hole pairs in its wake, which cause a charge disturbance. This
event can cause an SEE fault [MW04].

High-energy cosmic particles react in the upper atmosphere or radiation belts and
generate high-energy protons and neutrons. The generated neutrons have energies of
10 to 800 MeV , whereas the generated protons have an energy greater than 30 MeV
[MW04]. Inside the earth atmosphere, we must deal with high-energy neutrons from
the upper atmosphere whereas in space mainly all SEEs are produced from high-
energy protons [Joh00]. If these particles collide with the silicon nuclei, further
ionized particles are generated. Protons in space environment, which exists there

28



1.4 Attacks on Embedded Systems

in energies below 600 MeV as well as ionized particles from silicon collisions can
generate electron-hole pairs in the substrate. Unlike alpha particles, these ionized
particles have usually a higher energy, which results in a higher electron-holes rate.
The neutron effect depends on the altitude. In an airplane, the effect can be 100 to
800 times worse than on see-level [MW04].

Thermal neutrons are low-energy particles which come from the upper atmosphere
and have reached the thermal equilibrium due to the loss of their kinetic energy. These
neutrons usually have an energy of 25 meV . If the Boron-10 isotope is present on
the chip, which appears in large quantiles in BPSG (Boron-Phosphor-Silicate-Glass)
dielectric layers, these neutrons are easily fetched by the isotope. This event results
in fission where an alpha particle and a gamma ray is generated, which might lead
to the SEE. If the Boron-10 isotope is present, then this is the main cause of SEEs
[MW04].

SEEs are becoming increasingly important, because of the sensitivity of integrated
circuits to radiation is increasing due to smaller structure size and decreased power
supply voltage. Both trends result in reduction at the charges stored inside a node
which increases the probability of the appearance of an SEE [AAN00, NX06].

1.4 Attacks on Embedded Systems

There exist two ways for categorization of attacks. The first way is to categorize at-
tacks by the violated security goals. The other way is to describe how the attack
is realized and which way the attacker chose to compromise the system [Rag06,
RRKH04].

Using the first categorization schema, the main security goals are integrity, avail-
ability, and confidentiality (see Figure 1.14 above, and Section 1.2.5). Attacks which
compromise integrity can be further subdivided into manipulation of data, manipu-
lation of software or IP cores, as well as forging of authorship. Attacks which may
paralyze a system compromise the availability. Attacks to compromise the confiden-
tiality of a system can be subdivided into gathering of sensitive data like passwords,
keys, program code, or IP cores, and getting access control to a system. Additionally,
copyright infringement compromises the confidentiality of the author of the core.

The means used to launch the attacks or the ways how the attack is realized can
be categorized into invasive and non-invasive attacks (see Figure 1.14 below). Both
groups can further be subdivided into logical and physical attacks [RRKH04]. Phys-
ical attacks typically require relatively expensive equipment and infrastructure, espe-
cially physical invasive attacks. Whereas for logical attacks, usually only a computer
or the embedded system is needed.

29



1. Introduction

In
te

g
ri

ty
 

M
a

ni
pu

la
tio

n 
of

 I
P

 C
or

es

M
a

ni
pu

la
tio

n 
of

 D
at

a

M
a

ni
pu

la
tio

n 
of

 S
of

tw
ar

e

F
o

rg
ed

 A
u

th
or

sh
ip

A
va

ila
b

ili
ty

 

O
ve

rlo
ad

 t
he

 S
ys

te
m

C
o

n
fi

d
en

ti
al

it
y 

G
a

th
er

in
g 

S
e

ns
iti

ve
 D

at
a

C
op

yr
ig

ht
 I

nf
ri

ng
em

en
t

V
a

nq
ui

sh
 A

cc
es

s 
C

on
tr

ol

C
o

d
e 

In
je

ct
io

n
 A

tt
ac

ks

S
of

tw
ar

e 
P

ro
gr

am

H
ar

dw
ar

e 
IP

 C
or

e

In
va

si
ve

 P
h

ys
ic

al
 A

tt
ac

ks

M
ic

ro
pr

ob
in

g

R
ev

er
se

 E
ng

in
ee

rin
g

D
am

a
gi

ng

N
o

n
-I

n
va

si
ve

 L
o

g
ic

al
 

A
tt

ac
ks

P
hi

sh
in

g

F
o

rg
ed

 A
ut

h
en

tic
ity

C
ry

pt
o 

W
ea

kn
. 

A
tt

ac
ks

N
o

n
-I

n
va

si
ve

 P
h

ys
ic

al
 

A
tt

ac
ks

E
av

e
sd

ro
pp

in
g

S
id

e-
C

ha
nn

el
 A

tt
a

ck
s

C
op

yi
n

g

D
es

tr
oy

 t
he

 S
ys

te
m

In
va
si
ve

N
o
n
-I
n
va
si
ve

L
o
g
ic
al

P
h
ys
ic
al

L
o
g
ic
al

P
h
ys
ic
al

C
o

m
p

ro
m

is
ed

 S
ec

u
ri

ty
 G

o
al

s 

M
ea

n
s 

to
 la

u
n

ch
 A

tt
ac

ks
 

Figure 1.14: Attacks can be categorized with the compromised security goals or the
attack goals (above) and with the means to launch the attack (below).
The different means of attacks can invalidate different security goals.

30



1.4 Attacks on Embedded Systems

1.4.1 Code Injection Attacks

Code injection assaults are attacks where the code integrity of a system is compro-
mised. This can be the integrity of software as well the integrity of executed bitfiles
in a reconfigurable system, such as FPGAs. The goals of code injection attacks are
manifolded. The demolished integrity of further program code or sensitive data, the
paralysis of the system as well as getting access to sensitive data are in the foreground
of the attacker.

Code injection attacks bring the system under the control of the attacker. Programs
inserted by the attacker, may easily read or alter the sensitive data and forward the
data to interfaces where the data can be collected.

To gain control over a system, the attacker must first insert a routine, which per-
forms the intended behavior, into memory. This routine may, for example, read out
secured data, deactivate security protection, open gateways for the attackers, or load
another infiltrated code from the Internet. The malicious code can be inside the pro-
cessed input data which is loaded into the memory by the processor. The second step
is bringing the processor in a state to execute the inserted attacker’s code. This can
be done by manipulation of the program flow.

One way to achieve this is by utilizing buffer overflows for smashing stacks. Most
programs are structured into subroutines with its own local variables. These variables
and also the arguments and the return address are stored in memory segments called
stacks. The return address is usually the first on the stack and the local variables
are concatenated on the bottom. Normally, like in the C programming language,
the content of array variables are written from bottom to the top, and if the range is
not checked, the return address can be overwritten (see Figure 1.15). The attacker
can manipulate the input data in a way that the return address is overwritten with
the address of his malicious code. On the return, the malicious code is executed
[Ale96, PB04]. Another possibility is to overwrite the frame pointer address instead
of the return address [klo99].

Heap-based buffer overflows are another class of code injection attacks. The mem-
ory heap is the dynamically allocated memory, in C managed by malloc() and
free(), in C++ by new() and delete(). The heap consists of many memory
blocks which are usually chained together by a double linked list. These memory
blocks are managed by the dynamic memory allocator, which can insert, unlink or
merge blocks together. The information (pointer to the previous and next block) of
the linked lists is stored in a header for each block.

A heap-based buffer overflow may overwrite this header information in a way that
one pointer of the double linked list points to the stack segment before the return
address [Rag06]. If this block is now freed by the dynamic memory allocator, the
header information of the previous and next block are updated. Because one pointer
points to the stack segment due to the attack, the stack is updated in a way that the
return address is overwritten with the address of a heap block, which can now be

31



1. Introduction

Return Address
a[3]
a[2]
a[1]
a[0]

b
c

main

subroutine

malicious code

Program memory Detail view: Stack

Figure 1.15: On the left side, a part of the program memory is shown. Normally,
the subroutine is called and after its execution, the program counter
jumps back to the main program after the call instruction. However,
if the return address in the stack is overwritten by a buffer overflow of
the vector a[] (see right side), the erroneous return destination may
become the entry point of the malicious code (dashed line).

executed after the control flow reaches a return [Rag06, PB04]. There exist many
other different possibilities to utilize heap-based buffer overflows [Con99, Dob03].

Arc injection or return-into-libc is an attack where a system function is exploited
to spawn a new process which performs the attacker’s desired operations. The name
arc injection came from the inserting a new arc (control flow transfer) into the control
flow graph (CFG) of a program. In the standard C library (libc on UNIX-based sys-
tems), there exists a function called system(). This function validates a process
call given as argument and after successful validation starts its execution as a new
thread. The memory location of this standard function is usually known, and there-
fore also the starting address to bypass the validation of the argument. The return
pointer of the stack can now be manipulated by using a stack-based buffer overflow
to jump to the desired destination in the system function to execute a malicious pro-
cess. The name of the malicious process can be transferred to the system function by
using registers [PB04]. This attack is useful if the architecture or operating system
prevents the stack or heap memory area from execution.

Shacham generalized the return-into-libc attacks to show that it is possible to do
malicious computation without injecting malicious code [Sha07]. The idea is that
due to shared libraries, e.g., libc, many analyzable and attackers known instruction
snippets are in the memory. Shacham proposes that an attacker can build an arbitrary

32



1.4 Attacks on Embedded Systems

program from these snippets which can do arbitrary computation. This can be done
by analyzing, for example, the libc library for code snippets which end with a return
instruction. Moreover, Shacham shows that for the x86 architecture, it is possible
to use only parts of instructions. The return instruction of the x86 architecture is
a one byte instruction encoded with 0xc3. However, other instructions which are
longer consist also of this byte value. By starting the sequence in the middle of an
instruction, the original instruction alignment is bypassed which enables the attacker
the usage of additional new instruction sequences. From these building block, the
attacker can build a program by chaining these snippets together by overwriting the
register which stores the return address. This so-called return-oriented programming
has been successfully transferred to other processor architectures, e.g., SPARC. In
[BRSS08], a compiler is introduced which is able to construct return-oriented exploits
from a general propose language. In summary, Shacham shows that preventing the
injection of code is not sufficient for preventing malicious computation.

Pointer subterfuge is an attack technique where pointer values are changed. There
exist four varieties: function pointer clobbering, data pointer manipulation, excep-
tion handler hijacking and virtual pointer smashing [PB04].

Function pointer clobbering modifies a function pointer so that the pointer directs
to the malicious code. When the control flow reaches the modified function call, the
attacker’s function is called and his code is executed.

Data pointer modifications can be used for arbitrary memory writes. This tech-
nique can be combined with other code injection attacks to launch complex attacks.

Exception handler hijacking modifies the thread environment block (in MS Win-
dows) that points to the list of registered exception handler functions. Because of
the fact that the list is stored on the stack, the entries can be easily manipulated to
utilize stack based buffer overflows. This technique can be put to work to transfer the
control flow to a malicious function. Within Linux, function pointers in the fnlist can
be replaced to have a similar effect.

Virtual pointer smashing replaces the virtual function table used in the C++ imple-
mentation of virtual functions. The virtual function table is used in C++ at runtime to
implement dynamic dispatch. Every C++ object has a virtual pointer, which points
to the appropriate virtual function table. By modifying the virtual pointer to direct to
an attacker’s virtual function table, malicious functions can be called when the next
virtual function is invoked.

1.4.2 Invasive Physical Attacks

Invasive physical attacks physically tamper the embedded system with special equip-
ment. Trivial physical attacks only compromise the availability of the system or
damage a part or the whole system by physical destruction. Also, switching off the
power supply voltage or cutting wires belongs to these trivial attacks.

33



1. Introduction

Other invasive physical attacks aim to read out confidential data or the implemen-
tation of IP cores as well as the manipulation of the circuit or data to get access to
sensitive data. These attacks have in common that expensive special equipment is
used. The realization of these attacks requires days or weeks in specialized labora-
tories. The first step is the de-packing of the circuit chips. This is usually done with
special acids [KK99, Hag].

After removing the packaging, the layout of the circuit can be discovered with op-
tical microscopes and cameras. By removing each metal layer the complete layout
of the chip can be captured in a map [KK99]. The gathered informations of the layer
reconstruction can be used for reverse engineering the circuit, which gives competi-
tors the possibility to optimize their product or to obtain more information about the
implementation to launch other attacks.

Further information can be collected by micro-probing the circuit. This can be
done by manual micro-probing, where metal probes have electrical contact to signal
wires on chip. This is usually done on a micro-probing workstation with an optical
microscope [KK99].

Due to the decreased lateral structure dimensions in todays circuit technologies,
manual micro-probing is nearly impossible. But there exist advanced technologies,
like ion or electron beams, as well as infrared laser which make micro-probing also
possible in todays chip manufacturing technologies. With a focused ion beam (FIB)
the chip structure can be scanned in a very high resolution. The beam hits the chip
surface where electrons and ions are sputtered off and can be detected by a mass spec-
trometer [DMW98]. With increased beam intensity, the beam can also remove chip
material with high resolution (see Figure 1.16). This can be used to cut signal wires
or drill holes to reach signal wires in underlying layers. These holes can be filled with
platinum to bring the signal to the surface, where it can be easily micro-probed. With
an electron beam tester, the activity on the signal wires can be recorded, if the clock
frequency is drastically reduced (under 100 kHz). Finally, with the infrared laser,
the chip can be scanned from rear, because the silicon substrate is transparent in the
infrared wavelength range. With the photon current, internal states of transistors or
activity on signal wires can be read out [AK96, Ajl95].

These advanced technologies can be used to launch a variety of attacks. In focus
are smart cards with implemented cryptographic algorithms. Most of the time, it is
the attackers goal to read a secret key. One example is to read out the memory content
using bus probing. The problem here is the generation of the successive addresses
to get a linear memory trace. The attacker can bypass the software by destroying
and deactivating the transistor gates which are responsible for branches and jumps
with an FIB. The result is a program counter with can only linearly count up, which
fits perfectly for this attack [KK99]. Other attacks are reading ROM, reviving and
using test modes, ROM overwriting by using a laser cutter, EEPROM overwriting,
key retrieval using gate destruction, memory remanence, or probing single bus bits,
as well as EEPROM alternation [KK99, Hag].

34



1.4 Attacks on Embedded Systems

Figure 1.16: A secondary electron image recorded with a focused ion beam (FIB).
The FIB previously interrupts a signal wire [Fra].

1.4.3 Non-Invasive Logical Attacks

To the non-invasive logical attacks belong the following attacks: phishing, authentic-
ity forging, attacking cryptographic weaknesses, and copying. The goal of phishing
is to gather sensitive information, like passwords, credit card numbers, or whole iden-
tities. By means of social engineering, such as fake web sites, emails, or instant mas-
sages to imitate a trustworthy person. The victim gives sensitive data away, believing
that the attacker is not a harmful person. Phishing belongs to the authenticity forging
attacks. Other authenticity forging attacks are DNS or certificate spoofing (manipu-
lation). The difference to phishing is that systems and not persons are cheated.

Cryptographic attacks exploit weaknesses of cryptographic algorithms, e.g., sym-
metric ciphers, asymmetric ciphers, or hashing algorithms as well as protocol stacks.
The goals of these attacks are access to sensitive data or to break into a system. More
about cryptographic attacks can be found in [FS03] or [RRKH04].

Finally, copying attacks are attacks were sensitive data, like health data, personal
data and works, which are protected by copyright, such as music, texts, programs, or
IP cores, are copied without authorization. These attacks, especially the gathering of
sensitive data and copyright infringement, target the security goal confidentiality.

1.4.4 Non-Invasive Physical Attacks

Eavesdropping and side-channel attacks belong to the class of non-invasive physical
attacks which normally do not impair the system. Eavesdropping is the interception

35



1. Introduction

of conversations or data transmissions by unintended recipients. The attacker can
gather sensitive information which is transmitted using electric media, e.g., email,
instant messenger, or telephone. Sometimes a combination of eavesdropping and
cryptographic weakness attacks are used to monitor sensitive data. For example,
sniffing passwords in a WEP (Wired Equivalent Privacy) encrypted WLAN (Wireless
Local Area Network).

Information of cryptographic operations in embedded systems can be gathered by
side-channel attacks. Usually, the goal is to get the secret key or information about
the implementation of the cryptographic algorithm. Cryptographic embedded sys-
tems are particularly vulnerable to these attacks, because the attacker has full control
over the power and clock supply lines. The different side-channel attacks are timing
analysis, power analysis, electromagnetic analysis, fault analysis, and glitch analysis
[Hag, KLMR04, RRKH04].

Timing analysis attacks are based on the correlation of output data timing behav-
ior and internal data values. Kocher [Koc96] showed that it is possible to determine
secret keys by analyzing small variations in the execution time of cryptographic com-
putations. Different key bit values cause different execution time, which makes a read
out and reconstruction of the key possible.

Power analysis attacks are based on the fact that different instructions cause varia-
tions in the activities on the signal lines, which result in different power consumption.
The power consumption can be easily measured by observing the current or the volt-
age on a shunt resistor. With simple power analysis (SPA) [KJJ99], the measured
power consumption is directly interpreted to the different operations in a crypto-
graphic algorithm. With this technique, program parts in a microprocessor, for ex-
ample DES rounds or RSA operations, can be identified. Because of the execution
of these program parts depend on a key bit, the key bits can be read out. Differential
power analysis (DPA) [KJJ99] is an enhanced method which uses statistical analy-
sis, error correction and correlation techniques to extract exact information about the
secret key.

Similar to power analysis techniques, information about the key, data, or the cryp-
tographic algorithm or implementation can be extracted by electromagnetic radiation
analysis [AARR03].

During different fault analysis (DFA) attacks, the system is exposed to harsh en-
vironment conditions, like heat, vibrations, pressure, or radiation, to enforce faults
which result in an erroneous output. Comparing this output to the correct one, the an-
alyst gains insight into the implementation of the cryptographic algorithms as well as
the secret key. With DFA attacks, it was possible to extract the key from a DES imple-
mentation [BS97] as well as public key algorithm implementations [BDH+98, BS97].
The last one shows that a single bit fault can cause fatal leakage of information which
can be used to extract the key. Pellegrini and others show that using fault analysis,
where the supply voltage of an processor is lowered, it is possible to reconstruct sev-
eral bits from a secret key of the RSA cryptographic algorithm [PBA10]. For this

36



1.5 Contributions

attack, they used the RSA implementation of the common OpenSSL cryptographic
library and a SPARC Leon3 core, implemented on a Xilinx Virtex-II Pro FPGA. The
supply voltage of the FPGA is lowered till sporadic bit errors occur on the calculation
of the signature using the FPGA’s hardcore multiplier.

Glitch attacks also belong to the class of DFA attacks. Here, additional glitches
are inserted into the clock signal to prevent the registering of signal values on the
critical path. The simplest attack is to increase the clock frequency. One goal of glitch
attacks can be the prevention of branches in a microprocessor program, because of the
calculation and registering of the new branch target address is a long combinatorial
path on many processor implementations [KK99].

1.5 Contributions

It has been shown in the previous sections of this chapter that security and reliability
in embedded systems are very important topics, and that their significance is likely
to increase in the future. Additionally, this and the next chapter show that the topic
involves a wide research area with a large number of annual publications. After
this introduction, major contributions of this thesis with respect to these topics are
outlined, concentrating on two major concerns, namely:

• Identification and Watermarking of IP Cores and

• Control Flow Checking.

The first topic is mainly about security issues, and is concerned with countermea-
sures against unauthorized copying of IP cores, which compromises the confidential-
ity of the core’s author. The second topic mainly treats reliability issues, but also
security issues. In particular, soft errors (see Section 1.3.4), but also some degen-
eration faults (see Section 1.3.1) and code injection attacks (see Section 1.4.1) are
discussed. Physical attacks, which affect the control flow of a program running on
an embedded system (see Section 1.4.2 invasive physical attacks and Section 1.4.4
differential fault analysis), are focused on as well. The key scientific contributions of
this dissertation are summarized as follows:

• Watermarking and Identification Techniques for FPGA IP Cores: Unlike
most existing watermarking techniques, the focus of our techniques lies on
ease of verification, even if the protected cores are embedded into a product.
Moreover, we have concentrated on higher abstraction levels for embedding
the watermark, particularly at the logic level, where IP cores are distributed as
netlist cores. With the presented watermarking methods, it is possible to wa-
termark IP cores at the logic level and identify them with a high likelihood and
in a reproducible way in a purchased product from a company that is suspected

37



1. Introduction

to have committed IP fraud. To the best of our knowledge, this is only possible
for netlist cores using our watermarking techniques. Moreover, approaches to
identify an embedded core by looking at special core properties without using
a watermark are presented as well [ZAT06]. Using these techniques, we cover
the protection of IP cores on all different abstraction levels from RTL to device
level without restrictions on the verifiability in a given product.

The investigated techniques establish the authorship by verification of either an
FPGA bitfile (see also [ZAT06, SZT08]) or the power consumption of a given
FPGA (see also [ZT06, ZT08b, ZBT10b, ZT07a, ZT07b]). Both the FPGA
bitfile and the measurement of the power consumption can be easily obtained
from a given product. However, if the product vendor uses encrypted bitfiles,
only the watermark verification using the power consumption is possible with
the proposed methods. On the other hand, if the FPGA embeds multiple wa-
termarked cores, the different power watermarking signals superpose which
makes extraction of watermarks harder or even impossible. To circumvent this
obstacle, we propose multiplexing methods [ZBT10a]. Furthermore, we would
like to remark that the proposed power watermarking technique, which is the
only watermark verification method for netlist cores and the first one available
for bitfile cores which works with bitfile encryption. Another watermarking
technique for encrypted bitfiles, introduced in [KMM08], uses thermal dissi-
pation for verification and is commercially available as the product DesignTag
from Algotonix. The commercialization underlines that there is a real demand
for IP protection by such watermarking techniques.

In summary, the key contributions of this part of the dissertation are:

– Extended theoretical watermarking and identification
models

– Non-invasive verification using solely the given product
– Watermarking and identification of IP cores published as

HDL, netlist, and bitfile cores
– Identification and watermarking techniques using the bit-

file for verification
– Novel watermark verification techniques based on the ex-

ploration of power consumption

• Control Flow Checking for Embedded RISC Processors and General IP
Cores: The goal of control flow checking is to recognize, analyze, and correct
sporadic and/or permanent errors that occur in the control path of embedded
CPUs or IP cores. Our vision is to define autonomously behaving elements
[SBE+07b, SBE+07a] that resolve functional errors of the control paths locally

38



1.5 Contributions

inside the core at runtime and prevent false instructions or transitions from
being executed, which could lead to an erroneous state (error-resilience). The
corresponding autonomous elements are called control flow checkers. They are
supposed to recognize, evaluate, and even correct errors during runtime which
affects the control flow of an embedded CPU or IP core (see also [ZT08a,
ZT09]).

We present techniques for fast error detection inside embedded processors,
which is important because errors should be detected even before they can man-
ifest into registers or memories. This is achieved by monitoring the control flow
in the first pipeline stages of the processors which makes it possible to correct
errors by a simple re-execution of the erroneous instructions without time and
area expensive restoration of registers and memory states. This allows us to
build a lightweight checker unit with very low area and only moderate memory
overhead.

Proposed is a unique control flow checking framework based on a modular ap-
proach. Modularity allows to add or remove features in order to reduce the
overhead, to increase the error coverage, or add error correction measures. Us-
ing our control flow checking approach, the developer of a core is able to decide
about trade offs between different features and their respective overheads.

Moreover, we point out the possibility of fast error correction and the integra-
tion of these techniques with the methods for data path protection. This com-
bination with data path protection scheme introduced in [BZS+06] enables an
embedded RISC processor to detect disturbances, originating from the under-
lying semiconductor technology as, for example, single event effects, and to
react accordingly. Both aspects, the fast error correction and the combination
with data path protection, are new and go beyond the state-of-the-art of existing
control flow checking techniques. Other benefits of this approach are that it is
not necessary to change the application code or insert any additional instruc-
tions. Therefore, there is no performance impact on error-free execution. The
approach can be easily integrated into the software development flow and thus,
the presented technique is completely transparent to the program developer.

This work provides new control flow methods mainly for embedded RISC-
CPUs, which are also applicable for general IP cores. The focus in this context
is put on methods that can be easily integrated into ASIC designs. Naturally,
these methods can also be used in FPGA designs, however the necessary reli-
able underlying FPGA structure is not part of this work.

In summary, the key contributions of this part of the dissertation are:

– New methods for lightweight control flow checking
– Detection of all errors which affect the control flow

39



1. Introduction

– Control flow checking techniques for embedded RISC
CPUs and general IP cores using programmable hardware
checker units

– Modular approach with support for fast error detection and
correction and low hardware overhead

– Support of direct and indirect control flow instructions
– Integration with methods for data path protection for em-

bedded CPUs
– Prototypical implementation for the SPARC Leon3 proces-

sor

Both topics address problems which have a high significance for embedded sys-
tems today and the importance tends to rise in the future with the ongoing technology
improvements and the integration of more and more cores to very complex systems-
on-a-chip. In particular, IP core watermarking addresses the issue of copyright pro-
tection in an increasing market of IP cores, whilst control flow checking addresses
problems including soft errors, even in combinatorial logic in with the occurrence of
soft errors is a new challenge.

On the other hand, hardware overhead and easy integration into processor design
and application development flows are of utmost importance in many cost-sensitive
systems, particularly in embedded systems. Both methodologies, watermarking and
control flow checking, have a relatively low hardware overhead and are easy to inte-
grate into current design flows. From the design flow point of view, this is an evo-
lution, not a revolution, which means that today’s design tools can be used furtheron
and without compromise.

Finally, this work provides case studies for FPGA implementations and experimen-
tal evaluations. Besides the demonstration of feasibility of the proposed methods,
these case studies indicate the amount of overhead for an FPGA implementation.

1.5.1 Overview of the Thesis

The remainder of this thesis is organized as follows:
Chapter 2 gives an overview of related work for security and reliability in em-

bedded systems. The focus lies on methods for watermarking and IP protection of
IP cores, defenses against code injection attacks, measures against faults and errors,
as well as methods for control flow checking in embedded CPUs and general RISC
cores.

Chapter 3 provides new methods for IP core watermarking and identification.
After introducing a novel theoretical model for watermarking and the threats to it,
methods for bitfile and power watermarking are presented. The bitfile watermarking

40



1.5 Contributions

section presents methods using the lookup table content to identify the core (also pre-
sented in [ZAT06]), as well as an implementation of watermarking using functional
lookup tables (also presented in [SZT08]). The next section treats power watermark-
ing. First, the model of the communication channel is introduced and then the ba-
sic power watermarking methods. After that, several new methods which increase
the decoding robustness are presented (partly also presented in [ZT06], [ZT08b],
[ZBT10b], [ZBT10a], [ZT07a], and [ZT07b]). Finally, experimental results for the
bitfile and power watermarking are given.

Chapter 4 deals with techniques for control flow checking. The focus lies on
methods checking the correctness of control flow instructions issued during the ex-
ecution of programs for embedded RISC CPUs. Using the suggested methodology,
any error of illegal or faulty direct or indirect jump and branch instruction can be
detected for a given program code at runtime. Moreover, techniques for checking
the control flow of general IP cores are presented. Furthermore, hardware concepts
for a generic modular control flow checking framework which may be tightly at-
tached to a given CPU are proposed. Finally, a prototypical implementation for the
SPARC Leon3 processor and a case study which implements a turbo encoding/de-
coding system, also presented in [MWB+10], are shown. Most of the control flow
checking methodology for embedded RISC processors is also presented in [ZT08a]
and [ZT09].

Chapter 5 concludes the work and gives an outlook for future work.

41



1. Introduction

42



2
Related Work

This chapter provides an overview of related work on security and reliability of em-
bedded systems. Because of this is a very vast topic, we concentrate on issues related
to IP core protection as well as control flow checking for embedded CPUs and IP
cores.

The chapter is structured as follows: First, methods which increase the security
of embedded systems are discussed. This includes methods for IP protection related
to IP core watermarking and identification as well as measures against code injec-
tion attacks, related to control flow checking. Second, methods which increase the
reliability of embedded systems are discussed. In focus are measures against single
event effects and degeneration faults. Finally, approaches for control flow checking
are presented.

2.1 Security: IP Protection

Intellectual property (IP) denotes the absolute right on an intangible asset, like music,
literature, artistic works, discoveries, inventions, words, phrases, symbols, designs,
software, or IP cores. The owner of the IP can license his work to other people
or companies. IPs are protected by law with patents, copyrights, trademarks, and
industrial design rights.

Drimer defines the following protection or defense categories against IP theft or
fraud [Dri09]: social, reactive, and active protections.

Social protection means that IP works are protected by laws, non-disclosure agree-
ments, copyrights, trademarks, patents, contracts, and so on. The deterrents are con-

43



2. Related Work

viction by a court of law and the loss of a good reputation. However, these deterrents
are only effective if the misconduct can be proven and the appropriate laws exist.
Furthermore, the laws must be enforced which is handled differently from country to
country.

Reactive protection means that the theft or fraud cannot be prevented, however, it
can be detected and delivers evidence of the misconduct. Some reactive protection
mechanisms deliver only suspicious facts which, however, may be enough to trigger
further investigations. Furthermore, the persistence of reactive protection mecha-
nisms might deter would-be attackers.

Active protection means that physical or cryptographic mechanisms prevent the
theft or fraudulent usage of the protected work. This category has the highest deter-
rent degree. However, these mechanisms can be broken by attacks. Often the attack
can be proven if the misconduct is detected.

In this work, we concentrate on the protection of the IP of hardware cores. These
so called IP cores are distributed like software and can easily be copied. Some core
suppliers encrypt their cores and deliver special development tools which can handle
encrypted cores. The disadvantage is that common tools cannot handle encrypted
cores and that the shipped tools can be cracked so that unlicensed cores can be pro-
cessed. Another approach is to hide a signature in the core, a so-called watermark,
which can be used as a reactive proof of the original ownership. There exist many
concepts and approaches on the issue of integrating a watermark into a core.

In general, hiding a unique signature into user data, such as pictures, video, au-
dio, text, program code, or IP cores is called watermarking. Embedding a watermark
into multimedia data is achieved by altering the data slightly at points where human
sense organs have lower perception sensitivity. For example, one can remove fre-
quencies which cannot be perceived by the human ear by coding an audio sequence
into an MP3 file. Now, it is possible to hide a signature into these frequencies without
decreasing quality of the coded audio sequence [BTH96].

One problem of watermarking is that for verification, the existence and the charac-
teristic of a watermark must be disclosed, which enables possible attackers to remove
the watermark. To overcome this obstacle, Adelsbach and others [ARS04] and Li and
others [LC06] presented so-called zero-knowledge watermark schemes which enable
the detection of the watermark without disclosing relevant information.

The watermarking of IP cores is different from multimedia watermarking, because
the user data, which represents the circuit, must not be altered since functional cor-
rectness must be preserved. A fingerprint denotes a watermark which is varied for
individual copies of a core. This technique can be used to identify individual autho-
rized users. In case of an unauthorized copy, the user, the copied source belongs to,
can be detected and the copyright infringement may be reconstructed. Watermark-
ing procedures can be categorized into two groups of methods: additive methods and
constraint-based methods.

44



2.1 Security: IP Protection

In additive methods, the signature is added to the functional core, for example, by
using unused lookup-tables in an FPGA [LMSP98]. The constraint-based methods
were originally introduced by [KLMS+01] and restrict the solution space of an op-
timization algorithm by setting additional constraints which are used to encode the
signature.

A survey and analysis of watermarking techniques in the context of IP cores is
provided by Abdel-Hamid and others [AHTA04]. Further, we refer to our own survey
of watermarking techniques for FPGA designs [ZT05]. A survey of security topics
for FPGAs is given by Drimer [Dri09] who also maintains the FPGA design security
bibliography website: http://www.cl.cam.ac.uk/˜sd410/fpgasec/.

In order to compare different watermarking strategies, some criteria are defined in
the following [HP99]:

Functional correctness: This is the most important criteria. If the watermark
process destroys the functional correctness, it is useless to distribute the core.

Resource overhead: Many watermarking techniques need some extra resources.
Some to generate and store the watermark itself, some because of the degradation of
the optimization results from the design tools. The ratio between the original and the
watermarked core’s resource demand is defined as the resource overhead.

Transparency: The watermark procedure should be transparent to the design
tools. It should be easy to integrate the watermarking step into the design flow, with-
out altering common design tools.

Verifiability: The watermark should be embedded in such a way that the author-
ship can be verified easily. It should be possible to read out the watermark only with
the given product and without any further information from the design flow which
must be requested from a company suspected of IP fraud.

Difficulty of removal: The watermark should be resistant against removal. The
effort to remove the watermark should be greater than the effort needed to develop a
new core, or the removal of the watermark should cause corruptness of the function-
ality of the core. Watermarks which are embedded into the function of the core are
in general more robust against removal than additive watermarks.

Strong proof of authorship: The watermark should identify the author with a
strong proof. It should be impossible that other persons can claim the ownership of
the core. The watermarking procedure must be resistant against tampering.

45



2. Related Work

In this section, we first discuss IP protection methods using core encryption. Af-
ter that, related work using additive and constraint based watermarking methods is
presented.

2.1.1 Encryption of IP Cores

The goals of active IP protection for cores are, first, that the core cannot be used
without a proper license and, second, that the core is protected from unauthorized
modifications. The cores can be delivered in encrypted form and are decrypted by
design tools. Other approaches for FPGAs use an encrypted configuration bitfile
which is decrypted on the FPGA.

Encrypted HDL or Netlist Cores

One solution is to deliver encrypted IP cores to the customers and integrate de- and
encryption functions into the EDA tools. The customer buys the encrypted core and
obtains the appropriate key from the IP core developer or vendor. This technique is
applicable for IP cores of all abstraction or technology levels (RTL – HDL cores,
logic level – netlist cores, device level – bitfile/layout cores). However, if, e.g., an
HDL core should be protected at all abstraction levels, the synthesis tool must pro-
duce an encrypted netlist. This must be done for all steps: decryption of the core,
processing, and encryption. It is important that the customer only has access to the
encrypted data, which means that the EDA tool routines must be protected against
read out attacks.

The problem is that no consistent industrial standard exists which handles en-
crypted IP cores [Dau06]. This complicates the interoperability of IP cores and EDA
tools.

Today, symmetric and asymmetric cryptographic approaches are used. Using sym-
metric cryptographic approaches, the en- and decryption is done with the same key.
The advantage of this approach is the reduced computational complexity compared
to asymmetric approaches. One problem is the secure distribution and communica-
tion of the key. Furthermore, EDA tools must deal with different keys for different
IP vendors, and if one key is cracked, usually all IP cores of the corresponding ven-
dor have lost their protection. Nevertheless, this approach is used, for example, by
Xilinx to encrypt some of their parameterizable HDL IP cores, e.g., the Microblaze
processor softcore [Xild].

Methods using asymmetric cryptography are also known as public key cryptog-
raphy which need two keys, the private and the public key. The private key is for
decryption inside the EDA tools, where as the encryption key is publicly available
and is used by the IP core vendor. The EDA vendor creates the key pairs and embeds
the private key in his tools. The IP core developer can now use the public key for the
encryption. The advantage is that the private decryption key may not be transferred

46



2.1 Security: IP Protection

over untrusted communication channels and is only known by the EDA vendor. The
disadvantage is that asymmetric approaches have a high computational complexity
which results in long runtime for decryption up to several hours for IP cores [Dau06].
Another drawback is that the IP vendor must create a separate version for each EDA
tool, which is encrypted with the corresponding public key of the EDA vendor.

Dauman, Vice President of the Synopsys’ Synplicity Business Group, introduced a
hybrid approach [Dau06]. The IP core is encrypted with a symmetric cryptographic
method, like Triple-DES, or AES using a key which is generated by the IP vendor.
This key, now referenced as the data key, is encrypted with an asymmetric crypto-
graphic method, like RSA [RSA78], with the public key of the EDA vendor. This
approach is similar to the PGP approach [Zim95] for cryptographic privacy and au-
thentication of messages. The decryption is done with the (decrypted) data key and
the cryptographic method which is specified by the IP vendor. Inside the EDA tools,
there exist different symmetric cryptographic routines for the decryption of the core.
The advantage is that the decryption with a symmetric algorithm is very fast and the
computational complex asymmetric method is only used for the data key which is
very small compared to the whole IP core. Synplicity suggested this approach as
future industry standard and includes this method called ReadyIP into the product
Synplify Premier [Syna].

In 2007, a industry-wide panel discussion [Wil07] provided some insight into the
perception of encrypted IP cores of the EDA industry. The conclusion was that the
current social-based protection works well for large cooperations. A better solution
is desirable but not necessarily urgent. However, they express their reservation to
small companies or startups which are not known in the community and might not be
willing to sell IP cores to these companies.

Barrick argued against the usage of encrypted netlist cores due to their hidden
costs [Bar]. The disadvantages are the fixed constraints, the prevention to reuse parts
of the logic for other cores, slower simulation speed or inaccurate behavioral models,
restriction of the choice of EDA tools, and fewer debugging possibilities. However,
sometimes encryption can be worth due to reduced acquisition costs.

Encrypted FPGA Configurations

Another kind of IP protection is the encryption of the FPGA configuration or bitfile.
The bitfile is stored in a non-volatile memory, e.g., a PROM, and transferred to the
FPGA encrypted. Inside the FPGA during the configuration, the bitfile is decrypted.
This approach prevents copy attacks for bitfile designs and protects the bitfile from
reverse engineering.

The first suggestion of this method was in 1995 by a patent from Austin [Aus95].
The first FPGA devices which offered configuration encryption was the Actel’s 60RS
family. However, all FPGAs had the same permanent key, which prevents no copy at-
tacks. Furthermore, the key was also stored in the software. Consequently, it was easy

47



2. Related Work

for attackers to extract the key from the software. Xilinx introduced configuration de-
cryption with a Triple-DES hardcore for Virtex-II devices in the year 2000. The user
defined key can be stored and updated into an FPGA internal battery-backed SRAM.
Today, bitfile encryption is supported by many high-end FPGA families. Some FPGA
devices, such as the Altera Stratix II/III, can be configured to always perform decryp-
tion. This prevents the configuration with bitfiles which are not encrypted with the
proper key.

There exist two different key storing techniques: volatile and non-volatile. Volatile
key storing uses low power SRAMs which are powered by an external battery. At-
tackers must keep powering the key storage during the attack, which is more com-
plicated. On an attacker’s error, the key is cleared and the bitfile cannot be loaded.
The disadvantage is the increased printed circuit board space and costs for the exter-
nal battery. Non-volatile key storage uses fuses, flash, or EEPROMs. The problem
is that these technologies must be combined with the latest CMOS technology on
the same chip, which affords in a non-standard manufacturing step. The results are
increasing costs and more complex verification strategies.

An important aspect of methods using encrypted FPGA configuration bitfiles is the
key management which includes the generation and the distribution of keys. Kean
suggests a method where the FPGA can encrypt and decrypt bitfiles with hardware
cores and a permanent embedded key [Kea01]. The FPGA is able to encrypt the bitfile
on the first programming and store this encrypted bitfile in a non-volatile memory.
Upon every FPGA configuration during the power-up cycle, the bitfile is loaded and
decrypted in the FPGA. The advantage is that the key never leaves the FPGA.

Bosset and others [BGB06] propose a method for using partial reconfiguration for
en- and decryption of FPGA bitfiles by user-defined soft cores. At power-up, the
decryption core is initially loaded form the PROM which decrypts the bitfile with the
user logic. Soudan and others [SAH] propose a method for the encryption of partially
reconfigurable bitfiles using device-specific keys.

2.1.2 Additive Watermarking of IP Cores

Additive methods are watermarking procedures, where a signature is added to the
core. This means that the watermark is not embedded into the function of the core.
Nevertheless, the watermark can be masked, so it appears to be part of the functional
part. Additive watermarks can be embedded into HDL, netlist, bitfile or layout cores.

HDL Cores

Additive watermarking for HDL cores seems to be very complicated, because of the
human-readable structure of the HDL code. Hiding a watermark there is very dif-
ficult, because on the one hand, an attacker may easily detect the watermark, and

48



2.1 Security: IP Protection

on the other hand, subsequently used design tools might remove the watermark dur-
ing circuit optimization. However, it is not impossible to include an additive HDL
component into the core, which may not removed by the design tools.

Castillo and others hide a signature into unused space of dedicated lookup table
based memory [CPG+06]. To extract the signature, an additional logic monitors the
input stream for a special signature extraction sequence. If this sequence is detected,
the signature is sent to the outputs of the core. This approach was later generalized
for other memory structures in [CPG+08]. The drawback is that distribution as an
HDL core is not possible, because the signature extracting logic is easy to detect and
to remove.

Oliveira presents a general method for watermarking finite state machines (FSMs)
in a way that on occurrence of a certain input sequence, a specific property exhibits
[Oli01]. The certain input sequence corresponds to the signature which is previously
processed by cryptographic functions. A similar approach is presented by Torunoglu
and others in [TC00] which explores unused transitions.

Fan provides a method where the watermark or signature is sent as a preamble of
the output of the test mode [FT03]. Some ASIC circuits provide a special test mode
which stimulates the core with special input patterns. To analyze the correctness of
the core, the output of these input patterns are measured and compared to the correct
patterns. The idea is to send the watermark sequence over the output port before the
test sequence starts.

The disadvantage of these approaches is the usage of ports for signature verifica-
tion. This works only if the ports are reachable. If the core is embedded into other
cores, the ports of the watermarked core can be altered which falsifies or prevents
the detection of the signature in the output stream. This applies also to the signature
extraction sequence in the input stream.

Netlist Cores

To the best of our knowledge, there exist no publications on the use of additive wa-
termarking at the level of netlist cores. In [ZT05] we presented the first two examples
of how additional watermarking for netlist cores can look like. The first idea is to ap-
ply redundant logic in some paths of the core according to a signature. To verify the
watermark, one can optimize the core so that the redundant logic is removed, show
the differences and reconstruct the signature.

The second idea is to add false paths in the design which do not affect the following
logic. The weakness of both ideas is that the design tools applied in subsequent steps
use transformations which may destroy the watermark. Therefore, these ideas are not
applicable.

49



2. Related Work

Bitfile Cores

The approach of Lach and others watermarks bitfile cores by encoding the signa-
ture into unused lookup tables [LMSP98]. At first, the signature will be hashed and
coded with an error correction code (ECC) to be able to reconstruct the signature
even if some lookup tables are lost, e.g., during tampering. After the initial place and
route pass, the number of unused lookup tables will be determined. The signature is
split into the size of the lookup tables and additional LUTs are added to the design.
Then, the place and route process will be started again with the watermarked design.
Later, the approach was improved by using many small watermarks instead of a sin-
gle large one [LMSP99]. The size of the watermarks should be limited by the size of
a lookup table. The advantage is that small watermarks are easier to search for, and
for verification, only a part of all of watermark positions must be published. With
the knowledge of the published position, the watermark can be easily removed by
an attacker. At the verification process, only a few positions of the watermark need
to be used to establish the ownership. A second improvement is that a fingerprinting
technology is added to the approach that enables the owner to see which customer has
given the core away [LMSP01]. The fingerprinting technology is achieved by divid-
ing the FPGA into tiles. In each tile, one lookup table is reserved for the watermark.
The position of the mark in the tile encodes the fingerprint. For verification, it is
possible to read out the content of the lookup table from a bitfile. So, these methods
are easy to verify. It’s more difficult to determine the position of the watermark in a
tile, but it’s still generally possible. However, if an attacker knows the position of the
watermark, it is easy to overwrite it.

Saha and others present a watermarking strategy for FPGA bitfiles by subdividing
the lookup table locations into sets of 2× 2 tiles [SSK07]. The number of used
lookup tables in a set is used as signature. From an initial level, additional lookup
tables are added to achieve the fill level according to the signature. The input and
output are connected to the don’t care inputs of the neighboring cells. Kahng and
others show in [KLMS+98] that the configuration of the multiplexer of unused CLB
outputs in FPGA bitfiles can carry a signature. The signature is embedded after the
bitfile creation and by knowing the encoding of the bitfile. These configuration bits
can be later extracted to verify the signature.

Van Le and Desmedt show that these additional watermark schemes for bitfile
cores can be easily attacked by reverse engineering, watermark localization, and sub-
sequent watermark removal [LD03]. A simple algorithm is introduced which iden-
tifies lookup tables or multiplexers whose outputs are not connected to any output
pins. However, these attacks are only successful if reverse engineering of the bitfile
is possible and the costs of reverse engineering are not too high. More about attacking
costs is described in Section 3.2.

Finally, Kean and others present a watermarking strategy where a signature is em-
bedded into an FPGA bitfile core or design [KMM08]. The read out of the signature

50



2.1 Security: IP Protection

is done by measuring the temperature of the FPGA. This approach is commercially
available as the product DesignTag from Algotronix.

2.1.3 Constraint-Based Watermarking of IP Cores
All optimization problems have constraints which must be satisfied to achieve a valid
solution. Solutions which satisfy this constraints are the solution space. Constraint-
based watermarking techniques represent a signature as a set of additional constraints
which are applied to the hardware optimization and synthesis problem. These addi-
tional constraints reduce the solution space (see Figure 2.1) since the chosen solution
must also satisfy the additional constraints. The same solution could be achieved
with neglecting these additional constraints with probability Pc. The probability Pc of
this event is given by the following formula:

Pc =
nw

no
(2.1)

where no is the number of solutions which satisfy the original constraints and nw is
the number of solutions which satisfy both the original and the additional constraints
[KLMS+01, KHPC98]. If Pc is very small, a solution that also satisfies the additional
(watermarking) constraints is a strong proof of the existence of the watermark.

valid 
optimization 
      solutions
 

solution space for the 
watermarked design 
 

Figure 2.1: The solution space of an original and a watermarked design. If a de-
sign satisfies the original and the additional constraints, then the design
is protected by a watermark. The probability that the additional con-
straints are satisfied by chance should be low to have a strong proof of
authorship.

Qu proposes a methodology to make a part of the watermark – for constraint-
based watermarking, some additional constraints – public which should deter attack-
ers [Qu02]. The other parts, called private watermark, are only known by the core
author and are used to verify the authorship in case that the public watermark was at-
tacked. A similar approach is used by Qu and others to generate different fingerprints

51



2. Related Work

by dividing the additional constraints into two parts [QP00]: The first part is a set of
relaxed constraints which denote the watermark. By applying distinct constraints to
the second part, different independent solutions can be generated which may be used
as diverse fingerprinted designs.

Charbon proposed a technique to embed watermarks on different abstraction levels
which he called hierarchical watermarking [Cha98]. The idea is, if an attacker is
able to remove a watermark, for example, embedded into the layout of a circuit, the
watermarks added at higher abstraction levels are still present. However, Charbon
focused more on layout, nets, and latch watermarking techniques which are only
applicable for ASIC layout cores.

The verification of a constraint-based watermark is usually done with the water-
marked core as it is. This means the watermarked core can be purchased or published
and from the distributed cores the watermark can be verified. However, if the core
is combined with other cores and traverses further design steps, the watermark infor-
mation is usually lost or it cannot be extracted.

Van Le and Desmedt [LD03] present an ambiguous attack (see Section 3.2) for
constraint-based watermarking techniques. The authors add further constraints to
the watermarked solution by allowing only a minimal increase of the overhead. The
result is a slightly degenerated solution which satisfies many additional constraints.
This means that in this solution, a lot of different signatures can be found which
destroys the unique identification of the core developer. They choose, for example,
the constraint-based watermarking approach for graph coloring. Further, this attack
might be applicable to other constraint-based watermarking techniques.

As it was the case with additive watermarking strategies, constraint-based water-
marking strategies are applicable for HDL, netlist, and bitfile cores.

HDL Cores

HDL code is usually produced by human developers or high-level synthesis tools.
Both can set additional constraints to watermark a design. One approach is to use a
watermarked scan chain [KP98]. Scan chains are usually used in ASIC designs to
access the internal registers for debugging purposes. The use of scan chains in FPGA
designs is rather unusual, but might be helpful in some cases. At first, a number will
be assigned to each register, and the registers will be sorted. Now, a pseudo random
sequence will be generated from the signature (one example is given in Section 3.2.2).
Registers are selected with an algorithm which uses a random sequence as input. For
Kc scan chains, the first Kc selected registers are chosen as the first register in each
chain. Depending on the signature, we have a variation on the scan chains which
can be used to detect the watermark. It is possible that an unfortunately chosen start
of a chain could result in the allocation of more routing resources. Moreover, the
maximum clock frequency for the scan chain can be limited. This approach is easy to
verify, if the scan chains can be accessed from outside of the chip. Problems occur,

52



2.1 Security: IP Protection

if the scan chain is only used internally or is not connected to any device. In such a
case, there is no verification possibility.

Some work was done for watermarking digital signal processing (DSP) functions
[RAMSP99, CD00]. This kind of watermarking has more in common with media wa-
termarking instead if IP watermarking. Both approaches alter the function of the core
slightly by embedding a watermark. In [RAMSP99], the coefficients of finite impulse
response (FIR) filters are slightly varied according to the watermark. Additionally,
the authors use different structures to build the FIR filter which also corresponds to
the signature. In [CD00], these ideas are extended and proven correct by mathemati-
cal analysis.

Netlist Cores

An approach to watermark netlist cores is to preserve certain nets during synthesis and
mapping [KHPC98]. Synthesis tools merge signals or nets together and produce new
nets. Only a few nets from the synthesis input will be visible in the synthesis result.
The technology mapping tool also eliminates nets by assembling gates together in a
lookup table. Kirovski’s approach enumerates and sorts all nets in a design. The first
Kc (see previous section) nets of the input are chosen by the synthesis tools according
to a signature. These nets will be prevented from elimination by the design tools
by connecting these nets to a temporary output of the core. The new outputs from
additional constraints for the synthesis tool, and the corresponding result is related to
the watermark. A disadvantage is that it is easy to remove the additional logic. If the
content of the lookup table is synthesized again, the watermark will be removed.

Meguerdichan and others presented a similar approach for netlist cores where ad-
ditional constraints are added during the technology mapping step of the synthesis
process [MP00]. In this approach, critical signals are not altered which preserves the
timing and the performance of the core. The signature is encoded into the number of
allowed inputs of a certain primitive cell, e.g., a gate or a lookup table. The primitive
cells which are not in the critical path are enumerated, and according to the signature,
the number of usable inputs are constrained.

Khan and others watermark netlist cores by doing a rewiring after synthesis [KT05].
Rewiring means that redundant connections between primitive cells are added in the
netlist which makes other original connections redundant. These new redundant con-
nections are removed.

Bai and others introduce a method for watermarking transistor netlists for full cus-
tom designs [BGXC07]. The transistors are enumerated and sorted into a list like in
the approach above. Corresponding to the pseudo random stream generated from the
signature, the width of the transistor gate is altered. If the transistor is assigned a ’1’
from the random stream, the transistor width is increased by a constant value.

53



2. Related Work

Bitfile and Layout Cores

Additional placement, routing, or timing constraints can be added to watermark bit-
file cores. To embed a watermark with placement constraints, Kahng and others place
the configurable logic blocks (CLBs) in even or odd rows depending on the signature
[KMM+98]. In this approach, the signature is transformed into even/odd row place-
ment constraints. The placed core will be tested on preserving the constraints and,
if necessary, CLBs are swapped. This method has no logical resource overhead and
the additional costs of routing the resources are very small or tend to zero, because
the placement is altered only marginally. The problem of verification is to extract
the CLB placement information. Only if knowing how the CLBs correspond to the
signature, the watermark can be verified. A strategy to achieve this is to uniquely
enumerate the CLBs in an FPGA from the top left corner.

Kahng and others [KMM+98] propose a second approach by adding constraints
to the router. The constraints achieve that a net selected by the signature is routed
with some additional, unusual routing resources. These unusual resources can be, for
example, wrong way segments. A wrong way segment is a segment in which the net
goes to the wrong direction and then back in the right direction to form a backstrap.
The authors claim that this is unlikely for a normal router, and so such a net can be
verified as a watermarked net.

Furthermore, additional timing constraints can be used to watermark a core. Tim-
ing constraints limit the route and logic delay between two registers. Kahng and
others propose a technique to select paths which have timing constraints according
to the signature. The timing constraints for these paths are split into two separate
constraints. For example, let a path have six logic gates and a timing constraint of
10 ns. The new constraint is 4 ns for the first 3 cells and 6 ns for the rest [KLMS+01].

Another approach by Jain and others measures the delay on selected paths and adds
new timing constraints on these paths [JYPQ03]. The new constraints are chosen
based on the measured delay by setting the last digit to a value of a bit from the
signature. For example, let a path have a delay of 5.73 ns. If the coded bit is a ’1’, the
new constraint for this path is 5.71 ns, if the coded bit is ’0’, the constraint is 5.70 ns.

Narayan and others present a watermarking approach of the layout by modifying
the number of vias and bends of certain nets [NNC+01]. Like in other approaches,
the nets are enumerated, and additional vias or bends are inserted according to the
signature.

Saha and others present a watermarking scheme by altering the size of the repeaters
according to the signature [SSK07]. In high performance ASIC designs, repeaters (a
buffer for amplification of the signal) are inserted into critical nets to decrease the
delay.

54



2.1 Security: IP Protection

2.1.4 Other Approaches

Many other approaches exist for protecting IP cores or designs from unlicensed usage
or alteration. For example, the VHDL Obfuscator & Watermarker [VIS] is able to
obfuscate VHDL cores in a way that the algorithm is hidden, but leaves the core
synthesizeable. This approach make reverse engineering and alteration of the core
much harder. Further, by using different scrambling techniques, a watermark can be
embedded in the obfuscated code. Clearly, this watermark can only be detected at the
RTL in the HDL core and is lost once the core is synthesized.

Other approaches prevent the copying of bitfile designs by using unique FPGA
or board identification. If the obtained bitfile is programmed on another board, the
function will not work. The unique identification can be done by using a non-volatile
external device, a unique key embedded into the FPGA, or by physical unclonable
functions (PUFs) [Dri09].

Kessner uses a non-volatile CPLD for board identification [Kes00]. A bit sequence
is calculated by a cryptographic algorithm implemented on the FPGA and addition-
ally on the CPLD. If the results of both implementations are the same, then the design
“knows” that it is executed on the “right” board and starts its operation. Similarly,
challenge-response approaches are published in an Altera white paper [Altb] and a
Xilinx application note [Xila]. A challenge consisting of a sequence produced from
a random generator is sent to a cryptographic algorithm implemented into a non-
volatile device. The response of the device calculated with a secure key is compared
with the result of the same algorithm and key implemented on the FPGA. The appli-
cation is enabled if both results are the same. Couture and Kent propose a method
where the IP core reads out a secure token, stored in a non-volatile memory in peri-
odic time-lags [CK06]. Inside the token, the type and the life span of the license is
encoded. For preventing the cloning of the bitfile, the token also includes a unique
FPGA identification number.

In the Spartan-3A FPGA family, Xilinx implants a factory-set read-only unique
number called Device DNA in each device [Xile]. This 57-bit number can be used to
develop cores which allow execution only on specified FPGA devices.

A physical unclonable function (PUF) returns a unique value, which is extracted
from physical properties of an object. Silicon PUFs (SPUFs) generate this device-
dependent value from different manufacturing-related variations of timing and delay
behaviors on nets of the silicon device [GCvDD02]. Related work of SPUFs can
be categorized into approaches using ring oscillators and approaches using so-called
Arbiter-PUFs. Gassend and others propose a method using ring oscillators in FP-
GAs for generating device-dependent values [GCvDD02]. The ring oscillators swing
with a certain frequency, and the output is used to enable a counter, clocked with the
operational clock. Lee and others [LLG+04] and Lim and others [LLG+05] present
SPUFs, realized with an Arbiter-PUF at the IC fabric. An Arbiter-PUF, shown in
Figure 2.2, consists of two identical designed delay lines, one for a data signal and

55



2. Related Work

one for a clock signal which can be crossed with multiplexers. The challenge vector
enables a route through the multiplexers for both signals. Edges are generated and
propagate through the network according to the challenge vector. If the clock signal
reaches the flip-flop, the current value of the data signal is registered. The result is a
’1’ if the clock signal is faster than the data signal; otherwise the result is ’0’. Vary-
ing the challenge vector will cause different results, which can only be reproduced
on the same device. Using another device, the achieved results are completely dif-
ferent. Mjzoobi and others [MKP09] show an implementation of an Arbiter-PUF for
Virtex-5 FPGAs whereas Suh and Devadas [SD07] implement an Arbiter-PUF for
Virtex-4. Holcomb and others [HBF07] and Guajardo and others [GKST07] present
approaches where the initial state of SRAMs is used as a PUF. During the power
up of SRAMs, some memory cells switch to a ’1’, others to a ’0’, depending on the
process variations. Guajardo and others reported that Block RAMs of some FPGAs
can be used for generating a unique key which might be used for design protection.

edge

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

D    Q

response

challenge[n:0]

Figure 2.2: An Arbiter-PUF consists of a flip-flop and two delay lines the routing of
which can be altered by different challenge values. An edge propagates
through the multiplexer network to the flip-flop. The registered response
is determined by which signal arrives first. The responses of different
challenges are device dependent, hence to minimal uncontrollable path
delay variations of different devices.

Simpson and Schaumont propose an authentication system for software, running in
a soft core on an FPGA, by using a PUF [SS06]. Later, Guajardo and others enhanced
this approach [GKST07].

2.2 Security: Defenses Against Code Injection
Attacks

In this section, we show measures against different code injection attacks, as intro-
duced in Section 1.4.1. A good overview of defenses against code injection attacks

56



2.2 Security: Defenses Against Code Injection Attacks

is further given in [Rag06] and [Erl07]. The related work in this section is divided
into six groups: Methods using an additional return stack, software encryption, safe
languages, code analyzer, anomaly detection, as well as compiler, library and oper-
ation system support. Control flow checking methods, which combine security and
reliability issues are discussed in Section 2.4.

2.2.1 Methods using an Additional Return Stack

Almost all code injection attacks manipulate the memory-based return stack. The re-
turn stack can be protected by an additional hardware-based return stack. Hardware-
based return stacks are usually used for indirect branch prediction [KE91]. Xu and
others propose a secure return address stack (SRAS) which redundantly stores a copy
of the memory-based stack [XKPI02]. If the return address from the SRAS differs
with the processor-calculated address from the memory return stack, an exception is
raised which is handled by the operation system to determine whether it stems from
a misprediction or from a code injection attack.

Lee and others propose a similar SRAS approach [LKMS04, MKSL03]. Addi-
tionally, scenarios are considered when the control flow of a return from subroutine
does not comes back to the point the function was called from. Lee suggests either to
prevent these situations or to introduce additional instructions which manipulate the
SARS to manually resolve such situations.

Ozdoganoglu and others [OVB+06] present another SRAS method called Smash-
Guard. In some situations, the behavior of the correct control flow differs from the
last-in first-out (LIFO) return stack scheme. In these situations which are often re-
ferred to as setjmp or longjmp calls, the control flow mostly returns to a previous call
which is deeper in the stack. Ozdoganoglu resolves these situations by searching the
target address of the currently executed return instruction in the complete stack.

Furthermore, Xu and others propose methods to divide the stack into a control and
a data stack in [XKPI02]. Inside the control stack, the return addresses and stack
pointers and inside the data stack variables, e.g., buffers are stored. This approach
effectively solves the problem of buffer overflows. To achieve the stack split, Xu
presents two different techniques, one modifies the compiler and the other is a hard-
ware technique which modifies the processor.

2.2.2 Methods using Address Obfuscation and Software
Encryption

Bhatkar and others [BDS03] and Xu and others [XKI03] propose methods for address
obfuscation. To exploit buffer overflows and achieve the execution of malicious code,
the attacker must know the memory layout. Due to address obfuscation, the achieve-
ment of such information about the memory structure is enormously complicated for

57



2. Related Work

the attacker. In these methods, the program code is modified so that each time the
code is executed, the virtual addresses of the code and data are randomized. These
approaches randomize the base address of the stack and heap, the starting address of
the dynamic linked library, as well as the location of static data. Also, the order of
local and static variables as well as the functions are permuted. For objects which
cannot be rearranged, Bhatkar inserts random gaps by padding, e.g., in stack frames.

Shao and others proposed hardware assisted protection against function pointer
and buffer smashing attacks [SZHS03, SXZ+04]. The function pointers are XORed
with a randomly assigned key for each process which is hard to be reconstructed by
the attacker. This is a countermeasure for function pointer clobbering (see Section
1.4.1). Furthermore, Shao introduces a hardware-based boundary checking method
to avoid stack smashing. On each memory write, it is checked if the write destination
is outside the current stack frame and if so, an exception is raised.

If the software is loaded encrypted into the memory and decrypted in the fetch
stage, code injection attacks are impossible, because the attacker needs to inject his
code encrypted. The key for de- and encryption is different for each process, hence it
is impossible for the attacker to encrypt his code properly. Injection of unencrypted
code produces data garbage after decryption and results in a crash of the process.
Barrantes and others propose a method which uses an x86 processor emulator for
simulate the decryption in the fetch stage [BAFS05]. The process is encrypted at
load time, whereas Kc and others present an approach where the executable is stored
encrypted on the hard disk [KKP03]. The proper key is stored in the executable
header which is loaded into a special register for decryption. However, the key is also
easily extractable for an attacker which lowers the effectiveness of this approach.

2.2.3 Safe Languages
Many attacks can be launched due to the inherent security flaws which exist in the C
and C++ language. Programming in C or C++ allows a lot of programming close to
the hardware and the memory layout makes these languages very flexible. However,
the programmer must consider many facts if he would like to produce invulnerable
code. Safe languages, like Java, are capable of some implementation vulnerabilities
which are discussed in Section 1.4.1. Nevertheless, C or C++ are preferred languages
for low-level or even for high-level programming, especially in embedded systems
which makes a safe implementation of these languages reasonable.

Cyclone is a C dialect which statically analyses given C code at compile-time
and inserts dynamic checks at places where it cannot ensure that the code is safe
[JMG+02, GHJM05]. Cyclone is designed to avoid buffer overflows, format string
attacks, and memory management errors. However, the C syntax and semantics as
well as the capability of low-level programming are preserved. Insecure constructs
are refused to compile until more information is provided to make these constructs
secure. However, Cyclone programs need existing libraries, like the GNU C library

58



2.2 Security: Defenses Against Code Injection Attacks

libc which usually compiled with a standard C compiler [Rag06]. To secure library
functions, the libraries should also be compiled with Cyclone.

Another approach is CCured which is a source to source translator for C [NCH+05].
The used techniques are similar to Cyclone, which includes static analysis and dy-
namic checks on these points where static analyses are not possible. CCured uses
pointer and type analysis to make casts secure. However, these techniques make
CCured programs incompatible with existing libraries. This obstacle can be solved
by introducing library wrappers.

2.2.4 Code Analyzers
Code analyzers can be categorized into two groups: static code analyzers and dy-
namic code analyzers. Static code analyzer approaches check either the source code
or the compiled object code for vulnerabilities without executing the program. It
is impossible to detect buffer overflows statically. Therefore these tools use heuris-
tics whose detection rates are never complete. The term analyzer corresponds to a
wide area of automatic tools ranging from only considering the behavior of simple
code statements to consider the complete source code. Some static code analyzer
approaches need annotations to the source code whereas other approaches need no
annotations.

For example, an annotated static code analyzer is Splint [EL02]. It is a lightweight
tool which uses annotations to check properties of objects, e.g., the range of a vari-
able. Dor and others introduce the C String Static Verifier (CSSV) which is able to
detect string manipulation errors [DRS03]. This tool also uses annotations that have
pre-, post-, and side-effect conditions. Furthermore, it analyzes pointer interaction
and performs integer analysis. A non-annotated static code analyzer for detection
of buffer overflows is described by Wagner and others in [WFBA00]. The analysis
is done by formulating buffer overflows as an integer range problem. Another non-
annotated analyzer approach is PREfix [BPS00] and its extension PREfast [LBD+04].
These methods build an execution model of the analyzed code which includes all pos-
sible execution paths of the program.

Other static approaches use lexical analysis which can be implemented as an editor
extension. The written source code is compared to database entries of vulnerable code
snippets. If such an entry is found, the tool might examine them further and report
the security impact. Approaches using such lexical analysis are ITS4 [VBKM00] and
Flawfinder [Whe].

Dynamic code analyzers add further information to the source code and perform
test runs in order to detect vulnerabilities. However, not all vulnerabilities might be
detected, because the used input stimulus for the test runs might not cover all situa-
tions. Purify [HJ92] is a tool which tests software to detect memory errors like unini-
tialized memory access, buffer overflows, or improper freeing of memory as well as
memory leakages. The tool is commercially available from IBM known as Rational

59



2. Related Work

Purify [IBM]. Haugh and Bishop introduce a dynamic buffer overflow detection tool
for C programs, called STOBO [HB03]. This tool instruments program code in or-
der to keep track with memory buffers and checks function arguments. If a buffer
overflow occurs in a test run, a warning is printed. Ghosh and O’Conner present the
Fault Injection Security Tool (FIST) in [GO98]. This tool injects malicious strings in
buffers and observes the application response to detect vulnerabilities.

2.2.5 Anomaly Detection
Anomaly detection refers to methods which compare the actual application behavior
to a specified application profile. Any deviation from the profile will raise an excep-
tion which triggers further measures. The application profile can be user-specified or
learned from past executions of the program. A disadvantage of these methods is the
high false-positive rates due to the identification of any unusual behavior as an attack.

Hofmeyr and others and Forrest and others propose a method for monitoring sys-
tem calls for UNIX processes [HFS98, FHSL96]. If the system call pattern deviates
from the previous recorded pattern, subsequent actions like program terminations can
be taken. A similar approach is presented from Wagner and Dean [WD01]. The oc-
currence of system calls is also monitored and checked with a system call model. The
model is built statically from the control flow graph of a program, where the control
flow graph is transformed into a system call graph, which models the sequence of
the occurrence of system calls. Sekar and others also use a system call model for
anomaly detection [SBDB01]. The model, however, is generated dynamically with
system call recording in a learning phase. Furthermore, techniques using sliding win-
dows which analyze the system calls inside the window are presented by Forrest and
others [FHSL96] and Wagner and others [WD01]. Forrest uses a dynamic learning
phase whereas Wagner uses static information derived from the control flow graph.

Feng and others use, besides the system call information, the return address from
the stack for anomaly detection [FKF+03]. Like the other methods, the checks are
done on system calls. During a learning phase, so-called virtual paths are recorded.
A virtual path can be built with all return addresses, gathered from the stack, on a
system call. These return addresses correspond to all unreturned functions. During
the execution of the detection phase, the virtual path is checked on every system call
to detect anomaly behavior.

Zhang and others present a hardware approach for detecting anomalies in the pro-
gram behavior [ZZPL04]. In this approach, the detection is done on the control flow
instruction level which has a finer granularity than the other system call-based ap-
proaches. Jump and branch information, like target addresses or favored conditional
branch decisions, are stored additionally in the system memory. Fast memory access
is assured through common cache structures of the processor. This method has some
similarities with our method which will be introduced in Section 4. However, this
approach does not store control flow graphs, rather each branch or jump is separately

60



2.2 Security: Defenses Against Code Injection Attacks

looked up using a context addressable memory (CAM). Hereby, a hash of the branch
or jump address is calculated which acts as index for the branch table. Although this
approach needs more memory and has a higher latency as our approach, there is no
need for synchronization with the control flow of the executed program. The aim of
the method is to recognize attacks by detecting anomalous behavior. Therefore dur-
ing a learning phase, the decisions of conditional branches are recorded and stored
in the branch table. If the recorded decisions differ from the control flow behavior
in the detection phase, a warning signal will be risen, whereas if the control flow
diverges from the stored jump and branch information, a threat is signaled. The ap-
proach was extended with an anomalous path detection which compares sequences of
branch decisions of the executed program with the decisions recorded in the learning
phase [ZZPL05]. In the second approach, general indirect jumps (non returns from
subroutine) are considered as well.

2.2.6 Compiler, Library, and Operating System Support

In this section we discuss countermeasures for code injection attacks through en-
hancement of compilers, libraries, or the operation system.

Compiler Support

Compilers are the most convenient place to insert countermeasures for code injection
attacks without changing the programming language. Most attacks exploit buffer
overflows to overwrite stack based content. Therefore, many approaches propose
stack frame protection measures. In the stack, mainly the return address or frame
pointers are in focus of attackers. Other items which can be protected with security
enhanced compiler support are pointers in the program code. Buffer overflows occur,
if there is more data written to the buffer, than its capacity can hold (see Section
1.4.1). Therefore, boundary check methods are in focus of this section.

There exist many different methods to protect the return address inside the stack,
for example StackGuard [CPM+98, CBD+99], Stack Shield [Ven00], or Return Ad-
dress Defender (RAD) [CH01]. StackGuard places a so-called canary word1 between
the return address and the local variables inside the stack. Before executing the return
instruction, the canary word is checked and verified whether it is intact. By exploit-
ing buffer overflows for return address alteration, the canary word is also overwritten
which can be detected. Stack Shield uses a redundant return address which is copied
in the data segment in the beginning of the function. Before leaving the function

1The term canary word corresponds to the miner’s canary which was used in coal mines as an early
warning system. If there were toxic gases in the mine, the birds died before the miners were
affected. Canaries sing a lot, which made them very suitable for a visual and audible warning
system. The last canaries in mines were phased out in 1986 in the UK [BBC05].

61



2. Related Work

with the return jump, the return address is compared to the copy. If the addresses dif-
fer, the program will be terminated. A similar technique is used by RAD. However,
the redundant copy of the return address is stored in an array in the data segment
which is called return address repository (RAR). The RAR is further protected by
so-called mine zones or read only techniques. Mine zones are the read only array
boundaries, which protect the RAR from buffer overflow attacks. All these return
address protection methods can be applied as a compiler patch for the gcc compiler.
However, attacks described in [BK00] and [Ric02] are able to cancel the Stack Shield
and StackGuard protection. Foremost, StackGuard is vulnerable if the attacker uses
a pointer which directly points to the return address which allows the return address
alteration without destroying the canary word.

Cowan and others introduce a compiler extension for pointer protection, known
as PointGuard [CBJW03]. The technique protects pointers through encrypting them
while they are in the memory. Additional en- and decryption operations are inserted
in pointer read and write sequences at compile-time. For example, by accessing a
pointer, the pointer is decrypted to a processor register which is safe against mali-
cious overwriting. If a pointer is altered by overwriting the memory during a buffer
overflow attack, the decrypted result points to a different location which prevents the
access of malicious code.

Lhee and others propose a compiler extension which inserts additional buffer size
checks to prevent buffer overflows at runtime [LC02]. The buffer size information
is read out of a compilation with debugging information of the program. Using this
information, additional checks are automatically inserted into the source code.

Erlingsson and others propose a fine-grained software-based memory access con-
trol technique called XFI [EAV+06, ABEL09]. This technique enriches the program
code to grant access to an arbitrary number of memory regions. Furthermore, the
entry and exit point of a program can be controlled using XFI. Budiu and others pro-
pose additional instructions to extend the instruction set architecture (ISA) for XFI
hardware support [BEA06].

Jones and Kelly propose a method to identify out-of-bound pointers [JK97]. Every
result of a pointer arithmetic must reference the same object as the original pointer. If
not, the pointer is out-of-bounds. Such pointers can be identified dynamically by ad-
ditional instructions which are included at compile-time and a new object table which
is maintained during the execution. If a pointer is out-of-bounds, this pointer value is
set to ’-2’. The problem of this approach is that out-of-bound accesses are not allowed
in ANSI C, however, such pointers are used in many programs. Therefore, Ruwase
and Lam extend this approach with an out-of-bound object and call this approach
C Range Error Detector (CRED) [RL04]. If a pointer becomes out-of-bounds, it is
redirected to a special out-of-bound object which keeps the original pointer value and
the referenced data. This approach prevents buffer overflows, because all data written
over the bounds of the buffer are automatically redirected to other memory locations
managed by the out-of-bound object.

62



2.2 Security: Defenses Against Code Injection Attacks

Library Support

Many buffer overflows are caused by mishandling vulnerable standard C library
functions. Particularly, string handling functions are vulnerable for buffer overflow
attacks. Therefore, the obvious solution is to design safer libraries. Safe string func-
tion replacements are strlcpy() and strlcat() [MdR99] and SafeStr [MV05]
which are immune to buffer overflows and format string vulnerabilities. Format-
Guard is a patch for the glibc library to protect the printf() function from format
string vulnerabilities [CBB+01].

Baratloo and others introduce two methods against buffer overflows which are
completely transparent: libsafe and libverify [BST00]. Both approaches are imple-
mented as dynamic link libraries under the Linux operating system. The library lib-
safe intercepts all calls to vulnerable functions of the glibc library and substitutes
these calls with alternative functions which are not vulnerable to buffer overflow or
format string attacks. The library libverify uses binary re-writing of the process mem-
ory to verify critical elements of the stack frame before they are used. The verification
and protection against buffer overflows is similar to the StackGuard [CPM+98] ap-
proach, however the implementations differ. Whereas StackGuard is applied during
the compilation, libverify embeds the verification code at the start of the process. The
advantage is that the code does not have to be recompiled which makes this approach
completely transparent to the user.

Robertson and others [RKMV03] and Krennmair [Kre03] propose countermea-
sures for heap-based attacks, described in Section 1.4.1. The allocation and dealloca-
tion routines of the standard C library are modified to protect the header of the heap
segment. Robertson includes a padding mechanism and a checksum in the header
on frame allocation and verifies these information, if the segment should be freed.
Krennmairs technique, called ContraPolice, protects the heap pointer in the header
of each heap segment by randomly generating canaries like the StackGuard approach
for stack-based headers.

Operation System Support

Finally, the operating system can be enhanced to protect programs from code injec-
tion attacks. Non-executable stack prevents the execution of malicious code, injected
into the stack. However, this approach prevents some allowed situations where code
is executed in the stack. Examples are functional programming languages which gen-
erate code during runtime in the stack, function trampolines for nested functions used
by the gcc compiler, or stack-based signal handling which is used by Linux. A patch
for a non-executable stack for the Linux operating system was provided in [Des97]
which also handles the above mentioned executions by disabling the protection in
case of these situations. However, this approach is defeated by Wojtczuk [Woj98].

63



2. Related Work

Lately, processor vendors have introduced hardware support to prevent the execu-
tion of code from the stack. With a new flag, the so called NX (No eXecute) bit, mem-
ory regions can be declared page-wise as non-executable areas which are excluded
from execution by the hardware. Non-executable stack approaches for the Linux op-
erating system, like PaX [PAX03] or Exec Shield [vdV04] are able to use this NX
bit, or emulate it on processors which have no NX bit support. The technique can
be combined with write protection to achieve that no memory location in the process
can be marked as writable (’W’) and executable (’X’). This so called W⊕X protection
prevents attackers from injecting malicious code with subsequent execution. Never-
theless, Shacham demonstrated that it is not necessary to inject code in order to do
malicious computations [Sha07] (see also Section 1.4.1).

StackGhost is an operation system-based approach to protect the stack frame for
systems running on the SPARC architecture [FS01]. This method utilizes special
SPARC features like the windowed register file (see Section 4.5.1) and provides a
redundant copy of the return address. StackGhost is available as a patch for the
OpenBSD kernel.

2.3 Reliability: Measures against Faults and
Errors

In this section, measures against faults and errors in embedded systems are described.
To achieve a fault tolerant system, errors must be detected and subsequently cor-
rected. At RTL and system level, error detection and correction is done using re-
dundancies. There exist three different types of redundancies: Hardware, time, and
information redundancy. Beyond that, there exist hybrid approaches and approaches
which are using different types of redundancies for error detection and correction.
For example, the control flow checking methods, that will be described in Chapter 4,
exploit hardware and information redundancies for error detection and time redun-
dancies for error correction.

The following criteria are important for the evaluation of different error detection
and correction methods. The error coverage denotes the degree of errors that can be
detected by a method. Another criterion is the detection latency which denotes the
time between the occurrence of a fault and its detection. This time is important to
prevent a system failure. Only if an error is detected with a low latency, the error han-
dling can react to transfer the system into a secure state or to trigger error correction
measures. On the other hand, the measures against errors may cause overheads, for
example, area overhead, memory overhead, or increase the delay of the processing
core.

Error masking should also be considered. If an error is detected which does not
affects any outputs, the error is masked. Correcting such errors is not necessary,

64



2.3 Reliability: Measures against Faults and Errors

because the error has no effect on the system and therefore, the reliability is not in-
creased by correcting this error. Moreover, if time redundancy is used to correct this
error, the system performance is decreased. Weaver and others propose to record
a detected error in microprocessor registers with a so-called π bit (pi for possibly
incorrect) [WEMR04]. Later in the calculation, a hardware checker can decide by
examining the π bit if this possible incorrect value affects the overall processor state.
Furthermore, Weaver proposes to increase the error masking probabilities by inval-
idate register states in microprocessors during long delays, for example at pipeline
stalls. The probability that during such long delays a soft error effects the state of
valid registers and turns this fault into an error is high. By invalidating the register
state, the occurrence of errors can be reduced at the same soft error rate. Neverthe-
less, the valid state must be restored after the delay by recalculation which impacts
the processor performance.

The second part of this section describes fault prevention and detection approaches
for single event effects at the process and device level. Fault detection schemes at
device level can be combined with error correction methods using redundancies, e.g.,
the data path protection methods described in Section 4.5.5.

2.3.1 Hardware Redundancy Methods

A common method for error detection is the duplication of the circuit with subsequent
comparison of the results. If the circuit is instantiated three times, the correct result
can always be chosen without delay, assuming only single errors. This so-called
Triple Mode Redundancy (TMR) technique [SS98] uses an additional majority voter
which compares the results of the three different processing instances and returns the
result which is calculated by at least two of them. Hardware redundancy can detect
permanent and transient faults which lead to value or timing errors. However, TMR
has an area overhead of over 200% (two redundant units plus the voter).

On the architecture level, the duplication of complete processing units or buses
is most of the time too cost-intensive and thus prohibitive due to area overhead and
power consumption. Hence, these approaches are only used in safety-critical systems
with a high demand of reliability [Bar81, MAF+99, NMCB97].

Some approaches replicate only critical parts of the processing unit. These par-
tial redundancy methods requires much less area and produces a much lower power
overhead than the full redundancy methods. However, the error coverage per over-
head (area, power) is higher than for the full redundancy methods.

Ragel and Parameswaran suggest to introduce a second instruction decoder for
control flow instructions with its own instructions [RP06, Rag06]. The control flow
instructions for this redundant decoder unit are stored inside the program code. The
CPU registers and the program counter are duplicated to shadow registers. For
SRAM caches, approaches have been developed which use redundant memory cells

65



2. Related Work

to map out defective memory locations during fabrication [YP97] or to repair perma-
nent memory faults at runtime [NAB03].

Austin introduces the DIVA pipeline [Aus99] which consists of additional checker
pipeline stages. These additional stages are inserted before the commit stage and
check the calculation of the previous pipeline stages by refetching the operands
from the memory or registers and recalculating the operation. DIVA accepts only
checked results for the further processing to the commit phase. The simple rudimen-
tary checker pipeline is assumed to be fault-free which is not the reality in today’s
deep submicron designs. Austin suggests to implement the checker pipeline using
larger transistors which makes it resistant to single event effects like radiation or
other noise-related faults. The complexity of Diva is lower than in the case of fully
redundant units, but it also reduces the performance, due to a longer pipeline. Weaver
and Austin adapt this approach to an Alpha 21264 processor [WA01]. The additional
checker requires less than 6% of the area and less than 1.5% of the power of the
Alpha processor.

Bower and others extend the DIVA approach to detect permanent degeneration
faults during runtime [BSOS04, BSO07]. In [BSOS04], permanent faults in mem-
ory structures inside the processor, like the reordering buffer or the branch history
table, are detected by writing the same value to two locations with subsequent com-
parison. If a permanent fault is detected, the erroneous row is excluded from further
usage. The handling of permanent faults in general processor logic is described in
[BSO07]. High performance microprocessors have inherent redundancies to increase
the system throughput, e.g., multiple ALUs or register files for simultaneous multi-
threading (SMT). By fault diagnosis, an erroneous unit is detected and switched off
(deconfigured) whereas the complete system continues operation at a lower perfor-
mance level. By using multiple DIVA checkers, permanent faults in these checkers
can be corrected by switching of the corresponding unit as well.

2.3.2 Time Redundancy Methods

Time redundancy methods can be used for error detection and for error correction.
The result of a computation is calculated twice or more on the same resources with
a subsequent comparison. The advantage over hardware redundancy is the lower
area overhead. Only the checker or voter and additional control logic causes area
overhead. However, permanent faults and design errors cannot be detected with these
methods. Error correction is usually done by rollback or checkpointing methods.

Error Detection by Multithreading

Rotenberg proposes a method called AR-SMT to execute a program twice on the same
CPU using simultaneous multi-threading (SMT) [Rot99]. On SMT machines, the
register and the processor state is separated for each thread for the seamless execution

66



2.3 Reliability: Measures against Faults and Errors

of many threads. However, only one pipeline with the arithmetic units exits. The
redundant program or thread, called R-stream, is started with a slight lag due to a feed
back over a delay buffer of the leading thread, called A-stream (advanced stream).
The executed instructions between the A-stream and the redundant thread are verified.

Reinhard and Mukherjee extend Rotenbergs approach by introducing a so-called
sphere of replication [RM00]. Data that enters the sphere must be duplicated and
results that leave the sphere must be checked. Inside the sphere, the redundant threads
are processed independently on the SMT pipeline. Checking only results that leave
the sphere reduces the verification overhead enormously compared to Rotenbergs
original approach which verifies every instruction. Ray and others adapt the SMT-
based reliability approach to superscalar out-of-order microarchitectures [RHF01].
The R-stream is produced by dynamic injection of redundant instructions and in case
of an error, the program is reverted to a correct state. Other time redundant fault
tolerance approaches using superscalar processors are [Fra95] and [RSR00].

The architecture of Rotenbergs approach is refined to a so-called slipstream2 pro-
cessor which is able to speed up single thread processing [SPR00]. The complex-
ity of the A-stream is reduced by speculative removing of ineffectual computations,
whereas the R-stream has the full complexity. Using this technique, the throughput of
the (multi-)processor can be increased over the execution of the single thread alone,
due to speeding up the A-stream by removing instructions, and on the same time
speeding up the R-stream by transferring control flow information from the A-stream
to the R-stream. This approach can be used either with an SMT or with a multipro-
cessor architecture. If both streams execute the same instructions, an error can be
detected by time redundancy or time and space redundancy using multiprocessors.
Nevertheless, if a fault or an error occurs in an instruction that is only executed by
the R-stream, these error cannot be detected. This slipstream approach counts to the
so-called partial redundant threading (PRT) methods. Other PRT methods are intro-
duced in [GV05] and [WP06]. Reddy and others compare PRT methods and evaluate
the performance impact and the fault coverage [RRP06]. Many other time redun-
dant fault tolerance approaches exist for SMT processing and chip multiprocessors
(CMP), e.g., [VPC02] and [GSVP03], respectively.

Oh and others present a method called Error Detection by Diverse Data and Du-
plicated Instructions (ED4I) for redundant execution of a program [OMM02]. The
processed data of the second redundant program is transformed. The result is that
both programs implement the same functionality, but with different representations
of the data. These data diversity enables the detection of permanent faults in the data
path besides temporal faults.

2The name slipstream is an analogy to stock-car racing. Due to the aerodynamic resistance, the
maximum speed of the cars is limited. However, if one car is driven in the slipstream of another
car both cars can achieve a higher maximum speed. The second car has less air pressure in the
front, whereas the front car has lesser air disturbances on the rear [SPR00].

67



2. Related Work

Error Correction by Rollback

A common usage of time redundancy is error correction for temporal faults by doing
rollbacks and checkpointing. Rollbacks restore a correct state which was previously
recorded on so-called checkpoints. The recorded state coverage and the distance
between the checkpoints are very important. Rollback techniques can be categorized
by means of the number of checkpoints or the rollback distance. In other words, they
can be categorized by how far they are able to jump back into the past.

On the one end, there are rollback methods which act at program level. If an error
is detected, the program is terminated and restarted with the same inputs. In this case,
the checkpoints are the entrance of the program and the covered state are the inputs.
By using this technique, the input variables must be stored as long as the calculation
is not finished. An example of this rollback technique is [WLG+89].

Approaches which have a finer granularity do checkpointing during the execution
of the program. At a checkpoint, all relevant information for retrieving the execution
of this point are stored. This may include the program counter, the register content
and some variables in the system memory. Choosing the right checkpoints for state
storing as well as the distance between the points are, for example, researched by
Chandy [Cha75]. An early implementation of checkpointing is the STAR computer
[AGM+71]. Note that checkpoints are called rollback points in this paper. For fine
granular rollbacks at instruction level, Tamir and Tremblay extend the register file
and the cache [TT90]. With these extensions, the processor is able to recover the
state from a few cycles ago very fast. More about checkpointing can be found in
[KK07].

If an error occurs and is detected fast enough so that register or memory contents
are not overwritten, the corresponding instruction can be re-executed by a pipeline
flush and subsequent refill. Due to the unaffected state of the register file and mem-
ory, only the program counter must be restored for this kind of rollback. In our control
flow checking approach (see Chapter 4), we use a similar technique for error correc-
tion. However, we do not flush the pipeline. We set on the erroneous instructions an
annul bit which prevents these instructions from being executed.

Finally, micro-rollbacks are rollbacks which can jump back one single clock cy-
cle. This can be achieved by registering all registers in the pipeline with additional
so-called history registers [BZS+06]. The history registers hold the state before the
clock cycle. After each original pipeline register, a multiplexer is inserted which uses
the value from the original register in normal operation and in case of a rollback the
value from the history register. This approach is used for error correction of the data
path protection technique, described in Section 4.5.5. With this technique, a detected
error can be recovered in one clock cycle. However, the hardware overhead for stor-
ing the last state by duplication of the pipeline register is not small. In [PV01], Pflanz
and Vierhaus describe a technique which uses a lower overhead by redundantly fetch-
ing every instruction twice. Using this double fetching approach, usually only the

68



2.3 Reliability: Measures against Faults and Errors

first instruction is executed in the pipeline. However, if an error occurs, the processor
switches back to the redundantly fetched instruction. Nevertheless, the performance
is degraded by factor 2, which is unacceptable in most applications.

2.3.3 Information Redundancy Methods

Information redundancy methods are often counted to the system level methods,
whereas hardware and time redundancy methods belong to the register-transfer-level
(RTL). Therefore, information redundancy methods cause either additional hardware
(area or memory) overhead or performance impact and can also be counted to hard-
ware or time redundancy methods. One of the well-known information redundancy
methods is the protection of the data using error correcting codes (ECC). If, for
example, a bus communication should be protected, new signals (hardware redun-
dancy) can be used to transmit the additional ECC bits which cause hardware over-
head. However, the additional ECC bits can also be subsequently transmitted over the
common data signals which causes a time overhead (time redundancy). Considering
permanent faults, the underlying redundancy technique is important. A permanent
broken data signal affects the recovery of data more if time redundancy methods are
used than if hardware redundancy methods are used.

Protecting Storage Elements

As mentioned before, the most common form of information redundancy is coding.
Protecting data with coding is usually used for data communication or storage. Stor-
age includes the protection of the data in external or internal memories as well as
on disks. An important property of codes is the code distance. The code distance
is the minimal hamming distance between any two valid codewords. The hamming
distance between two code words is the number of bit positions in which the two
words differ. Furthermore, it must be distinguished between codes which have er-
ror detection and correction possibilities, the so-called ECC codes, and codes which
only have error detection possibilities. To belong to the first category for single bit
errors, the code distance of the code must be greater than 3 [Lal01]. Another im-
portant property of the code is the number of errors in one code word, which can be
detected or corrected. There exist many different error correcting codes, like parity
codes, checksums, cyclic redundancy checks (CRC), M-of-N, Berger, or arithmetic
codes [KK07].

Applications for protecting storage elements are ECC protection of external or
internal memories, and registers, as well as fault-tolerant state machines [Mey71].
Gaisler proposes the fault-tolerant ERC32 and Leon3 processors, which protect reg-
ister files and the caches with additional parity or ECC bits [Gai94, Gai02, Gaib].

69



2. Related Work

Protecting Combinatorial Logic

The methods described above can only be used for sequential storage elements. How-
ever, for combinatorial logic, like adders or multipliers, there exist so-called concur-
rent error detection (CED) techniques [SHB68, RF89, MM00]. In [MM00], Mitra
and McCluskey compare CED techniques using hardware redundancy based on their
area overhead and the protection they provide against multiple failures and common-
mode failures.

The general principle is that a system realizes a function f and in response to an
input sequence i produces the output f (i), and another unit independently predicts the
output f̂ (i) while a checker unit compares the outputs and produces an error signal
in case of a mismatch (see Figure 2.3).

Function f
Output

Characterisitc
Predictor

Input

CheckerOutput

Error

f if i

Figure 2.3: General architecture for concurrent error detection [MM00].

The simplest CED method is the duplex system (see Figure 2.4a). Here, two mod-
ules implement the same logic function while the implementations can be different.
The outputs of the modules are checked by a comparator and if the results do not
match an error is indicated. Unless identical errors are produced by the modules
data, integrity is guaranteed if the comparator is fault-free (see also Section 2.3.1).

Another CED method is parity prediction. Figure 2.4b shows the basic architec-
ture using a single parity bit. A general problem of parity methods is that one error
may lead to multiple bit changes in the output. In this case, the method cannot re-
liably detect the error. One solution is to build cores in the way that the logic gates
generating one output bit are not shared between the other output bits. In this case,
a single error cannot affect more than one bit. A checker compares the parity to an
independently predicted parity. A higher area overhead is the result, if any logic be-

70



2.3 Reliability: Measures against Faults and Errors

tween the different output bits is not shared. Parity prediction methods are shown,
for example, in [Nic93], [TM97] and [NDMF97].

Module 1 Module 2

Comparator

Output Error

Input

Input

O
1

O
2

O
n

Predicted 
Parity P

Parity Checker

Output O
1
-O

n
Error

a) b)

Figure 2.4: On the left side, the duplex system is shown. On the right side, a CED
method using single parity bit prediction is shown. No logic sharing
between the output bits is allowed [MM00].

Finally, there also exist methods which use unidirectional error codes. These
methods assume that all errors are unidirectional which means that either ’0’s change
to ’1’s or ’1’s change to ’0’s but not both. Berger codes and Bose-Lin codes are two
unidirectional error detecting codes used for CED.

A Berger code-word is created by appending a binary string which includes the
number of ’0’s (or the bit-wise complement of the number of ’1’s) in the given in-
formation word (see Figure 2.5a). It requires some extra space and detects all uni-
directional errors. Usually, these codes are used on communication channels; the
bit-wise complement of ’1’s in the information word is represented by the check bits.
It is important to notice that a single error causes unidirectional errors at the outputs
and therefore logic circuits are restricted to be synthesized to be inverter-free (except
at the primary inputs). Lo and others introduced a Berger code protected ALU in
[LTRN92]. Pflanz and Vierhaus extend this approach by further protecting registers
and shifters [PV01].

Using Bose-Lin codes (see Figure 2.5b), it is possible to detect t-bit unidirectional
errors in the code word. The circuit also has to be inverter-free. Additionally, there is
a restriction on the amount of logic sharing since the code can only detect t unidirec-
tional errors [MM00].

Mitra and McCluskey analyze the overhead and the protection against temporal
and permanent faults by simulation [MM00]. The area overhead of techniques for
unidirectional error detecting codes (Berger, Bose-Lin) is quite high. Using parity

71



2. Related Work

a) b)

Logic Function
(inverter-free)

Predict 
'1's count
(inverter-

free)

Input

CheckerOutput

Error

Logic Function
(inverter-free)

Predict 
1s count
(inverter-

free)

CheckerOutput

Error

Logic Function
(inverter-free)

Max. Fanout
2 outputs

Predict '1's 
count mod 4

(inverter-free)
Max. Fanout

2 outputs

CheckerOutput

Error

Input

Figure 2.5: On the left side, a circuit which is protected by Berger codes is depicted.
On the right side, a Bose-Lin code protected circuit with t = 2 is shown.
For both methods, it is important that the combinatorial logic of the
function and the code prediction circuit is inverter-free except of the
primary inputs [MM00].

prediction, the area overhead is smaller than using duplication. Note that routing
overhead has not been considered. Simulation showed that diverse duplication is the
best way to detect temporal and permanent faults, better than identical duplication
and parity prediction.

Joshi and others present a time redundancy based CED technique targeting invo-
lutionary functions in [JWSK06]. A function is involutional if f ( f (x)) = x,∀x ∈ F .
The proposed technique detects permanent and transient faults that affect the output.
It can also detect permanent faults in a function even if the faults do not affect the
output. This also enhances the security of the implementation since it is possible to
detect attacks to the algorithm. The time overhead (after optimization) is less than
8%, the area-overhead is less than 18% and the fault coverage is almost 100%. This
technique is primarily used in the domain of cryptography where a lot of involution-
ary functions appear.

Almukhaizim and others proposes a concurrent error detection technique for com-
binational and sequential logic [ADM04]. A state prediction of the next state of a
control unit is calculated based on the current state and the inputs. The hardware
overhead is typically smaller than in case of full redundancy on large state spaces.
However, the method can only monitor the correct state transitions, but not the cor-
rect storage of the state.

72



2.3 Reliability: Measures against Faults and Errors

2.3.4 Prevention and Detection of Single Event Effects

The prevention of single event effects can be done on the process level by applying
triple wells or buried layers [MW04]. The goal is to drift the generated charges, pro-
duced by an ionized particle impact, away from the active region. By using buried
junctions in a triple well architecture, an opposite electrical field with respect to the
NMOS-depletion is created which causes the drift of the electron-hole pairs, gener-
ated by the particle impact, deep into the substrate. Furthermore, by replacing the
radiating BPSG dielectric by purer mold components, the effect by thermal neutrons
can be significantly lowered. The usage of silicon-on-insulator (SOI) can further
increase the robustness against soft errors by reducing the charge depth.

At the device level, the critical charge Qcrit stored inside a register cell can be
increased by increasing the capacitance or the voltage [MW04]. The capacitance
can be increased by using larger transistors. Both, however, raise the area and the
power overhead which restricts the applicability to selected nodes on critical parts
of the circuit only. Memory cells which are insensitive to single event effects are
introduced in [CNV96] and [HKW+03]. These cells use more transistors which also
increase the area and power overhead. Mitra and others propose registers with built-
in soft error resilience (BISER) for general logic in [MZS+08]. These registers are
also insensitive to single event effects.

To detect single event transients, Nicolaidis introduces a shadow register concept
in [Nic99]. A signal produced by combinatorial logic is sampled by multiple redun-
dant registers with different clocks. The time lag δ between the rising edges of the
clocks is greater than a typical single event effect. By using the original register and
one shadow register, single event effects can be detected by comparing the registered
values. By using three registers, one original and two shadows with three differ-
ent clocks, the single event effect can be corrected by a majority voter. A similar
approach is proposed by Mavis and Eaton [ME02].

Ernst and others use this technique with a main (original) and a shadow register to
detect timing errors for dynamic voltage scaling (DVS) [EKD+03]. If timing errors
occur, only the main register is affected due to the later sample point of the shadow
register. Therefore, if a timing error is detected, the value of the shadow register can
be fed back to the registers’ input. The penalty is a double latency for the operation.
These enhanced registers are called Razor flip-flops. The approach is extended to
additionally detect and correct single event effects and variation-induced delay errors
by Das and others which is now called Razor-II [DTP+09].

A similar result is presented by [BZS+06], where Nicolaidis flip-flops are extended
with an additional history register which can be used for rollbacks to correct errors.
This technique is later combined with our control flow checking methods (see Section
4 and in particular Section 4.5.5). The technique is extended with an ECC protection
for detecting and correcting multiple errors [BZSH09]. Mehrara and others present
an approach to detect single event effects by doubled sampled latches [MAS+07].

73



2. Related Work

The correction is done by rollbacks to fixed checkpoints which separate the program
into so called epochs.

Some volatile FPGAs have an internal protection of the configuration memory
against single event upsets. A CRC value of the configuration memory is calculated
periodically and compared to the CRC value stored in the configuration bitfile which
is calculated at bitfile generation [Alta].

2.4 Reliability and Security: Control Flow
Checking

Control flow checking (CFC) denotes the task of checking the control flow of a pro-
gram according to a given specification. The specification is derived mostly stati-
cally at compile-time from the program. Control flow checking combines reliability
and security issues and is a countermeasure against single event effect, degeneration
faults, code injection and invasive physical attacks.

Related work on control flow checking can be divided into completely software-
based approaches and approaches using an additional hardware checker unit or a
watchdog processor. Usually in these approaches, the program code is first structured
into basic blocks3. Other approaches achieve control flow checking by redundantly
decoding the control flow instructions in an additional checker unit (e.g., [RLC+07]).

2.4.1 Software-Based Methods

Software-based control flow checking techniques belong to the so-called software
implemented hardware fault tolerance (SIHFT) methods. A famous software-based
CFC technique is called Control Flow Checking using Assertions (CCA) [KNKA96,
MN98]. After the creation of the control flow graph (CFG, see also Section 4.3.2),
special control instructions are inserted into the program code at the beginning and the
end of a basic block (see Figure 2.6). The approach introduces two identifiers which
are set and checked with these instructions. At the entrance of a basic block, a basic
block identifier is assigned to a variable. Moreover, corresponding to the control flow
graph, a special control flow identifier is checked and subsequently set for the next
basic block. At the end of a basic block, both identifiers are verified, so erroneous
jumps or branches from or in the middle of a basic block are detected. By checking
the control flow identifier, the correct processing order of the basic blocks is ensured.
The advantage is that no hardware modules are required, however this approach has

3A basic block is a sequence of code which is executed successively without any jumps or branches
except, possibly, at the end. The basic block can only be left at the end of a block and can only
be entered at the beginning. Only the last instruction can be a jump or branch and only the first
instruction can be a jump or branch destination (see Section 4.3.2).

74



2.4 Reliability and Security: Control Flow Checking

impact on the performance of the program code and the erroneous jumps can only be
checked at the transitions of the basic blocks.

CPUProgram

Control 
Instructions

Control 
Instructions

BB1

BB2

BB3

Figure 2.6: Control instructions are usually inserted before and after a basic block
(BB1-BB3) in software-based control flow checking approaches. The
additional control flow instructions check the executed control flow ac-
cording to the control flow graph.

The approach is enhanced for real-time distributed systems to achieve a lower per-
formance overhead and faster error detection in [ANKA99]. The additional instruc-
tions are inserted at an intermediate level of the compiler which makes this technique,
called Enhanced Control Flow Checking with Assertions (ECCA), language indepen-
dent.

Another software-based control flow checking approach called Block Signature
Self Checking (BSSC) is introduced by Miremadi and others [MKGT92]. The code
is also structured into basic blocks and additional instructions are added at the entry
and at the end of each block. Checking is done by storing a signature, e.g., the current
address, into a variable at the basic block entrance. Before leaving the basic block,
this signature is verified. The method can verify the subsequent linear execution of
the basic block. However, the processing of the correct basic block order cannot be
verified.

Oh and others introduce a technique called Control Flow Checking by Software
Signatures (CFCSS) [OSM02]. A unique signature is assigned to each basic block
and the signature is embedded with the signature difference to the predecessor block
in the code. During the execution, a runtime signature is calculated and stored in
a general purpose register. The signature of the last block and the stored signature
difference are used to calculate and verify the current runtime signature at each basic
block entrance. In other words, this approach checks if the correct predecessor of
the current basic block, according to the CFG, was processed. However, if a basic

75



2. Related Work

block has more than two predecessors, the method is not applicable. In this case, an
additional runtime variable is introduced to resolve the problem. Borin and others
propose error classification for control flow checking and analyze the error coverage
of the most existing software-based approaches [BWWA06]. Furthermore, they in-
troduce two methods which are enhancements to the original CFCSS method. The
first method is called Edge Control Flow Checking (EdgCF) and the second is called
Region Based Control Flow (RCF) technique.

Other similar approaches are SWIFT [RCV+05] and YACCA [GRRV03, GRRV05].
All these method insert control instructions at the basic block borders into the pro-
gram code, as depicted in Figure 2.6.

Bagchi and others introduce the Preemptive Control Signature (PECOS) checking,
which is able to prevent jumps or branches in case of an error [BLW+01, BKIL03].
The program code is equipped with additional checker instructions before each con-
trol flow instruction. The runtime target address is determined and verified with the
valid target addresses, extracted from the compiled code. The list of valid target ad-
dresses is stored inside the code, whereas the runtime target address is determined by
loading the control flow instruction into a register and decode it by software. If the
runtime target address is not in the list with valid addresses, an exception is triggered
which prevents the execution of the erroneous jump or branch. The drawback of this
approach is that only the integrity of the control flow instruction in the memory is
checked. Transient faults, such as single event effects in the control path cannot be
detected by this method.

Abadi and others introduce a software-based CFC technique for security issues
called Control Flow Integrity (CFI) [ABEL05, ABEL09]. This method focuses on
indirect calls and returns. The destination of indirect calls and returns are determined
at compile-time, and each of these jump destination are labeled with a unique iden-
tifier in the code. Instructions to check the identifier of the destination are added to
the program code before an indirect jump. Only if the identifier is correct, the jump
is executed. Budiu and others present an instruction set architecture (ISA) extension
which introduces new instructions for CFI hardware support [BEA06].

2.4.2 Methods using Watchdog Processors
A watchdog processor is a simple coprocessor which is able to monitor the behavior
of a main processor in order to detect errors [Lu82, MM88]. The predecessor of the
watchdog processor is the watchdog timer [CPW74, OCK+75]. A watchdog timer
is reset by the program running on the main processor at certain intervals. If the
monitored program hangs, the timer is not reset anymore. Therefore, the timer pro-
duces an overflow which generates an interrupt. Inside the interrupt service routine,
countermeasures can be started, e.g., the erroneous program can be terminated.

A watchdog processor is initialized with information about the main processor or
the process which should be monitored. At runtime, the watchdog processor concur-

76



2.4 Reliability and Security: Control Flow Checking

rently collects information about the execution of the program in the main processor
and compares the gathered with initial information to detect errors. The information
may include the memory access behavior, the control flow, the control signals, or the
reasonability of results. Mahmood and McCluskey give a survey over error detec-
tion with watchdog processors in [MM88]. Traditionally, a watchdog processor is
coupled with the main processor via a system bus. However, other approaches exist
where the watchdog processor is directly attached by dedicated signals.

The advantages of watchdog processors are the lower overhead than the duplication
of the main processor, the possibility of concurrently checking the execution which
results in none or only little performance degeneration and the detection of common
or related design errors of the program or the processor due to the diversity of the
processors architectures.

Watchdog processors, when used for control flow checking, have a watchdog pro-
gram which is derived from the control flow of the checked program. The control
flow of a program can be represented in a graph whose nodes represent sequences
of code, e.g., basic blocks or whole functions, and the edges between the nodes rep-
resent the control flow. An identifier, often called signature which is known by the
watchdog program is attached to each node. The signatures can be assigned at ran-
dom or they can be derived form the instructions inside a node. Techniques using
the arbitrarily assigned signatures are called assigned-signature control flow check-
ing and techniques using the derived signature are called derived-signature control
flow checking [MM88]. The different watchdog processor approaches can be further
categorized by the storage of the watchdog signatures. Therefore, the methods can
be divided into two groups, called Embedded Signature Monitoring (ESM) and Au-
tonomous Signature Monitoring (ASM). ESM methods embed the watchdog signa-
tures into the code of the checked program. To verify a signature, the corresponding
signature must first be transferred to the watchdog or to the main processor, depend-
ing on the comparison location. The watchdog processors for the ASM methods have
their own memory to store the signatures. Therefore, the watchdog must be initial-
ized with all watchdog signatures before the program execution. In summary, there
exist four categories for control flow checking with watchdog processors (see Table
2.1).

Watchdog-processor-based CFC approaches can be further categorized according
to their error detection capability. The first category checks that the nodes are pro-
cessed in an allowed sequence whereas approaches of the second category verify the
instruction sequence inside a node. The third category includes schemes which do
both [MM88].

Assigned-Signature Control Flow Checking

During the execution, the arbitrarily assigned signatures used for assigned-signature
CFC are transferred to the watchdog processor for verification. Usually, the trans-

77



2. Related Work

signature storage location
ESM ASM

Assigned-Signature CFC SEIS [PMHH93]
SIC [Lu82],

ESIC [MH91]

Derived-Signature CFC
PSA [Nam82], Cerberus-16 [Nam83],

SIS [SS87] RMP [ES84]

Table 2.1: Four different categories for control flow checking using watchdog pro-
cessors with some example references. The methods are categorized by
different watchdog signature storage locations (embedded into the pro-
gram: ESM; in additional memories for the watchdog processor: ASM)
and the different type of signatures (derived, assigned) according to
[MHPS96].

ferred signatures are compared by the watchdog processor to the watchdog signa-
tures, stored in a separate watchdog memory (ASM method). The advantages of
these methods are the ease of implementation and the possibility to perform runtime
checks asynchronously. However, the drawbacks are the performance impact, due to
the program-based transfer of the signatures to the watchdog with additional control
flow instructions, and the low error coverage since only the sequence of the signatures
is checked.

The first known method is introduced by Yau and Chen [YC80] which assigns
prime numbers to loop-free intervals which are checked at runtime. Lu proposes a
method called Structural Integrity Checking (SIC) [Lu82]. The method assigns labels
to high-level control flow structures which are verified by the watchdog processor.
The approach is enhanced by Majzik and Hohl which is called Extended Structural
Integrity Checking (ESIC) [MH91].

An embedded signature monitoring approach for assigned-signature CFC is intro-
duced by Pataricza and others, called Signature Encoded Instruction Stream (SEIS)
[PMHH93, MHPS96]. In this approach, each basic block is assigned a unique signa-
ture which further encodes the successor basic block. The signatures are transferred
to the watchdog processor during the execution which verifies the control flow of
the program only using the information encoded in the signatures. Therefore, the
watchdog processor needs no signature storage memory and initialization phase.

Derived-Signature Control Flow Checking

Derived-signature CFC uses a signature calculated from the properties of the ex-
ecuted instructions inside a node. To check all instructions, a signature, e.g., an
XOR, hash or CRC value, of all instructions of a basic block is calculated offline (at
compile-time). At runtime, a checker unit calculates the signature of the executed

78



2.4 Reliability and Security: Control Flow Checking

instruction in a basic block. When leaving a basic block, both signatures can be
compared and errors inside the basic block can be detected. The derived-signature
CFC methods can also be categorized by the storage of the precalculated (golden)
signature in ESM and ASM methods.

Embedded Signature Monitoring Derived-signature ESM methods store the
offline calculated signature (golden signature) in the program code with additionally
inserted instructions at the end or the beginning of each basic block. During run-
time, the calculated signatures from the watchdog processor are compared to these
embedded signatures. The advantage of these methods is that all instructions can be
checked and a new program already contains the corresponding signature (see Fig-
ure 2.7). The disadvantages are the performance impact and that a fault can only
be detected at the end of a basic block which may be too late. Also, a single event
upset during the execution of the additionally inserted instructions can lead to a false
detection or spoofing of an error.

CPU

Program

Control 
Instructions

Control 
Instructions

BB1

BB2

BB3

Watchdog
Processor

Figure 2.7: In the derived-signature ESM CFC approaches, a signature is calculated
from the executed instructions by a watchdog processor. The golden
signatures are calculated at compile-time and embedded with control
instructions in the code. The additional control instructions read out the
runtime calculated signature from the watchdog processor and compare
it to the golden signature.

According to [MM88], the first derived-signature CFC method is introduced by
Namjoo [Nam82] and is called Basic Path Signature Analysis (Basic PSA). The sig-
natures are calculated by XORing over all instructions inside each basic block. After
the calculation of the signatures at compile-time, the signatures are stored at the be-
ginning of each basic block. The watchdog processor monitors the instruction stream
and identifies the loading of the signature from the instruction memory. During the

79



2. Related Work

execution of the basic block, the watchdog processor calculates the runtime signature
by XORing the processed instructions and, at the end of a basic block, the signatures
are compared. A very similar technique is proposed by Sidhar and Thatte in [ST82].

Other approaches use linear feedback shift registers (LFSR) [DS90, DS91] or
checksums [SM90] as signatures or try to lower the number of used signatures by us-
ing larger blocks which include multiple branches [SS87, WS90]. Gaisler enhanced
his ERC32 processor with an ESM CFC technique where the signatures are embed-
ded into NOP instructions [Gai94]. Meixner and others store the signatures for the
Argus-1 checker into unused instruction bits of the SPARC ISA to reduce the perfor-
mance and memory overhead of their ESM method [MBS07, MBS08]. If insufficient
unused bits are available, they also embed the signature into NOP instructions.

Upadhyaya and Ramamurth propose a derived-signature CFC technique using m-
of-n codes [UR94]. An m-of-n code is an n-bit code whose bit values have m ones. At
compile-time, the signature of a basic block is calculated, for example, by XORing
the instructions. If the intermediate result is an m-of-n code, then this instruction
is tagged. At runtime, the watchdog calculates the signature, recognizes the tagged
instructions and verifies on the tagged instructions if the runtime signature is an m-
of-n code. At the basic block borders, an additional byte is inserted which adjusts
the current signature to an m-of-n code in order to force a check. The advantage is
that the signature must not be stored in the program code. However, one additional
byte per branch is necessary to force a check in order to restart the runtime signature
calculation at a new basic block. A similar approach is presented by Ohlsson and
Rimen called Implicit Signature Checking (ISC) [OR95]. The implicit signatures
are the current start addresses of the basic blocks. This can be achieved by using
additional justified signatures embedded into the code.

Autonomous Signature Monitoring The golden (compile-time calculated) sig-
natures of derived-signature ASM methods are stored in a separate memory for the
watchdog processor. The comparison between the golden and the runtime calculated
signature is implemented in hardware (see Figure 2.8). If the control flow graph
is mapped into the instruction memory of the watchdog processor, the jumps and
branch destinations can also be checked. The advantages are that the program code
does not need to be altered and that there is no performance impact. Also, all in-
structions can be monitored. The disadvantages are that extra memory is required
for the checker unit and the synchronization between the CPU and the checker unit is
difficult. Therefore, interrupts, multi threading, and indirect jumps cannot be covered
completely.

One of the first approaches using the ASM scheme is the Cerberus-16 watchdog
processor [MM88, Nam83]. The control flow graph and the corresponding signa-
tures are mapped in the microinstructions which are stored into the watchdog pro-
cessor memory. The Cerberus-16 processor only has control flow instructions with

80



2.4 Reliability and Security: Control Flow Checking

CPU

Program

BB1

BB2

BB3

Watchdog
Processor

Control 
Instructions

BB1
BB2
BB3

Figure 2.8: In the derived-signature ASM approach, the watchdog processor has
a separate memory for storing the control instructions. The execution
must be synchronized between the CPU and the watchdog processor.

encoded signatures and instructions for the communication with the main processor.
The processing of the control flow of the main and the watchdog processor are com-
pletely synchronized. The approach is extended by Michel and others by a branch
address hashing (BAH) technique, now called Watchdog Direct Processing (WDP)
which reduces the memory overhead for the watchdog processor memory [MLS91].

An asynchronous ASM approach is presented by Eifert and Shen [ES84, ST87]
which is called Roving Monitor Processor (RMP). At compile-time, the control flow
of the program is extracted and the signatures (CRC values) are calculated. During
the execution, the runtime signatures are calculated with an additional signature gen-
eration unit and, at the end of a block, the calculated signature is sent to the watchdog
processor. The watchdog compares the received signature to the signatures achieved
from the control flow graph and stores then in the watchdog memory. At branches,
the received signature is compared with the two successor signatures of the current
node in order to determine the next signature. This approach can also be used to
check multi-processor systems where each processor has its own signature genera-
tion unit and sends the signature via a signature queue to the watchdog processor
which is responsible for the whole system. The approach is extended by Madeira and
Silva who introduce the Online Signature Learning and Checking (OSLC) technique.
In this approach, the golden signature is generated during a learning phase [MS91].
The learned signatures are stored in the watchdog memory of an RMP-like watchdog
processor.

Arora and others describe an ASM approach for security applications in [ARRJ06].
This hardware approach consists of three parts: the Inter-Procedural CFC, the Intra-
Procedural CFC, and the Instruction Stream Integrity Checker. The Inter-Procedural
CFC verifies the function calls and returns by implementing the function call graph

81



2. Related Work

in hardware using content addressable memories (CAMs) and an FSM. The Intra-
Procedural CFC checks the basic blocks by a compile-time generated control flow
graph, implemented in checker memories. Finally, the Instruction Stream Integrity
Checker is similar to those of other ASM methods, however, they use hash functions
to generate and verify the signatures.

Our new control flow checking approach introduced in Section 4 belongs to the
class of derived-signature ASM methods. We propose a term checker unit for the
watchdog processor, because our unit is very simple with only few hardware over-
head. However, like in the Cerberus-16 or the WDP approach, the control flow graph
is mapped into microinstructions which are stored in a separate memory. Further
advantages of our control flow checker are the fast error detection due to the tight in-
tegration into the processor, the error recovery possibility, and the expandability with
modules which support more control flow instructions or detect more errors. More-
over, like the other ASM-methods we have no performance impact on the error-free
case and the program must not be altered.

2.5 Summary
This chapter gives an overview of methods and techniques to increase the security
and reliability of embedded systems. The focus of this survey is on IP protection and
control flow checking which correlates with the following chapters. In addition to the
introduced methods, there exist security and reliability frameworks which combine
many of these techniques, for example, the RSE framework [NKIX04] or the Argus
checker [MBS08]. Nevertheless, this survey is far away from being complete, rather
its purpose is to give an impression of the different research areas of this topic. The
relevance increases more and more with the ongoing growing of complexity due to
the advances in technology.

82



3
IP Core Watermarking and

Identification

In this chapter, methods for IP core watermarking and identification as well as their
implementations are presented. First, we give an introduction to the topic and state
the goals of the proposed methods. The following section presents a theoretical model
for watermarking and identification of IP cores. We proceed by introducing methods
for extracting a watermark and verifying the authorship by IP core identification us-
ing an FPGA bitfile. The subsequent section explains the extraction of a watermark
by analyzing the power consumption of the FPGA. After that, we provide experi-
mental results for all introduced methods. In conclusion, the contributions will be
summarized.

3.1 Introduction

The ongoing miniaturization of on-chip structures allows us to implement very com-
plex designs which require very careful engineering and an enormous effort for de-
bugging and verification. Indeed, complexity has risen to such enormous measures
that it is no longer possible to keep up with productivity demands if all parts of a
design must be developed from scratch. In addition, the very lively market for em-
bedded systems with its demand for very short product cycles intensifies this problem
significantly. A popular solution to close this so called productivity gap is to reuse
design components that are available in-house or that have been acquired from other
companies. The constantly growing demand for ready to use design components,

83



3. IP Core Watermarking and Identification

also known as IP cores, has created a very lucrative and flourishing market which is
very likely to continue its current path not only into the near future.

One problem of IP cores is the lack of protection mechanisms against unlicensed
usage. A possible solution is to hide a unique signature (watermark) inside the core.
However, there also exist techniques where an IP core can be identified without an
additional signature. Identification methods are based on the extraction of unique
characteristics of the IP core, e.g., lookup table contents for FPGA IP cores. With
these techniques, the author of the core can be identified and an unlicensed usage can
be proven. In this chapter, watermarking as well as identification techniques for IP
cores will be presented.

Our vision is that unlicensed IP cores, embedded in a complete SoC design which
could be further embedded into a product, can be detected solely by using the given
product and information from the IP core developer. Information of the accused SoC
developer or product manufacturer should not be necessary and no extra information
should be required from the accused company. Obviously, such concepts need ad-
vanced verification techniques to detect a signature or certain IP core characteristics,
present in one of many IP cores inside a system. Furthermore, the embedded author
identification should be preserved even when the IP cores pass through different de-
sign flow steps. On the one hand, we must deal with the problem that design tools
might remove the signature or the characteristics during synthesis and optimization.
On the other hand, we must also secure the signature or characteristics against the re-
moval by pirates which do not want the IP core be identifiable. Licensing IP cores is
a market where a lot of money is involved and if a company decides to use unlicensed
cores, e.g., to lower the production costs, they usually have very high skilled employ-
ees who might try to remove or bypass the watermark or identifying techniques.

In Figure 3.1, a possible watermarking flow is depicted. An IP core developer em-
beds a signature inside his core using a watermark embedder and sells the protected
IP core. A third-party company may obtain an unlicensed copy of the protected IP
core and use it in one of their products. If the IP core developer becomes suspicious
that his core might have been used in a certain product without proper licensing, he
can simply acquire the product and check for the presence of his signature. If this
attempt is successful and his signature presents a strong enough proof of authorship,
the original core developer may decide to accuse the product manufacturer of IP fraud
and press legal charges.

An extensive survey regarding existing watermark techniques was already given
in Section 2.1. The major drawback of these approaches is the limitation of the
verification possibilities of the watermarked core. Our verification strategy solely
requires the fishy product and no additional information from the producer.

IP cores exist for all design flow levels, from HDL cores at RTL to bitfile cores
for FPGAs or layout cores for ASIC designs at device level (see Section 1.2.7). In
the future, IP core companies will concentrate more and more on the flexible HDL

84



3.1 Introduction

Signature

IP Core developer 

=

IP Core

A Watermark 
Embedder

Watermarked
IP Core A

Product developer 

Watermarked
IP Core

Product
Implementation

Watermarked
IP Core A

IP Core

ProductProduct

Watermark 
Extractor

Signature

ASignature

B

?

Buy Product

e.g., 
Copy 
Attack

B

Sell IP Cores

Obtain unlicensed Core

Figure 3.1: This figure shows a typical watermarking flow: An IP core developer
embeds a watermark A inside his core. If a product developer obtains
an unlicensed core and embeds this core in his product, the IP core
developer can buy this product and extract the watermarks of all used
IP cores. Now, he is able to compare his signature with the extracted
signatures.

and netlist cores. One reason for this development is that these cores can be easily
adapted to new technologies and different FPGA devices.

This chapter focuses on watermarking and identification methods for IP cores im-
plemented on FPGAs. These have a huge market segment and the inhibition threshold
for using unlicensed cores is lower than in the ASIC market where products are pro-
duced in high volumes and millions for mask production are spent. Nevertheless,
some of these methods can be adapted for the ASIC design flow as well. Moreover,
we concentrate on flexible IP cores which are delivered at RTL or logic level in HDL
or netlist format. The advantage is that these cores can be used in different FPGA
devices and can be combined with other cores to provide a complete SoC solution.
Most of the existing watermarking techniques do not cover the area of HDL or netlist
cores, or are not able to easily extract the signature from a heterogeneous SoC imple-
mentation in a given product.

The problem of applying watermarking techniques to FPGA designs is not the
coding and insertion of a watermark, rather the verification with an FPGA embed-

85



3. IP Core Watermarking and Identification

ded in a system. Hence, our methods concentrate particularly on the verification of
watermarks. In general, there are five potential sources of information:

• Bitfile,

• Ports,

• Power,

• Electromagnetic (EM) radiation, and

• Temperature.

The bitfile of an FPGA can be extracted by wire tapping the communication be-
tween the PROM and the FPGA. But some FPGA manufactures provide an option
to encrypt the bitstream. The bitfile is stored in the PROM in encrypted form and
will be decrypted inside the FPGA. Monitoring the communication between PROM
and FPGA in this case is useless, because only the encrypted file will be transmitted.
The bitfile is a proprietary format which is not documented by the FPGA manufac-
turers. However, it seems to be possible to read out some parts of the bitfile such as
information stored in RAMs or lookup tables. This makes it possible to evaluate the
lookup tables of a design. In Section 3.3, we introduce bitfile watermarking methods.
Note that we use the term “bitfile watermarking” for extracting the watermark of the
bitfile. The insertion of the watermark and the delivery of the core to the customer
can also be done at the RTL or logic level. If we mean the insertion of a watermark
at bitfile level, we use the term “watermarking for bitfile cores”.

Another popular approach for retrieving a signature from an FPGA is to employ
unused ports. Although this method works for top-level designs, it is impractical for
IP cores, since these are mostly components that will be embedded into a design so
that the ports will not be accessible any more. Due to these restrictions, we do not
discuss the extraction of watermarks over output ports.

In this thesis, we present a new and unique technique to read out the signature by
analyzing the power of an FPGA. We show that the clock frequency and toggling
logic can be extracted from the power spectrum. The basic idea behind these tech-
niques is thus to force a certain toggle pattern and extract this signature from the
FPGA’s power spectrum. We present the basics of these new methods with many ex-
tensions in Section 3.4. We use the term “Power Watermarking” to refer to collecting
the signature from the FPGA’s power consumption.

Detecting a signature using the electromagnetic (EM) spectrum uses almost the
same strategy. This technique has the further advantage that a raster scan of an FPGA
surface with an EM sensor can also use the location information to extract and ver-
ify the watermark. Unfortunately, more and more FPGAs are delivered in a metal
chip package which absorbs the EM radiation. Nevertheless, this is an interesting
alternative technique for extracting watermarks and invites for future research.

86



3.2 Theoretical Watermark Model

Finally, a watermark might also be read out by monitoring the temperature ra-
diation. The concept is similar to the power or EM-field watermarking approach,
however, the transmission speed is drastically reduced. Interestingly, this is the only
watermarking approach which is commercially available [KMM08]. Here, reading
the watermark embedded into an FPGA design may need up to 10 minutes.

3.2 Theoretical Watermark Model

In this section, we propose a theoretical watermarking model. With this model, dif-
ferent threats and attack scenarios can be described and evaluated. In general, wa-
termarking techniques must deal with an uncontrolled area, where the watermarked
work is further processed. This is true for multimedia watermarking, where, e.g.,
watermarked images are processed to enhance the image quality by filters or for IP
core watermarking where the core is combined with other cores and traverses other
design flow steps. However, the watermarked work may be exposed further to attacks
in this uncontrolled area that may destroy or negate the watermark and thus the proof
of authorship as well. This uncontrolled area is difficult to describe in a precise way
and therefore, the security goals and issues for watermarking are often described in
natural language which results in an imprecise description. This natural description
makes an assessment of the security very difficult, particularly if the attackers are
intelligent and creative.

Introducing a defined theoretical watermarking model with attackers and threats
allows us to assess the security of general watermarking techniques. However, it
should be noted that the model has to cover all possible attack scenarios and represent
all aspects of the real world behavior to allow for a meaningful assessment of the
security. In this section, we present a general watermark model introduced by Li et
al. [LMS06] which will be enhanced with aspects of IP core watermarking.

3.2.1 General Watermark Model

Watermarking intellectual property can be specified precisely by characterizing the
involved actions using a security model. We use the standard definitions from secu-
rity theory, which defines security goals, threats and attacks. Security goals represent
certain abilities of a scheme, which are important to protect in order to keep its func-
tionality in tact. These abilities may be violated by threats which are realized by
attacks. Regarding watermarking, the overall security goal is to be able to present
a proof of authorship that is strong enough to hold in front of a court. The secu-
rity goal of a watermark scheme is violated if the original author cannot produce a
strong enough proof of authorship, so that a dispute with another party will lead to an
ownership deadlock, but also in the occasion, that another party is able to present a
more convincing proof of authorship than the original author, resulting in counterfeit

87



3. IP Core Watermarking and Identification

ownership. Another violation of the proof of authorship occurs if the watermark of a
credible author is forged by another author and is used to convince a third party, that
a work was created by someone who did not.

An attacker can realize an ownership deadlock, if he can present a watermark in
the work, that is at least as convincing as the original authors watermark. If such an
ambiguity attack is successful, the real ownership cannot be decided and the original
cannot prove his authorship. If, in addition, the ambiguity attack results in the pirate
being able to present an even more convincing proof of authorship than the creator
of the work, the pirate can counterfeit the ownership. Another way to take over the
ownership of a piece of IP is to be able to remove the original authors watermark by
means of a removal attack. Forged authorship can be achieved by a key copy attack
which simply duplicates the means of creating a credible authors watermark. One last
violation of the security goal does not directly involve the author, but requires him
to not take part in a dispute over theft. The theft of a work resulting in counterfeit
ownership can be realized by a copy attack. The realized threat is only successful
until the original author realizes the violation. An overview of the introduced terms
can be observed in Figure 3.2.

Proof of 
Authorship

Ownership
Deadlock

Counterfeit
Ownership

Forged
Authorship

Ambiguity
Attack

Removal
Attack

Copy
Attack

Key Copy
Attack

Security 
Goal

Threats

Attacks

Figure 3.2: An overview of threats, attacks and the watermarking security goal of
the proof of authorship. The different threats are realized by attacks
which violate the security goal.

To explain all threats and attacks in detail, some definitions have to be made first
[LMS06].

Definitions

A work I is defined as a vector I = (x1,x2, . . . ,xn), where each element xi ∈ I resides
in a universe I. The universe I depends of the kind of the work. Let Dist(·, ·) be a
distance function which is able to measure the differences of two works. A watermark

88



3.2 Theoretical Watermark Model

W is a vector W = (w1,w2, . . . ,wl), where each element wi ∈W . The universeW is
dependent on the universe of the work I and the watermark generation process. A
key K is a sequence of m binary bits (K = {0, 1}m).

In the general watermark model, there exist three algorithms: the watermark gen-
erator G, the watermark embedder E , and the watermark detector D. The watermark
generator G is able to generate a watermark W in the universe W for the key K:
W = G(K). The watermark embedder E embeds this watermark W into the work I.
The output is the watermarked work Ĩ = E(I,W ). The watermark in Ĩ should obvi-
ously not be visible. Therefore, the difference between I and Ĩ should be small. With
the distance function, this can be expressed as Dist(I, Ĩ) < tI , where tI is a threshold
value upon the difference is noticeable. Using the watermark detector D, the exis-
tence of the watermark W in the work Ĩ can be proven, if D(Ĩ,W ) = true or negated
if D(Ĩ,W ) = f alse.

This watermarking model may exist in different variations. The detection may be
achieved with a watermarking extractor X instead of the watermark detector D. The
watermark extractor X uses the watermarked work Ĩ as input and the extracted key
KX as output: KX =X (Ĩ). If no watermark is present in the work Ĩ, the watermark ex-
tractor indicates this conveniently. Another extractor variant needs the watermarked
and the original work as input: KX = X (I, Ĩ). The extracted key KX can now be
compared with the authors key K to establish the ownership.

Threat Model

The different threats against the security goal to establish the authorship of a work can
be explained using attack examples. Let an author create a work IA and a watermark
WA using his key KA with the watermark generator G: WA = G(KA). The author’s
work is now watermarked with the watermark embedder E : ĨA = E(IA,WA). The
watermarked work ĨA is published. The work can be modified by third parties, e.g.,
by filtering a watermarked image, so several variants ÎAx of ĨA may exist. For all
variants, it is necessary that the difference to ĨA is smaller than a specified threshold
tI: Dist(ÎAx , ĨA) < tI,∀x. This condition is necessary, because if a work is completely
or exhaustively altered, the relation to ĨA is weak, and the work can be counted as
a new work. Let Î be a published work where the authorship is to be proven. We
propose different scenarios where an attacker or pirate tries to sabotage the proof of
authorship (see also Figure 3.2):

The first scenario is counterfeit ownership using a removal attack. The pirate ob-
tains the watermarked work ĨA from the author or any variant of it (ÎAx) and manages
to remove the watermark and transforms the obtained worked into a work without or
with a disabled watermark Î. If the author of the work tries to proof his ownership of
the work Î, he fails:

Owner : Dist( IA , Î ) < tI D(Î,WA) = f alse

89



3. IP Core Watermarking and Identification

Furthermore, the pirate can embed his watermark WP into the work to take over
the ownership: ĨP = E(Î,WP). For the proof, he presents the work with the removed
watermark Î as original work.

Pirate : Dist( Î , ĨP ) < tI D(ĨP,WP) = true

The next scenario is counterfeit ownership by using a copy attack where a work
is copied without the permission from the author. To realize a counterfeit ownership
with a simple copy attack, the original author must be passive, either if he publishes a
work which is not watermarked, or publishes a watermarked work, but does not take
not part in the dispute. In both cases, the pirate can embed his watermark WP into the
work Î.

Pirate : ĨP = E(Î,WP) Dist( Î , ĨP ) < tI D(ĨP,WP) = true

If the author had not watermarked the work, he has no possibility to proof his au-
thorship, whereas otherwise, by detecting his watermark in Î and ĨP, he can establish
the authorship. Here, the author has shown that his watermark WA is present in the
fake original work from the pirate Î, whereas the pirate’s watermark WP is not in the
original work IA of the author. This proves that the pirate has taken a watermarked
work from the author and embedded his watermark in it.

Owner : Dist( IA , ĨP ) < tI D(ĨP,WA) = true D(Î,WA) = true
Pirate : Dist( Î , ĨP ) < tI D(ĨP,WP) = true D(IA,WP) = f alse

In the next scenarios, the pirate analyzes the work Î in order to find a fake wa-
termark WP and a corresponding fake original work IP. This leads to an ownership
deadlock by using an ambiguity attack. Both parties can show that the work Î is wa-
termarked with their corresponding watermarks and furthermore, the own watermark
is present in the original work of the opponent. This leads to an ownership deadlock,
because the rightful owner cannot be chosen.

Owner : Dist( IA , Î ) < tI D(Î,WA) = true D(IP,WA) = true
Pirate : Dist( IP , Î ) < tI D(Î,WP) = true D(IA,WP) = true

Moreover, if the pirate can achieve that in his fake original work IP the watermark
of the author WA cannot be found, he can take over the ownership. This ambiguity
attack leads to a counterfeit ownership.

Owner : Dist( IA , Î ) < tI D(Î,WA) = true D(IP,WA) = f alse
Pirate : Dist( IP , Î ) < tI D(Î,WP) = true D(IA,WP) = true

Forged authorship can be achieved by key copy attacks. Here, the key KA of a
credible author is stolen, and a fake watermark W ′A is generated. With this watermark,

90



3.2 Theoretical Watermark Model

a work with lower quality IP is marked. The pirates goal is that everyone believes
that this poor work is from the credible author which might raise the value of his own
work.

Pirate : W ′A = G(KA) ĨA
′
= E(IP,W ′A) D(ĨA

′
,W ′A) = true

In the following, some security properties of a watermark scheme will be analyzed
with respect to the attacks and threats introduced above. Let attacker A be any algo-
rithm of polynomial complexity.

Definition 3.1 A watermark scheme is tI-resistant to removal attacks if for any at-
tackerA and given any work Ĩ watermarked by W, it is computationally infeasible for
A to compute any work I′ such that Dist(Ĩ, I′) < tI and D(I′,W ) = f alse [LMS06].

The term tI-resistant means that the watermark scheme is resistant against removal
attacks with respect to the threshold value tI . If the distance exceeds tI , the works
cannot be counted as identical. For example, if the attacker creates a completely
new work, the watermark is also removed, but the works are not the same. The
phrase computationally infeasible follows the standard definition from cryptography.
Something is computationally infeasible if the costs (e.g., memory, runtime, area) is
finite but impossibly large [DH76]. Here, this is true if the probability Pr[A(Ĩ) = I′]
is negligible with respect to the problem size n. A quantity X is negligible with
respect to n if and only if for all sufficiently large n and any fixed polynomial q(·) (the
attackerA is defined as an algorithm of polynomial complexity), we have X < 1/q(n)
[LMS06].

In other words, with a sufficiently large problem size of watermarked work Ĩ, re-
sistance against removal attacks means that the attacker is unable to remove the wa-
termark as the problem size is beyond the computational capability of the attacker,
unless the resulting work is perceptually different from the original work.

If we consider ambiguity attacks where a possible attacker finds a fake watermark
inside a watermarked work, we come to the following definition:

Definition 3.2 A watermark scheme is resistant to ambiguity attacks if for any at-
tacker A and any work Ĩ, it is computationally infeasible for A to compute a valid
watermark WP such that D(Ĩ,WP) = true [LMS06].

A watermark scheme cannot be resistant against copy attacks, because the water-
mark scheme cannot distinguish if the work which is used as original work is really
the work of the person which is identified by the key.

In case of key copy attacks, the key of a credible author is used to watermark a
work with lower quality. In general, it should be impossible for an attacker to create
a work I′ which is distinguishable from any work of another author where the key or
watermark of a credible author can be found.

91



3. IP Core Watermarking and Identification

Definition 3.3 A watermarking scheme is tI-resistant to key copy attacks if for any
attacker A and any work Ĩ = E(I,W ) for some original I and the watermark W, it is
computationally infeasible for A to compute a work I′ such that Dist(I, I′) > tI , yet
D(I′,W ) = true [LMS06].

To prevent key copy attacks, a private/public key algorithm, like RSA [RSA78] can
be used. RSA is an asymmetrical cryptography method. It is based on factorization of
a number into prime numbers. The author encrypts a message which clearly identifies
the author and the work with his private key. The work can be identified by a hash
value over the original work. This encrypted message is now used for generating
the watermark and embedded inside the work. Stealing this watermark is useless,
because everyone can decrypt the message with the public key, whereas no one can
alter this message.

3.2.2 IP Core Watermark Model

Watermarking IP cores in electronic design automation is in some aspects different
from multimedia watermarking (image, audio, etc.). An essential difference is that
watermarking should preserve the functionality of the core. Another difference is
that IP cores can be distributed at different abstraction levels which have completely
different properties for the watermark security against attacks. We define different
design steps as different technology or abstraction levels a work or IP core can be
specified on (see Section 1.2.7). On higher abstraction levels, e.g., the architecture
level or RTL, the functionality is described by an algorithm which should be imple-
mented. At these levels, mainly the behavior is described and the representation is
optimized for easy reading and understanding the algorithm. During the course of the
design flow, more and more information is added. For example, at the device level
also placement information is included in the representation of the core. Extracting
only the relevant information about the behavior of the algorithm is much harder than
at higher abstraction levels. Furthermore, the information at lower abstraction levels
is usually interpreted by tools rather than humans. The representation of this infor-
mation is therefore optimized for tools and not for human readability. For example,
consider an FPGA design flow. Here, three different abstraction levels exist: RTL,
logic, and device level. An algorithm, specified at the register-transfer-level (RTL) in
an HDL core is easier to understand than a synthesized algorithm at the logic level,
represented by a netlist. In summary, we can say that the behavior of an algorithm is
easier to understand on higher abstraction levels than on the lower ones.

Transformations from a higher to a lower abstraction level are usually done by de-
sign tools. For example, a synthesis tool is able to transform a HDL core specified at
the register-transfer-level (RTL) into its representation on the logic level. Transfor-
mations from a lower to a higher level can be achieved by reverse engineering. Here,
usually no common tools are available. One exception is the Java library JBits from

92



3.2 Theoretical Watermark Model

Xilinx [Xilc] which is able to interpret the bitfiles of Virtex-II device types. Thus,
it is possible to transfer a bitfile core into a netlist at the logic level by using JBits.
However, in general, reverse engineering must be considered as very challenging task
which may cause high costs.

A watermark can be embedded at every abstraction level. Furthermore, the water-
marked core can be published and distributed also at every abstraction level which
must not necessarily be the same level at which the watermark was embedded. How-
ever, the extraction of the watermark is usually done in the lowest abstraction level,
because this representation is implemented into the end product.

Hiding a watermark at a lower abstraction level is easier, because first, there are
more possibilities of how and where to hide the watermark. Second, the information
stored at these abstraction levels is usually outside the reception area of the human
developer.

Definitions

Our new definitions for the IP core watermarking model [SZT08] are derived from
the general watermarking model introduced in the beginning of this section. A work
or IP core that is specified at abstraction level Y is denoted by IY = (xY1,xY2, . . . ,xYm),
where each xYi ∈IY is an element of the work, and IY is a universe, inherent to the ab-
straction level Y . For example, an FPGA design at the device abstraction level might
be represented by a bitfile which can be characterized as a work IB = (xB1, . . . ,xBm),
whose elements reside in the universe Bit (IB). Hence, a bitfile IB with |IB| = m can
also be considered as a binary sequence IB = {0,1}m.

Let T (·) be a transformation, which transforms a work on a specific abstraction
level into a work of another abstraction level. A transformation from the higher level
Y to the lower abstraction level Z is denoted TY→Z(·), whereas a transformation from
a lower to a higher level is denoted TY←Z(·).

The distance function DistY (·, ·) in the context of IP core watermarking is only
able to compare two works of the same abstraction level. If the distance of two IP
cores IY and I′Y of the same abstraction level Y is smaller than a threshold value tI
(DistY (IY , I′Y ) < tI), the two works may be considered similar.

Furthermore, the watermark generator G, embedder E , and detector D must be
restricted in a way that they cannot cross the abstraction level boundaries. In detail,
a specific watermark generator GX(·) is able to generate a watermark WX for the
abstraction level X from a key K: WX =GX(K). The input of the watermark embedder
or detector must be in the same abstraction level. For example, to watermark an IP
core IX at abstraction level X , also the watermark WX must be generated for this
abstraction level. So to obtain a watermarked work on the abstraction level X , it is
necessary to also use a watermarked and an embedding algorithm suitable for the
same abstraction level, i.e., ĨX = EX(IX ,WX).

93



3. IP Core Watermarking and Identification

In order to achieve full transparency of the watermarking process towards design
tools, it is an essential requirement that a work, marked on any abstraction level,
will retain the watermark if transformed to a lower abstraction level. Hence, if
DY (ĨY ,WY ) = true, so should also D(ĨZ,WZ) = true, if ĨZ = TY→Z(ĨY ), and WZ is
a representation of WY on abstraction level Z.

However, considering reverse engineering, the watermark information is may be
removed by the reverse engineering transformation TY←Z(·), or the detection and
removal of the watermark may be easier on the higher abstraction level. For example,
consider an FPGA bitfile IP core watermarking technique for which the watermark is
stored in some placement information inside the bitfile. The watermark is generated
for bitfiles at device level: WB = GB(K). The watermark is embedded in a bitfile core
IB to create the watermarked bitfile: ĨB = EB(IB,WB). If an attacker is able to reverse
engineer the bitfile and reconstruct a netlist at logic level the placement information
will get lost, since there is no representation for this on the logic level. This implies,
of course, that the watermark is lost, as well: ĨL = TL←B(ĨB), DL(ĨL,WL) = f alse.
Another problem of reverse engineering may be that an embedded watermark might
become obviously readable at the higher abstraction level and can be removed easily.

Figure 3.3 shows an example of the IP core watermark model considering different
abstraction levels.

Threat Model

The threat and attack model for general watermarking, as depicted in Figure 3.2, may
remain almost the same for the IP core watermarking model. However, the resistance
definitions against different attacks must be redefined. Sometimes, it might be easier
for an attacker to redevelop an IP core than to remove a watermark. The question
to purchase or to redevelop a core is a pure matter of cost. An uprising economical
question is whether the development of an attack is an option. For many cases, the
redevelopment from scratch might be cheaper than obtaining an unlicensed core and
develop an attack in order to remove the watermark. On the other hand, there are
designs involving such cunning cleverness and creativity that trying to redevelop a
work of equivalent economic value would exceed the costs of developing an appro-
priate attack by several orders of magnitude.

In the general watermarking model, it should be computationally infeasible to re-
move the watermark without changing the properties of the work. For the introduced
IP core watermarking model, this requirement does not necessarily hold. We may
consider a watermarking technique secure, if the cost for obtaining an unlicensed IP
core and developing a removal attack is higher than to purchase the IP core.

Let the attacker AY be an algorithm which is able to transform a watermarked IP
core ĨY at the abstraction level Y into an IP core with removed or disabled water-
mark I′Y = AY (ĨY ). Let C(·) be a cost function. Furthermore, let CD(·) denote the
development cost of a specified IP core or attack and CP(·) the purchase cost of an

94



3.2 Theoretical Watermark Model

TA→B(�IA)

Abstraction
Level

A

K

Author

IA = (xA1 , . . . , xAk
)

IP Core
WA = GA(K)

Watermark Generator

WA = (wA1 , . . . , wAl
)

Watermark�IA = E(IA, WA)

Watermark Embedder

�IA

Marked IP Core Watermark Detector

�IB

Marked IP Core
WB = (wB1 , . . . , wBl

)
Watermark

Watermark Detector

Abstraction
Level

B

DA(�IA, WA) = true

DB(�IB , WB) = true

Figure 3.3: An example of a watermarking procedure characterized in the IP core
watermark model with different abstraction levels. At abstraction level
A, the watermark is generated and embedded. A transformation to the
abstraction level B retains the watermark [SZT08].

IP core. Let CO(·) denote the cost to obtain an (unlicensed) IP core. Note that this
cost may vary between the costs for copying the core from an arbitrary source and
those for purchase it. We define a watermarked core ĨY to be secure against attacks
if attacks produce higher costs than the legal use of the core. Instead of requiring
computational infeasibility, it is enough to fulfill:

CP(ĨY ) < CD(IY )≤ (CO(ĨY )+CD(AY (ĨY )). (3.1)

Furthermore, a reverse engineering step to a higher abstraction level and the devel-
opment of an attacker algorithm on this level might be cheaper than the development
of an attacker algorithm on the lower abstraction level. Therefore, we must also con-
sider the usage of reverse engineering:

CP(ĨY ) < CD(IY )≤ (CO(ĨY )+C(TX←Y (ĨY ))+CD(AX(ĨX))+C(TX→Y (I′X)). (3.2)

Definition 3.4 An IP core watermarking scheme is called tI-resistant to removal
attacks if for any attacker A and any IP core ĨY of a given abstraction level Y and
watermarked by WY , it is either computationally infeasible to compute I′Y = A(ĨY )

95



3. IP Core Watermarking and Identification

with DistY (ĨY , I′Y ) < tI andDY (I′Y ,WY ) = f alse or produces higher costs than its legal
use.

For ambiguity attacks where an attacker tries to counterfeit the ownership or to
achieve an ownership deadlock, the attacker searches for a fake watermark inside the
IP core. This can be done by analyzing the IP core and searching for a structural
or statistical feature which might be suitable to interpret as a fake watermark. How-
ever, the published IP core may be delivered in different target technology versions,
e.g., for an ASIC design flow or different FPGA target devices. This fake watermark
should also be present in any other distributed sample to guarantee the attacker’s au-
thentic evidence of ownership. Furthermore, the attacker must present a fake original
work, and the evidence of a comprehensible watermark generation from a unique key,
which clearly identifies the attacker. These are all reasons, why ambiguity attacks are
very difficult in the area of IP core watermarking.

Definition 3.5 An IP core watermarking scheme is called resistant to ambiguity
attacks if for any attacker A and any given IP core ĨY of a certain abstraction level
Y and watermarked by WY , it is either computationally infeasible to compute a valid
watermark W ′Y such thatDY (ĨY ,W ′Y ) = true or produces more costs than its legal use.

For copy attacks and key copy attacks, the threat model proposed for the general
watermarking model remains the same for the IP core watermarking model. Hence,
these attacks are independent of the actual watermarking scheme. We have seen for
the general watermarking model that cryptographic methods are suitable to prevent
key copy attacks. Many different approaches exist to increase the confidence of a
signature or watermark by using cryptographic methods. In the following an exam-
ple taken from [QP03] is given for the usage of cryptographic methods for IP core
watermarking.

Example Cryptographic Preparation of a Watermark

A signature may be a short ASCII-text which identifies the owner of the core, for
example: “Hardware-Software-Co-Design, CS 12, University of Erlangen-Nurem-
berg”. First, we hash the string to get a white spectrum of the probabilities of oc-
currence of each letter (see Figure 3.4). A usual one-way-hash function is MD5
[Riv92a]. MD5 generates a 128 Bit hash value with non-linear functions from any
long message. The next step is to encrypt the hashed string. This may be done using
a private/public key algorithm like RSA [RSA78]. To watermark a design, we need
information where the watermark will be inserted and about the content of the water-
mark. For the watermarking methods according to [QP03], this information comes
from a pseudo random sequence produced from a seed which is the encrypted and
hashed signature with a pseudo random generator like RC4 [Riv92b]. RC4 gener-

96



3.2 Theoretical Watermark Model

ates a pseudo random sequence of an initial key. The key length is variable. The
interpretation of this sequence is up to the used watermarking algorithm.

ASCII-Text

MD5

Hashed-Text

RSA

0101110100010101
0000101110010101
0001010100010101
0001001110010001
1110101001001000
1001010100010101
0101010100010111
0100100100101101
0010010001101010

Private key

Seed RC4

Watermarking

Core

Watermarked
Core

Figure 3.4: The preparation process of a watermark with cryptographic methods
according to [QP03]. An ASCII text which clearly identify the author is
hashed and encrypted with an public/private cryptographic method. The
encrypted key is used as a seed for a pseudo random generator which
result is used for watermarking the core.

To verify the signature, we extract the watermark from the design and rebuild the
pseudo random sequence. We produce a second random sequence from our original
seed, the encrypted and hashed signature. Now, we have to prove that the two se-
quences are identical. After this is done, we must also check if the seed corresponds
to our signature. The seed is decrypted by our public key and we get the hash value.
If this hash is equal to the hash of our signature, the verification of the signature is
successful.

The application of cryptographic methods for watermarking is not a must but can
make it resistant against tampering and key copy attacks.

3.2.3 IP Core Identification Model

Another possibility to establish the ownership of an IP core is by identifying it in a
complete design. In this approach, no signature or watermark is necessary. Instead,
let an IP core IX1 for a specific abstraction level X be registered by the author and
then published. The registration can be made at a trusted third party institution. The
IP core customers can purchase the core IX1 and combine it with other self-written

97



3. IP Core Watermarking and Identification

or purchased IP cores IX2, IX3, . . . , IXm to a complete design which traverses further
design steps to lower abstraction levels: IY = TX→Y (IX1 ◦ IX2 ◦ IX3 ◦ · · · ◦ IXm). The ◦
operator combines different cores to one design. If a company is suspected to use
an unlicensed core, their design can be analyzed in a way that the unlicensed IP core
usage can be detected. This can be done by an IP core detector D which is able to
detect the published IP core in a complete design: D(IY , IX1) = true/ f alse.

The threat and attack model against proof of authorship using IP core identification
methods differ slightly from the threat and attack model when using watermarked IP
cores. An attacker can try to achieve an ownership deadlock by using an ambiguity
attack. He can claim that an identified IP core IX1 belongs to him. To prove his claim,
he can further present the original IP core IX1 which he used to build his complete
design. This core can be obtained or purchased from the IP core developer or any
other source (e.g., legal customers of the core which copy the core). Since the IP
core IX1 has no signature, the real author cannot be determined. Only by using a
trusted third party institute, the real owner of the IP core IX1 can be determined. Here,
it is of utmost importance that the real owner of the core registered the IP core first.
Usually, this should happen before the IP core is published. Furthermore, the attacker
can take over the ownership of the core, if the original author forgot the registration.
If the same IP core is registered at different trusted third party institutes, the date of
filing should solve the dispute.

Furthermore, an attacker can counterfeit the ownership if he embeds a watermark
inside a copied core which identifies him as the legal author. This copy attack can be
prevented if the core was previously registered at a trusted institution by the rightful
author. On the other hand, if an attacker registers a copied watermarked core at a
trusted third party institution at which the work was not registered before, the estab-
lishment of the ownership can be difficult. Because of the registered core carries al-
ready the watermark, a judge would properly decide for the author of the watermark.
This shows us that registration of an IP core at a trusted third party institute, even if
it is watermarked correctly, elevates the chances of the rightful proof of authorship.

In summary, it can be said that the clear proof of authorship using any identification
method can only be done if the IP core is registered. For watermarking methods, this
is not mandatory. However, registration can increase the trust into the ownership
proof significantly.

3.3 Bitfile Watermarking and Identification

This section explains methods where the verification is done by extracting an FPGA
bitfile. The bitfile can be analyzed to detect structures that can carry a watermark or
that can be used to identify an IP core. In this work, lookup table contents are used
which are excellently suitable for watermarking and IP core identification.

98



3.3 Bitfile Watermarking and Identification

First of all, the extraction of the lookup table contents from an FPGA bitfile is dis-
cussed. This step is necessary for all following IP core identification and bitfile water-
marking methods. Afterwards, methods to identify a registered IP core in an FPGA
bitfile are proposed. These include identifying netlist cores as well as HDL cores.
Following, watermarking methods for netlist and bitfile cores are proposed. The fo-
cus of these watermarking methods lies on the usage of functional lookup tables in
order to increase the robustness against removal attacks. The term functional lookup
table refers to lookup tables which are already used in a given (non-watermarked)
IP core and represent a part of the functional logic of the core which may not be
removed by an attacker in order to retain the correctness of the core.

3.3.1 Lookup Table Content Extraction
In this section, we discuss which possibilities exist to get information about the con-
tents of lookup tables from a product. First, we need to extract the configuration
bitfile of the FPGA from the product. On some devices, it is possible to read back the
bitfile. This is the easiest way, but it is not always possible, because not all FPGA
devices support this feature, or it might have been disabled by the creator. In SRAM
based FPGAs, the bitfile is stored into a PROM and during the startup phase, the
FPGA is configured by loading this bitfile. The communication between the FPGA
and the PROM can be recorded by wire tapping and so, the bitfile can be obtained.

The extraction of the lookup table contents from the configuration bitfile depends
on the FPGA device and the FPGA vendor. Xilinx provide the Java library JBits
[Xilc] for Virtex-II FPGA configuration bitfiles. Although, all other Xilinx devices
must be reversed engineered in order to obtain any information of their configuration
bitfiles.

To read out the LUT content directly from the bitfile, it must be known at which
position in the bitfile the lookup table content is stored and now these values must be
interpreted.

We have applied standard black-box reverse engineering procedures to Xilinx Vir-
tex-II and Virtex-II Pro bitfiles. These bitfiles are structured in packets, where each
packet consists of one or more configuration words for a certain configuration regis-
ter which controls the configuration process [Xil05]. One large packet contains the
configuration data for the circuit, which should be instantiated on the FPGA. This
packet is divided into frames which are the smallest configuration unit. The length
of one frame and the number of frames is device-dependent. There exist six frame
types: IOB, IOI, CLB, BRAM, BRAM Interconnect, and GCLK. In IOB (Input/Out-
put Blocks) frames, the information about the right and left Input and Output Blocks
is stored. The information about the upper and lower IOBs is stored in the CLB
(Configurable Logic Block) frames. On the left and on the right side of the FPGA
exists one column of IOB frames; each IOB column consists of four frames. The
IOI (Input/Output Interconnect) frames are next to the IOB frames. Here, the routing

99



3. IP Core Watermarking and Identification

information of the interconnect network for the IOBs is stored. There are also 22 IOI
frames on each side of the FPGA. In the CLB frames, information about the CLBs,
routing and the upper and lower IOBs are stored. The FPGA consists of a regular
pattern of CLB columns. Each CLB column consists of 22 frames. In two of these
frames, the contents of the lookup tables are stored. In BRAM (Block Ram) and the
BRAM Interconnect frames, the content and the configuration of the block rams as
well as the configuration of the hardware multiplier and the interconnect network is
deposited. Each BRAM column consists of 64 frames and each BRAM Interconnect
column consists of 22 frames. Each FPGA has one GCLK (Global Clock) column,
consisting of four frames. Here, the information of DCMs (Digital Clock Manager),
clock buffers and most of the clock routing is stored. More information can be found
in [Xil05].

Each frames of the configuration memory in the FPGA can be accessed by an
individual address. The address word contains a block address and a major and a
minor address. The IOB, IOI, GCLK and CLB frames are stored in the block with
address 0, whereas the BRAM frames are stored in the block with address 1. Block
2 consists of the BRAM Interconnect frames. The major address directs the columns
whereas the minor address directs the frames in a column. Figure 3.5 shows the
configuration map of a Xilinx Virtex-II or Virtex-II Pro FPGA. This is also the order
in which the frames are stored in the configuration packet in the bitfile.

Figure 3.5: The map of the configuration memory from Xilinx Virtex-II and Virtex-
II Pro FPGAs [Xil05].

A Xilinx Virtex-II CLB consists of four slices, two horizontal and two vertical.
Each slice has two lookup tables, the G- and the F-LUT. The content of the lookup
tables for one slice column is stored in one frame, so two frames are used for the
lookup table content in a CLB column. In the second frame of a CLB column, the
lookup table content of the left slice column is stored whereas the third frame carries
the content of the right slice column.

16 bits are stored in a four input lookup table. These bits are stored together in two
bytes but with bit inverted values. The F and G lookup tables in a slice are separated

100



3.3 Bitfile Watermarking and Identification

by one byte which is not used for storing lookup table content information. So, the
lookup table content packet for one slice consists of 5 bytes. First, the G-LUT is
stored, but in reverse bit order. Then, the separate byte and the F-LUT is stored. The
bit order of the F-LUT is not reversed.

These packets are stored successively in the frame for the slices in one column,
beginning with the slice with the highest Y coordinate and ending with the slice with
the 0 coordinate (see Figure 3.6). For the upper and lower input/output blocks which
are also stored in the CLB frames, the first and the last 12 bytes in the lookup table
content frame are reserved. The frame length FL is:

FL = CY ·2 Slices ·5 Bytes+2 ·12 IOB Bytes (3.3)

where CY is the number of CLB rows in the FPGA.

2 Bytes

Slice X0Y0

2 Bytes1 Byte 12 Bytes2 Bytes 2 Bytes1 Byte
LUT FLUT G

Slice X0Y1
LUT FLUT G IOBs

Figure 3.6: The positions of the F and G lookup table content in a frame. The
gray cells denotes the lookup table contents. Note that the coordinate
of the slices are in reversed order whereas the rear part of the frame is
displayed.

To calculate the frame address of the lookup table frames, we can use the following
formula:

Fcy0 = 1 ·FGCLK +1 ·FIOB +1 ·FIOI (3.4)
fl f (xS) = Fcy0 +CFlut0 + bxS/2c ·FCLB + xS mod 2 (3.5)

where Fcy0 denotes the frame number of the first CLB frame and FGCLK , FIOB, FIOI
and FCLB identify the number of frames of a GCLK, IOB, IOI or CLB column. CFlut0
denotes the first lookup table content frame in a CLB. xS and yS denote the slice
coordinates, and YS the number of slice rows in the FPGA. fl f (xS) denotes the frame
which stores the lookup table information of slice column xS. All addresses begin
with zero.

The values of FGCLK , FIOB, FIOI , FCLB and CFlut0 are device-independent so to
provide:

Fcy0 = 1 ·4+1 ·4+1 ·22 (3.6)
fl f (xS) = Fcy0 +1+ bxS/2c ·22+ xS mod 2 (3.7)
fl f (xS) = 31+ bxS/2c ·22+ xS mod 2 (3.8)

101



3. IP Core Watermarking and Identification

To calculate the byte addresses of the lookup tables in the configuration packet of
the bitfile, we can use the following formula:

AdrLUT G(xS,yS) = fl f (xS) ·FL+12+((YS−1)− yS) ·5 (3.9)
AdrLUT F(xS,yS) = fl f (xS) ·FL+12+((YS−1)− yS) ·5+3 (3.10)

Lookup tables in unused slices have the value 0x0000, whereas unused lookup
tables in used slices have the value 0xFFFF. With this information, we are able to
extract and decode the lookup table content and the position from used lookup tables
in a Xilinx Virtex-II and Virtex-II Pro FPGA.

For generalizing this approach, we define a lookup table extractor function LX(·)
for the abstraction level X . The extractor function is able to extract the lookup table
content of a work IX as follows: LX(IX) = {xX1,xX2, . . . ,xXm}, whereas xXi is a lookup
table content element of the abstraction level X , and m is the number of used lookup
tables.

The following extraction function can be applied to extract the lookup table con-
tents of a design IB of the bitfile at abstraction level B: LB(IB) = {xB1 ,xB2, . . . ,xBq}.
Each element xBi consists of the lookup table content as well as the (xS,yS) coordi-
nates of the corresponding lookup table.

3.3.2 Identification of Netlist Cores by Analysis of LUT
Contents

In this approach, we do not add any signature or watermark. The core itself remains
unchanged, so the functional correctness is given and no additional resources are
used. We compare the content of the used lookup tables from the registered core IL1

with the used lookup tables in an FPGA design IB from the product of the accused
company. If a high percentage of identical content is detected, the probability that
the registered core is used is very high.

The synthesis tool maps the combinatorial logic of an FPGA core to lookup tables
and writes these values into a netlist. After the synthesis step, the content of the
lookup tables of a core is known, so we can protect netlist cores which are delivered
at the logic level. The protection of bitfile cores at the device level is also possible.

After the core IL1 is purchased, the customer can combine this core with other
cores: IB = TL→B(IL1 ◦ IL2 ◦ IL3 ◦ . . .). In the following CLB mapping step, it is pos-
sible that lookup tables are merged across the core boundaries or are removed by an
optimizing transformation. This happens when different cores share logic or when
outputs of the core are not used. These lookup tables cannot be found in the FPGA
bitfile IB, but experimental results (see Section 3.5.1) show that the percentage of
these lookup tables compared to the number of all lookup tables in the core is typi-
cally low for the used mapping tool (Xilinx map).

102



3.3 Bitfile Watermarking and Identification

If a company is accused of using unlicensed cores in a product, the bitfile of the
used FPGA can be extracted (see Section 3.3.1). After reading out the content and the
positions of the lookup tables from the bitfile and comparing them with the lookup
table contents from the original core, the ownership of the core can be proven by
evaluating a detector function D(IB, IL1).

Identifying the Core

After the extraction of the content of lookup tables from a bitfile, we can com-
pare the obtained values with the information in the netlist. The extraction of all
lookup table contents from a bitfile is done as described in Section 3.3.1: LB(IB) =
{xB1,xB2 , . . . ,xBq}. The content of the lookup tables can easily be read out from a
netlist file: LL(IL1) = {xL1,xL2, . . . ,xLr}. For example, in an EDIF netlist for Xil-
inx FPGA devices, the lookup table contents appear after the INIT property for the
lookup table instances. Unfortunately, the mapping tools do not necessarily adopt
these values. The mapping tool may merge lookup tables from different cores to-
gether, convert one, two or three input lookup tables to four input lookup tables and
permute the inputs to achieve a better routing.

All lookup tables of an FPGA have nl inputs. On most FPGA architectures, lookup
tables have nl = 4 inputs. In a core netlist, also lookup tables with less than nl inputs
may exist. These lookup tables must be mapped onto nl input lookup tables. If
one input is unused, only half of the memory is needed to store the function and
the remaining space must be filled. In the case that a function uses less inputs than
the underlying technology of the FPGA provides, it is desirable to turn the unused
inputs into don’t cares. Intuitively, this can be achieved rather easily by replicating
the function table as it is demonstrated in Figure 3.7.

000
001
010
011
100
101
110
111

0
1
1
1
0
1
1
1

00
01
10
11

0
1
1
1

0
1
1
1

LUT2 LUT3

i1i0   i2i1i0 o  o

Figure 3.7: Converting a two input lookup table into a three input lookup table with
unused input i2.

103



3. IP Core Watermarking and Identification

The mapping tool can permute the inputs of the lookup tables, for example, to
achieve a better routing. In most FPGA architectures, the routing resources for
lookup table inputs are not equal, and so a permutation of the lookup table inputs
can lower the amount of used routing resources. Permutation of the inputs signifi-
cantly alters the content of a lookup table. For nl inputs, nl! permutations exist and
thus up to nl! different lookup table values for one so-called unique function. To
compare the contents of the lookup table from the netlist and the bitfile, it must be
checked if one of these possible different lookup table values for one unique function
is equal to the value of the lookup table in the bitfile. This is done by creating a table
with all possible values of lookup tables for all unique functions (see Figure 3.8).

map
table

Bitfile
Design

unique 
functions

map
table

Netlist
Core

Lookup table 
contents

unique 
functions

compare:
r is sub-
set of q?

Lookup table 
contents

yes/no

q r

Figure 3.8: Before the lookup table contents of the bitfile and the netlist are com-
pared, they are mapped into unique functions.

Robustness Analysis

For robustness analysis against false positive detection, it is necessary to know how
many different functions can be realized by an nl input lookup table, if it is allowed
to permute the inputs. This topic is related to the problems of Boolean matching and
equivalence classes [Har65, Hüt03, ZV96, DS99]. Boolean matching is a technique
to check if two Boolean function are equal with respect to transformations (e.g., input
permutations, input negotiation, output negotiation). Functions which are equivalent

104



3.3 Bitfile Watermarking and Identification

with respect to these transformations are in the same equivalence class. Our interest
is on the equivalence class P which allows to permute the inputs of a function.

The number of different values which can be encoded in an nl-input lookup table
is 22nl . The number of equivalence classes P is smaller. Table 3.1 shows the number
of equivalence classes of functions with different amounts of inputs. These values
were obtained by experimentation. Functions which have a constant output do not
appear in a netlist, but the mapping tool can create such functions later to generate a
power or ground signal. Nevertheless, we define the set of unique functions as the set
of equivalence classes without the two constant functions.

Inputs nl equivalence classes P unique functions fu
1 4 2
2 12 10
3 80 78
4 3984 3982
5 37333248 [Har65] 37333246

Table 3.1: The number of different equivalence classes P and unique functions.

In order to decide whether a certain core is instantiated inside an FPGA, we define
two vectors q and r that contain all quantities of each unique function appearing in
the core IL1 (r) and the whole design (q) that may consist of multiple different cores.
Also, the number of different unique functions, denoted with fu, is of interest (see
Table 3.1).

The unique function i is included ri times in the core IL1 and thus qi times in the
design IB. Moreover, r is the number of all functions or lookup tables in the core,
and q the number of lookup tables in the whole design. The vector r can be obtained
from the set of different unique functions of the netlist of the core IL1 and the vector
q can be created from the information of the lookup table content extraction from the
bitfile IB. Let

r = (r1,r2,r3, · · · ,r fu), (3.11)
q = (q1,q2,q3, · · · ,q fu), (3.12)

and

r = r1 + r2 + r3 + · · ·+ r fu, (3.13)
q = q1 +q2 +q3 + · · ·+q fu . (3.14)

Now, we can define a necessary criterion for a core to exist in a design: If the
number of each different unique function qi in q is greater or equal to ri in r, the core
is possibly included in the design:

∀i ∈ {1, · · · , fu} : qi ≥ ri (3.15)

105



3. IP Core Watermarking and Identification

Also, if a high percentage of unique functions qi in q is lower than ri in r, we can
come to the conclusion that the core is most likely not included.

An important value is the probability pc for the false-positive detection that a core
is found in a design by chance but which has this core not included. This value should
be very low to obtain a high robustness of this method. The probability depends on
q, r, fu, the core r and the probability distribution pq of the unique functions of the
whole design.

pq = (p1, p2, p3, · · · , p fu), (3.16)
p1 + p2 + p3 + · · ·+ p fu = 1, (3.17)

where p1 is the appearance probability of the function 1 in the design q.
First, we assume that q = r. This means that we calculate the probability that the

number of each unique function of q and r is equal. All lookup tables of r must be
in q with the probability distribution pq. This can be calculated with the multinomial
distribution:

pc =
(

r
r1,r2,r3, · · · ,r fu

)
· pr1

1 · pr2
2 · pr3

3 · . . . · p
r fu
fu . (3.18)

If q > r, the core IL1 (r) is combined with other cores or logic in the design IB (q).
For each possible combination from r with other cores, the appearance probability
must be calculated and summed up. The first question is how many combinations of
other cores (s) exist. This can be calculated with the formula of combination with
repetitions:

s =
( fu +q− r−1)!
(q− r)! · ( fu−1)!

(3.19)

Now, all possible combinations of functions in these cores are calculated and stored
in a matrix A.

A =


a11 a12 . . . a1 fu
a21 a22 . . . a2 fu

...
... . . . ...

as1 as2 . . . as fu

 , (3.20)

∀i ∈ {1, · · · ,s} : ai1 +ai2 + · · ·+ai fu = q− r (3.21)

For example, for fu = 2 and q− r = 3:

A =


0 3
1 2
2 1
3 0

 (3.22)

106



3.3 Bitfile Watermarking and Identification

The probability that a core is detected in q with the probability distribution pq is:

pc =
s

∑
i=1

(
q

r1 +ai1,r2 +ai2, · · · ,r fu +ai fu

)
· pr1+ai1

1 · pr2+ai2
2 · . . . · pr f +ai fu

fu . (3.23)

If we assume that all unique functions in q are uniformly distributed, we can simplify
this formula to:

pc =
s

∑
i=1

(
q

r1 +ai1,r2 +ai2, · · · ,r fu +ai fu

)
· 1

f q
u

(3.24)

Unfortunately, this probability can be calculated only for small values of q, r, and fu
(see Figure 3.9 and 3.10), because of the exponential computation complexity. For
values of q, r, and fu which can appear in realistic applications, we can only refer to
the experimental results in Section 3.5.1.

p
c

q

4020 60 80 100 120

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-80

f
u
=5

f
u
=10

f
u
=15

f
u
=20

Figure 3.9: pc for different fu and q, where r = 0.91 · q and r is uniformly dis-
tributed.

In order to increase the robustness of our method and lower the risk of a false
detection of a core, the positions of the lookup table in an FPGA can be used. The
position of a lookup table can be extracted from the bitfile as well as the content
(see Section 3.3.1). We assume that the lookup tables of a core are placed together,
because elements with direct connection are likely to be placed in close proximity to

107



3. IP Core Watermarking and Identification

p
c

q
20 4020 60 80 100 120

100

10-5

10-10

10-15

10-20

10-25

10-30

10-35
0

f
u
=5

f
u
=10

f
u
=20

Figure 3.10: pc for different fu and q. r = 0.91 · q and r is distributed as follows:
pr1 = 1

2 + 1
2 fu and ∀i ∈ {2, · · · , fu} : pri = 1

2 fu .

obtain an optimal routing. The assumption is that lookup tables of a core have more
connections with elements inside the core than with external elements.

If the mean distance between the found lookup tables in the bitfile is small the
probability that these lookup tables are part of the searched core is higher than if the
mean distance is high. In order to calculate this mean distance, we must know which
lookup tables in the bitfile belong to the core.

First, we search for those functions which only appear in the core IL1 and not in
the other cores (IL2 , IL2, . . .), i.e.

{i ∈ {1, . . . , fu} | qi = ri} (3.25)

Lookup tables which implement these functions are surely inside the core. From
these lookup tables, we can calculate an estimate of the geometrical position of the
core center. If the number of these functions is zero, we take all lookup tables which
implement functions from the core to calculate the core center. In this case, the core
center is inaccurate because also lookup tables which do not belong to the core are
considered. For functions which appear inside and outside the core, i.e.,

{i ∈ {1, . . . , fu} | qi > ri} (3.26)

we take the ri lookup tables which are nearest to the calculated core center. Now, the
distance to the core center of all lookup tables of the core can be calculated.

108



3.3 Bitfile Watermarking and Identification

In the formula for pc, the difference between q and r is important. If q− r is small,
then also the probability of a false detection pc is low. We can decrease q− r if we
define a bounding box around the core and only consider lookup tables inside the
box. The dimensions of the box can be calculated from the positions of the lookup
tables from the core inside the bitfile. However, the value of the probability pc must
be multiplied with the number of all possible positions of the bounding box in the
design.

Summary

We have presented a new method to identify IP cores in FPGA bitfiles. Possible
transformations of the mapping tools and the effect of the robustness of the method
were discussed. The experimental results in Section 3.5.1 show that it is possible to
identify a core in the design with a high probability. The identification process is
based on two parameters, namely the number of found lookup tables of the core in
the design and the mean distance to the core center. However, it must be taken into
account that lookup tables of the core are removed by optimization tools, if parts of
the core are not used because outputs are unused or constant values are applied to
inputs.

3.3.3 Identification of HDL Cores by Analysis of LUT
Contents

In the last section we have shown that is possible to identify an IP core, distributed
as a netlist, in an FPGA design by analyzing the LUT contents of the configuration
bitfile. However, many IP cores are published at the RTL abstraction level as HDL
core.

To identify HDL cores, the lookup table contents can be used as well. However,
the lookup table content is generated by the synthesis step, which is executed after
the publication of the HDL cores. Therefore, a pirate who can obtain an unlicensed
HDL core, controls the complete design flow from the RTL to the device level. It
is up to the pirate to decide which synthesis tool is used to synthesize the core and
therefore, create the lookup table contents. Different synthesis tools might create
different lookup table contents. To prove or disprove this assumption, we analyzed
common synthesis tools with respect to the generation of lookup table contents.

The first step is to analyze different netlist cores to find out whether they were
generated from the same HDL core. The goal is to find different netlist cores which
can be assigned to a corresponding HDL source even if they were synthesized with
different tools and different synthesis parameters.

109



3. IP Core Watermarking and Identification

Criterion Value Method

To compare two netlist cores, we define the criterion value C. If this value is greater
than 1, then it is likely that both netlist cores were generated from the same HDL
source. C is based on the lookup table content of both netlist cores. Therefore, the
first step is to extract the lookup table contents from the netlist cores and map these
to unique functions. For one core, this step is the same procedure as in netlist core
identification, described in Section 3.3.2. The procedure is done for both cores and
the results are two vectors which store the number of each unique function for the
corresponding core. ra is the vector of the first core ILA, and rb is the vector of the
second core ILB:

ra = (ra1,ra2,ra3, · · · ,ra fu), ra =
fu

∑
i=1

rai, (3.27)

rb = (rb1,rb2,rb3, · · · ,rb fu), rb =
fu

∑
i=1

rbi. (3.28)

The number of lookup tables that can be found in both cores and, which implement
the same unique function can be calculated if we take the minimum for all elements
of both vectors:

rmin,i =min(rai,rbi), ∀i ∈ 1 . . . fu. (3.29)

The value Pa in b denotes the percentage of unique functions of ILA that can be found
in ILB. The value Pb in a is calculated vice versa:

Pa in b =
fu

∑
i=1

rmin,i

rb
, (3.30)

Pb in a =
fu

∑
i=1

rmin,i

ra
. (3.31)

Note that both values are not necessarily the same, because of the possibly different
number of used lookup tables or functions ra and rb. For example, if we compare
a core with a large number of lookup tables with a core which has only few lookup
tables, it is likely that the content of the few lookup tables of the second core is also
found in the large core. Vice versa, however, the percentage of the found lookup
tables should be very low.

If the number of used lookup tables differs extremely between the two cores, then
the probability that both cores were generated from the same source is low. We
introduce a parameter IP which indicates that the difference of the number of used
lookup tables of both cores is more than the average of used lookup tables:

110



3.3 Bitfile Watermarking and Identification

ravg =
ra + rb

2
, (3.32)

rdi f f = |ra− rb| , (3.33)

IP =

{
0, if rdi f f > ravg

1, if rdi f f ≤ ravg
(3.34)

Now, we can calculate the criterion value C:

C = 25 · IP

(
ravg

rdi f f

)2

·
(

Pa in b− Pa in b +Pb in a

2

)2

+
(

Pb in a− Pa in b +Pb in a

2

)2

(3.35)

This formula is derived from the experimental results in Section 3.5.2. If C > 1
then the probability that both cores were generated from the same source is high, if
C < 1 it is rather unlikely that both cores are related.

Identification of Synthesis Tools

After the identification of netlist cores that have been generated from the same HDL
source, it is also of interest to identify the synthesis tool that was used to generate
the netlist. If it is possible to identify the used synthesis tool from the lookup table
contents, the HDL core can be synthesized with the same tool. A comparison of the
generated netlist core with the bitfile can possibly provide better identification result.
The fact, that only a few synthesis tools exist for a certain technology simplifies the
identification of the synthesis tool as well as the used core.

The first step is to analyze netlists that were generated by different synthesis tools.
We identify characteristic usage of special primitive cells, which can be found only
in netlists which were synthesized by a certain tool. For example, in our analysis
for Virtex-II synthesis tools we found different implementations of a simple inverter
function. On precision synthesis from Mentor Graphics an inverter is always imple-
mented into a LUT1 or LUT1 L primitive cell, whereas the Xilinx Synthesis Tech-
nology (XST) synthesis tool implements an inverter always as an INV primitive cell.
Synplify Pro from Synopsis uses both implementations for an inverter. Furthermore,
LUT D primitive cells which use the local and the normal lookup table output (see
[Xilh]) exist only in netlists which were generated by the XST synthesis tool.

However, during the implementation of these cores into a bitfile, an INV primitive
cell might also be implemented into a one-input lookup table, which removes this
special characteristic. Future research might find better characteristics for synthesis
tools which might still be present in the bitfile. Ideally, such characteristics should be
found in lookup tables, which can be easily extracted.

111



3. IP Core Watermarking and Identification

Conclusions and Future Work

We have shown the first steps towards an identification of HDL cores in bitfiles. We
concentrated on the synthesis step between the RTL and logic abstraction level and
have shown that it is possible to identify netlist cores that were generated from the
same HDL source. Furthermore, we have shown that it might be possible to identify
the synthesis tool a netlist was generated by. However, to build the complete chain for
identification of HDL cores from bitfiles some links are missing. Being able to iden-
tify the synthesis tool helps for the identification, but even if the same tool is used, the
resulting netlists may be different due to varying synthesis parameters. Identifying
HDL cores in netlists has an inherent uncertainness comparable to the identification
of netlist cores in bitfiles. By combining both techniques the uncertainness can be
too high to give a trustful result. Nevertheless, this is an interesting topic for future
research.

3.3.4 Watermarks in LUTs for Bitfile Cores

In this section, we introduce our first watermarking technique for IP cores. The easi-
est way to watermark an FPGA design is to place the watermarks into the bitfiles. Bit-
files are very inflexible because they were specifically generated for a certain FPGA
device type, however, it makes sense to sell bitfile IP cores for common development
platforms which carry the same FPGA type. Usually, a bitfile core is a whole design
which is completely placed and routed and therefore ready to use. There also exist
partial bitfiles which carry only one core. These partial bitfile cores can be com-
bined into one FPGA which increases the flexibility of these cores and therefore may
increase the trade possibilities.

In this approach, we hide our signature inside unused lookup tables. It is very
unlikely that a design or bitfile core uses all available lookup tables in an FPGA.
Before a design reaches this limit, the routing resources are exhausted and the timing
degenerates rapidly. Therefore, many unused lookup tables exist in usual designs.
On the other hand, lookup table content extraction is not difficult (see Section 3.3.1).
Using lookup tables for hiding a watermark which are far away from the used ones,
makes it easier for an attacker to identify and remove them. Even if an attacker is
able to extract all lookup tables from a bitfile core, the lookup tables which carry the
watermark should not be suspicious.

In Xilinx devices, lookup tables are grouped together with flip-flops into slices. A
slice usually consists more than one lookup table, e.g., the Virtex-II and Virtex-II Pro
devices which are discussed in Section 3.3.1, have two lookup tables in one slice.
It is not unusual that only one lookup table of a slice is used and the other remains
unused. Hiding a watermark in the unused lookup table of a used slice is less obvious
than using lookup tables in unused slices. Even if the attacker is able to extract the
lookup table content and coordinates, the watermarks are hard to detect.

112



3.3 Bitfile Watermarking and Identification

The extraction and verification of the watermark is rather easy. First of all, the
content and the coordinates of all used lookup table of the core are extracted. For the
verification there exist two approaches: a blind approach and a non-blind approach.
In the blind approach, the watermarks are searched in all extracted lookup table con-
tents, whereas in the non-blind approach the location of the watermarks are known.
Having the right coordinates, the watermarked lookup table content can be directly
compared to the watermarks of the core developer. The locations of the watermarks
delivered from the core developer, however, should be kept secret, because otherwise
it is very easy for an attacker to remove the marks.

Concept

In the following, the watermark approach is described in detail. For watermarking a
bitfile core, the watermarks which should be embedded into the unused lookup tables
must be generated. This is done by the watermark generator function: GB(K) = WB.
This watermark generator can be, for example, an algorithm similar to Figure 3.4 in
Section 3.2.2. The generator needs a unique key K which identifies the author as well
as the core and the authors private key as input. The output is a set of watermarks
WB = (wB1,wB2, · · · ,wBm). Each element wBi must fit into a single lookup table. For
Xilinx Virtex-II and II Pro FPGAs, which use 4-input lookup tables, the size is 16
bit.

Additionally, the number of usable lookup tables which can carry a watermark
must be determined. This can be done by extracting all lookup table contents and
coordinates: LB(IB) = {xB1 ,xB2, . . . ,xBq}. The next step is to find suitable location
candidates which can carry a watermark. For Xilinx Virtex-II and II Pro FPGAs,
possible candidates are unused lookup table in a used slice. Such candidates can
be easily determined, because they carry the initialization value 0xFFFF, whereas
unused lookup tables in unused slices have 0x0000 as initialization value (see Sec-
tion 3.3.1). The higher the number of location candidates and therefore watermarked
lookup tables is, the more reliable is the proof of authorship. For example, if only one
lookup table candidate was found, only 24 = 16 different watermark values overall
exist, which makes the proof of authorship contradictable.

The content of the chosen locations of the bitfile core IB can be replaced by the
watermarks WB with the embedder ĨB = EB(IB,WB) (see Figure 3.11). The result is
the watermarked bitfile core ĨB. The distance DistB(IB, ĨB) between the watermarked
and original core is low, because of the functional correctness and all electrical prop-
erties of the core are preserved. Furthermore, if the watermarks are near to the func-
tional lookup tables, the watermarks cannot be easily distinguished from the func-
tional lookup tables.

For extracting the watermarks, we need the bitfile ĨB from the accused company,
and the locations of the watermarks (see Figure 3.11). The first step is to extract
the content and coordinates from all lookup table in ĨB: LB(ĨB) = {x̃B1 , x̃B2, . . . , x̃Bq}.

113



3. IP Core Watermarking and Identification

Authentication
System

Embedding
System

Watermark
Generator  

Watermarks W
B

Unique Key K

Watermark
Embedder  

Private Key
Author Information

Lookup table
Extractor   

Bitfile Core I
B

Locations

e.g., 
Copy 
Attack

Watermarked
IP Core I B

Lookup table
Extractor   

Watermark
Comparator

Extracted
Watermarks

Watermark
Verification

Unique Key KPublic Key
Author Information Ownership 

Established?
yes/no

Figure 3.11: The watermarking bitfile IP core approach consists of an embedding
system and an authentication system. The embedder needs the author
information and the bitfile core and the result is the watermarked core
ĨB which can be published. The authorship of the core can be estab-
lished by extracting and comparing the watermark and verifying the
authentication of the watermark with the author information.

Using the locations from the core developer, the watermarks W̃B can be identified.
By comparing these watermarks to the watermarks WB of the core developer, the
detection process DB(ĨB,WB) = true/ f alse can be finished.

Finally the authentication of the watermarks WB must be proofed. If the algorithm
depicted in Figure 3.4 is used for watermark generation, the watermarks WB can be
verified as follows: The author must present the seed for the verification process.
From the seed, the pseudo random sequence which is also the watermarking infor-
mation is generated by the RC4 algorithm. If this watermark information is equal
to WB, this seed was used for watermarking the core. Furthermore, the seed can be
decrypted using the public key of the author. The key K which identifies the author
and the core uniquely should be the result. Hereby, the verification process and the
proof of authorship is finished.

114



3.3 Bitfile Watermarking and Identification

Robustness Analysis

Attacks against the watermarking scheme are, according to Section 3.2.1, ambiguity,
removal, and key copy attacks. The prevention of the copy attack, where an attacker
watermarks an IP core which he illegally obtained with his own signature, is almost
impossible. A possible solution of this dilemma is to watermark all published works
or register the core on a trusted third party institute.

In case of removal attacks, the attacker tries to remove the watermarks. If he knows
the location of the watermarks this task is easy. Therefore, it is utmost important that
the locations of the watermarked are kept secret. If the attacker does not know the
locations, he can try to analyze the bitfile. If he is only able to extract the lookup table
content and the locations of the lookup tables, it is almost impossible to detect the
watermark, because the locations are near the functional lookup tables and the content
is not distinguishable from the other lookup tables. However, if the attacker is able to
reverse engineer the bitfile core to the logic level (ĨL = TL←B(ĨB)), the watermarks are
easy to detect and can be removed. This task is, however, very expensive if no reverse
engineering tool is available. For Virtex-II devices the Xilinx “reverse engineering”
tool JBits [Xilc] is available, which is in fact able to remove the watermarks.

The attacker may analyze the bitfile core and search for lookup table content which
he can present as his own watermark in case of ambiguity attacks. He can use the in-
serted watermarks and assert that these watermarks belong to him. To be successful
with such an attack, he must also present the procedure to generate the watermarks.
Hereby, the attacker must generate a signatures or key which identifies him as the
author and fits to the watermarks inside the core. This is very hard to achieve due to
the usage of one way cryptographic functions. Furthermore, the attacker can present
some functional lookup tables as his watermarks. This should also be nearly impossi-
ble due to the characteristics of one way cryptographic functions. Another possibility
to check this attack, is to remove the watermarks from the bitfile core. The correct
watermarks are inserted after the implementation of the core and therefore the core
should keep the functional correctness. Whereas the removal of the wrong water-
marks which are functional lookup table contents, destroys the core.

Using asynchronous public/private key cryptographic functions for the watermark
generation and verification and further storing information about the core into the
unique key successfully prevents key copy attacks.

3.3.5 Watermarks in Functional LUTs for Netlist Cores

After watermarking bitfile cores, we now watermark netlist cores. Netlist IP cores
consist of primitive cells (e.g., LUT4, DFF, XORCY) of a certain FPGA family which
covers many different FPGA devices. For example, the whole Xilinx Virtex-4, or
Altera Stratix-II family with all different FPGA sizes. This means, that one netlist
core can be deployed for the whole family without changing the file. Once again,

115



3. IP Core Watermarking and Identification

we are using the Virtex-II and II Pro family to demonstrate this approach. However,
using other FPGA families should also be possible by adapting the methods to their
primitive cells. Another big advantage from netlist cores over bitfile cores is that the
bitfile creator (e.g., product developer) can combine different cores.

As mentioned before in Section 3.3.2, FPGAs usually consist of the same type of
lookup tables with regard to the number of inputs. For example, the Xilinx Virtex-II
uses lookup tables with four inputs whereas the Virtex-5 has lookup tables with six
inputs. However, in common netlist cores many logical lookup tables exist, which
have less inputs than the FPGA type. These lookup tables are mapped to the physical
lookup tables of the FPGA. If the logical lookup table of the netlist cores has fewer
inputs than the physical one, the memory space which cannot be addressed remains
unused. We use this memory space to embed a watermark into functional lookup
tables.

One problem of watermarking netlist cores is that the core further traverses the de-
sign flow which includes different optimization steps. Additive watermarking meth-
ods which use redundant structures or logic as watermark have the problem that the
global optimization steps may detect and remove this redundancy. Todays design
tools are very sophisticated to find redundant logic in a design. Even if a special re-
dundant logic which can be used as watermark is not removed by today’s tools, it is
not granted that future versions or other tools may not detect and remove this logic.
The challenge is to find an element or component which can be used as watermark
and is not altered by design tools. For Xilinx FPGAs such elements are shift registers
and memories which are implemented in lookup tables.

In some FPGA architectures (e.g., all Xilinx Virtex architectures), the lookup ta-
bles (LUTs) can also be used as a shift register or distrubuted memory [Xilf]. For
example, a 4-input lookup table can be further used as a 16-bit shift register (see Fig-
ure 3.12). The content of such a shift register can be further addressed by the lookup
table input ports. So, the shift register can also be used as a functional lookup table. If
the lookup table is used as a LUT primitive cell, the content is interpreted as logic by
the design tools and is in focus of optimization. However, if the same content is used
as a shift register or memory primitive cell, the design tools do not touch the con-
tent. Using the unused memory space of functional lookup tables for watermarking
without converting the lookup table either to a shift register or distributed memory
turns out to be not applicable, because design flow tools identify the watermark as
redundant and remove the content due to optimization. Converting the watermarked
functional lookup table into shift registers or memory cells, prevents the watermark
from deletion due to optimization.

Embedding of the Watermark

In this approach we are use Virtex-II Pro FPGAs and convert LUT1, LUT2, or LUT3
primitive cell which can be found in netlists of IP cores into the shift register primitive

116



3.3 Bitfile Watermarking and Identification

A1
A2
A3
A4

CK
EN

D

Q

  Q15

SRL16A1
A2
A3
A4

CK
EN

D

Q

  Q15

LUT4

Figure 3.12: In the Xilinx Virtex architecture, a lookup table (LUT4) can also be
configured as a 16-bit shift register (SRL16).

cell SRLC16E. Note that LUT1 has one input, LUT2 two and so on. LUT4 has four
input and uses the whole lookup table memory for its function which make this type
uninteresting for our approach. The content of the physical 4-input lookup table in
an FPGA stores 16 bits. A LUT3 primitive cell uses only 8 bits, a LUT2 4 bits,
and LUT1 only 2 bits out of the 16 bits. The Xilinx mapping tool map duplicates
the used memory area to the unused area if not all inputs are needed (see Section
3.3.2). Therefore, to use the unused memory space for embedding a watermark, we
must restrict the memory reachability of the function by clamping the unused inputs
to constant values. In Figure 3.13, we demonstrate this idea for an AND-function,
implemented by a LUT2. By clamping input A3 and A4 to zero, we can free 12 bits
which can be used for carrying a watermark.

0 0 1

0 0 0 1 ? ? ? ? ? ? ? ? ? ? ? ?

A1
A2
A3
A4

O

A4 <= '0'

A3 <= '0' Free space for watermark

0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

O <= A1 and A2

Figure 3.13: Example of implementing a two input AND gate using a four input
lookup table. Addressable storage is restricted by connecting the un-
used inputs to zero [SZT08].

117



3. IP Core Watermarking and Identification

Another problem of watermarking netlist cores is that the published core is com-
bined with other cores and undergoes further design flow steps, like the placement
of the lookup table in the FPGA. Therefore, at the extraction of the watermark, we
do not know the locations of the watermarks. To reduce the effort for identifying the
watermarks after the extraction, we can cascade the watermarks over the shift in (D)
and shift out (Q15) ports of the shift register cell. We assume, that design tools place
these chains of watermarks close together which extremely simplifies the extraction
of the watermarks. Furthermore, for rebuilding the watermark from the individual
extracted watermarked lookup tables, the sequence is important. To bring the dif-
ferent watermarks, which have further different sizes according to the used original
functional lookup table cell, into the right order, we concatenate the watermark bits
with a counter. Due to limited space, only few counter bits can be used, which results
in a repetition of the counter values. Nevertheless, this method further simplifies the
detection and extraction of the watermark during the verification process.

The first step of embedding a watermark is to extract all lookup tables from a given
netlist core IL: LL(IL) = {lutL1, lutL2, . . . , lutLr}, where L denotes the logic abstraction
level used for netlist cores (see Figure 3.14). Each element lutLi denotes a lookup
table primitive cell in the netlist (e.g. for Virtex-II devices, LUT1, LUT2, LUT3, or
LUT4). A watermark generator GL(·, ·) must know the different lookup table cells
with the functional content as well as the unique key K to generate the watermarks:
GL(K,LL(IL)) = WL.

From the unique key K a secure pseudo random sequence is generated, for example
with an algorithm depicted in Figure 3.4 in Section 3.2.2. Some or all of the extracted
lookup table primitive cells are chosen to carry a watermark. Usually a core which
is worth to be watermarked consists of many markable lookup tables. Transforming
all of these lookup tables into shift registers restricts the optimization degree of the
tools and results in non-optimal timing behavior. Therefore, only a small subset
of all suitable lookup table are chosen. Note that the shift registers must never be
shifted, because this alters the functional part of it. Nevertheless, we connect the
clock input with the clock, but the shift enable input to ground. Now, the transformed
shift registers are ordered and the first 4 bits of the free space are used for the counter
value. The other bits are initialized according to the position with values from the
pseudo random stream, generated from the key K. Note that the number of bits
which can be used for the random stream depends on the original functional lookup
table type.

The generated watermark WL consists of the transformed shift registers: WL =
{srlL1,srlL2 , . . . ,srlLk} with k ≤ r. The watermark embedder EL inserts the water-
marks into the netlist core IL by replacing the corresponding original functional
lookup tables with the shift registers: EL(IL,WL) = ĨL. The watermarked work ĨL
can now be published and sold.

118



3.3 Bitfile Watermarking and Identification

Product 
Developer

Authentication
System

Embedding
System

Watermark
Generator  

Watermarks W
L

Unique Key K

Watermark
Embedder  

Private Key
Author Information

Lookup table
Extractor   

Netlist Core I
L

Lookup
Tables

e.g., 
Copy 
Attack

Watermarked
IP Core I L

Lookup table
Extractor   

Watermark
Detector

Extracted
Lookup 
Tables

Watermark
Verification

Unique Key KPublic Key
Author Information Ownership 

Established?
yes/no

Implemtation
 

Netlist Core I'
L1

Netlist Core I'
L2

Decoder

Product

Figure 3.14: The watermarking netlist core system. In the embedding system the
lookup tables are extracted from the netlist core and the watermark
generator select suitable lookup table, transform it to shift register and
add the watermark. The embedder insert the watermark. A product
developer may obtain this watermarked netlist core an combine it with
other cores into a product. The lookup tables from the product can
be extracted and transformed so, that the detector can decide if the
watermark is present or not.

Extraction of the Watermark

The purchased core ĨL can now be combined by a product developer with other
purchased or self developed cores and implemented into an FPGA bitfile: ÎB =
TL→B(ĨL ◦ I′L1

◦ I′L2
◦ . . .) (see Figure 3.14). An FPGA which is programmed with

this bitfile ÎB may be part of a product. If the product developer is accused of using
an unlicensed core, the product can be purchased and the bitfile can be read out, e.g.,
by wire tapping. The lookup table content and the content of the shift registers can
be extracted from the bitfile: LB(ÎB) = {x̂B1, x̂B2, . . . , x̂Bq}.

The lookup table or shift register elements xBi belong to the device abstraction level
B. The representation can differ from the representation of the same content in the

119



3. IP Core Watermarking and Identification

logic abstraction level L. For example, in Xilinx Virtex-II FPGAs the encoding of
the shift register differs from the encoding of lookup tables. For shift registers the bit
order is reversed compared to the lookup table encodings. Therefore, the bitfile ele-
ments must be transferred to the logic level by the corresponding decoding. This can
be done by the reverse engineering operator: TL←B(LB(ÎB)) = {x̂L1, x̂L2, . . . , x̂Lq}.
Reverse engineering lookup table or shift register content is however very simple
compared to reverse engineering the whole bitfile. Now, the lookup table or shift reg-
ister content can be used for the watermark detectorDL which can decide if the water-
mark WL is embedded in the work or not: DL(WL,{x̂L1, x̂L2, . . . , x̂Lq}) = true/ f alse.

The detector DL searches the content of the watermarked shift register WL in the
extracted lookup table contents from the bitfile. It might occur that certain water-
marks will be found in more than one locations, because more of the same water-
marks exist with an identical content, or a complete functional lookup table has, by
chance, the value of a watermarked one. To simplify the extraction, the watermarks
are chained together by the shift in and out ports. It is likely that these watermarks
are placed close together. From the bitfile lookup table extraction LB, we also have
the locations of the possible watermarks. Using these locations we can in most cases
identify the right watermark, if duplicates exist. Note that this chaining approach is
not mandatory, but elevates the robustness of the approach against ambiguity attacks.

After the detection of the watermark WL inside the bitfile ÎB, the watermark must
be verified similar to the watermarking approach for bitfile cores proposed in Section
3.3.4.

Robustness Analysis

To recall Section 3.2.1, the most important attacks are removal, ambiguity, key copy,
and copy attacks. As stated for the watermarking method for bitfile cores in the
previous section, a possible protection against copy attacks does not exist and key
copy attacks can be prevented by using an asymmetric cryptographic method, like
RSA.

Removal attacks most likely occur on the logic level, after obtaining the unlicensed
core and before the integration with other cores. The first step of a removal attack is
the detection of the watermarks. The appearance of the shift register primitive cells
(here SRL16) in a netlist core is not suspicious because shift registers appear also
in unwatermarked cores. However, the cumulative appearance may be suspicious,
which may alert an attacker. In contrast to bitfiles, the signal nets can be easily read
out from a netlist core. An attacker may analyze the net structures of shift registers
in order to detect the watermarked cells. This might be successful, however, we can
better hide the watermark if we alter the encoding of the watermark and, therefore, the
connections to the watermark cell. The reachable functional part of the shift register
can be shifted to other positions by using other functional inputs and clamping the
remaining inputs to different values. If a watermark cell is detected by an attacker,

120



3.3 Bitfile Watermarking and Identification

he cannot easily remove the cell, because the cell also has a functional part. By
removing the cell, the functional part is removed and the core is damaged. Therefore,
after the detection of the watermark, the attacker must either decode the content of the
watermarked shift register to extract the functional part and insert a new lookup table,
or overwrite the watermarked part of the cell with other values, so the watermark is
not detectable any more. The different encodings of the functional part of the shift
register content complicates the analysis and the extraction of it. Furthermore, even
if some watermarks are removed, the establishment of the right ownership of the core
is still possible, because we need not all watermarked cells for a successful detection
of the signature.

In case of ambiguity attacks, an attacker analyzes the bitfile or the netlist to find
shift register or lookup table contents which may be suitable to build a fake water-
mark. Like the watermarking method for bitfile cores, the attacker must also present
the insertion procedure to achieve a meaningful result. Due to the usage of secure one
way cryptographic functions for generating the watermark, the probability of a suc-
cess is very low. Furthermore, the attacker can use a self-written netlist core which he
watermarked with his signatures and combine it with the obtained unlicensed core.
The result is, that the watermarks of the authors of both cores are found in the bitfile,
which are both trustful. Inside the unique key K, not only the author information
should be included but also information of the core, e.g., a hash value over the netlist
core file without the watermark. Of course, the attacker can use the identification of
the obtained unlicensed core for watermarking his core. However, to generate a hash
value of the obtained core without watermarks, he must first remove the marks. In
general, attacks against this approach are possible, but they need a high amount of
effort. To increase the security against ambiguity attacks, the core may be registered
at a trusted third party.

Summary

In this section we presented a watermark method, which is able to watermark netlist
cores. The netlist cores can be combined with other cores to assemble a product
in an uncontrolled area from the core developer’s point of view. Nevertheless, the
watermark can be extracted from a bitfile which is recovered from a product from an
accused company. We have shown that the approach is resistant against removal and
ambiguity attacks.

The disadvantage of this approach is that we might have some timing overhead due
to the conversion of lookup tables to shift registers. As mentioned before, design tools
can permute inputs to achieve a better timing behavior. By converting the lookup
tables into shift registers we take this optimization degree away from the tools, which
may results in a worse timing. Experimental results of the timing overhead can be
found in Section 3.5.4.

121



3. IP Core Watermarking and Identification

3.4 Power Watermarking
This section introduces watermarking techniques, where a signature is verified over
the power consumption pattern of an FPGA. These techniques may also be suitable
for ASIC designs, however, we concentrate on FPGA designs and develop several
enhancements which are exclusively related to the FPGA technology. The presented
idea is new and differs from [KJJ99] and [AARR03] where the goal of using power
analysis techniques is the detection of cryptographic keys and other security issues.

For power watermarking methods, the term signature refers to the part of the wa-
termark which can be extracted and is needed for the detection and verification of the
watermark. The signature is usually a bit sequence which is derived from the unique
key for author and core identification.

First of all, a short introduction is given and the communication channel between
the generation and the detection of the watermark is discussed. Next, the basis
method is presented and afterwards, several enhanced methods which increase the
robustness of decoding the watermark in case of external or internal disturbances are
introduced. Finally, multiplex methods are discussed which enable the detection of
more than one watermark if multiple watermarked cores are present in the design.

3.4.1 Verification over Power Consumption

There is no way to measure the relative power consumption of an FPGA directly,
only through measuring the relative supply voltage or current. We have decided to
measure the voltage of the core as close as possible to the voltage supply pins such
that the smoothing from the plane and block capacities are minimal and no shunt is
required. Most FPGAs have ball grid array (BGA) packages and the majority of
them have vias to the back of the PCB for the supply voltage pins. So, the voltage
can be measured on the rear side of the PCB using an oscilloscope. The voltage can
be sampled using a standard oscilloscope, and analyzed and decoded using a program
developed to run on a PC. The decoded signature can be compared with the original
signature and thus, the watermark can be verified. This method has the advantage
of being non-destructive and requires no further information or aids than the given
product (see Figure 3.15).

The consumed power of an FPGA can be divided into two parts, namely the static
and the dynamic power. The static power consumption is caused by the leakage cur-
rent from CMOS transistors and does not change over time if the temperature stays
constant. The dynamic power consists of the power related to short circuit currents
and the power required of reloading the capacities of transistors and wires. The short
circuit current occurs when the PMOS and the NMOS transistors are both in conduct-
ing state for a short time during the switching activity. As shown in [SKB02], the
main part of an FPGA’s dynamic power results from capacity reloading. Both parts
of the dynamic power consumption depend on the switching frequency [CSB92].

122



3.4 Power Watermarking

FPGA

Signature Power
Pattern

Generator

Voltage
Supply

tr
ac

e

Detected
Signature:
1F78DB52

Signature from the 
core supplier:

1F78DB52

Compare

probe

IP Core

Figure 3.15: Watermark verification using power signature analysis: From a sig-
nature (watermark), a power pattern inside the core will be generated
that can be probed at the voltage supply pins of the FPGA. From the
trace, a detection algorithm verifies the existence of the watermark.

What happens to the core voltage, if many switching activities occur at the same
time, at the rising edge of a clock signal? It is interesting to observe that the core
supply voltage drops and rises (see Figure 3.16). In the frequency domain, the clock
frequency with harmonics and even integer divisions are present (see Figure 3.17).
The real behavior of the core voltage depends on the individual FPGA, the individual
printed circuit board and the individual voltage supply circuits.

In the following, we seek for techniques to encode a watermark such that the core
voltage is subject to change once the watermark is processed within a core. In the
first method, the frequency of the voltage drops shall be influenced, in the second, the
amplitude of the voltage drops shall be manipulated.

In the first case, a watermark can be identified if we produce another frequency
line in the spectrum of the core voltage which is not an integral multiple or a rational
fraction of the clock frequency. For achieving this, we need a circuit that consumes
a considerable amount of power and generates a signature-specific power pattern,
and a clock which can be identified in the spectrum. The power consumer can be,
for example, an additional shift register. If we would derive the clock source from

123



3. IP Core Watermarking and Identification

V
o

lt
ag

e 
[V

]

10.5 1.5 2.5 3.5
-8

0 2 3
Time [s]

x107

-6

-4

-2

0

2

4

6

8

10

x10-3

Figure 3.16: A measured voltage signal at the voltage supply pin of an FPGA. The
core supply voltage drops and rises. Note that the DC component is
filtered out.

the operational clock, we would not be able to distinguish the frequency line in the
spectrum from operational logic. Another opportunity is to generate a clock using
combinatorial logic. This clock could be identified as a watermark, but the jitter of a
combinatorial clock source might be very high, and no clean frequency line could be
seen in the spectrum. This means that we need a higher additional power consumer
to make the watermark readable. Another drawback is that we have only limited
possibilities to encode a signature reliably in these frequency lines.

In the following approaches, we alter the amplitude of the interferences in the
core voltage. The basic idea is to add a power pattern generator (e.g., a set of shift
registers), and clock it either with the operational clock or an integer division thereof.
Further, we control these power pattern generators according to the characteristics of
the data sequence which should be sent, respectively detected. A logical ’1’ lets the
power consumer operate one cycle (e.g., perform a shift), a ’0’ causes no operation.
We detect higher amplitudes in the voltage profile over time corresponding to the
ones and smaller amplitudes according to the zeros. Note that the amplitude for the

124



3.4 Power Watermarking

50 150
0
0 100

Frequency [Hz] x106

1000

150

2000

3000

4000

5000

6000

7000

8000

A
m

p
lit

u
d

e

Figure 3.17: The spectrum of the measured signal in Figure 3.16. The clock fre-
quency of 50 MHz and harmonics can be seen. Also, a peak at the
half of the clock frequency is visible which is caused by switching
activities from the logic.

no-operation state is not zero, because the operational logic and the clock tree is still
active.

The advantage of power watermarking methods is that the signature can easily be
read out from a given device. Only the core voltage of the FPGA must be measured
and recorded. No bitfile is required which needs to be reverse-engineered. Further-
more, these methods work also for encrypted bitfiles whereas methods where the
signature is extracted from the bitfile fail. Moreover, we are able to sign netlist cores,
because our watermarking algorithm does not need any placement information. So,
also cores at this level can be protectedly watermarked.

3.4.2 Communication Channel

The transmission of a signal, generated from a source of data, over the supply volt-
age to a testing point outside of the FPGA which can be accessed by an oscilloscope
presents an unidirectional communication system. The source is the power pattern

125



3. IP Core Watermarking and Identification

generator inside the core, and the sink is a device that decodes the signal after it
has been measured, digitized and recorded by an oscilloscope. This communica-
tion channel transforms the signal and adds noise. If we know how to characterize
the channel, we are able to build better en- and decoding systems. Therefore, the
behavior of the communication channel must be approximated in a channel model.
This topic is related to communication engineering, therefore a short introduction for
building a channel model is given.

The basic elements of a communication system are the source, the source encod-
ing, the channel encoding and modulation, the communication channel, the channel
demodulation and decoding, the source decoding and the sink (see Figure 3.18). In
current digital communication systems as well as in our power watermarking tech-
nique, the source encoding is usually a binary encoding of the data to be transmitted.
From the source encoded data, the transmission sequence is generated by channel en-
coding. The digital modulation then translates the encoded data sequence into single,
successively transmitted symbols.

Channel 
encoding

Channel
modulation

Source 
decoding

Channel 
decoding

Channel de-
modulation

Channel

Source

Sink

Source 
encoding

Figure 3.18: The basic elements of a digital communication system. The source
which is encoded by source encoding is first transferred to the chan-
nel encoder and then modulated on the channel. The receiving part
demodulates the signal and decodes the channel encoded data.

A symbol σ is the smallest unit which carry information, however a symbol can
carry more than one bit of data. For example, by using a Quadrature Phase Shift
Keying (QPSK) [PS95] modulation, multiple bits can be represented by a single sym-
bol. The sequence of different symbols generated by modulation is called signal. The
signal is transmitted and altered by the communication channel. After receiving, the
signal is demodulated and decoded to the source coding.

On a real communication channel, the signal is disturbed by interferences, noises,
line losses, delays, etc., which complicates its decoding. With a certain probability
PE > 0, the symbol cannot be correctly decoded. For example, when using a binary
modulation where the bit ’1’ corresponds to the symbol σ1 and a ’0’ corresponds

126



3.4 Power Watermarking

to the symbol σ0, the decoder must first calculate the probability that the currently
received symbol was sent as σ0 or σ1. After that, the decoder can decide in favor
of one symbol. To lower PE , the channel code can add redundancy which increases
the probability of correct decoding. The decision which channel code and modulation
can be used depends on the communication channel as well as the sender and receiver
characteristics. Thus, it is necessary to develop a channel model which adapts the
actual communication and disturbance as close as possible.

For using the power channel for communication, the mapping of a bit sequence
ss = {0,1}m into a sequence of symbols {σ0,σ1}m is called encoding: {0,1}m →
Zm,m ≥ 0 with the alphabet Z = {σ0,σ1}. Here each bit {0,1} is assigned to a
symbol. Each symbol σi is a triple (ei,δi,ωi), with the event ei ∈ {γ, γ̄}, the period
length δi > 0, and the number of repetitions ωi > 0. The event γ is power consumption
through a shift operation and the inverse event γ̄ is no power consumption. The period
length is given in terms of a number of clock cycles. For example, the encoding
through 32 shifts with the period length 1 (one shift operation per cycle) if the data
bit ’1’ should be sent, and 32 cycles without a shift operation for the data bit ’0’ is
defined by an alphabet Z = {(γ,1,32),(γ̄,1,32)}.

Impulse Response

Every linear, time invariant system or channel can be characterized by its impulse
response. The impulse response h(t) is the reaction of the system to an infinitely brief
signal with an infinitely high amplitude – an impulse. Let x(t) be the input signal and
y(t) the output signal of the system, then the output signal can be calculated by the
convolution of x(t) with the impulse response h(t):

y(t) =
∫ ∞
−∞

h(τ) · x(t− τ)dτ. (3.36)

With known impulse response, the original signal x(t) can be reconstructed from
the received signal, if the signal/noise ratio is not too high. To determinate h(t), an
impulse must be generated on the input and the output must be measured. A Dirac-
pulse δ (t) is defined as an infinitely short signal with an infinitely high amplitude
[GSS64]:

δ (t) =

{
∞, if t = 0
0, if t 6= 0

, (3.37)∫ ∞
−∞

δ (t)dt = 1. (3.38)

To measure the impulse response in a real system, an approximation of the Dirac-
pulse must be used. A single short and high rectangular signal is suitable in most
cases.

127



3. IP Core Watermarking and Identification

For measuring the power watermarking communication channel, such a single
short pulse is used. The power consumption, measured in terms of the voltage swing
outside of the FPGA, should be used for this watermarking scheme. For this purpose,
we use several power consumers which are all active only for a short time. A set of
shift registers with common clock input is suitable for the generation of the impulse.
To obtain a high amplitude, the toggle rate in each shift register must be maximized.
This can be done by initializing the shift registers with the alternating bit sequence
“01010101 . . .” and feeding back the output to the input to perform a cyclic shift.
If all shift registers are enabled for exactly one clock cycle, this causes a maximum
power consumption in a minimal amount of time.

The resulting signal is recorded and digitized outside the FPGA using a digital
oscilloscope. To reduce the noise and disturbances in the result, several responses
of different impulses are recorded and then averaged. The resulting signal is the
impulse response for this board and FPGA. Note that the impulse response may be
different for each combination of FPGA and board, because the power switching
characteristic depends mainly on different capacities inside the FPGA as well as on
the board. Furthermore, the power supply circuit has also a high influence on the
impulse response. Figure 3.19 shows a typical example impulse response for the
Digilent Spartan-3 starter board [Dig].

Experimental results (see Section 3.5.5) show that the impulse responses of differ-
ent boards look similar, but are not completely the same. Using mathematical ap-
proximation, the impulse response can be generalized to find a function which can be
parameterized over as few parameters as possible and which hopefully covers all pos-
sible FPGA and board combinations. After transformation of the measured impulse
responses into the frequency domain, only few independent frequency components
can be identified in the spectrum. Each of those components is approximated through
a basic frequency component and an envelope function. A good starting point for ap-
proximating the envelope is the probability density function of the χ2

n -distribution
[Bau08]. The χ2

n -distribution is a common continuous probability distribution of a
sum of squares of n independent random variables. The density function of the χ2

n -
distribution P(n, t) is especially suitable for approximation, because it has only one
extra parameter n besides the time t:

P(n, t) =
t

n
2−1 · e−t

n

2
n
2 ·Γ (n

2)
∀t > 0, (3.39)

where the gamma function Γ (x) is defined as:

Γ (x) =
∫ ∞

0
tx−1e−t dt. (3.40)

For x > 0, the function can be written recursively:

Γ (x) = x ·Γ (x−1). (3.41)

128



3.4 Power Watermarking

0 500 1000 1500 2000
−3

−2

−1

0

1

2

3
x 10

−3

Time [ns]

V
o

lt
a
g

e
 [

V
]

Figure 3.19: The impulse response obtained by a shift of a huge shift register, im-
plemented using 128 SRL16 primitive cells in the Spartan-3 FPGA on
the Digilent Spartan-3 starter board [Dig] with the experimental setup
described in Section 3.5.5.

A frequency component hi(t) can now be approximated by:

hi(t) = P(ni, t) ·αi · sin(2π fit +φi), (3.42)

with four parameters that need to be adapted: ni, αi, fi, and φi. The approximated
impulse response consists of the combination of l different frequency components:

h(t) =
l

∑
i=1

hi(t) (3.43)

As our experimental results in Section 3.5.5 show, only two or three different fre-
quency components are necessary to get a good approximation. The different pa-
rameters can be adapted using a genetic algorithm [Gor96] on the measured impulse
response from a given FPGA and board combination. We used the minimization of
the average square error as optimization goal. Note that the number of used shift
registers may influence the impulse response as well. However, we show later that

129



3. IP Core Watermarking and Identification

the usage of more or less shift registers only influences the amplitude α of the signal
which can be adapted by a constant factor.

Synchronization

For measuring the impulse response as well as for the decoding of the transmitted
data later, several repeated equal data sequences can be accumulated to reduce the
noise and disturbances which are not related to the sequence. For this approach, it is
important that the individual sequences to be accumulated are exactly aligned over
the time axis. This can be done by synchronizing the oscilloscope sample clock with
the shift clock inside the FPGA.

Another way to get exact, noise-reduced data is by multiple oversampling inside
the oscilloscope for recording the measurements. Here, a subsequent resynchroniza-
tion on the measured data might be necessary.

To check this, the different sequences are plotted on top of each other. If the se-
quences match exactly, no resynchronization is necessary. If there is a shift over time,
a resynchronization must be done. It is only necessary to look for the positions of the
maxima if a sequence consists of only one event. A resynchronization is necessary if
the positions of the maxima drift away over time and can be achieved by inserting or
removing samples for compensating the deviation.

Channel Approximation

The measured signal y(t) can be approximated with the help of the impulse response:

y(t) = c ·
(∫ ∞
−∞

h(τ) · x(t− τ)dτ

)
+n(t). (3.44)

Here, x(t) is the input signal, consisting of Dirac-pulses which encode the signa-
ture. For each Dirac-pulse, a scaled impulse response is inserted. The scaling factor
c depends on the amplitude of the pulse which therefore corresponds to the number
of currently active shift registers. The assumption that the amplitude of the pulses
depends linearly on the number of shift registers has been confirmed by experiment.
Figure 3.20 shows the measured amplitude of the impulse response caused by differ-
ent numbers of active shift registers.

Furthermore, the noise component n(t) has influence on the decoding quality. The
quality of the signal y(t) can be measured by the signal to noise ratio (SNR):.

SNR = c ·
(∫ ∞
−∞

h(τ) · x(t− τ)dτ

)
· 1

n(t)
. (3.45)

If the SNR is low, it is difficult or impossible to correctly decode the corresponding
symbol. The SNR is therefore an indicator of how reliable the decoding of a given
signal is.

130



3.4 Power Watermarking

16 32 64 128 256 512

10
−3

Number of SRLC16E

P
e
a
k
 V

o
lt

a
g

e
 [

V
]

Figure 3.20: The amplitudes of the impulse responses caused by different numbers
of active shift registers in the Spartan-3 FPGA on the Digilent Spartan-
3 starter board. With more than 32 SRLC16E in use, the peak voltage
is directly proportional to the number of shift registers. If less than
32 SRLC16E are used, the peak amplitude is in the same range as the
noise amplitude, which falsified the measurement.

Intersymbol Interference

If the symbols superpose, for example when choosing a too small symbol time-lag,
then intersymbol interference (ISI) occurs. This has the same effect as noise and
decreases the quality of the decoding and results in a higher bit error rate. If a certain
symbol σ0 has the length τ0 and the time slots for transmitting the symbols τ ′ are
shorter than the symbol length (τ ′ < τ0), then the symbol σ0 interferes with

⌊
τ
′

τ0

⌋
subsequent symbols.

A reconstruction of the symbol sequence might be possible nevertheless by de-
coding using the Viterbi algorithm [Vit95]. Hereby, the decoder stores all possible
symbol paths in a so called Trellis-diagram. The symbol can only be decoded if it
is received completely. However at this time, the successive symbols are already re-
ceived partly if intersymbol interference happens. All possible symbol combinations

131



3. IP Core Watermarking and Identification

are stored in the Trellis-diagram, and if the decoder decides the value of the currently
completely received symbol, all combinations using the other values for the current
symbol are deleted from the diagram.

3.4.3 Basic Method
In this section, we describe the basic method for power watermarking of netlist cores.
The concept, the embedding of the watermark, as well as the detection and verifica-
tion procedure are described. The encoding and decoding for sending the signature
through the FPGA power communication channel is relatively simple and straight-
forward in the basic method and will be refined later on with the enhanced methods.
However, the basic concepts of embedding and the verification are very similar in all
methods.

For power watermarking, two shift registers are used, a large one for causing a rec-
ognizable signature-dependent power consumption pattern, and a shift register stor-
ing the signature itself (see Figure 3.15 in Section 3.4.1). The signature shift register
is clocked by the operational clock and the output bit enables the power pattern gen-
erator. If the output bit is a ’1’, the power pattern register will be shifted at the next
rising edge of the operational clock. At a ’0’, no shift is done. Therefore, the channel
encoding is Z = {(γ,1,1),(γ̄,1,1)}. To avoid interference from the operational logic
in the measured voltage, the signature is only generated during the reset phase of the
core.

As mentioned before in Section 3.3.5, a shift register can also be used as a lookup
table and vice versa in many FPGA architectures (see Figure 3.12 in Section 3.3.5).
A conversion of functional lookup tables into shift registers does not affect the func-
tionality if the new inputs are set correctly. This allows us to use functional logic
for implementing the power pattern generator. The core operates in two modes, the
functional mode and the reset mode. In the functional mode, the shift is disabled and
the shift register operates as a normal lookup table. In the reset mode, the content is
shifted according to the signature bits and consumes power which can be measured
outside of the FPGA. To prevent the loss of the content of the lookup table, the output
of the shift register is fed back to the input, so the content is shifted circularly. When
the core changes to the functional mode, the content must be shifted to the proper
position to have a functional lookup table for the core.

The amplitude of the generated power signature depends on the number and con-
tent of the converted lookup tables. It will be assumed that the transitions between
zeros and ones in the bit pattern of the lookup table contents are sufficient to pro-
duce a recognizable pattern on the supply voltage. Experimental results in [Bau08]
show that, on average, 8 of maximal 16 transitions are generated in functional 4 input
lookup tables of example cores if the content will be shifted.

To increase the robustness against removal and ambiguity attacks, the content of
the power consumption shift register which is also part of the functional logic can be

132



3.4 Power Watermarking

initialized shifted. Only during the reset state, when the signature is transmitted, the
content of the functional lookup table can be positioned correctly. So, normal core
operation cannot start before the signature was transmitted completely. The advan-
tage is that the core is only able to work after sending the signature. Furthermore, to
avoid a too short reset time in which the watermark cannot be detected exactly, the
right functionality will only be established if the reset state is longer than a predefined
time. This prevents the user from leaving out or shorten the reset state with the result
that the signature cannot be detected properly.

The signature itself can be implemented as a part of the functional logic in the same
way. Some lookup tables are connected together and the content, the function of the
LUTs, represents the signature. Furthermore, techniques described in Section 3.3.5
can be used to combine an additional watermark and the functional part in a single
lookup table if not all lookup table inputs are used for the function. For example,
LUT2 primitives in Xilinx Virtex-II devices can be used to carry an additional 12-
bit watermark by restricting the reachability of the functional lookup table through
clamping certain signals to constant values. Therefore, the final sending sequence
consists of the functional part and the additional watermark. This principle makes it
almost impossible for an attacker to change the content of the signature shift register.
Altering the signature would also affect the functional core and thus result in a corrupt
core.

The advantages of using the functional logic of the core also as a shift register are
a reduced resource overhead for watermarking and the robustness of this method, be-
cause these shift registers are embedded in the functional design and it is hard, if not
impossible, to remove the shift registers without destroying the functionality of the
core. Furthermore, our watermarking procedure is difficult to be detected in a netlist
file, because the main part of the required logic for signature creation depends on the
functional logic for the proper core. Another benefit is that our watermark cannot
be removed by an optimization step during the mapping into CLBs (Configurable
Logic Blocks). Nevertheless, if an attacker had special knowledge of the watermark-
ing method and of the EDIF netlist format, he may reverse-engineer the alteration
of the embedding algorithm and remove or disable the sending method. This can
be avoided by initializing the power pattern register with shifted lookup table con-
tents (see above). If sending of the signature is prevented, the core will not function
properly.

Embedding of the Watermark

In this section, we describe the procedure of watermarking a core. The first step is
to generate the watermark WL for embedding at the logic abstraction layer L. As
described in the last section, the watermark is a bit sequence, consisting either of ran-
dom choice bits, of partly functional bits of lookup tables, or completely of functional
bits. The watermark generation procedure depends on the sequence type.

133



3. IP Core Watermarking and Identification

If only random choice bits are used, the watermark generated needs only the unique
key K which identifies the author of the core: GL(K) = WL. The unique key K can
be processed as depicted in Figure 3.4 in Section 3.2.2. The pseudo random output
can be split into different shift registers: WL = {wL1,wL2, . . . ,wLm}. The number
of used shift registers m depends on the strength of the generated signature and the
FPGA architecture. For example, a 128-bit signature can be stored in the Virtex-II
architecture in m = 8 shift registers.

If the content of functional lookup tables should be used as signature, the first step
is to extract all lookup tables form the netlist core: LL(IL) = {lutL1 , lutL2, . . . , lutLr}.
The watermark generator GL searches for suitable functional lookup tables, trans-
forms these into shift registers and either adds the watermark bits form the pseudo
random sequence GL(K,LL(IL)) = WL, or only uses the lookup table content as sig-
nature: GL(LL(IL)) = WL.

The watermark embedder EL(IL,WL) = ĨL consists of two steps. First, the core IL
must be embedded in a wrapper which contains the control logic for emitting the
signature. This step is done at the register-transfer level before synthesis. The second
step is at the logic level after the synthesis. A program converts suitable lookup tables
(for example LUT4 for Virtex-II FPGAs) into shift registers for the generation of the
power pattern and attaches the corresponding control signal from the control logic in
the wrapper (see Figure 3.21).

The wrapper contains the control logic for emitting the watermark and the shift
register, holding the signature. If functional lookup tables are used for implementing
the signature shift register, we add or convert this shift register in the second step
so that the wrapper contains only the control logic. Some control signals have no
sink yet, because the sink will be added in the second step (e.g., the power pattern
generator shift register). So we must use synthesis constraints to prevent the synthesis
tool from optimizing these signals away. The ports of the wrapper are the same for
the core, so we can easily integrate this wrapper into the hierarchy. The control
logic shifts the signature shift register, while the core is in reset state. Also, the
power pattern shift register is shifted corresponding to the output of the signature
shift register. If the reset input of the wrapper gets inactive, the function of the core
cannot start at the same cycle, because the positions of the content in the shift register
are not in the correct state. The control logic shifts the register content into the correct
position and leaves the reset state to start the normal operation mode.

The translation of lookup tables of the functional logic into shift registers is done
at the logic level. At Xilinx Virtex-II FPGAs, the usage of a LUT4 as a 16-bit shift
register (SRL16) is only possible if the LUT4 is not part of a multiplexer logic, be-
cause the additional shift logic and the multiplexer share common resources in a slice.
Also, if the lookup table is a part of an adder, the mapping tool splits the lookup table
and the carry chain. In these two cases, additional slices would be required, so we do
not convert these lookup tables into shift registers.

134



3.4 Power Watermarking

IP Core

Wrapper

Inputs

Outputs
WM-

Control

Reset Reset

Signature

 wmne LUT4

LUT4

Wrapper

Inputs

Outputs
WM-

Control

Reset Reset

Signature

 wmne SRL16

SRL16

Signature

 IP Core

Figure 3.21: The core and the wrapper before (above) and after (below) the netlist
alternation step. The signal “wmne” is an enable signal for shifting
the power pattern generator shift register.

The embedding procedure for Virtex-II netlist cores is done by a program which
parses an EDIF netlist and writes back the modified EDIF netlist. First, the program
reads all LUT4 instances and only select those that are not a “MUXF5”, a “MUXCY”
or an “XORCY”. Then, the instances are converted to a shift register (SRL16), if re-
quired, initialized with the shifted value and connected to the clock and the watermark
enable (wmne) signal according to Figure 3.21. Always two shift registers are con-
nected together to rotate their contents. Finally, the modified netlist is created. The
watermarked core ĨL is now ready for purchase or publication.

Detection Algorithm

A company may obtain an unlicensed version of the core ÎL and embeds this core in a
product: ÎP = TL→B(ÎL ◦ I′L1

◦ I′L2
◦ . . .). If the core developer has a suspicious fact, he

135



3. IP Core Watermarking and Identification

can buy the product and verify that his signature is inside the core using a detection
function DP(ÎP,WL) = true/ f alse.

Detecting the basic power watermark, the measured voltage will be probed, digi-
tized and decoded by a signature detection algorithm (see Figure 3.22). To decode
the digitalized voltage signal, the sampling rate, the clock frequency of the shifted
signature and the bit length of the signature is needed. The clock frequency can be
extracted using the Fast Fourier Transformation (FFT) of the measured signal. Our
detection algorithm consists of five steps: down sampling, differential step, accu-
mulation step, phase detection and quantization (see Figure 3.22). After successful
extraction, the decoded signature can be compared to the signature inside the water-
mark WL to establish the ownership. Furthermore, the signature must be verified by
cryptographic methods with the author’s unique key K. The key verification proce-
dure is very similar to the bitfile watermarking methods presented in Section 3.3.

downsampling
clk freq.

sample freq.

probed voltage signal S
pr

differential step
x
dt

accumulation step∑ x

phase detection

quantization 

decoded signature

SDS

SD

SAS

Figure 3.22: The five steps of the watermark detection algorithm: downsampling,
differential and accumulation step, phase detection and finally quanti-
zation.

As mentioned before, the main characteristic caused by a switching event is the
drop of the voltage followed by a subsequent overshoot. This results in extreme
slopes. The basic method detection algorithm can find each rising edge as follows:
First, the measured signal will be sampled down from the recorded sample rate to the

136



3.4 Power Watermarking

quadruple of the clock frequency, so each signature bit is represented by four samples.
Then, the discrete derivative of the signal will be calculated. This transforms the
rising edges of the switching events into peaks. The easiest way to calculate the
discrete derivative at a discrete point in time SD[k] is to take the difference of two
subsequent samples over time (see Figure 3.23).

SD[k] = SDS[k]−SDS[k−1], (3.46)

where SDS is the down sampled probed voltage signal and k denotes the sample index.

0 2 4 6 8 10 12 14 16
−4

−2

0

2

k

S
D

S
[k

]

0 2 4 6 8 10 12 14 16
−4

−2

0

2

4

6

k

S
D
[k

]

Figure 3.23: An example voltage signal which represents the signature “0011”
(above). The example voltage signal after the differentiation step (be-
low).

Since the signature is repeated many times during the reset state, the signal can
be accumulated and averaged to reduce the noise level. To accumulate the coherent
pattern, we need to know the bit length of the signature. If we record a longer signal
sequence, we can accumulate more patterns and reduce noise as well as switching
events which do not belong to the power consumption register of the watermarking
algorithm. The disadvantage is that we would need a longer time for the reset phase.

After this third step, we have a signal in which each signature bit is represented by
four samples. But only one sample carries the information of the rising edge. Since

137



3. IP Core Watermarking and Identification

the measurement is not synchronized with the FPGA clock, the phase (position) of
the relevant sample of a bit is unknown. We divide the signal into four new signals,
where one signature bit is represented in one sample. The four signals have a phase
shift of 90o to each other. Let

SAS[k], k = 0,1, ..,4m−1 (3.47)

denote the sampled voltage signal after the accumulation step where m is the length
of the signature. Then, we obtain the four following phase shifted signals

S0 = SAS[4k], k = 0,1, ..,m−1 (3.48)
S90 = SAS[4k +1], ” (3.49)

S180 = SAS[4k +2], ” (3.50)
S270 = SAS[4k +3], ” (3.51)

where SAS is the accumulated signal and S0, S90, S180, and S270 are the phase signals
(see Figure 3.24).

We are able to extract the right phase of the signal if we calculate the mean value of
each phase-shifted signal. The maximal mean value corresponds to the correct phase,
because the switching event should cause the greatest rising edge in the signal.

Now, we have a signal in which each sample is represented by the accumulated
switching activities of one bit of the signature. The decision if the sample corresponds
to a signature bit ’1’ or ’0’ can be done by comparing the sample value with the mean
value of the signal. If the sample value is higher than the mean value, the algorithm
decides a ’1’, in the other case a ’0’.

Robustness Analysis

The most common attacks against watermarking mentioned in Section 3.2.1 are re-
moval, ambiguity, key copy, and copy attacks. Once again, key copy attacks can be
prevented by asymmetric cryptographic methods, and there is no protection against
copy attacks.

Removal attacks most likely take place on the logic level instead of the device level
where it is really hard to alter the design. The signature and power shift registers as
well as the watermark sending control logic in the wrapper are mixed with functional
elements in the netlist. Therefore, they are not easy to detect. Even if an attacker
is able to identify the sending logic, a deactivation is useless if the content of the
power shift register is only shifted into correct positions after sending the signature.
By preventing the sending of the watermark, the core is unable to start. Another
possibility is to alter the signature inside the shift register. The attacker may analyze
the netlist to find the place were the signature is stored. This attack is only successful

138



3.4 Power Watermarking

2 4 6 8 10 12 14 16
−5

0

5

k

S
A

S
[k

]

1 1.5 2 2.5 3 3.5 4
−5

0

5

k

S
0
[k

]

1 1.5 2 2.5 3 3.5 4
−5

0

5

k

S
9
0
[k

]

1 1.5 2 2.5 3 3.5 4
−5

0

5

k

S
1
8
0
[k

]

1 1.5 2 2.5 3 3.5 4
−5

0

5

k

S
2
7
0
[k

]

Figure 3.24: The example voltage signal after the accumulation step (above) and
the four phase shifted signals (below). Here, S180 corresponds to the
right phasing.

if there is no functional logic part mixed with the signature. By mixing the random
bits with functional bits, it is hard to alter the signature without destroying the correct
functionality of the core. Therefore, this watermark technique can be considered as
resistant against removal attacks.

In case of ambiguity attacks, an attacker analyses the power consumption of the
FPGA in order to find a fake watermark, or to implement a core whose power pattern
disturbs the detection of the watermark. In order to trustfully fake watermarks inside
the power consumption signal, the attacker must present the insertion and sending
procedure which should be impossible without using an additional core. Another
possibility for the attacker is to implement a disturbance core which needs a lot of
power and makes the detection of the watermark impossible. In the next sections,
enhanced robustness encoding methods are presented which increase the possibility
to decode the signature, even if other cores are operating during the sending of the
signature. Although a disturbance core might be successful, this core needs area
and most notably power which increases the costs for the product. The presence of a
disturbance core in a product is also suspicious and might lead to further investigation
if a copyright infringement has occurred. Finally, the attacker may watermark another

139



3. IP Core Watermarking and Identification

core with his watermark and claim that all cores belong to him. This can be prevented
by adding a hash value of the original core without the watermark to the signature
like in the bitfile watermarking method for netlist cores. The sending of watermarks
of multiple cores at the same time is addressed in Section 3.4.7.

3.4.4 Enhanced Robustness Encoding Method

Experimental results (see Section 3.5.5) have shown that the decoding of the signa-
ture with the basic method works well, but on some targets, problems occur in the
decoding of signatures with long runs of ’1’ followed by many zeros, like “11111111-
00000000”. The problem is intersymbol interference (see Section 3.4.2), because the
transmitting slot for one symbol in the basic method might be smaller than the sym-
bol length. For the first eight bits, we see a huge amplitude in Figure 3.25. Then, a
phase in which the amplitude is faded out is observed. The phase can last many clock
cycles and may lead to wrong detection results of the following bits.

4 4.5 52.5 3.51.5 2 3
Time [s]

x107

0.005

0

-0.005

0.01

0.015

0.02

0.025

-0.01

-0.015

-0.02

-0.025

V
o

lt
ag

e 
[V

]

Figure 3.25: Measured voltage supply signal when sending “FFFF0000” with a
large power pattern generator shift register.

This fading out amplitude belongs to an overlaid frequency which might be pro-
duced by a resonance circuit that consists of the capacitances and resistances from the

140



3.4 Power Watermarking

power supply plane and its blocking capacitances (see Section 3.4.2). This behavior
is dependent on the printed circuit board and the power supply circuit.

To avoid such a false detection, the transmission time of one symbol is extended by
the time of the swing out of the printed circuit board by sending the same signature
bit multiple times: Z = {(γ,1,ω),(γ̄,1,ω)}. The repetition rate for each signature
bit is ω clock cycles. If we connect two SRL16 together, one period for this shift
register needs 32 clock cycles. If the reset phase ends and we have finished sending
one bit, the content in the shift register which also represents a part of the logic of the
core is in the correct position.

The detection algorithm differs for this method. First, the signal will be sampled
down and the approximate derivation will be calculated as in the original method (see
Section 3.4.3). Now, we average the signal to suppress the noise. Here, the length
of one signature word is the length of the signature (m) multiplied by the number of
times each bit is sent (ω).

SD[k], k = 0,1, ..,Kmax−1 (3.52)

ns =
⌊ Kmax

4ω ·m
⌋
, (3.53)

S =
1
ns

ns−1

∑
i=0

D[4ω ·m · i, ..,4ω ·n · i+4ω ·m−1], (3.54)

Here, SD is the voltage signal after the differential step with index k and ns being the
number of repetitions of the pattern in SD.

The phase detection of the shift clock is the same as in the original method (see
Section 3.4.3), but we also need the position p where a new signature bit starts. This
is done in a loop to detect this position. In the beginning, we assume that the starting
position is the beginning of our trace (p = 0). First, we accumulate ω successive
values where ω is the repetition of one bit:

Sp[ j] =
ω−1

∑
i=0

Sφ [i+ p+ω j], j = 0,1, ..,m−1 (3.55)

Here, Sφ denotes the signal after the phase detection step. Now, we subtract the mean
value and generate the absolute value and calculate the sum of it.

Fp =
n−1

∑
i=0

∣∣∣Sp[i]− 1
n

n−1

∑
j=0

Sp[ j]
∣∣∣ (3.56)

Fp identifies how good our signature bit starting position p fits the real position.
Now, we shift our trace one value (p = 1) and calculate the fitting value again, and

141



3. IP Core Watermarking and Identification

so on. This is done ω times. The starting position with the best fitting value will be
used.

The decoding of the watermark signature is done like in the basic method (see
Section 3.4.3) by comparing the sample values with the mean value of the samples.

3.4.5 BPSK Detection Method
The enhanced robustness method introduced above works well, but if other cores
with the same clock frequency have a very high toggle rate in the reset phase of
the watermarked core, the quality of decoding may suffer. In the worst case, the
decoding is not possible, because the watermarked signal is too weak in contrast to
the interferences with the same frequency generated by the high toggle rate of the
other cores (see the experimental results reported in Table 3.14 case C arithmetic
coder core).

To enhance the robustness of decoding our transmit signal in case of interferences
with the same frequency, we combine a new sending scheme with a new detection
algorithm. The basic idea is to shift the carrier frequency of our watermarking signal
away from the clock frequency of the chip, where we expect most of the interferences
to occur.

We introduce a new binary signal SBPSK with the frequency fBPSK , where the signa-
ture bits are modulated using Binary Phase Shift Keying (BPSK) modulation. Using
BPSK modulation, each value of a signature bit (0,1) is represented by a phase (usu-
ally 0◦ and 180◦). Practically, by sending a ’0’, the carrier signal is not altered, and
is inverted by sending a ’1’ (see Figure 3.26).

0

t

1 0

t
0

1

Signature Bits

tt
0

1

Signal SBPSK

Signal Scarrier

Figure 3.26: Shown is a carrier signal Scarrier and the BPSK modulated signal
SBPSK . The signature bit value ’0’ is decoded with 0◦ and the value
’1’ is decoded with 180◦.

We generate the new frequency fBPSK by an on-off keying (OOK) modulation, a
binary amplitude modulation (AM) of the clock frequency fclk. So, the frequency

142



3.4 Power Watermarking

fBPSK must be a rational fraction of the clock frequency fclk. However, interferences
from working cores have also an impact here, because these frequencies could also
be produced by working cores with different toggle rates. The measurements sug-
gest that frequencies f = fclk

2n may have high interference from working cores due
to whereas other frequencies have lower interference. The interferences decrease as
well at lower derived frequencies. In the following, we choose fBPSK = fclk

10 as our
carrier frequency.

To generate the new watermark signal, the power pattern generator is driven by the
signal SBPSK and performs the OOK modulation. The encoding scheme for the signal
SBPSK is: Z = {(γ,1,ω),(γ̄,1,ω)}, where ω is chosen 10 in our case. To send the
signal SBPSK for one period, we first send five ones (the power pattern shift register is
shifted five times) and then five zeros (the power pattern shift register is not shifted)
in case the signature bit is ’1’. If the signature bit is ’0’, first five zeros and then
five ones are sent (see Figure 3.27). For each signature bit, we repeat this period 32
times to ensure that the content of the power pattern shift registers which are also
functional lookup tables are in the correct positions after sending one signature bit.
Repetition allows to detect the signature with a higher probability. The decreased bit
rate results in a smaller bandwidth for our watermarking signal. Using this method,
we need more time to send the signature than the previously presented methods. The
signature bit rate fwm is:

fwm =
fBPSK

32
=

fclk

10 ·32
=

fclk

320
(3.57)

1

t
0

1
Signature Bits

t

V
Signal SBPSK

1 0

Figure 3.27: The signal SBPSK is the BPSK modulated signal of the signature above.
The signal below is the voltage signal which is the OOK modulated
signal of SBPSK . This figure also illustrate the different frequencies.

143



3. IP Core Watermarking and Identification

The watermark control inside the wrapper (see Section 3.4.3) is altered to control
the power pattern generator in this way. Only few additional resources are used to
implement this enhanced watermark protocol.

If we look at the spectrum of the recorded signal (see Figure 3.28), we detect the
clock frequency fclk and two side bands from the OOK modulation fclk− fBPSK and
fclk + fBPSK .

45 150
0

40 50

Frequency [Hz]
x106

2

60

4

6

8

10

12

14

16

A
m

p
li

tu
d

e

55

18

x10-4

Figure 3.28: The spectrum of a measured signal. The clock frequency of 50MHz
and the two side bands of the modulated signal SBPSK are shown at
45MHz and 55MHz.

The detection algorithm for this method is different from the previous methods.
Only the first (down sampling) and the last steps (quantization) are identical (see
Figure 3.29). After down sampling, the two side bands of the carrier signal are mixed
down into the base band (Ssb1 and Ssb2) and are combined (Scc) as follows:

SDS[k], k = 0,1, ..,Kmax−1 (3.58)

Ssb1[k] = SDS[k] · e− j2π·( 1
4−

1
40 )·k, (3.59)

Ssb2[k] = SDS[k] · e− j2π·( 1
4 + 1

40 )·k, (3.60)
Scc[k] = Ssb1 +Ssb2, (3.61)

144



3.4 Power Watermarking

where SDS is the voltage signal after down sampling with index k. The clock fre-
quency is fclk = 1

4 · fsample, and the frequency fBSPK = 1
10 · fclk = 1

40 · fsample. The
sample frequency of the recorded voltage signal is fsample. After low pass filtering of
Scc, we get the complex carrier signal SBPSK (see Figure 3.30).

down sampling
clk freq.

sample freq.

probed voltage signal S
pr

down mixing

down sampling 

angle determination
and rotation

quantization 

decoded signature

matched filter

SccScc

SDS

SBPSK

Figure 3.29: The different steps of the BPSK detection algorithm.

Scc is filtered using a matched filter to obtain the limits of one signature bit and
the correct sample point. All samples of SBPSK which belong to one signature bit
are summed up into this sample point by the matched filter. At the down sampling
step, only these points are used to represent the signature bits. Now, the angle of the
signal is calculated from the signature bit with the highest amplitude, and the signal
is rotated into the real plane. From the real valued signal, the value of the bits and
the quality of the signal are determined similar to the other detection algorithms (see
Section 3.4.3).

The advantage of the BPSK method is its robustness with respect to interferences
coupled with the clock frequency. The disadvantages are the longer reset phase and
the fact that we can only detect bit value changes and not the signature bit value di-
rectly due to the BPSK modulation. Using proper encoding methods and preambles,
the bit values can be reconstructed.

145



3. IP Core Watermarking and Identification

0.5 1-0.5 0-1
Voltage [V] x10-3

0.2

0

-0.2

0.4

0.6

0.8

-0.4

-0.6

-0.8

-1

V
o

lt
a

g
e

 [
V

]
x10-3

1

Figure 3.30: The constellation diagram of the down mixed complex signal SBPSK .
Here, the two different BPSK constellation points for the signature bit
’1’ and ’0’ are shown.

3.4.6 Correlative Detection Methods

In this section, we present methods where the signature is detected by correlation. To
achieve good correlation results, the encoding of the signature should be interference-
free. To avoid ISI, the time slots τ ′ for sending the symbols must be larger than the
symbol length τσ . For the impulse response h(t) to be usable directly for correlation,
all symbols should consist only of one pulse. Therefore, we use the encoding: Z =
{(γ,δ ,1),(γ̄,δ ,1)}. The symbol length is equal to the length of h(t), and a time slot
is τ ′ = δ · 1

fclk
. A necessary condition for an interference free code is: δ ≥ τσ · fclk.

The question is how to estimate the symbol length τσ which is also the length
of the impulse response. The length of h(t) depends on the combination of FPGA
and board which can be measured and approximated (see Section 3.4.2). However,
the FPGA and board combination is not known at the embedding process of the
watermarking, because it is up to the core customer to choose the FPGA and the
board. Furthermore, the clock frequency is also not known. Clearly, there is an upper
limit that is determined by the critical path of the netlist core. Due to these reasons, a
safety margin should be considered. Experimental results in Section 3.5.5 show that

146



3.4 Power Watermarking

between 80 and 100 ns after the start of the symbol, 90% of the energy is emitted and
after 125 ns, over 95%. If we assume clock frequencies fclk < 200 MHz, then the
number of clock cycles δ = 25 used for sending one symbol should be sufficient.

In this method, the detection of the signature is done by correlation. The cross-
correlation Zx,y(t) of two function x(t),y(t) is defined as:

Zx,y(t) =
∫ ∞
−∞

x∗(t) · y(t + τ)dτ. (3.62)

In Equation 3.62, x∗(t) denotes to the complex conjugate of x(t). The cross-
correlation is a measure of the similarity of the functions x(t) and y(t), if y(t) is
shifted over the time axis t. The maximum of Zx,y(t) denotes the time with the high-
est similarity.

To detect a signature, we can use two different correlation methods. In the first
method, the existence of a certain signature should be proven. From the adopted
sequence, the expected signal is constructed by inserting the approximated impulse
response h(t) at times where the signature bit ’1’ should be sent, corresponding to
the encoding scheme: Z = {(γ,δ ,1),(γ̄,δ ,1)}. The constructed signal is cross-
correlated with the measured signal. If the maximum of cross-correlation is a dis-
tinctive peak, a watermarked core with this signature may be present. The disadvan-
tage of this method is to define the notion of a distinctive peak. If the signature is
not present in the core or another signature is present, the cross-correlation has also
peaks (see Figure 3.31). It is hard to decide if the maximum peak belongs to the
correct signature or not. Furthermore, if the expected and the actual present signature
are very similar and differ only in a few bits, the maximum of the cross-correlation
is also a distinctive peak which is only a little bit lower than the peak of the correct
signature. Due to this problem, this approach does not seem to be applicable.

The second detection approach correlates the signal with the approximated impulse
response h(t). If the signature bit ’1’ was sent, then the correlation result has a peak at
this position, otherwise, when a ’0’ was sent, no peak occurs. For better decoding, the
signal and the impulse response are mixed down into the base band of one frequency
component of h(t), e.g., h1(t). Then, the mixed down signal and impulse response
are correlated. Figure 3.32 shows such a correlation result. A possible decoding
algorithm can look at the positions of the symbols in order to find peaks. If the first
symbol position is known, the other positions can be calculated based on the encoding
scheme and the clock frequency. The symbols on these positions can be decoded by
making a threshold decision. If the signal value is higher than a certain threshold,
the decoder decides on a ’1’, otherwise on a ’0’. However, measurements shows
that after transmission of several bits with the value ’1’, the absolute peak values are
increasing slowly (see Figure 3.32). Therefore, the threshold value must be adapted
dynamically based on the precedented values.

147



3. IP Core Watermarking and Identification

0 2 4 6 8 10 12

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−4

Samples

 

 

Correct Signature

Incorrect Signature

Figure 3.31: The cross-correlation Zx,y(t) of a signal with the correct signature (the
right one) and with an incorrect random signature (the left one). A
distinctive peak on the correct signatures can be detected. However,
also the incorrect signature has peaks [Bau08].

Usually, the frequency component hi(t) of the impulse response with the highest
energy content is used for decoding. Obviously, better results could be achieved
if more frequency components are integrated into the decoding process. If this is
necessary, the decoding is done for each component alone and the decoded data is
compared.

The first symbol position in a data packet can be detected, e.g., by synchronization
methods. In order to increase the detection ratio for the first symbol, we use a pream-
ble to determine the correct start position of the signature. The preamble is a known
bit sequence that has the same encoding as the user data and is transmitted directly
before the signature.

Experimental results in Section 3.5.5 show that the decoding of the signature is
possible with low bit error rates. However, other methods, like the BPSK method,
exceed this method in case of bit error rates, particularly if disturbances from other
cores are present. The reason is the low energy content of one symbol, caused by only
one pulse in contrast to 32 pulses in the other methods. Nevertheless, this method

148



3.4 Power Watermarking

185 186 187 188 189 190

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
−6

Received Bits

1 1 1 0 1 0

Figure 3.32: Detection of the data bits through down mixing into the base frequency
of the impulse response component with the most energy content (here
fi = 43 MHz) and correlation with the down mixed hi(t). Detection
is done by searching the maxima and applying a dynamic threshold
decision. The sample times for the decisions are depicted by dotted
lines.

strictly avoids intersymbol interference and is more flexible for different FPGA and
board combinations as well as for multiplexing methods where multiple cores can
concurrently send signatures, discussed in the following section. More about decod-
ing using the correlation method can be found in [Bau08].

3.4.7 Multiplexing Methods

All introduced power watermarking methods so far are applicable to netlist cores.
The customers of netlist cores, the product developers, can combine different cores
and integrate them into an FPGA design which is embedded into the product. There-
fore, it is possible that more than one power watermarked cores are present in the
design. The different sending mechanism of different cores do not know of each
other and send their signature with the programmed encoding scheme. The results

149



3. IP Core Watermarking and Identification

are superpositions and interferences which complicate or even prohibit the correct
decoding of the signatures.

To achieve the correct decoding of all signatures, we propose multiplexing or mul-
tiple access methods. Multiplexing methods divide the communication channel into
multiple logical information channels – one channel for each transmitted signature.
One can distinguish four different categories of multiplexing methods: Space Divi-
sion Multiplexing (SDM), Time Division Multiplexing (TDM), Frequency Division
Multiplexing (FDM), and Code Division Multiplexing (CDM).

Space Division Multiplexing

Characteristic for space division multiplexing methods is that the transport media for
the different information channels are physically independent. For example, different
isolated wires or antennas with directional radiation characteristics.

In case of power watermarking, this space division multiplexing can be imple-
mented by measuring the voltage swing on different power pins. An FPGA has usu-
ally many power pins to effectively support the FPGA with power. However, inside
the FPGA, these power pins are usually connected. Therefore, only small amplitude
differences can be measured. One remedy is to exploit the idea that the location of the
power shift register of a watermarked core has different distances to the power pins.
Measurements on power pins which are near the shift register should have a higher
amplitude as measurement on other power pins. If many watermarked cores are used,
these are usually spread across the FPGA. Therefore, measurements on many power
pins might successfully decode all signatures, even if sent simultaneously.

Unfortunately, experimental measurements on a Spartan-3 FPGA yields that the
maximum amplitude difference between different power pins is less than 0.05 mV
or 2% of the amplitude if 512 shift registers are used. Therefore, space division
multiplex for power watermarking is not pursued.

Time Division Multiplexing

In case of time division multiplexing, the communication on the channel is divided
into several time slots. Each peer to peer communication uses blocks which are
sent in assigned time slots on the same communication medium. There exist two
different categories of time division multiplexing techniques: synchronous (STDM)
and asynchronous time division multiplexing (ATDM).

For STDM methods, each sender is assigned a fixed time slot. Furthermore, the
definition of the time slot length and the assignment is done at design-time and must
be known by all senders. If the assigned sender has no data to transmit, the corre-
sponding time slot remains unused. ATDM methods use the time slots dynamically.
A sender only occupies a time slot if data will be sent and therefore, the channel uti-
lization is increased compared to STDM methods. Due to losing the fixed assignment

150



3.4 Power Watermarking

of the slots, the demultiplexer must know the receiver of the data. This is usually done
by sending the receiver information over the channel, for example, in the header of
the data. Therefore, these methods are also known as address multiplexing methods.
The time slot length is either fixed or variable, depending on the used technique.

The problem of adapting the TDM approach for power watermarking is that the
senders, the different power watermarked cores, have no synchronization possibili-
ties. The reset signal might be used for synchronization, however, the different cores
may use different resets or clocks and due to the power watermarking methods, the
reset length might be further altered. Therefore, a probabilistic approach for time
division multiplexing is chosen, where each signature is sent with a given period.
During one period, the signature is sent once and after that, the power pattern gener-
ator inside the watermarked core is inactive until the period ends. The period length
φi consists of the time for sending the signature tsig,i and the waiting time twait,i:
φi = tsig,i + twait,i. By choosing different waiting times twait,i for different cores, the
sending time of the different signatures drifts away over the time and the probability
of a successful decoding increases with a higher measurement time (see Figure 3.33).
One constraint on this method is that every watermarked core has its own unique pe-
riod length φi which should be relatively prime to the period length of the other cores
in order to minimize the superposition of different signatures. If nmax is the overall
number of all existing power watermarked cores, then

GCD(φi,φ j) = 1 ∀i, j ∈ {1, . . . ,nmax}. (3.63)

If all cores begin the transmission at the same start time, then the time span tdec for
the first collision-free decoding for two cores is:

tdec = φi ·
⌈

tsig,i

φ j−φi

⌉
, if φi < φ j, (3.64)

and for three cores:

tdec = LCM
(

φi ·
⌈

tsig,i

φ j−φi

⌉
,φi ·

⌈
tsig,i

φk−φi

⌉
,φ j ·

⌈
tsig, j

φk−φ j

⌉)
, if φi < φ j < φk.

(3.65)

To estimate the period length for real systems, we must first know how long the
time tsig for sending the signature is. For the correlation method, the usual symbol
length is 200 ns. If we assume a signature length of 32 bit plus 12-bit preamble, the
time for sending the signature is: tsig = 8.8 µs. Furthermore, we need some time
to shift the power shift register to the right position for the functional logic. For the
enhanced robustness method, the time for sending is ω · n · f−1

clk . With n = ω = 32
and fclk = 50 MHz, we need 20.48 µs for sending the signature. Therefore, a value

151



3. IP Core Watermarking and Identification

A

0 5 10 15 20 25 30 35 40 45 50

A A A A A

B

0 5 10 15 20 25 30 35 40 45 50

B B B B

C

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

B B

C C C C

C A B C A C A C A

t

t

t

t

Signature A

Signature B

Signature C

TDM Channel

Figure 3.33: A schematic example for the application of the TDM method with
the transmission of three different signatures of different lengths. The
used periods are very short: φA = 9,φB = 10, and φC = 11 slots. The
time slots with collisions are marked on the TDM channel row below.
The first collision-free sending of all signatures is after time step t =
22.

of 40 µs is a good approximation. One exception is the BPSK method. The sending
time of a 32-bit signature there is 205 µs with fc = fclk

10 and fclk = 50 MHz.
On the other hand, the sending of the watermarks is limited by the minimal reset

time, because all our power watermarking methods send the signature in the reset
phase. If we assume a reset time of trst = 100 ms, and we would like to send each sig-
nature at least 20 times for reasons of better decoding, then the maximum repetition
period is φ0 = 5 ms. For each additional signature, we reduce the period length by
the approximated 40 µs for sending the signature: φ1 = 4.96 ms,φ2 = 4.92 ms, . . . .
Using this scheme, we have enough period times for signatures and a realistic reset
time. Figure 3.34 shows a measurement of sending three different signatures using
our TDM method.

Frequency Division Multiplexing

In case of frequency division multiplexing (FDM), the different information channels
are assigned to different carrier frequencies. This can be done by modulating the
information on a certain frequency. Different modulation methods, like amplitude
(AM), frequency (FM), or phase modulation (PM) can be used. Furthermore, digital

152



3.4 Power Watermarking

30

Signature A

1.5 2.50.5 1 2
Time [s] x106

0.5

0

-0.5

1.5

2

2.5

-1

-1.5

-2

-2.5

V
o

lt
a

g
e 

[m
V

]

1

Signature C Signature B

Figure 3.34: Shown is the superposed sending of three different signatures using
the TDM method on a Spartan-3 FPGA. The minimal period differ-
ence between the signatures is approximately 16 µs. Signature A is
produced by 64 SRL16 shift registers, signature B uses 40 SRL16 shift
registers, and signature C uses 25 SRL16 shift registers. In the mea-
surement, collisions and proper decodeable signature transmissions
are highlighted.

signals are often transmitted using shift keying modulation, for example Frequency
Shift Keying (FSK) or Phase Shift Keying (PSK).

The BPSK method, introduced in Section 3.4.5 uses an on-off keying (OOK) mod-
ulation to shift the carrier frequency for sending the signature away from the clock
frequency. The aim of this modulation was the improved decoding, because most
interferences from other cores are on the clock frequency or its divisions. However,
using different carrier frequencies, more than one core can simultaneously send its
signature. The information of the signature bits is embedded into the carrier signal
SBPSK by a BPSK modulation. Each watermarked core has its own carrier signal
SBPSK,i which is OOK-modulated onto the clock frequency with different encoding
schemes: Z = {(γ,1,ωi),(γ̄,1,ωi)}. By choosing different repetition rates ωi, the
different signals SBPSK,i are sent on different frequencies which enables a congruent
sending of all signatures. However, the number of usable frequencies or repetition
rates ωi is constrained by the clock frequency and the sending time of the signature.
Nevertheless, this is an interesting approach for further research.

Code Division Multiplexing

Finally for code division multiplexing methods, the transmitted data from different
senders are spread up with different unique codes, so called chips. A chip is either

153



3. IP Core Watermarking and Identification

able to encode one bit or a sequence of bits [Vit95]. The chip encoded signals super-
pose on the communication channel. By knowing the chip sequences, all different
transmitted data sequences can be reconstructed from the measured signal.

The widest used code division method is the encoding from Hadamard and Walsh
[Vit90]. The data sequences are mapped on longer code sequences by multiplication
with certain chip sequences. The different orthogonal chip sequences can be calcu-
lated by so called Hadamard-Walsh functions [Vit90]. The binary data sequence must
be present in a Non-Return-To-Zero (NRTZ) code which means that the two bits are
encoded with ’1’ and ’-1’. To reconstruct a data sequence, the measured superposed
signal is multiplied by the corresponding chip sequence and the average is calculated
over the bit length. Figure 3.35 shows a simple example of transmitting two data
sequences with a chip length of four. It is important for this method that all encoded
data are synchronized to ensure a successful decoding.

0 4 8 12

-1 11

0 4 8 12

0 4 8 12

Data B  

Data B * Chip B  

Chip B  

0 4 8 12

-1 1

0 4 8

0 4 8

Data A  

Data A * Chip A  

Chip A  

-1

0 4 8

Signal A + Signal B  

0 4 8

(Signal A + Signal B)  

* Chip A  -4 -4

4

-2 -2 -2

2 2 2

Figure 3.35: This illustration shows an example with the concurrent sending of two
data sequences using CDM. The data is spread using different chip se-
quences and superpose each other on the communication channel. By
multiplying the received signal with the corresponding chip sequence,
the data can be reconstructed [Bau08].

Experimental results have shown that this method is very sensitive to interference
[Bau08]. Furthermore, by using different amplitudes for each core due to different
numbers of shift registers and the lack of synchronization possibilities for power

154



3.5 Experimental Results

watermarking, CDM with Hadamard-Walsh encoding seems not to be applicable for
concurrently sending different signatures.

Another CDM approach uses codes which are adopted from optical transmissions,
the so called Optical Orthogonal Codes (OOC) [Sal89, SB89]. The main character-
istic of these codes is the good cross- and autocorrelation capacity which makes them
robust against shifting and suitable for asynchronous CDM [CSW89]. The codes
consist of long runs of zeros separated by only few ones. By using these codes, the
superposed signatures can be reconstructed like the Hadamard-Walsh-codes. The dis-
advantage is the longer chip sequence which results in longer sending times for the
signatures. Experimental results in Section 3.5.5 show that the usage of CDM with
OOC is applicable for power watermarking.

This section gave an overview of multiplexing methods suitable for power water-
marking with many watermarked cores inside an FPGA sending simultaneous signa-
tures. More details about these methods can be found in [Bau08].

3.5 Experimental Results
In this section, we present experimental results for the watermarking and identifica-
tion methods presented in Section 3.3 and 3.4. The IP cores used for watermarking
and identification were mostly obtained from opencores.org [Opec]. Netlist cores
were synthesized using the Xilinx synthesis tool XST [Xili]. First, results of bit-
file watermarking and identification methods are presented. Then, the results of the
power watermarking methods are shown.

3.5.1 Identification of Netlist Cores by Analysis of LUT
Contents

In order to give experimental evidence of the identification method for netlist cores
presented in Section 3.3.2, we used a keyboard controller as an example [Opeb]. The
design consists of four cores: strober, producer, analyser, and fsm. For all of these
cores, the lookup table values and the corresponding unique functions were extracted
from the netlists. The whole design was implemented on a Xilinx Virtex-II FPGA
using the Xilinx tool ISE 6.3i. From the resulting bitfile, all lookup table values were
extracted by the method described in Section 3.3.1. Each core was identified using
the methods in Section 3.3.2 and the results are given in Table 3.2.

The results show that all lookup tables for the core producer and strober were
found. During the implementation, many lookup tables for the core analyser were
removed and are not found in the bitfile. This can result from unused outputs, or
constant inputs. The core developer can evaluate which lookup tables are affected
in these cases by comparing the implementation with reference designs to improve
the interpretation of the results of the identification process. The mean distance to

155



3. IP Core Watermarking and Identification

Core r q fu found r distance d
producer + strober + fsm + analyser

producer 40 450 3982 40 4.225
strober 93 450 3982 93 3.797

fsm 6 450 3982 5 0.883
analyser 379 450 3982 217 5.946

Table 3.2: Results for identifying individual cores in a design including four cores.
The number of LUT functions used in the core r and in the design q as
well as the number of different unique functions fu are depicted. The
values for mean distance to the core center d are in LUT positions.

the calculated core center in all four cases is small. In combination with the high
percentage of found lookup tables, this result supports the assumption that the core
is included in the bitfile. To verify the calculated core centers, we compare the core
centers with the real placement of the slices in the cores. Figure 3.36 shows that the
calculated core center positions correspond with the real positions of the cores.

To evaluate the robustness, we try to find the cores in a bitfile were they were not
included. For this case, we implemented a Des56 design [Opea] on a Xilinx Virtex-
II FPGA and extracted all lookup tables. Table 3.3 shows that the percentage of
the found lookup tables is low and the mean distance to the calculated core center
is high. These values give evidence that the cores are not included in the design.
For a more realistic scenario, we take two cores of the same functionality but from
a different developer. For demonstration, a cordic core from Xilinx Coregen [Xilg]
and opencores.org [Opec] are taken. We implement the Coregen core into the bitfile
and search for the lookup table values from the opencores.org core. Table 3.3 shows
that more than half of the lookup table contents were found, however, the distance
is relatively high. This indicates that the opencores.org core is not included in the
bitfile.

3.5.2 Identification of HDL Cores by Analysis of LUT
Contents

To obtain experimental results for the HDL core identification technique, introduced
in Section 3.3.3 we used several cores from opencores.org [Opec]: The cryptographic
cores Des56 and 3DES, the processor cores t400, minimips, and 68hc08, as well as the
general IP cores LCD, and colorconv. Furthermore, we used different synthesis tools:
Xilinx Synthesis Technology (XST) [Xili], precision synthesis from Mentor Graphics
[Gra], and Synplify Pro from Synopsis [Synb]. We use the Xilinx Spartan-3 as FPGA
target technology.

156



3.5 Experimental Results

Figure 3.36: The calculated core centers compared with the real LUT placements
for the example cores shown in Table 3.2.

Core r q fu found r distance d
Des56

producer 40 1574 3982 2 5.55
strober 93 1574 3982 44 15.97

fsm 6 1574 3982 3 12.597
analyser 379 1574 3982 69 13.865

cordic from Xilinx Coregen
cordic from opencores 1052 1762 3982 633 26.39

Table 3.3: Results for identifying cores in a design where the cores are not included.
First, the cores from the keyboard controller are searched for inclusion
inside a Des56 core. The second result stems from trying to identify an
opencores.org cordic core in a bitfile containing a Xilinx Coregen cordic
core.

157



3. IP Core Watermarking and Identification

First, we take the same core, synthesized using different synthesis tools and ana-
lyze the different resulting lookup table contents. The first step is to map these lookup
table contents into unique functions. For identification, these functions are labeled
with the lowest content value of all lookup table contents which implement the same
unique function. Table 3.4 lists, for example, the unique functions of the core color-
conv synthesized with all three synthesis tools. It can be seen that the distribution of
the most used unique functions is very similar. Only the functions generated by Syn-
plify differ slightly from the other tools which can also be seen in the overall number
of used lookup tables.

colorconv
No. LUT inputs unique function XST Precision Synplify

1 2 57 54 60
2 2 0 18 2
2 6 312 309 207
2 8 0 0 203
3 28 0 0 99
3 2e 48 48 48
3 ac 144 126 144
4 0008 6 15 4
4 00ac 0 0 15
4 eefa 0 0 15

overall number of LUTs 579 581 820

Table 3.4: This table shows the different unique functions of the colorconv core syn-
thesized with different synthesis tools. All lookup table contents which
implement the same unique function are mapped to the lowest content
value. Note that only functions which appear at least ten times after syn-
thesis by one synthesis tool are depicted.

To test the criterion method, we first compare the netlists which implement the
same core, but were synthesized with different synthesis tools. The results are shown
in Table 3.5. The value Pa in b denotes to the percentage of the unique functions from
the core a which can be found in core b. If the criterion value C is bigger than
one, then it is likely that these netlists were synthesized from the same HDL core
description. This is true for all cores, except of the LCD core where the lookup table
content distribution is different for all three synthesis tools.

Next, we compare the lookup table contents of netlists which are generated from
different cores. We compare netlists synthesized with XST or Precision. As it can be
seen in Table 3.6, the criterion value C is less than 1 for most cores which indicates

158



3.5 Experimental Results

core synthesis synthesis Pa in b Pb in a criterion
tool a tool b value C

Des56 XST Precision 48.05% 38.86% 2.36
Des56 XST Synplify 55.75% 34.44% 2.54
3DES XST Precision 31.42% 28.46% 1.12
3DES XST Synplify 40.10% 26.78% 1.40
t400 XST Precision 60.06% 50.31% 3.81
t400 XST Synplify 54.52% 54.46% 3.71

minimips XST Precision 58.79% 36.10% 2.81
minimips XST Synplify 54.36% 36.62% 2.59
68hc08 XST Precision 50.16% 41.22% 2.61
68hc08 XST Synplify 41.90 % 37.42% 1.97
LCD XST Precision 20.69% 34.62% 0.96
LCD XST Synplify 18.50% 15.38% 0.36

colorconv XST Precision 93.80% 94.13% 11.04
colorconv XST Synplify 57.07% 80.83% 5.94

Table 3.5: The identification results of the criterion method, when the same core
is synthesized using different synthesis tools. A criterion value of C >
1 indicates that the two netlists were synthesized from the same core
description.

that the compared netlists were not generated from the same core. However, we also
have three exceptions.

The experimental evaluation of the criterion method shows that it is possible to
identify netlists which were generated from the same source using different synthesis
tools in most cases. The negative as well as positive false detection shows that there
is no guarantee of the correctness of this method. Nevertheless, this method can be
useful to estimate if a netlist implements a specific core and trigger further analysis.

3.5.3 Watermarks in LUTs for Bitfile Cores
In this section, the experimental results for the bitfile watermarking method for bitfile
cores, introduced in Section 3.3.4, are presented. Again, we used cores from open-
cores.org [Opec]: The cordic, Des56, and the RSA core. The first step is to examine if
adding watermarks in bitfiles corrupts the functionality of the core. This was verified
by comparing the output of the watermarked core to the original core.

This bitfile watermarking method embeds the watermarks into unused lookup ta-
bles in used slices. One question is if there are enough possible locations to insert
the watermarks. Hereby, we implement the example cores in a Xilinx Virtex-II Pro
FPGA XC2VP7 which provides 4928 slices in total. To achieve a certain degree of

159



3. IP Core Watermarking and Identification

core a synthesis core b synthesis Pa in b Pb in a criterion
tool a tool b value C

Des56 XST 3DES Precision 11.74% 42.02% 0
Des56 Precision 3DES XST 13.63% 66.60% 0
t400 XST Des56 Precision 18.55% 11.60% 0.28
t400 Precision Des56 XST 12.64% 11.66% 0.18

Des56 XST minimips Precision 9.75% 48.03% 0
Des56 Precision minimips XST 7.35% 72.85% 0
t400 XST minimips Precision 17.32% 65.93% 0
t400 Precision minimips XST 10.99% 81.34% 0
t400 XST 3DES Precision 5.16% 14.29% 0.12
t400 Precision 3DES XST 3.76% 13.70% 0

minimips XST 3DES Precision 20.83% 9.30% 0.28
minimips Precision 3DES XST 32.53% 26.11% 1.07
68hc08 XST 3DES Precision 8.08% 5.40% 0.06
68hc08 Precision 3DES XST 16.59% 14.90% 0.31
68hc08 XST Des56 Precision 42.19% 6.37% 0
68hc08 Precision Des56 XST 44.08% 10.02% 0
68hc08 XST t400 Precision 82.07% 16.61% 0
68hc08 Precision t400 XST 72.77% 21.40% 0
68hc08 XST minimips Precision 36.11% 33.23% 1.5
68hc08 Precision minimips XST 26.39% 48.11% 1.73

Table 3.6: The comparison of netlists which are generated from different cores. The
criterion value should be C < 1. Note, on many combination the criterion
value C = 0, because the difference of the number of lookup tables be-
tween the two netlists is more than the average number of lookup tables
(see criterion formula in Section 3.3.3).

diversity, five different versions of each core were created by modifying the core.
The results in Table 3.7 show that there is not a real common link between the uti-
lization and the available watermark locations. However, designs which are worth to
watermark should provide enough possible locations to insert a sufficient number of
watermarks.

3.5.4 Watermarks in Functional LUTs for Netlist Cores

In this section, we show experimental results for watermarking functional lookup ta-
ble in netlist cores as introduced in Section 3.3.5. The results were measured using
the same cores and the same FPGA target technology (XC2VP7) as for the experi-

160



3.5 Experimental Results

cordic
version 1 2 3 4 5

% FPGA utilization 8% 8% 9% 10% 11%
No. possible locations 15 14 15 17 17

Des56
version 1 2 3 4 5

% FPGA utilization 19% 20% 20% 19% 19%
No. possible locations 305 332 406 395 174

RSA
version 1 2 3 4 5

% FPGA utilization 11% 11% 11% 12% 12%
No. possible locations 171 164 165 172 160

Table 3.7: This table shows the number of possible watermark locations for the
lookup table watermarking method for bitfile cores as introduced in Sec-
tion 3.3.4. An interesting aspect is that the cryptographic cores have
more possible locations than the cordic core even though similar FPGA
utilization.

ments on watermarking for bitfile cores. The functionality of the watermarked cores
was verified by simulation and on the FPGA device.

Using the example cores, timing and area overhead of our method were measured.
Table 3.8 shows the properties of the unwatermarked cores. First, we examine the
effect on the overheads by embedding a different number of watermarks. The water-
marks are inserted into shift registers which are transformed functional lookup tables.
For this measurement, we randomly chose LUT2 and LUT3 primitive cells for hold-
ing a part of the signature. For an easy verification, always four shift registers are
chained together.

core Timing (ns) Resources (Slices)
cordic 5.909 369
Des56 6.220 965
RSA 13.557 540

Table 3.8: The critical path delay (timing) and the used resources of the unwater-
marked cores implemented into the Xilinx Virtex-II Pro FPGA.

The results in Table 3.9 show that the resource overhead for the Des56 and RSA
core is negligible. The decrease of resource usage may be explained by the obser-
vation that the mapping tool packs the chained shift registers more densely into the

161



3. IP Core Watermarking and Identification

available slices. The high increase of the critical path delay might be caused by the
restriction of the optimization degrees due to the transformation of functional lookup
tables into shift registers. The timing impact might be mitigated by performing a
timing analysis and restricting possible watermark locations to non-critical paths.

No. Watermarks 32 64 128 256 384
cordic

% Timing 39.19% 32.53% 64.05% 77.81% 78.76%
% Resources 4.97% 9.39% 17.98% 35.23% 52.57%

Des56
% Timing 10.34% 6.98% 24.18% 18.71% 29.8%

% Resources -1.28% 0.28% 0.48% -0.17% -3.83%
RSA

% Timing 10.11% 55.42% 57.20% 29.93% 44.37%
% Resources -0.74% 2.78% 1.91% 9.07% 9.75%

Table 3.9: The timing and resource overhead of the example cores with different
number of inserted watermarks. Always four of the transformed shift
registers are chained together.

Next, we investigate the effect of different shift register chain lengths. In the
last experiments, we chained four watermark shift registers together. For the mea-
surement, we only use the Des56 core to examine the effect of various chaining
lengths on timing and resource overhead. Additionally, we vary the amount of in-
serted watermarks by converting different percentages of the available lookup table
candidates into watermarked shift registers. The results in Table 3.10 show that con-
verting around 30% of the lookup table candidates into shift registers achieves the
best timing behavior. However, this is only an exemplary result and cannot be gen-
eralized. Furthermore, the impact of the chain length is negligible, except for shift
registers with chain length 1, which leads to an increased resource overhead. Notable
is the decreased resource overhead, if more shift registers are used, except these shift
registers which are chained only with themselves (chain length 1). A possible expla-
nation for this behavior is that the tools pack these shift registers more densely into
the available slices.

Finally, we investigate the verification capability of the approach. We measure for
the same test setup as the measurement in Table 3.10 (different chain length and dif-
ferent numbers of watermarks), how many watermarks can clearly be identified and
how many indeterminable duplicates there are. Indeterminable duplicates are water-
marks which exist more than one time in the bitfile. It is impossible to determine
which one is the watermark and which one is similar to the watermark by chance.

162



3.5 Experimental Results

% Shift Registers 10% 20% 30% 40% 50% 70% 90%
Chain Length 1

% Timing 18.2% 12.3% 9.1% 36.8% 39.%9 36.2% 14.0%
% Resources 0.2% 3.0% 4.3% 5.1% 6.7% 8.6% 14.5%

Chain Length 4
% Timing 15.4% 12.3% 3.2% 27.7% 25.5% 37.7% 23.2%

% Resources 1.2% -0.5% 0.3% -0.2% -5.0% -7.0% -5.7%
Chain Length 8

% Timing 15.2% 8.3% 5.4% 26.3% 25.7% 29.4% 20.8%
% Resources 0.9% 1.0% 2.4% -0.4% -2.5% -5.7% -4.9%

Chain Length 16
% Timing 14.4% 9.5% 5.7% 23.7% 28.4% 27.3% 19.2%

% Resources 2.6% 1.8% 2.8% -2.5% -3.3% -5.6% -5.2%
Chain Length All

% Timing 15.7% 13.2% 7.3% 30.0% 25.5% 36.8% 20.1%
% Resources 1.5% 1.8% 3.4% -3.6% -4.1% -6.8% -6.3%

Table 3.10: The effect of timing and resource overhead at different chain length of
watermarked shift registers and at different amounts of inserted water-
marks for the Des56 core.

The results in Table 3.11 show that chaining the shift registers helps to avoid indeter-
minable duplicates.

3.5.5 Power Watermarking

In this section, measurements and experimental results for the power watermarking
methods as introduced in Section 3.4 are presented. First, the experimental setup and
measurements for the communication channel are provided. Then, the results of the
different methods are shown and finally, the results of the multiplexing methods are
presented.

Experimental Setup

In the following experiments, we used two FPGA-boards, the Digilent Spartan-3
Starter Board [Dig], and a board equipped with a Xilinx Virtex-II XC2V250 FPGA.
On the second board, many other components such as an ARM micro-controller and
interface chips are integrated to demonstrate that the algorithm is also working on
multi-chip boards. The Spartan-3 board operates at a clock frequency of 50 MHz, the
Virtex-II board at 74.25 MHz.

163



3. IP Core Watermarking and Identification

% Shift Registers 10% 20% 30% 40% 50% 70% 90%
Chain Length % Duplicates

1 4.41% 6.62% 5.76% 3.47% 3.48% 2.32% 1.76%
4 1.10% 1.29% 2.21% 1.30% 0.71% 0.91% 0.66%
8 0% 0.37% 1.47% 1.13% 0.64% 0.76% 0.59%

16 0% 0.18% 0.49% 1.39% 0.43% 0.60% 0.43%
All 0% 0% 0.37% 0.70% 0.50% 0.61% 0.20%

Table 3.11: The percentage of indeterminable duplicates for the watermark verifi-
cation, compared to different chain length and different number of in-
serted watermarks.

On both boards, the voltage is measured on the back of the printed circuit board di-
rectly on the via which connects the FPGA with the power plane of the printed circuit
board. We used a 50 Ω wire with a 50 Ω terminating resistor soldered directly on the
vias (see Figure 3.37). We have used a DC block element and a 25 MHz high pass
filter to filter out the DC component and the interferences of the switching voltage
controller. We used a LeCroy Wavepro 7300 oscilloscope with 20 Giga Samples per
second to measure the voltage. The voltage amplitude of the measured switch peak is
very small, so we used a digital enhanced resolution filter to improve the dynamics,
at the cost of a decreased bandwidth. The signal of the length of 200 µs is recorded
on the internal hard disc of the oscilloscope. This trace file is then transferred to a
personal computer and analyzed there.

Communication Channel

First, we measured the impulse responses of the two boards of the experimental setup.
The impulse is generated using a shift of 64 16-bit shift registers (SRL16) inside
the FPGA which are initialized with a “010101 . . .” pattern to achieve the highest
possible toggle rate. Figure 3.38 shows the measured impulse responses of the two
boards. It can be seen that the two impulse responses are very similar. The impulse
responses can be approximated using the following formula from Section 3.4.2:

hi(t) = P(ni, t) ·αi · sin(2π fit +φi), (3.66)

h(t) =
l

∑
i=1

hi(t), (3.67)

where l is the number of different frequency components.
The approximation of the impulse responses of the two boards was done using a

genetic algorithm and for three frequency components (l = 3) each. The resulting

164



3.5 Experimental Results

Figure 3.37: The rear side of the Virtex-II board with the soldered wires on the
power vias. Furthermore, the 50 Ω terminating resistor can be seen
between the wires and the coaxial cable.

parameters α, f ,φ , and n are shown in Table 3.12. The resulting curves with the
approximation errors are depicted in Figure 3.39 for the Spartan-3 board and in Figure
3.40 for the Virtex-II board.

The measurements for the synchronization between the clock frequency of the
board and the sample frequency of the oscilloscope depicted that the sample drift for
the Spartan-3 board is not too high for power watermarking, whereas for the Virtex-II
board, we need a subsequent resynchronization (see Figure 3.41). This was done by
removing sample values for each symbol to lower the drift into a specified range.

Basic Method

The functionality of our proposed watermark detection methods is evaluated for a
Des56 core from opencores.org [Opea] and an arithmetic coder core.

After the synthesis step, only 16 out of 715 lookup tables from the Des56 core have
been transformed into SRL16 and an n = 32 Bit signature has been added. Also, for
the arithmetic coder core, 92 out of 1332 lookup tables have been transformed into
SRL16 cells. Both cores’ inputs were stimulated using a pseudo random sequence
generated by a linear feedback shift register to simulate input data.

The decoded sequence was compared with the encoded signature from the core
to evaluate the bit error rate. Furthermore from the bit decision signal, two quality

165



3. IP Core Watermarking and Identification

0 50 100 150 200 250 300 350 400 450 500 550 600

−5

0

5

x 10
−4

time [ns]

V
o

lt
a

g
e
 [

V
]

Spartan 3

 

 

0 50 100 150 200 250 300 350 400 450 500 550 600
−4

−2

0

2

4
x 10

−3

time [ns]

V
o

lt
a

g
e

 [
V

]

Virtex 2

 

 

symbol

energy in %

symbol

energy in %

100%

100%

Figure 3.38: The measured impulse responses of the Spartan-3 Board (above) and
the Virtex-II Board (below). The impulse responses were averaged
over many single impulse responses on each board. Furthermore, for
each impulse response the percentage of the energy content is shown
over the time [Bau08].

α f φ n
Spartan-3 Board Approx. Error: 1.5%

h3(t) 0.56 mV 43.0 MHz 1.7π 11.3
h2(t) 0.17 mV 26.9 MHz 1.6π 4.49
h1(t) 0.16 mV 75.7 MHz 1.5π 19.2

Virtex-II Board Approx. Error: 4.7%
h3(t) 1.96 mV 36.5 MHz 0.06π 12.6
h2(t) 1.49 mV 26.6 MHz 1.1π 12.3
h1(t) 1.02 mV 66.5 MHz 1.7π 23.8

Table 3.12: The approximation values and errors for h(t) according to Equation
3.66 and 3.67 for the Spartan-3 and Virtex-II board.

166



3.5 Experimental Results

0 50 100 150 200 250 300 350
−6

−4

−2

0

2

4

6

x 10
−4

Time [ns]

V
o

lt
a
g

e
 [

V
]

 

 

Acquired Signal
Component h

1

Component h
2

Component h
3

Approximation Error

Figure 3.39: The approximation of the impulse response for the Spartan-3 board
with three frequency components and the approximation parameters
from Table 3.12. The approximation error is shifted to −0.3 mV for a
better readability of the diagram [Bau08].

0 50 100 150 200 250 300 350

−2

−1

0

1

2

3
x 10

−3

Time [ns]

V
o

lt
a

g
e

 [
V

]

 

 

Acquired Signal
Component h

1

Component h
2

Component h
3

Approximation Error

Figure 3.40: The approximation of the impulse response for the Virtex-II board
with the approximation parameters from Table 3.12. The approxima-
tion error is shifted again to −0.3 mV for a better readability of the
diagram [Bau08].

167



3. IP Core Watermarking and Identification

Figure 3.41: Many subsequent measured impulse responses (symbols) are depicted
on the left side. The measurement is done for the Virtex-II Board,
where the measured drift is too high. By plotting the maximum of
each symbol, the drift can been seen on the right side. Each cross
corresponds to a maximum, and the straight line depicts the average
drift [Bau08].

indicators were calculated. One is the signal to noise ratio (SNR) of the signal.
Because we make a threshold decision, SNR values under 4 dB are difficult to decode.
We also calculate the SNR from the decoded sequence, so bit errors falsified our SNR.
In these cases, the real SNR is lower than the calculated SNR. The second indicator,
called bit gain, is the difference from the mean level of the bits and the threshold
level. This indicator shows how big the difference of the voltage swing between ones
and zeros of the signature is. Also, the root mean square (RMS) from the recorded
signal without the DC part is measured. Figure 3.42 shows a signal of good quality
before the bit decisions with a SNR value of 37 dB. The signal shown in Figure 3.43
is of lower quality and has a SNR of 9 dB.

First, the basic method described in Section 3.4.3 is evaluated (see Table 3.13). We
decoded the signature with both boards and the Des56 core where only 16 lookup ta-
bles are transformed into SRL16. We have evaluated two cases, one where only the
watermarked core is implemented (case A) and one where the watermarked core and
the original core is implemented to check the functionality of the watermarked core
(case B). This is done by connecting both cores to the same pseudo random input
data and compare the output when the cores are not in the reset state. We embed-
ded three signatures (s1, s2 , s3) in the core. The Signature s1 is “5C918CBA” and

168



3.5 Experimental Results

25 30 3510 200 5 15
Signature Bits

0.8

0.6

1

1.2

1.4

1.6

0.4

0.2

0

x10-3

Figure 3.42: A signal of good quality for the bit decisions with a SNR value of
37 dB.

represents a realistic random signature. Signature s2 is “333333333” and signature
s3 is “FF335500”. With these signatures, we can evaluate the decoding method with
different bit toggle rates.

Table 3.13 shows that decoding does not always work without bit errors. In case
of A, the detection works better than in case B. In case B, more logic is used, but
this logic is in the reset state. Nevertheless, the clock tree is still active which can be
seen in the higher signal RMS value. The signature s3 is difficult to decode, because
there are many equal bits lumped together and so the printed circuit board works as a
resonator.

Enhanced Robustness Encoding

To evaluate the enhanced robustness approach as described in Section 3.4.4, we use
the same test cases and implement only the signature s3 which is harder to decode
(see Table 3.14). Furthermore, we define two additional test cases. In C, the unwa-
termarked core has an inverted reset, so the core is working when the watermark is
sending the signature. In D, two cores are working, while the signature is emitted.

169



3. IP Core Watermarking and Identification

25 30 3510 200 5 15
Signature Bits

3.1

3.15

3.2

3.25

3.05

3

x10-3

3.25

Figure 3.43: A signal of lower quality with a SNR of 9 dB, but without bit errors.

Not all combinations in D are possible because the FPGA is too small to implement
all three cores. Additionally, we have evaluated this method with the arithmetic coder
core.

Table 3.14 shows that the detection of the watermarked signature works much
better than using the basic method. The decoding for the Des56 core works fine.
Even if one or two of the same Des56 cores operate at the same time, the signature is
emitted and detected correctly. The arithmetic coder core requires more lookup tables
than the Des56, and if no other core operates, the decoding results are better than for
the Des56 core. However, if another arithmetic coder core is active, the decoding
fails. The signal RMS indicates that the arithmetic coder core has a very high toggle
rate.

In Table 3.15, we decreased the recording length to see the impact of the quality
of our results. This is done using the Des56 core in all four cases. The quality
degenerates but with the recording length of 50 µs, it is still possible to detect the
watermark without bit errors in case D, even if two other cores are simultaneously
active.

170



3.5 Experimental Results

Case Board Bit Error Rate Signal RMS SNR Bit Gain
in % in mV in dB

Signature s1
A Spartan-3 0 0.376 8.5 0.126
B Spartan-3 9.4 0.511 4 0.112
A Virtex-II 21.9 0.821 4 0.277
B Virtex-II 31.2 1.047 4 0.263

Signature s2
A Spartan-3 0 0.374 8.5 0.147
B Spartan-3 3.1 0.513 4.5 0.137
A Virtex-II 6.2 0.859 4 0.561
B Virtex-II 0 1.063 8.5 0.632

Signature s3
A Spartan-3 6.2 0.380 4 0.111
B Spartan-3 12.5 0.516 3 0.122
A Virtex-II na 0.841 3.5 0.368
B Virtex-II 9.4 1.073 3.5 0.381

Table 3.13: The decoding results of the basic method for different signatures and
boards. The bit error rate and the signal RMS as well as the decoding
quality indicators SNR and bit gain are shown.

BPSK Detection Method

Next, the BPSK detection algorithm as described in Section 3.4.5 is evaluated using
the same test cases as for the enhanced robustness method (see Table 3.16). The
results show that error-free decoding is possible in all test cases, also in the critical
test case for the arithmetic coder C with the Spartan-3 FPGA, where a correct de-
coding is not possible using the enhanced robustness method. This shows that the
BPSK method can deal better with cases which have high interferences on the clock
frequency like other working cores with a high toggle rate.

Correlation Detection Method

The experimental results for the correlation detection method are shown in Table
3.17 with the same cases as in the tables before. This methods uses an intersymbol
interference-free encoding. Therefore, the experimental results do not depend on the
signature like the results of the other methods. The decoding was done with the cor-
relation of the highest frequency component of the corresponding impulse response.
On both boards, this is the component h3(t) (see Table 3.12). To enhance the results,
the second strongest frequency component, h2(t) on both boards, is additionally used.

171



3. IP Core Watermarking and Identification

Case Board Bit Error Rate Signal RMS SNR Bit Gain
in % in mV in dB

Des56 Core
A Spartan-3 0 0.384 22 0.087
B Spartan-3 0 0.508 23 0.110
C Spartan-3 0 1.21 22 0.109
D Spartan-3 0 2.15 10.5 0.0539
A Virtex-II 0 0.794 18 0.067
B Virtex-II 0 1.022 22.5 0.191
C Virtex-II 0 2.698 12 0.067

Arithmetic Coder Core
A Spartan-3 0 0.618 37 0.758
B Spartan-3 0 0.617 38 0.720
C Spartan-3 na 4.488 3 0.216
A Virtex-II 0 1.347 37.5 1.248
B Virtex-II 0 1.343 37 1.191

Table 3.14: Results of the enhanced robustness encoding scheme from Section 3.4.4
for different cores and boards.

200 µs 100 µs 50 µs
Case SNR Bit Gain SNR Bit Gain SNR Bit Gain

in dB in dB in dB
A 22 0.087 21.5 0.091 16 0.090
B 23 0.110 19.5 0.110 16.5 0.111
C 22 0.109 18 0.107 18.5 0.107
D 10.5 0.054 10 0.057 9.5 0.061

Table 3.15: Results with decreased recording time obtained from the Spartan-3
board for the Des56 core. The signature decoding has no bit errors
in all cases.

172



3.5 Experimental Results

Case Board Bit Error Rate Signal RMS SNR Bit Gain
in % in mV in dB

Des56 Core
A Spartan-3 0 0.431 22 0.091
B Spartan-3 0 0.530 22.5 0.086
C Spartan-3 0 1.410 25.5 0.093
D Spartan-3 0 1.432 20 0.044
A Virtex-II 0 1.003 19 0.152
B Virtex-II 0 1.353 19 0.073
C Virtex-II 0 3.030 23 0.178

Arithmetic Coder Core
A Spartan-3 0 0.593 23.5 0.322
B Spartan-3 0 0.703 29.5 0.438
C Spartan-3 0 4.207 14 0.188
A Virtex-II 0 0.340 27 0.654
B Virtex-II 0 0.510 19 0.239

Table 3.16: Results using the BPSK method with different cores and boards. The
decoding is successful without bit errors in all cases.

Case Board Bit Error Rate Signal RMS SNR h3(t) SNR h2(t)
in % in mV in dB in dB

Des56 Core
Signature s1, Decoding with one pattern

A Spartan-3 0 - 3.6 -9.6
B Spartan-3 18.5 0.698 1.9 -
C Spartan-3 15.3 1.13 1.6 -
B Virtex-II 6.2 2.44 3.4 2.5
C Virtex-II 15.3 3.28 2.8 1.9

Signature s1, Decoding with four pattern
B Spartan-3 3.1 0.648 2.0 -
C Spartan-3 6.2 0.987 1.6 -
B Virtex-II 3.1 2.18 3.6 2.7
C Virtex-II 3.1 2.93 2.9 2.2

Table 3.17: The decoding results of the correlation detection method obtained for
the Des56 core. For decoding, the frequency component h3(t) of the
impulse response and in some cases additionally h2(t) are used.

173



3. IP Core Watermarking and Identification

The SNR values in Table 3.17 are small when compared to the other methods.
One reason for this is that only the used frequency component counts to the signal
and all other frequency components of the impulse response are calculated to the
noise. Furthermore, the above values of Table 3.17 are acquired by decoding only
one signature pattern, whereas the decoding for the other methods used the average
of many repeated signatures to lower the noise level. The values at the end of Table
3.17 correspond to a decoding which uses the average of four repeated signature
patterns.

Nevertheless, the BPSK and the enhanced robustness encoding method exceeds
this method in terms of the bit error rate for these boards. However, this method is
signature- and board-independent and can be further enhanced, e.g., for multiplex
methods where multiple cores can concurrently send signatures.

Multiplexing Approaches

For the problem of concurrently sending of different signatures, we investigate time
division multiplexing (TDM) and code division multiplexing (CDM) using optical
orthogonal codes as introduced in Section 3.4.7. To obtain experimental results, we
applied the correlation detection method. However, the other approaches might also
be adapted for concurrently sending of different signatures. We use the Des56, the
3DES, the keyboard controller, and the i2c core from opencores.org [Opec] for the
following experiments.

To evaluate TDM, we choose a different signature si and period time φi for each
core and embed the signatures with the corresponding sending logic into the cores.
The decoding results in Table 3.18 show that the bit error rate is similar to the correla-
tion method without multiplexing. It is further possible to use other encoding meth-
ods to enhance the detection. Unfortunately, the best decoding technique, BPSK,
is not suitable due to the long signature length, which results in higher and fewer
possible periods for sending different signatures.

Finally, the results for optical orthogonal code multiplexing are shown in Table
3.19. The cores and signatures are the same as in the evaluation of TDM. For this
experiment, we use 48-bit chip sequences. This means that for transmitting one bit
of the signature, we need 48 times longer than in the original correlation detection
method. Unfortunately, in these chip sequence family, only 8 optical orthogonal
sequences exist, which means that we are only able to watermark 8 different cores.
To get more optical orthogonal sequences, the chip must be extended by 6 digits
for each additional sequence. This might be a problem if every watermarked core
should get its own chip sequence to ensure correct decoding for all combinations
of different watermarked cores. Nevertheless, the results show that it is possible
to decode simultaneously sent signatures with this method. Note that the results
are obtained from decoding only one pattern of each signature. By averaging many
patterns to lower the noise, the results can be further improved.

174



3.5 Experimental Results

Bit Error Rate in %
Number of period Dec. one Dec. four

Core used SRLs Signature si time φi pattern pattern
Des56 40 0x153CA9F8 460 µs 9.4 3.1
3DES 64 0x128E92C1 500 µs 9.4 3.1

keyboard contr. 18 0x928CB241 420 µs 18.3 6.2
i2c 25 0x74DE4FC1 380 µs 21.3 6.2

Table 3.18: The decoding results for one pattern and for the average of four pattern
of the TDM method. All four cores are implemented in one design and
sending the corresponding signatures. Furthermore, the number of used
shift registered, converted from functional lookup tables are shown.

Number of Bit Error Rate in %
Core used SRLs Chip Sequence h3(t) h3(t)+h2(t)

Des56 40 0xC00000002000 21.9 15.6
3DES 64 0xA00000400000 15.6 12.5

keyboard contr. 18 0x900010000000 6.25 6.25
i2c 25 0x880400000000 18.75 18.75

Table 3.19: The results from applying the code division method using optical or-
thogonal codes by sending all signatures simultaneously. The bit error
rates are achieved from decoding only one signature pattern for each
core.

175



3. IP Core Watermarking and Identification

3.6 Summary

In this chapter, we have presented different approaches for watermarking and iden-
tification of IP cores. Our methods follow the strategy of an easy verification of the
watermark or the identification of the core in a bought product from an accused com-
pany without any further information. Netlist and HDL cores, which have a high
trade potential for embedded systems developers, are in the focus of our analysis. We
concentrated on FPGA technology which represents a dynamic and increasing mar-
ket. Nevertheless can the methods, especially the power watermarking techniques,
also be adapted to ASIC designs.

To establish the authorship in a bought product by watermarking or core identifi-
cation, we have discovered different new techniques, how information can be trans-
mitted from the embedded core to the outer world. In this work, we concentrated
on methods using the FPGA bitfile which can be extracted from the product and on
methods where the signature is transmitted over the power pins of the FPGA.

In Section 3.2, we adapt the theoretical general watermark approach from Li et
al. [LMS06] for IP core watermarking and identification and show possible threats
and attacks. Section 3.3 deals with IP core watermarking and identification methods
where the authorship is established by analysis of the extracted bitfile. The extraction
of lookup table contents of a binary bitfile was demonstrated for Xilinx Virtex-II and
Virtex-II Pro devices.

Subsequently, we have presented a new method to identify IP cores in FPGA bit-
files. Possible transformations of the mapping tools and the effect of the robustness
of the method were discussed. The experimental results show that it is possible to
identify a core inside a design with high probability. The identification process is
based on two parameters, namely the number of found lookup tables of the core in
the design and the mean distance to the core center. However, it must be taken into
account that lookup tables of the core may be removed by optimization tools, if a part
of the core is not used because the outputs are unconnected or constant values apply
to inputs.

Furthermore, methods towards an identification of HDL cores are introduced. The
first step is to identify two netlist cores to determine if they were generated from the
same HDL source. Experimental results are promising. However, for a complete
approach for HDL core identification in a product, there are some gaps which might
be stuffed by future research.

We introduced watermarking methods for bitfile and netlist cores which use a bit-
file verification strategy. For bitfile cores, unused lookup tables in used slices carry
the watermark and are easy to extract. For netlist cores, the watermark is inserted
into functional lookup table which have less inputs as the corresponding primitive
cell by restricting the reachable address space. By using functional lookup tables, the
watermarks are tightly integrated into the core and prevent the watermarked lookup
tables from being removed by either an attacker or synthesis and optimization tools.

176



3.6 Summary

Experimental results show that the watermarks are correctly extractable with high
probability and cause only low overhead.

In Section 3.4, we have presented new watermark techniques for IP cores where
the signature can be extracted easily over the power pins of the chip. The main idea
is that during a reset phase of a chip, a watermark circuit is responsible to emit a
characteristic power pattern sequence that may be measured by voltage fluctuations
on power pins. With these techniques, it is possible to decide with high confidence,
whether an IP core of a certain vendor is present on th FPGA or not. We have shown
how a watermark can be integrated into a core. For Xilinx FPGAs, it is possible to
integrate the watermark algorithm and the signature into the functionality of the core,
so it is hard to remove the watermark, and only very few additional resources are
required for control. We have investigated also the communication channel from the
power pattern generator inside the core to an oscilloscope which is used to measure
the voltage trace outside the FPGA. A basic algorithm was introduced to detect a
signature over the voltage trace of the FPGA, and experimental results have shown
that the functionality of the core is not altered. Also, we introduced an enhanced ro-
bustness technique, and a new decoding principle based on BPSK (Binary Phase Shift
Keying) modulation which may improve the decoding quality of the signature even
further. Finally, correlation detection was presented which uses special communica-
tion channel characteristics to avoid intersymbol interference. With these enhanced
decoding methods, we are able to decode a signature even if other cores are simulta-
neously active on the same hardware device and emitting watermark specific power
pattern simultaneously. We also introduced quality indicators to evaluate the result
of the decoded signature and prove the robustness of the techniques.

The experimental results have shown that decoding is possible in all test cases, but
it is possible to further improve the quality of the results if more lookup tables are
transformed into shift registers or if the recording time is extended. Additionally, the
signature width might be increased to insert error codes or cyclic redundancy check
(CRC) values.

If an FPGA design includes multiple watermarked cores, mutual interference be-
tween different signatures may occur, lowering the detection probability. We inves-
tigated different multiplexing methods for scenarios where multiple unsynchronized
cores may simultaneously send their signatures. Here, asynchronous time division
multiplexing (TDM) which uses different sending periods and code division multi-
plexing (CDM) which uses optical orthogonal codes are applicable.

In this chapter, we have presented many novel watermarking methods for different
kinds of cores. Their practical applicability was proven by experiments. For all
methods, we analyzed the strengths and weaknesses in case of removal of ambiguity
attacks. Nevertheless, this is a very interesting topic and research is far away from
being complete or finished.

177



3. IP Core Watermarking and Identification

178



4
Control Flow Checking

This chapter presents new techniques for control flow checking for embedded CPUs
and general IP cores. First, an introduction is given. The next section deals with
fault injection which is necessary for the verification of the proposed methods and
implementations. In Section 4.3 two novel methods for control flow checking are
explained, and Section 4.4 provides hardware architectures for the implementation
of the corresponding methods. A concrete example implementation with results on
memory and logic overhead for an FPGA target is presented in Section 4.5. Further-
more, a case study is provided and finally, the chapter is summarized.

4.1 Introduction and Scope

Robustness, reliability and security are essential requirements of today’s systems-
on-a-chip. Modules and their integration in a system have to be designed to be still
operational also in difficult and interference-prone situations as well as insecure en-
vironments.

In this chapter, the goal is to investigate methods to detect, analyze, and correct
transient and/or permanent errors (see Chapter 1) occurring in the control paths of
embedded RISC-CPUs or IP cores. The basic idea thereby is to define autonomously
behaving components that may resolve functional errors locally inside the core at
runtime (during the program execution or operation) and, i.e., prevent false instruc-
tions to be executed. This means that no faulty branch or jump instruction shall be
executed that would lead to a vulnerable or wrong program state (error-resilience).

179



4. Control Flow Checking

4.1.1 AIS Project Overview
Most of the methods presented in this chapter were developed during the AIS (Au-
tonomous Integrated Systems) project funded by the BMBF (German: Bundesmin-
isterium für Bildung und Forschung, Federal Ministry of Education and Research)
and the edaCentrum e.V.. The project researches a new approach for reliable MP-
SoCs (Multiprocessor-System-on-Chip) which deals with underlying unreliable com-
ponents. The approach proposes a new architecture which consists of three logical
layers (see Figure 4.1) [SBE+07b, SBE+07a, SBH+09].

Figure 4.1: On the right side, three behavior levels and the connections between
them are shown. On the left side, the flow of modeling and system ex-
ploration for autonomic components is depicted [SBE+07b, SBE+07a].

The Three Layer Model

The well known functional layer consists of usual functional elements, like CPUs,
special purpose cores, and memories, as well as communication structures, for exam-
ple buses.

On the autonomous layer, autonomous elements reside which are able to com-
municate to each other over an interconnection structure. The autonomous elements
shall provide monitoring, error detection, and avoidance of failures for the underlying

180



4.1 Introduction and Scope

functional elements. They consist of sensors, evaluators, and actuators which feature
the element to detect and analyze faults, errors, or disturbances of the corresponding
functional element. In case of an error, they trigger adequate reactions. The com-
bination of functional and autonomous elements transform the functional elements
into reliability-improved autonomous units. The functional and autonomous layers
are only logical layers; both are implemented on the same die.

Finally, the third layer is the autonomic operating system layer which consists of
an operating system, running on the different CPUs, which are able to evaluate the
information from the autonomous elements, and, if necessary, may migrate tasks.

4.1.2 AIS Work Packages Overview

To reach these goals AIS organized its research with two work packages (WP). A
new kind of system design methodology for autonomous integrated systems is ex-
plored in the first work package. The second work package introduces the design
of components to fulfill the previously named requirements on the component level.
With this new component design methodology and components of architecture will
be dimensioned with autonomous characteristics and provided for system design. In
a process of exploration and integration these components will be combined with an
autonomous behavior-based operating-system environment at system level. Beside
the hardware design, the new design process will include the operating system level
of the MPSoC.

System Level Techniques (WP1)

The exploration of system level techniques for increased error resiliency consists of
new design methods, an autonomous operating system, and performance analysis.
The research work on system level design methods consists of a transaction-level-
based system model which can be explored for the well known optimization goals
performance, area and power dissipation as well as the introduced new optimiza-
tion goal reliability. The focus lies on modeling of degeneration faults which are
accelerated by a huge number of temperature cycles caused by aggressive power
management [SSB09].

The distributed autonomous operating system efficiently exploits the restricted re-
sources of the MPSoC and provides communication and migration services for each
CPU. To achieve fault tolerance, the operating system generates replicas of services,
which come active in the case of a node failure. Also, reliability information from
the autonomous elements is analyzed and taken into account by the distribution of
services. If a node becomes unreliable, the services will be migrated to other nodes
[BSR09].

If error correction measures are active, they often have impact on the timing and
the performance of the system. The result may be system failures, if deadlines are

181



4. Control Flow Checking

missed and buffers may overflow or underflow. With a sophisticated fault model, the
impact of fault and error correction measures can be simulated and countermeasures
like traffic shaping or a better scheduling can be adapted [SE09].

Component Level Techniques (WP2)

The component level techniques work package of the AIS project analyzes and en-
hances exemplarily three common functional components of an MPSoC in order to
transform them into autonomous units. The three components are CPU data path,
CPU control path, and on-chip communication resources.

The data path of a modern RISC CPU consists of different pipeline stages. To
detect soft errors like single event upsets and transients, a shadow register approach
may be used [ABMF04]. The shadow registers are clocked with a delayed clock
signal whose delay is usually the duration of a soft error effect. To correct a detected
error, history registers are used. Using these registers, the system can perform a
rollback of one clock cycle to correct the error [BZS+06] (see also Section 4.5.5).

The reliability of the communication resources between different components is
as important as the reliability of the components itself. The necessary degree of
reliability depends highly on the type and amount of transferred data. For example,
audio or video streams require a lower level of error correction than program data,
where a single bit error can cause a system failure. A solution is that for different
categories of transferred data, different error detection and correction techniques can
be used. Furthermore, error correction measures on a higher level of the protocol
stack can be used. At the data link level, e.g., self-calibration and coding techniques
may be combined to dynamically change the coding strength at runtime [MWB+10].

The methods and techniques discussed in this chapter and elaborated during the
project as part of this dissertation consider the development of concepts for an au-
tonomous CPU control path that is able to guarantee the correct execution of the
control flow of a given CPU. The main task of the control logic in a CPU is to control
the program flow. The actual state of execution of a program is in general given by
the state of the program counter and the CPU registers. Usually, the next instruction
to fetch is given by an increment of the program counter, but also branches and jumps
may occur. Now, it is possible to extract information about the program flow from
program executable at compile-time and use this information to check the control
flow of the processor with a so called control flow checker unit at runtime (see Figure
4.2). If an error is detected, the autonomous control flow checker should be able to
initiate a re-execution of the control flow instruction immediately so to prevent a se-
curity bottleneck or guarantee reliable execution of the correct control flow. A quite
general definition of the control flow checking may be given as follows:

Definition 4.1 Control flow checking denotes the task of testing whether a sequence
of program counter values is correct with respect to a given program specification.

182



4.2 Fault Injection

Program Counter

Information
from the
compiled 

code

Embedded
Processor

Control Flow
Checker

 monitor

 error
correction

Figure 4.2: Concepts for autonomously interacting control flow checking that can
monitor the program counter of a given processor and detect false jumps
or branches based on information in the compiled code. Moreover, the
checker should also be able to correct false jumps and branches.

The main contribution in the context of control flow checking will be concepts,
methods, and implementations of novel techniques for autonomous control flow check-
ing with the following improvements over the state-of-the-art: Low overhead, detec-
tion of all errors which affect the control flow, and modularity.

Prior to presenting results, we discuss the problem of fault injection.

4.2 Fault Injection

This section discusses fault injection which is necessary for the simulation and veri-
fication of control flow checking methods. In order to evaluate error detection and
correction methods, we need to know the failure rate of the system. We can detect a
failure, if the output of the system is different from the specification (for example, a
wrong, unintended or neglected printf() output).

Usually, the MTTF (mean time to failure) is very high in embedded systems, so
we must think of fault injection techniques to stimulate faults. We can inject faults
naturally or through a fault model.

Natural faults can be injected in a radiation chamber, by applying extreme temper-
atures, or through a high excessive clock frequency. The advantage to inject faults
naturally is that we must not model theses faults. The disadvantage is that normally
not all types of fault can be covered and the equipment can be very expensive. Also, if
we use FPGAs to demonstrate our methods, the FPGA configuration may be affected
instead of the logic implemented in the FPGA.

The other option is to use a fault model to stimulate faults. These fault models
can either be used in RTL system simulation, or be implemented as a fault injection

183



4. Control Flow Checking

component on the chip. Fault injection methods which are using a fault model can be
categorized into two classes: Intentional fault injection and random fault injection.

4.2.1 Intentional Fault Injection

Using intentional fault injection, only faults which lead to an error are injected to
be detected by the error detection method. To test a new error detection method,
this is usually the first step. If the error detection method works correct, all errors
which are caused by the faults may be detected and, in the case of an error correction
method, also corrected. In the following, some examples of intentional fault injection
for common embedded systems are given:

Permanent Memory Errors

Permanent memory errors are the result of permanent or transient memory faults, for
example, degeneration, manufacturing faults, SET or SEU inside the memory. To in-
ject permanent errors into the memory in embedded systems, an in-circuit debugger
can be used. For example, the in-circuit debugger of the Leon3 [Gaib] system has
unlimited access to the system memory. The program code is written into the system
memory only once at startup. If the code is manipulated inside the memory, perma-
nent memory errors can be simulated. For testing control flow checking methods, it
is also easy to manipulate some bits in the control flow instruction in order to the pro-
gram counter jumps to an incorrect destination. For simulating permanent memory
faults, it is also possible to manipulate the executable file (the program binary).

At RTL simulation, the content of the system memory is often stored in a file. At
this level, it is also very easy to manipulate instructions.

Transient and Permanent On-Chip Errors

Transient and permanent errors in logic and registers inside IP cores can be injected
by altering values of signals. This can be done, for example, for permanent errors
(faults) by clamping the signal to ’0’ or ’1’ (stuck at fault). For transient errors,
signals can be XORed with an error signal (see Figure 4.3). If the error signal is high,
the value of the original signal is inverted. Other possibilities are to take an AND or
OR gate instead of the XOR gate to tie a signal up or down. So, SETs and SEUs can
be simulated.

The error signal can be read from a file in the case of RTL simulation, or can be
generated by a PRNG (pseudo random number generator) which can be, for example,
an LFSR (linear feedback shift register) or in the trivial case, a counter. Using a
counter, the error signal is set high if the counter has reached a specified value. These
techniques belong also to the class of intentional fault injection, because the time and

184



4.2 Fault Injection

place were the fault appears is intended. The advantage of the PRNG method is that
it is possible to run an RTL simulation and also implement it on the chip.

Transient On-Chip Faults

To model a SET in RTL simulation, the affected signal is set to high at a specific time
and after the usually time period which a SET affected the signal (usually far fewer
than a clock cycle), the signal is reset to the original value. With this technique, the
effects of a SET can be simulated. The trigger of the injection can also be achieved
by a PRNG. Some RTL simulators support the alteration of signals without changing
the VHDL model (for example the force command in Modelsim). This technique
can also be used to inject faults.

 

LFSR

fault trigger value

=

XOR
fault injection module

fast fault injection clock

correct signal
corrupted signal

Figure 4.3: A fault injection module. An LFSR is clocked by a fault injection clock
from outside the module or internally in case of an RTL simulation. If
the LFSR reaches a certain state, a fault is triggered. To inject faults, a
signal or net is split, and the fault injection module is inserted.

4.2.2 Random Fault Injection

To measure the reliability of a whole system, it is necessary to evaluate the MTTF.
This can be done by using random fault injection. Here, the time and the place (the
signal) where the fault is injected is randomly distributed. To compare the reliability
with and without error correction methods, two measurements are necessary, one
using the error correction module and one without. To get meaningful results, the
faults should be injected in both measurements at the same place and time, so the

185



4. Control Flow Checking

same fault injection configuration should be used. The measurement can be done
through simulations or in hardware on an FPGA platform.

To inject faults at random, we can use the following strategy: First, the core or the
system is synthesized and an EDIF netlist is written. A tool chooses signals (or nets
for EDIF netlists) randomly, and inserts fault injection modules (see Figure 4.3) as
black boxes. Afterwards, for simulation, the altered EDIF netlist is converted back to
an HDL simulation model. To inject faults on the hardware demonstrator, this step is
not necessary.

Inside the fault injection module, the original signal is combined with an error
signal using an XOR, AND or OR gate (same technique as in 4.2.1). The error signal
is generated either from a file reading module or by a PNRG. To inject a fault in an
FPGA demonstrator, only the PNRG method can be used. To inject faults at random
times, the PNRG can be initialized with different random values. To inject faults
with a PNRG at a higher time resolution than the clock frequency, a faster clock can
be used for the PNRG. If the PNRG reaches a specified value, a fault injection is
triggered. The probability Pf that a fault is injected in a PNRG clock cycle is

Pf =
1

2npnrg
, (4.1)

where npnrg is the bit width of the PNRG and the trigger value. With the bit width
npnrg and the number of fault injection modules, different fault probabilities can be
simulated.

4.3 Methods for Control Flow Checking
In this section, new methods for control flow checking in embedded processors and
IP cores are presented. First, a classification of control flow instructions in embedded
RISC processors is given. Subsequently, two different methodological concepts for
control flow checking of direct jumps and branches are introduced and possibilities to
check indirect jumps are discussed. Then, methods for repairing a corrupted program
path are proposed. Finally, methods for checking Finite State Machines (FSMs) in
general IP cores are analyzed.

4.3.1 Branches and Jumps

Control flow instructions (CFI) can be categorized into conditional branches and un-
conditional jumps. Conditional branches depend on the result of a logical or an arith-
metic operation. On most processor architectures, the arithmetic operation affects a
register, called integer condition codes (icc). This register consists of flags which
describe properties of the result, for example whether the result is greater than zero,
or negative. Conditional branches evaluate this register for the decision to take or not

186



4.3 Methods for Control Flow Checking

take the branch. The way of evaluation (e.g., branch if the zero flag is set) is statically
coded in the instruction itself, whereas the evaluation of the condition is performed
at runtime.

Both groups of control flow instructions can be further subdivided into direct
(static) and indirect (dynamic) jumps or branches. The destination of direct branches
or jumps is fixed at compile-time and is encoded into the jump or branch instruction
in an absolute or relative address. For indirect jumps or branches, the destination
address is determined during program execution. The destination address is given in
absolute or relative manner by either a register value or as the result of an operation
with registers or the result of an operation with a register and a constant value which
is encoded into the instruction.

In summary, four types of control flow instructions exist:

• (Unconditional) direct jumps (e.g., call, goto),

• (Conditional) direct branches (e.g., if .. then .. else),

• (Unconditional) indirect jumps (e.g., return from subroutine), and

• (Conditional) indirect branches1.

Furthermore, the class of unconditional indirect jumps can be subdivided into re-
turns from subroutine, register indirect calls and other jumps. A return from sub-
routine is an example of an indirect jump, because the program counter jumps to
the address where the routine is called from, and this address is only known at run-
time. Register indirect calls are calls where the address of the called subroutine is
determined at runtime. This usually happen in C++ if a virtual function is called.

Finally, jumps which are not triggered by an instruction can occur such as inter-
rupts and traps. The destinations of interrupts are typically given by the start address
of the main interrupt service routine, and so, interrupts belong to the class of direct
jumps. Traps occur on exception conditions (like divide by zero). Here, the program
redirects to the address of an exception handler, and so, traps can be treated as direct
jumps, too.

Table 4.1 presents an analysis of the quantity of these different types of branches
and jumps in the code on the SPARC V8 [SPA] architecture for the SPEC CINT2000
benchmark [SPE] for a given list of programs. As can be seen, indirect calls and
jumps occur relatively rarely as opposed to direct branches and jumps.

4.3.2 Methods for Checking Direct Jumps/Branches
In SoCs, a CPU often executes only a few specified programs over its lifetime. This
holds true particularly for embedded applications where the system is often only

1Note that conditional indirect branches are not supported by any instruction set architecture that we
know of.

187



4. Control Flow Checking

SPEC all direct indirect
program instructions branches jumps returns calls other jumps

gzip 19979 1426 599 111 4 0
gcc 566280 54791 22446 2236 140 273
vpr 51771 2764 2012 269 2 7
mcf 3881 288 82 26 0 0

crafty 82891 4814 4074 108 0 13
parser 36862 3189 1701 320 0 2

gap 236181 18733 4158 828 1262 5
vortex 174567 12537 8491 913 15 21
bzip2 12162 748 380 73 0 0
twolf 102899 5701 2060 189 0 2

Table 4.1: Accumulated number of all and different kinds of control flow instruc-
tions of benchmarks of the SPEC CINT2000 test suite [SPE] when com-
piled to the SPARC V8 [SPA] architecture.

programmed once, and the code is never changed during the lifetime of the product,
except for the update of the SoC with a new firmware and software. Furthermore, it
is well known that in many computational intensive problems, most of the execution
time is spent in only few subroutines. So, it is beneficial to analyze these subroutines
for branches and jumps statically.

If we assume that only direct jumps and branches exist in a given code segment,
we will show that we are able to verify the control flow of this code and guarantee
the correct execution of each direct control flow instruction as well as the (succes-
sively) linear execution of all the other instructions (the program counter value is
incremented by one word address after each instruction). To verify the correct execu-
tion of control flow instructions, we need to check whether the address of the control
flow instruction and the target address are correct. The program counter value before
and after the execution of a control flow instruction can be compared to these ad-
dresses. If there is a mismatch, an error signal is raised. To check a non control flow
instruction, the program counter before and after the execution of the instruction can
be compared. If the second one is not an increment of the first one, the error signal is
also raised.

In the following, we propose two alternative methods to obtain the correct ad-
dresses of control flow instructions of a given machine program and the correspond-
ing targets. The first method is called basic block or control flow method (CF). The
second method is called control flow instruction method (CFI).

188



4.3 Methods for Control Flow Checking

Control Flow Method

First, a given compiled machine code is separated into a set of basic blocks (BB). A
basic block is a sequence of code which is executed successively without any jumps
or branches except, possibly, at the end. The basic block can only be left at the end
of a block and can only be entered at the beginning. Only the last instruction can be
a jump or branch and only the first instruction can be a jump or branch destination.
The following instructions define the beginning of a basic block [TH07]:

• the first instruction in a program or segment,

• the instruction following a control flow instruction,

• the instruction which is a destination of a control flow instruction.

From this information, the control flow graph CFG(BB,T ) is built: Each node
BBi ∈ BB of the control flow graph represents a basic block. The nodes are sorted
with increasing start address of the corresponding basic block in ascending order.
Each edge t j ∈ T represents a transition of the control flow from one basic block to
another. If the last instruction of a basic block BBi is a direct branch instruction, the
basic block has two successors. One is the basic block next in the list BBi+1 (if the
branch is not taken), and to a basic block where the first instruction is the branch
destination (if the branch is taken). Jumps have only one successor, and if the last
instruction is not a control flow instruction, the successor basic block is always the
next basic block BBi+1. An example program and the corresponding CFG are shown
in Figure 4.4 which is separated into basic blocks.

With the given CFG, we have all information to check a sequence of program
counter values for correctness leading to the specification of a proper control flow
checker unit according to Figure 4.2 as follows: The information of the CFG can be
either used to directly define a finite state machine (FSM) to check the correctness
of a sequence of control flow instructions. Alternatively, an implementation using
micro-instructions of a micro-programmed circuit can be deducted from the CFG.

For an implementation of the checker unit as a micro-programmed circuit, the
information of the CFG can be stored inside memories. For each basic block, we
need to store the start and the end address and also the indices of the successor basic
blocks. The start address of each basic block is the end address of the previous basic
block incremented by one. To minimize the memory overhead, we can store only the
end address and a global start address. Also, we only need to store one successor of
a basic block for branches because if the branch is not taken, the basic block with the
next index (BBi+1) is always executed.

With these memory overhead improvements, we need three memory items for each
basic block inside the memory:

• One for the basic block end address (addr),

189



4. Control Flow Checking

A

B

C

D
a

b

c
1

2

3

4

5

6

 ...

 for (.. ; ..>.. ; ..)

 {
    ...
    if ( .. < .. )
    {
       ...
    }
    ...
 }
 ...

1

2

3

5

6

4

 ...
 cmp .. , ..
 bg <0x0c>  (a)
 ...
 cmp .. , ..
 ble <0x0a> (b)
 ...
 ...
 ...
 ...
 b <0x02>   (c)
 ...

0x01

0x03
0x02

0x04

0x06
0x05

0x07

0x09
0x08

0x0a

0x0c
0x0b

Figure 4.4: An example program code is given on the left hand side together with
the corresponding assembler code. The CFIs are denoted A to C, and
the CFI destination addresses a to c. D denotes the end of the program
or segment to be checked. Furthermore, the code is divided into ba-
sic blocks BBi, i = 1, . . . ,6. On the right hand side, the corresponding
control flow graph (CFG) is shown.

• one for the index of the branch taken successor basic block (suc), and

• a flag ( f lag) which identifies the type of the last instruction of the basic block.

The flag is needed to choose the right transition to the next basic block (see Figure
4.5). Note that if the last instruction of a basic block is not a CFI, the successor basic
block index (suc) is not needed.

The control flow checking algorithm is depicted in C language in Listing 4.1. For
checking the control flow, we need the current program counter (PC) and the follow-
ing program counter (nPC). The algorithm, implemented as a C function, returns 0
if the control flow for the program counter and its successor is correct, and −1 if
the control flow differs from its specification. Further, the index i of the current basic
block and the three memories (addr, suc, and f lag) are needed. The function addr(i)
returns the entry with index i of the memory addr.

By looking up the basic block end address in the addr memory (addr(i)), we know
when the basic block end is reached (Line 3). If the basic block end is not reached,
the address of the next program counter must be the current address incremented by
one (Line 23). If not, an error occurs. If the basic block end is reached, we must
distinguish between the different types of the last instruction inside the basic block
(Line 4, 9, and 17). If this is an unconditional jump, like a call, only the jump

190



4.3 Methods for Control Flow Checking

addr suc flag

0x01
0x03
0x06
0x09
0x0b
0x0c

-
6
5
-
2
-

N
B
B
N
J
N

index

1
2
3
4
5
6

Figure 4.5: Three memory areas are necessary to store required information for
each CFG. In the first column (addr), the address of the last instruc-
tion of the basic block is stored. The successor basic block for a taken
branch is stored in the second column (suc). In the third column ( f lag),
a flag is stored which identifies the type of the last instruction of a basic
block. An N denotes a non control flow instruction, whereas a B de-
notes a branch. This example memory stores the values for the example
program in Figure 4.4.

target must be checked for correctness. The corresponding target address is the start
address of the successor basic block, given by its index. To get this address, the
end address of the basic block with the previous index is fetched and the address is
incremented (BBi−1 +1 or Line 5). Furthermore, the current index i must be updated
to the successor basic block index (Line 6). If the last basic block instruction is
a conditional branch, two possible successor basic blocks exist. If the branch is
taken (Line 10), the handling is the same as for an unconditional jump. If the branch
is not taken (Line 13), the next program counter value should be the current value
incremented by one (nPC == PC + 1). Hence, the next instruction belongs to the
successive basic block and also the basic block index i must be updated (Line 14).
Finally, if the last instruction of a basic block is not a CFI, the checking behavior is
the same as on conditional branches, where the branch is not taken (Line 18).

One very similar approach of a CF method is described in [ARRJ06]. Here, the
CFG is implemented in hardware by a finite state machine and a lookup table for
resolving the control flow instruction addresses and indices (in memory). The disad-
vantage of this approach is that the checker unit must be synthesized new for each
program. Here, in our memory-based approach, only the contents of the memories
need to be reconfigured in order to check a new program.

191



4. Control Flow Checking

Listing 4.1 Control flow (CF) checking algorithm

1 int check_cf( PC, nPC) {
2 static int i; // index i
3 if (addr(i) == PC) { // PC is BB end
4 if (flag(i) == ’J’) { // uncond jump
5 if ((addr(suc(i)-1)+1) == nPC) { // correct?
6 i = suc(i);
7 return 0;
8 } else return -1;
9 } else if (flag(i) == ’B’) { // cond branch

10 if (((addr(suc(i)-1)+1) == nPC) { // branch taken
11 i = suc(i);
12 return 0;
13 } else if (PC +1 == nPC)) { // branch not taken
14 i++;
15 return 0;
16 } else return -1;
17 } else { // non CFI
18 if (PC +1 == nPC) { // correct?
19 i++;
20 return 0;
21 } else return -1;
22 }
23 } else { // non BB end
24 if (PC +1 == nPC) return 0; // correct?
25 else return -1;
26 }
27 }

Control Flow Instruction Method

In contrast to the control flow (CF) method, the control flow instruction (CFI) method
is based on storing control flow instructions instead of basic blocks. In case of direct
branches and jumps, the start and target address are known at compile-time. So, it
is possible to extract this information from the binary or the disassembled program
code by decoding the instructions. The control flow instructions are then sorted by
increasing addresses in ascending address order.

Then, the control flow instruction graph CFIG(CFI,T ) is built: Here, each control
flow instruction in the code which should be checked represents a node (CFIi ∈CFI).
Directed edges t j ∈ T of the CFIG denote transitions to the next following control
flow instruction in the given code.

Like in a CFG, each node can have a maximum of two successors: two for a
branch instruction and one in case of a jump instruction. For a branch instruction
CFIi, one successor is CFIi+1 (branch is not taken). The other successor of a direct
branch and jump instruction is CFIn which is the next control flow instruction in

192



4.3 Methods for Control Flow Checking

the program code after the branch destination (branch is taken). The CFIG of the
example program code form Figure 4.4 is shown on the left side of Figure 4.6. Note
that D is not a CFI, rather it refers to the end of the checking segment or function.

A

B

C

D

addr suc flag

0x03
0x06
0x0b
0x0c

D
C
A
-

B
B
J
-

index

A
B
C
D

target

0x0c
0x0a
0x02
-

Figure 4.6: For the example program code in Figure 4.4, the corresponding CFIG is
shown on the left hand side. The nodes correspond to the control flow
instructions, whereas the edges denote transitions. On the right hand
side, the four memory areas are shown which are necessary to store the
CFIG. In the addr memory, the address of the CFI is stored and the
corresponding target address is stored in the target column. In the third
column (suc), the successor CFI index is stored. Finally, the kind of
instruction is stored in the last column ( f lag).

Like in the CF method, the information of the CFIG can be used as a specification
of the correct branching behavior inside a control flow checker unit and implemented
either directly by an FSM or by micro-instructions of a micro-programmed circuit. In
case of a micro-programmed circuit implementation, we store for each CFI the start
and the target address in memory (addr and target in Figure 4.6). Also, the index of
the successor CFI must be stored inside this memory (suc in Figure 4.6). For direct
branches, we store the successor CFI for taken branches. If the branch is not taken,
the successor CFI is CFIi+1. Finally, we need a flag ( f lag) to distinguish between
the different CFI types.

A proper control flow instruction checking algorithm is shown in Listing 4.2. Like
the CF algorithm, the inputs are the current program counter PC and the next program
counter nPC and the output is a 0 in case of a correct control flow, or a −1 in case
of an error. The checking algorithm needs the four memory columns, introduced in
Figure 4.6 and the index i, which denotes the next CFI from the current program flow
position.

The algorithm is quite similar to the CF method, with the difference of accessing
the jump or branch targets and the missing check of basic block ends with a non

193



4. Control Flow Checking

Listing 4.2 Control flow instruction (CFI) checking algorithm

1 int check_cfi(PC, nPC) {
2 static int i; // index i
3 if (addr(i) == PC) { // PC is CFI
4 if (flag(i) == ’J’) { // uncond jump
5 if (target(i) == nPC) { // correct?
6 i = suc(i);
7 return 0;
8 } else return -1;
9 } else { // cond branch

10 if (target(i)) == nPC) { // branch taken
11 i = suc(i);
12 return 0;
13 } else if (PC +1 == nPC)) { // branch not taken
14 i++;
15 return 0;
16 } else return -1;
17 }
18 } else { // non CFI
19 if (PC +1 == nPC) return 0; // correct?
20 else return -1;
21 }
22 }

CFI. In Line 3, we check if the current executed instruction is a CFI. If it is not, the
linear successive program flow is checked (Line 18). If the current program counter
references to a CFI, we must also distinguish between the different types of CFIs
(Line 4 and 9). If the CFI is an unconditional jump, the next program counter should
be the value stored in the target memory column (target, Line 5). Also, we must
update the index i to the index of the successive CFI (suc(i), Line 6). If the current
CFI is a conditional branch, we must check if the branch is taken or not (Line 10 and
13). If the branch is taken, the same checking strategy as in the case of unconditional
jumps is used. If the branch is not taken, the next program counter must be the
current one, incremented by one (Line 14). In both cases, the index i must be recently
updated.

Memory Overhead Discussion

In the following, the different memory overheads of both methods shall be compared.
The example program in Figure 4.4 has 6 nodes in the CFG and 4 nodes in the CFIG.
For the CF method, we need to store only one address for a CFG node (basic block
end address addr) and the index of the successor block. In the CFI method, we
need to store two addresses (control flow instruction address addr and target address
target) and the index of the successor block for each CFIG node. Both methods also

194



4.3 Methods for Control Flow Checking

need bits to store the flags for distinguishing the different CFI or basic block types.
Usually, the index needs less bits than the addresses of instructions, so the CF method
uses less memory than the CFI method for this example.

For measuring the memory overhead for standard user programs, we use the pro-
grams from the SPEC CINT2000 [SPE] benchmark in the following (see Section
4.3.1). Table 4.2 shows the memory overhead caused to implement the CF and CFI
method for the SPEC CINT2000 benchmark when compiled to the 32-bit SPARC
V8 [SPA] architecture. The smallest possible index bit width is chosen for the given
program to calculate the memory overhead in bits.

Also, the memory overhead of the checking methods are compared with the mem-
ory usage of the test programs. The number of instructions of the test programs are
presented in Table 4.1. On the SPARC V8 architecture, each instruction needs 32-
bit of memory space. The additional memory overhead of the checker methods are
shown in absolute values and in percentage of the memory usage of the test program
in Table 4.2.

SPEC CF method CFI method
prog. # Ind. w. Overhead # Ind. w. Overhead

BB [bits] [bits] [%] CFI [bits] [bits] [%]
gzip 2615 12 109830 17.2 2140 12 154080 24.1
gcc 90819 17 4268493 23.6 79886 17 6151222 33.9
vpr 6029 13 259247 15.6 5054 13 368942 22.3
mcf 514 10 20560 16.6 398 9 27324 22.0

crafty 10205 14 449020 16.9 9009 14 666666 25.1
parser 6384 13 274512 23.3 5212 13 380476 32.3

gap 30484 15 1371780 18.1 24986 15 1873950 24.8
vortex 24978 15 1124010 20.1 21977 15 1648275 29.5
bzip2 1502 11 61582 15.8 1201 11 85271 21.9
twolf 9827 14 432388 13.1 7952 13 580496 17.6

Table 4.2: Required memory overhead of the programs of the SPEC CINT2000
benchmark in bits for the CF and CFI method. Also, the number of basic
blocks and control flow instructions, and the corresponding index width
is shown. The memory overhead is shown in absolute values and in per-
centage of the memory usage of the corresponding test program.

The results in Table 4.2 show that the CF method usually produces a lower memory
overhead than the CFI method and in a range of typically less than 20%. Note that
the shown overhead is for checking the whole program, with all subroutines which is
not always the best way. By restricting the checking to only few subroutines which
are executed very often and should have a high reliability and security, the memory
overhead can be significantly reduced.

195



4. Control Flow Checking

Instruction Integrity Checker

The instruction integrity checker (IIC) is an extension to the control flow method to
check all types of instructions, not only control flow instructions. A CRC (cyclic
redundancy check) or hash value may be calculated offline for all instructions inside
a basic block (at compile-time) and online inside the checker unit [MLS91]. The
offline calculated CRCs are stored inside an additional memory which extends the
other checker memories (see Figure 4.5). For each basic block, we store the end
address addr, the index of the next basic block suc (for a jump or a taken branch),
the flags f lag and additionally the CRC or hash value in the memory iic (instruction
integrity check).

The checker unit calculates a CRC from the instructions during the execution of
a basic block. At the last instruction of the basic block, the calculated CRC can be
compared with the offline calculated CRC, stored inside the iic memory. If the CRCs
are not equal, one or more bits are false in the instruction stream. This error can be
signaled to the operating system by an interrupt or the system might be rebooted by
a hardware reset. A re-execution or correction is not or hardly possible, because we
are able to detect an error inside a basic block only at the end of the block.

The instruction integrity checking is not applicable for the CFI method, because
there may exist more than one path to a CFI node, whereas in the CF method a basic
block is always traversed on the same path. As an example, consider the if clause
in the program in Figure 4.4. In the CF method, if the branch (if) is not taken, only
basic block 5 is traversed. If the branch is taken, basic blocks 4 and 5 is transversed,
but basic block 5 is executed on the same way as if the branch was not taken. Unlike
in the CFI method, if the branch is taken or not, always the CFI C is the successor.
However, through the way to C the program flow takes different paths, depending on
whether the branch is taken or not.

Walking through different paths to a node results in different CRC or hash values.
With the IIC method, we are only able to store one CRC or hash value in the addi-
tional memory column for one node. Surely, we could extend the memory to store a
value for each possible path, but this would result in a huge memory overhead, be-
cause we must reserve memory space for each node. This shows that the instruction
integrity checker is not practical to the CFI method.

Conclusions

Both introduced methods can only check direct branches and jumps, where start and
destination addresses can be extracted from the compiled code.

The advantage of the CF method is that in most cases, fewer additional memory
resources are needed than for the CFI method. The disadvantage of the CF method is
that memory handling is more difficult. On many processor architectures, the fastest
execution of one instruction is one clock cycle. Consider Algorithm 4.1, where we

196



4.3 Methods for Control Flow Checking

need access to the addr memory for each control flow instruction twice, once for the
end address of the basic block (Line 3) and once for the start address of the successor
basic block (Line 5 and 10). To achieve this in a single clock cycle, we need a
dual-port memory which is more expensive than single port memories. Furthermore,
for the second access to the memory, we need first the successor index from the
suc memory. To do both memory accesses in one clock cycle is nearly impossible
on high-clocked processors. Furthermore, the access to the suc memory cannot be
scheduled one clock cycle before, because if the current basic block consists only
of one instruction, and the previous basic block ends with a branch instruction, the
current index i depends on the result of the executed branch (taken or not). This shows
us that we need at least two clock cycles to check a transition in CFG. To ensure that
on a basic block end the correct start and destination addresses are available, we
might pre-read both values. This can also be done with a single ported addr memory.
On the first clock cycle, the basic block end address is read from the addr memory
and the successor basic block index is read from the suc memory. On the second
clock cycle, the target address is read from the addr. But this pre-read can only be
done if the basic block consists of more than one instruction. If a basic block consists
of only one instruction, we must stall the processor pipeline to verify the control flow
instruction to prevent possible erroneous behavior. Fortunately, basic blocks with
only one instruction are very rare.

The CFI method, on the other hand, requires only one memory access for each
memory. In Line 3 of the Algorithm 4.2, we access the addr memory to get the next
CFI address. In the same clock cycle we can access the target memory to fetch the
correct destination address (Line 5 and 10). With the CFI method, it is possible to
check a transition in the CFI graph with at least one clock cycle. Therefore, the CFI
method has no execution time overhead at all.

The advantages of the CFI method are that the checker unit is very simple and uses
only few logic resources. Also, we have no performance impact, because the correct
control flow instruction address and target address may be loaded from the memory
in a single clock cycle. The disadvantages are that usually more memory resources
are needed as for the CF method and that we are not able to check the integrity of non
control flow instructions.

Finally, both introduced concepts for control flow checking have the big advantage
over [ARRJ06] in being reprogrammable. Thus, only the memory of the control
flow checker unit needs to be reprogrammed so to check a different program. No
adjustments of the hardware are thus necessary. Moreover, we have no performance
impact for verify the control flow like the software-based methods.

4.3.3 Methods for Checking Indirect Jumps/Branches
Checking indirect jumps or branches is more difficult than direct branches or jumps,
because the jump destination cannot be determined from the compiled program code.

197



4. Control Flow Checking

In fact, according to the instruction specification of indirect jumps, all possible targets
which are inside the reachable area of the jump, are allowed. From the hardware
side, also a falsified indirect CFI which jumps to a wrong address is in accordance to
the processor specification. Almost all code injection attacks target this behavior by
manipulating indirect jump targets (the return stack). However, from the software or
logical side, there are certainly some restrictions of indirect jump targets: Compilers
use indirect jumps in a stylized manner which can be analyzed [LB94]. Almost all
indirect jumps which are compiled from a modern program language, like C, C++,
or Java, are returns from subroutine, or either belong to a switch case clause,
which is implemented using a jump table, or are indirect calls which are mainly used
in object-oriented languages, like C++ or Java. Indirect jumps which appear in hand-
written code are nearly impossible to analyze. Fortunately, hand-written assembler
code is used more and more rarely today.

The results reported in Table 4.1 show that returns from subroutine are clearly the
main usage of indirect jumps. Upon a call, the address of the back-jump is stored
inside a register or a memory stack, and on a return from subroutine, a back-jump to
this address is initiated.

Indirect jumps are also used for jump tables to efficiently implement switch
case clauses. Here, the alternative case targets are assembled in a jump table
which is addressed by the previously calculated operator. Furthermore, the targets
may be direct jumps which lead the control flow to the desired code segment (see
Figure 4.7). Another way to use a jump table is to call different functions, depending
on an input. Here, the alternative function pointers are stored inside a jump table,
whereas the index of the table is calculated with the input value. The address of the
desired function is fetched from the table and is called with an indirect jump. Note
that jump tables are not often used by compilers. Usually, switch case clauses
are translated to an if .. else if tree. But, depending on the compiler and
optimization parameters, indirect jumps might nevertheless occur. Indirect jumps
which result from jump table implementations are listed in Table 4.1 under the cate-
gory “other jumps”.

Finally, the indirect jumps are also used as indirect calls (see Table 4.1). During
indirect calls, the address of the target function is loaded inside a register and with an
indirect jump the function will be called. This occurs mainly in object-oriented pro-
gramming languages that support function pointers and virtual functions. However,
functions called by a jump table also use indirect calls.

The methods for checking indirect jumps that will be described in the following
can be categorized into methods using information which are gathered by analysis or
simulation at compile-time and methods which are only using runtime information.

198



4.3 Methods for Control Flow Checking

A
B
C

D

a

b

c

 jmp <%g1>
 b <a>
 b <b>
 b <c>
 ...

 ...
 code A
 b <d>

d  ...
 code B
 b <d>

 ...
 code C
 b <d>

D

D

switch (value) {
  case A: {
    code A
    break; }
  case B: {
    code B
    break; }
  case B: {
    code B
    break; }
  }
...

Figure 4.7: An pseudo C example code of a switch case clause is shown on
the left side. On the right side, a possible implementation in assembler
with a jump table and an indirect jump is depicted. The upper case
letters (A-D) are direct jump instructions and the corresponding targets
are depicted in lower case letters (a-d).

Methods Using Compile-time Information

If we are able to analyze the targets of indirect jumps at compile-time, we can extend
our hardware checking units to support multiple jump destinations for monitoring
program code that includes indirect jumps (see Section 4.4.2). Cifuentes and Em-
merik [CE99] present a method to identify indirect branch targets, if the indirect
jump is used within a jump table. Furthermore, simulations with different input stim-
uli may also be helpful to identify indirect jump targets. However, to get the possible
jump targets by simulation requires a high effort.

Another approach is to convert all indirect jumps into direct jumps and branches.
Bergstra and Middelburg [BM07] present a method to convert most indirect jumps
in a compiled program, including jump tables and returns, into direct jumps and
branches. The length of program code could be extremely increased and the perfor-
mance could be reduced by this method.

Methods Using Runtime Information

Methods using runtime information do not need information from the compiled code.
Here, we monitor the control flow at runtime to decide if the execution of the indirect
jump is correct or not.

Most indirect jumps are returns from subroutine (see Table 4.1). By executing the
return from subroutine instruction, the program counter jumps to the next address

199



4. Control Flow Checking

after the instruction, were the subroutine was called. The return address is typically
stored in a register inside the CPU so the return instruction is a special indirect jump.
Returns can be verified by implementing an additional hardware stack [KE91]. On a
call (direct or indirect), the return address is stored in the stack and when the return
instruction is executed, the back-jump can be verified.

Furthermore, indirect branch prediction units can be used to evaluate an indirect
jump address. Branch prediction is used in pipelined processors to avoid pipeline
stalls on branches. A prediction is made if a branch will be taken or not and the next
instructions will be fetched according to the prediction. If the prediction was right,
no stall occurs, if not, the pipeline must be stalled and the right instructions must be
fetched.

Indirect branch prediction units predict destinations of indirect jumps. The predic-
tions are made based on the jump behavior in the past [CHP97, SFF+02, JMKP07].
The result of an indirect branch predict unit might be used to evaluate how reliable
the jump destination is. If the prediction is correct, then the probability that this jump
is correct is high, but if the prediction is incorrect, the jump destination could be false.
A non-predicted indirect jump target has a lower trustworthiness. With this method,
no exact proposition can be made, but, for example, a higher level autonomic oper-
ating system can evaluate this jump confidentially to increase the reliability of the
whole system.

4.3.4 Methods for Handling a Corrupt Control Flow

In the sections above, methods for autonomous monitoring the control flow were
described. However, what can we do if an error is detected? There are three opportu-
nities:

• The faulty instruction can be re-executed.

• The CPU can be transferred into a secure state.

• The CPU can continue executing the code at a lower reliability level.

If an error in the control flow occurs, the faulty instruction might be re-executed
as follows: The error should be detected fast enough to ensure that the state of the
CPU is not altered by the erroneous instruction execution. To guarantee this, a pos-
sible checker unit must monitor the program counter in the first pipeline stage of a
given RISC CPU. Unfortunately, in most architectures, the jump or branch instruc-
tions need more than one cycle to execute. So, until the error is detected, some
other instructions after the jump might be executed already. After error detection,
the program counter is reset to a value previous to the error by looping back the pro-
gram counter value from a subsequent pipeline step or by a calculated value from the

200



4.3 Methods for Control Flow Checking

checker unit. The details of the re-execution process depend highly on the processor
architecture and design.

For example, the SPARC V8 architecture allows to execute one instruction after
a branch instruction or two instructions after a jump instruction before the branch
or jump is performed (see SPARC Architecture Manual [SPA]). If an error is de-
tected and the jump or branch instruction must be re-executed, also these following
instructions must be re-executed. It must also be ensured that these instructions can-
not alter the state (e.g., register content or memory operations) of the CPU before
re-execution. If the retry also fails, the instruction cache can be invalidated to ensure
that on the next re-execution, the instructions are transferred again from the memory.
If a predefined number of retries fail, the checker unit can lead the CPU into a secure
state. Also, the number of retries can be reported to the operating system to show
how reliable the CPU is.

Another possibility to react in the case of an error is to transfer the CPU into a
secure state. This state can be the reset state or any other state until the program was
executed correctly. After reaching this state, the operating system can initialize the
CPU with correct data and the CPU can start to execute from this clean state. The
invalidation of the data resulting from the erroneous task can be also done by the
operating system.

However, the CPU might continue executing the code at lower reliability level with
deactivated checker if the task has a low reliability requirement or is further checked
by another process.

In all cases, the operating system should be informed about the error and update
the internal reliability state of the CPU. If many errors occur, the CPU should only
be allowed to execute tasks with low reliability requirements or unimportant tasks, or
should finally be excluded by the dispatcher and shut down.

4.3.5 IP Core Control Flow Checking
Control paths in general hardware IPs can be checked also using redundant checker
units. These units are able to monitor the correct states and state transitions. In an
IP core, the data and control path are typically mixed together. Separation is not
easy, but elements like finite state machines (FSMs) or counters can be assigned to
the control paths. For registers spread over the whole core, it depends on the input
behavior. If the input of these registers is mainly dependent on the input data of the
core, these registers can be assigned to the data paths. If the states and the transitions
of these registers can be modeled by an FSM, these registers can be counted to the
control paths. One indication for the control path behavior can be, if the number of
valid states is restricted to a defined state space, which can be calculated offline. The
assignment of registers to the data or control paths is not always clear and must be
decided individually. Registers which have more control paths characteristics pre-
senting a state space, where not all states or transitions between states may be valid.

201



4. Control Flow Checking

The validity of these states and transitions can be checked using additional checker
units.

The control path registers can be grouped to so-called checking domains. A check-
ing domain can be, for example, an FSM, a counter, or individual registers which are
related. For each checking domain, it is reasonable to generate a separate checking
unit. These checking units can monitor the state only or the state and transitions of
the corresponding checking domain. If a checking unit detects an error, a controller
can signal the error to a higher level observation unit or operating system (see Figure
4.8).

IP Core

Checker
Unit

Checker
Unit

Error

Error
 Checking 

Domain

 Checking 
Domain

Figure 4.8: Different checking domains in a hardware IP core. Each checking do-
main has its own checker unit and an error signal.

The valid states and transitions of a checking domain can be specified at design or
synthesis time, and the checker unit can automatically be generated and inserted in
the core. Valid states of checking domains can be, for example, the states of an FSM
or a specified counter range. Valid transitions can be, for example, the transitions of
an FSM or the increment or decrement of a counter.

If an error occurs, the checker unit or the higher level observation unit may trigger
a reset of the IP core to prevent an erroneous state. The problem of this behavior is
that the current processed data get lost and the core must be re-initialized. Another
possibility is to run the core at a lower reliability level or invalidate the processed
data.

202



4.4 Architectures for Control Flow Checking

4.4 Architectures for Control Flow Checking

In this section, we present hardware architectures to implement the control flow
checking methods described in the last section.

First, architectures for methods of checking the control flow of embedded CPUs
are presented. These architectures are implemented in a module-based way so that
methods for checking different types of instructions can be easily combined. First,
in Section 4.4.1, architectures for checking direct jumps and branches as well as non
control flow instructions are presented. These two direct CFI checking architectures
provide basic modules which can be extended by other checking modules or inter-
faces. For indirect jumps, we provide extensions in Section 4.4.2 which use compile-
time information and a return stack architecture. Techniques to handle interrupts and
traps are implemented in a further extension. Also, techniques for checking the in-
tegrity of all instructions are presented. Finally, the extension to re-execute erroneous
instructions to correct a corrupt control flow is presented in Section 4.4.6. Our archi-
tecture concept for checking the control flow of embedded CPUs is modular in the
sense that the above coverage aspects can be traded off for implementation overhead.

Furthermore, architectures and techniques for checking general IP cores are intro-
duced in Section 4.4.8, and in Section 4.4.9 and 4.4.10, a fault coverage and area
overhead discussion of all proposed architectures and extensions are presented.

4.4.1 Handling Direct Jumps and Branches

In this section, we describe the basic architectures for the CF and CFI method intro-
duced in Section 4.3.2 to check the control flow of direct jumps and branches as well
as non control flow instructions. In particular, the CFG/CFIG information is mapped
to dedicated memories as it will be shown next.

To check the control flow, the checker must know the instruction’s program ad-
dress PCn and the address of the next instruction PCn+1 to execute. Since most CPU
architectures today are pipelined, these addresses can easily be taken from successive
pipeline stages of the program counter.

If no jump or branch instruction occurs, the next instruction address is typically
one instruction word higher than the value of the current program counter (PCn+1 =
PCn + 1). So, an incremented instruction address can be compared to the address
after the instruction (see comparator a in Figure 4.9 and 4.10). Otherwise, if the
current instruction is a direct jump or branch instruction, the next program counter is
the jump or branch destination if the branch is taken. If the branch is not taken, the
next address in the program code is the next instruction address.

In Section 4.3.2, we have shown how the correct address of direct jumps and
branches as well as the correct targets can be gathered from the program code. Here,
we present the architectures for the corresponding methods.

203



4. Control Flow Checking

An Architecture for the CFI Method

Each pair of control flow instruction address and target address is stored in two mem-
ories of the checker unit, one for the start and one for the target address (see Figure
4.9). The addresses of the branch or jump instructions are stored subsequently in the
start address memory (sAdrRam) and the corresponding targets in the jump address
memory (jAdrRam). Also, a checker unit program counter (CUPC) is needed which
points to the index of these memories where the address of the next direct branch
or jump is stored. The CUPC implements the index of the next CFI described in
Section 4.3.2. The start address in the START ADDR register is compared to the cur-
rent program counter to determine whether a branch or jump instruction is executed
(comparator b). In this case, the following program counter value is compared to
the address of the jump address RAM (TARGET ADDR register) to verify the correct
execution of the branch or the jump (comparator c). Now, the CUPC must point to
the next branch or jump address. This can be achieved by introducing a third mem-
ory (ctrlRam or the suc memory in Section 4.3.2) where the next CUPC is stored for
each branch or jump. The next CUPC value is a part of the ctrlRam and therefore
for the CTRL register. After successfully checking a CFI, the values for the next CFI
are loaded from all three memories into the corresponding registers: START ADDR,
TARGET ADDR, and the CTRL register. By reaching the next CFI (comparator b
delivers true), the CFI can be checked without any wait cycle.

If the CFI is a branch, it must also be determined if the branch is taken or not.
If the branch is taken, the next CUPC has the value which is stored in the ctrlRam.
If the branch is not taken, then the CUPC is incremented. To distinguish between
jumps and branches, we need additional memory space to store this information (see
the flags memory in Section 4.3.2). Here, we join the suc and flag memory columns
to one memory, called ctrlRam.

The CUPC and the ctrlRam present a micro-programmed architecture which im-
plements the CFIG. The CUPC can be compared with the index of the CFI. The
transitions of the CFIG are stored in the ctrlRam.

An Architecture for the CF Method

In the following, we describe an architecture for implementing the CF method intro-
duced in Section 4.3.2. To check the correct execution of control flow instructions,
we need the address of the currently executed instruction PCn and the addresses of
the next instruction to execute (PCn+1). Checking the right execution sequence of
program counter values is done similar to the CFI method (see Section 4.4.1). We
are also using three comparators and a control RAM (ctrlRam) with a control unit
program counter (CUPC) (see Figure 4.10).

Different from the previously proposed CFI method, however, the CF method is
using only two RAMs instead of three: the address RAM (adrRam) and the ctrl-

204



4.4 Architectures for Control Flow Checking

PCn

PCn+1

 a

 c

TARGET
ADDR

 b

START
ADDR

CTRL

jAdrRamsAdrRam ctrlRam

=

=

=

+

1

+

1

CUPCflags

INDEX

Figure 4.9: Architecture for a control flow checker unit with three memories and
three comparators a, b, and c. Also, the control unit program counter
(CUPC) is shown.

Ram. The end addresses of all basic blocks (BB) of the checked code sequence are
stored successively in the memory adrRam. A memory for the target addresses is not
needed, because the jump and branch targets can be calculated from the values in the
adrRam (see Section 4.3.2). The index (CUPC value) of the following basic block to
be executed after the currently executed basic block and some control flags are stored
in the memory ctrlRam. The control flags denote the kind of the last instruction of
the basic block. This can be either a CALL, BRANCH, RETURN, or a non control
flow instruction.

The correct address of a control flow instruction and its target address cannot eas-
ily be read out of the RAMs like in the case of the CFI method. The end of the
current basic block is stored in adrRam[CUPC], and the correct address of the fol-
lowing instruction is stored in adrRam[ctrlRam[CUPC]− 1] + 1. In contrast to the
CFI method, however, we need two accesses to the adrRam in order to obtain the
correct pair of instruction address and next instruction address at the end of a basic
block. However, the control flow check should be possible within one clock cycle to
have the ability to re-execute the instruction. To avoid a wait cycle, the correct pair
of address and next address for the end of the basic block can be read when entering
the basic block. Nevertheless, if the basic block consists of only one instruction, a
wait cycle needs to be introduced.

205



4. Control Flow Checking

PCn

PCn+1

 a

 c

TARGET
ADDR

 b

START
ADDR CTRL

adrRam ctrlRam

=

=

=

+

1

+

1

CUPCflags

INDEX

+

1

-
1

Figure 4.10: Architecture for control flow checking using the CF method. The two
RAMs, the comparators and the CUPC are shown.

Usually, the processors stall in many wait cycles due to cache misses or pipeline
stalls. However, an additional CPU wait cycle will only be produced for each basic
block which consists of only one single instruction and if no other wait cycles which
are not caused by the checker unit exists. So, it is not even sure that a basic block
with only one instruction will cause an additional wait cycle when applying the CF
method.

Activation and Deactivation of the Checker Unit

Besides the flags which indicate the different CFIs or basis block ends, also flags
which control the checker unit itself can be stored in the ctrlRam. So, the checker
unit can be activated or deactivated based on specific program addresses (see Figure
4.11). This can be done by storing the checking start or end address in the sAdrRam
for the CFI or in the adrRam for the CF method and setting the checking start or
end flag in the corresponding cell in the ctrlRam. These are additional entries in
the checker memories and do not represent a checking point. However, it is further
possible to use available checking point entries for the activation or deactivation. If
the program flow reaches the start address, the checker unit will be activated, or, if
the checking end address is reached, the checker unit deactivates itself. Furthermore,
not only global activation or deactivation can be achieved by setting these flags. Parts

206



4.4 Architectures for Control Flow Checking

of the program flow, e.g., non-critical sections or sections which cannot be checked
due to not supported indirect jumps, might be excluded from the checking process by
setting the checking start and end flags.

0x0000
.
.

0x01af
.
.
.
.

0x02c3
.
.
.

0x047c
.
.
.
.

0x0677

checked program path

program memory

0x01af
.

0x02c3
0x047c

.
0x0677

activate
.

deactivate
activate

.
deactivate

unchecked program path

(s)Adr
Ram ctrlRam

Figure 4.11: The checker unit can be activated or deactivated on certain program
addresses. If a specified address is reached, the checker unit enables
or disables itself.

4.4.2 Handling Indirect Jumps and Branches
Approaches to extend the proposed direct checking architectures for checking indi-
rect jumps are discussed in this section. First, an extension for checking indirect
returns from subroutine is presented. In the second part, architectures for checking
general indirect jumps are shown.

Checking Returns from a Subroutine

The major use of indirect jumps occurs in the form of returns from a subroutine,
see, e.g., Table 4.1. By executing a return from subroutine instruction, the program
counter jumps to the next address after the instruction from where the subroutine
was called. The return address is typically stored in a CPU register, so the return
instruction is a special indirect jump. Returns can be verified also in our approach by
introducing an additional hardware stack. Upon a call (direct or indirect), the return
address is stored in the stack. Once the return instruction is executed, the correctness
of the target address can be verified.

207



4. Control Flow Checking

To integrate the return stack extension into the basic architecture (see Figure 4.12),
we need the return stack itself, and an additional comparator d. Note that the return
extension can be used for both the CFI and CF basic architecture. The addresses of
return instructions are stored in the sAdrRam for the CFI method, or in the adrRam
for the CF method, together with the entries for checking direct jumps and branches.
An additional flag in the ctrlRam, the RETURN flag, identifies these entries as the
addresses of return instructions. The field in the jAdrRam for the CFI method, and
the field for the following CUPC (index) for both methods is left empty.

PCn

PCn+1

 a

 c

TARGET
ADDR

 b

START
ADDR CTRL

jAdrRamsAdrRam ctrlRam

=

=

=

+

1

+

1

CUPC

 d=return
Stack

flags

INDEX

Figure 4.12: The integration of the return stack extensions to the basis architecture
(in this figure the CFI architecture). Upon a call, the next instruction
address and the next CUPC must be stored on the stack. The return
address can be verified by the comparator d. Furthermore, the CUPC
stored in the stack must write back to the CUPC register to keep the
checker unit in sync.

Upon a call which is identified by the CALL flag, the next instruction-address and
the next CUPC value is stored in the stack. The comparator b and the RETURN flag
in the CTRL register identify a return instruction. With the help of comparator d, the
checker unit can verify the back-jump to the return destination. Finally, the CUPC
must be updated to the next checking point (next CFI instruction for the CFI method,

208



4.4 Architectures for Control Flow Checking

or the next BB end for the CF method) which is stored in the stack together with the
return target address.

With this architecture, we are able to check all returns from subroutine, even if the
subroutine is called from different locations in the program code. The depth of the
stack is, however, dependent on the maximum allowed nesting of function calls. If
the stack overflows, the checker unit is unable to check the following program flow.

Checking General Indirect Jumps

For checking general indirect jumps, the program code can be analyzed or simulated
to detect all possible destinations of all indirect jumps (see Section 4.3.3). These
destinations are marked as jump-able and can be stored in an additional Ram (iJmp-
Ram) inside the checker unit. Also, the addresses of all indirect jump instructions
are stored in the sAdrRam (for the CFI method) or adrRam (for the CF method).
In the corresponding ctrlRam, these addresses are marked as indirect jumps with an
additional flag (see Figure 4.13).

PCn

PCn+1

START
ADDR

sAdr
Ram

ctrl
Ram

CUPC

0x17f2 indirect
iJmpRam

TARG.
ADDR CUPC

Search for
PCn+1

found / not found

 b=

Figure 4.13: If an indirect jump instruction is reached, the control checker searches
in the iJmpRam the jump destination. If the destination is found, the
execution is correct.

If the program flow reaches an indirect jump, the checker unit searches the whole
iJmpRam and compares the content with the following program counter address. If
the address can be found, the execution is assumed allowed, and thus correct. In the
other case, the checker unit reports an error. In addition to the destination address,
the next value of the CUPC must be stored in the iJmpRam to synchronize the CUPC
with the real program counter to detect the next checking point correctly. Searching

209



4. Control Flow Checking

the destination address in the iJmpRam may take more than a single clock cycle. In
the worst case, all Ram rows must be read and compared, and for each row, one
clock cycle is needed. To speed up the search, a bisection method can be used if the
addresses in the iJmpRam are stored successively.

If the search operation takes place, the execution of the CPU must be halted to
enable a fast report of the error in order to correct it if necessary. The advantage of
this method is the flexibility in the number of different jump destinations which are
only limited by the number of rows of the memory iJmpRam. The disadvantages
are the slow execution of indirect jumps and the resulting performance impact on the
CPU.

Indirect jump analysis in [CHP97] shows that the number of indirect jump des-
tinations is small in most cases. So, the iJmpRam can be organized such that all
destinations of one indirect jump can be stored in one row (see Figure 4.14). A maxi-
mum number of stored destinations Dmax in a row must be defined. For each jump
destination, the corresponding CUPC value must also be stored in the iJmpRam. If
an indirect jump has more destinations than Dmax, only Dmax destinations can be ver-
ified, or an additional column in the iJmpRam is inserted, where a pointer of the row
with the next Dmax destinations is stored. The address of the indirect jump instruction
is stored in the sAdrRam or adrRam as in the first approach. Additionally to the indi-
rect jump flag, the address of the row from the iJmpRam with the jump destinations
is stored in the ctrlRam. If the program flow reaches an indirect jump, the state of the
next program counter is compared with all destinations in one row of the iJmpRam.
With parallel comparators, this can be done in a single clock cycle per row. If the next
state of the program counter equals to one destination, the execution of the indirect
jump is correct and CUPC is updated with the corresponding value form iJmpRam.
The advantages of this method are the fast verification of the jump destinations and
individual checking for each indirect jump. The disadvantage is a larger resource
overhead due to parallel comparators and additional memory cells.

4.4.3 Handling Interrupts and Traps
A jump may also occur in case of a trap or an interrupt. If there is an exception during
the execution of an instruction (e.g., a division by zero), a trap is triggered. Then,
a jump to a fixed or predefined address where the trap table is stored, is typically
induced. The different kinds of traps are distinguished in the trap table, and the
right trap service routine is called. After the successful execution of the trap service
routine, a back-jump to the instruction following the trap is initialized. Interrupts are
handled similarly with a fixed or predefined address for the interrupt table.

It is important to note that an interrupt can occur asynchronously with respect to
program execution. So, direct jumps to the base address for the trap and interrupt
table are always allowed. Now, this base address for the trap and interrupt table
can also be stored in the checker, and therefore, these jumps may be verified, too.

210



4.4 Architectures for Control Flow Checking

PCn+1

sAdr
Ram

ctrl
Ram

CUPC

0x17f2 iJmpAdr
iJmpRam

TARG.
ADDR CUPC TARG.

ADDR CUPC TARG.
ADDR CUPC

extend D
m

ax

Dmax columns

PCn START
ADDR

 b= = = =

Figure 4.14: A faster architecture for checking indirect jumps. With parallel mem-
ories and comparators, the checker can simultaneously verify up to
Dmax jump destinations in one clock cycle.

Also, back-jumps may be checked, because the return address is automatically stored
on the return stack (see Section 4.4.2). In some architectures, the base address for
the trap and/or interrupt table can be modified by a special register (e.g., SPARC
V8 architecture [SPA]). For these architectures, the checker unit must monitor this
register and adapt this changes if the register is altered.

If the checker unit should be active during the execution of the trap or interrupt
service routine, all CFIs of these routines must be analyzed and inserted into the
checker memories. Unfortunately, these service routines are “hot spots” for indirect
jumps which might be a problem if the current checker unit does not support these
instructions.

Another possibility is to automatically deactivate the checker unit at an interrupt
or trap and re-activate the unit at the back-jump. This can be done by monitoring
the program counter. If a jump to the trap or interrupt table is initiated, the checker
deactivates itself. The next instruction address of the program code and the corre-
sponding CUPC value is stored inside the return stack. The checker unit monitors
now the program counter until the back-jump address is reached. At this point, the
checker activates itself. Another possibility is to use signals from the instruction
pipeline which identify a trap or interrupt as well as the return from trap or interrupt.
If the trap signal is set, the checker unit is deactivated and if the return from trap is
set, the unit will be activated again. One problem of this architecture is that the back-
jump target from the service routine must be at the same position or one instruction

211



4. Control Flow Checking

word higher in the code where the trap or interrupt occurred. For example of context
switching in multi tasking operation systems, this is not true.

Multi tasking operating systems usually use software interrupts to implement con-
text switching. The currently executed task can be interrupted on every instruction,
and another task becomes active. The problem with the checking unit is that the re-
turn address from interrupt is not the address before the interrupt. Should the checker
unit work also in a multi tasking environment, then the context of the checker unit,
the CUPC and the return stack, must be adapted to the new task.

This can be done by the operating system or autonomously by the checker unit. For
storing the different checker unit contexts for each task, we need additional memory
space. This can be a local memory on chip or the main external memory of the
processor. The advantage of the local memory may be a fast switch between the
contexts. Nevertheless, the local memory limits the number of currently executed
tasks. The disadvantage of the main memory strategy may be a high latency penalty
for the data transfer which results in a high switching time of tasks.

Another opportunity is to allow only one task to be checked at a time. The checker
unit is disabled if the CPU executes another task and is enabled if the checked task is
continued. Using this strategy, the interrupt for context switching in the checked task
disables the checker unit and if the program flow jumps back to the checked task, the
checker unit will be re-activated. The advantage is that the content of the CUPC and
the return stack may not be changed at a context switch.

4.4.4 Checking Conditional Branches
So far, the correctness of the decision (for taking or not taking a branch) in case of
conditional branches has not been considered yet. It was only checked whether a
destination is one of the two possible targets according to the program specification.

The condition of a direct branch is usually evaluated in two phases or instructions
in RISC architectures. In the first phase, two values are usually compared by a com-
pare or subtract instruction (using the ALU) before the actual branch instruction is
processed. The operands in the first phase are only know at runtime. The result of this
operation affects the ALU flags (called integer condition codes (icc) in the SPARC
ISA). Typically, there are four flags: n,z,v,c. Flag n is set if the result is negative,
flag z is set if the result is zero, v is set if an overflow occurred on the calculation,
and c is the carry flag. During the second phase, the actual branch instruction is exe-
cuted. The condition encoded inside the instruction is evaluated using the ALU flags
to decide if a branch should be taken or not. For example, a branch on equal (BE)
instruction is taken if the flag z is set, or a branch on signed greater (BG) is taken if
f (z,n,v) = not(z or (n xor v)) evaluates to true.

Regardless of whether a temporal or permanent hardware fault occurs in the first
or in the second phase, the resulting branch target may be wrong. For example, all
branches might be wrongly taken because of a permanent fault on the evaluation of

212



4.4 Architectures for Control Flow Checking

the branch condition. Errors which occur in the first phase can be detected by data
path protection methods (see Section 4.5.5), while errors occurring in the second
phase can neither be handled with the basic control flow checking or with data path
protection methods. To check for these kinds of errors, conditions can be redundantly
decoded from the branch instructions which are then evaluated with the result flags of
the ALU or other modules (depending on the instruction). This additional decoding
of a branch condition can be used to crosscheck the executed branch. This exten-
sion for the above control flow checking methods allows the checker unit to address
only one destination address for the program counter. Figure 4.15 shows a possible
architecture for this extension.

redundant
decoder

execution
correct / not correct

ALU/coprocessor flagsPCn

PCn+1

 a
=

+

1

 c
=TARGET

ADDR

branch instruction

Figure 4.15: Redundant evaluation of the branching condition facilitates the detec-
tion of errors in the program counter logic and branch instruction de-
coder.

4.4.5 Instruction Integrity Checker

The instruction integrity checker (IIC) can be used in combination with the CF method
to check all types of instructions, not only control flow instructions. A CRC (cyclic
redundancy check) value is calculated for all instructions inside a basic block off-
line (at compile-time) and online inside the checker unit (see Section 4.3.2). The
offline calculated CRCs are stored inside an additional memory (crcRam, or iic in
Section 4.3.2) which extends the adrRam and ctrlRam (see Figure 4.16). For each
basic block, we store now the end address, the index of the next basic block (for a
jump or a taken branch), and additionally the CRC.

The checker unit calculates a CRC from the instructions during the execution of
a basic block. At the last instruction of the basic block, the calculated CRC can
be compared with the offline calculated CRC stored inside the crcRam (comparator

213



4. Control Flow Checking

PCn

PCn+1

 a

 c

TARGET
ADDR

 b

START
ADDR CTRL

adrRam ctrlRam

=

=

=

+

1
+

1

CUPCflags

INDEX

+

1

-

1

CRC

crcRam
CRC Calculator

 e
=

Inst

Figure 4.16: The basic CF architecture extended by an instruction integrity checker
is shown. For each basic block, a CRC value is calculated at compile-
time and stored in the crcRam. At runtime, a unit calculates the CRC
value of the executed instructions (input Inst). At the end of a basic
block, the value from the crcRam and the calculated value are com-
pared (comparator e).

e). After a successful compare, the online calculation of the CRC must be reset
to generate the correct value for the next basic block. If the CRCs are not equal,
one or more bits are false in the instruction stream. This error can be signaled to the
operating system by an interrupt or the system might be rebooted by a hardware reset.
A re-execution is not possible, because we are able to detect only an error inside a
basic block at the end of the block. The error detection latency would be too high to
correct this error by re-execution.

The CRC value bit width is important for the robustness of the error detection
against multiple bit errors. On the other hand, a large CRC value causes a higher area
and memory overhead.

214



4.4 Architectures for Control Flow Checking

4.4.6 Repairing a Corrupt Control Flow by Re-Execution

If an erroneous control flow caused by a corrupt instruction is detected, the corre-
sponding instruction must be annulled and re-executed. The problem is that the en-
trance of the erroneous instruction in the processor pipeline and the observable effect
of the corrupted control flow do not happen at the same time. In fact, many clock
cycles can elapse between both events. Furthermore, due to faults in the proces-
sor pipeline, the instruction might become erroneous inside the pipeline after it was
fetched from the memory. In both cases, many other instructions could enter the
processor pipeline after the corrupted instruction.

The first step after the detection of the erroneous control flow is to stall the respon-
sible instruction and all following instructions in the pipeline at the corresponding
pipeline stages. Many processor architectures support an annul flag which prevents
the corresponding instructions from execution. This flag can be used for the erro-
neous as well as the following instruction in the pipeline. This should be done fast
enough to prevent the erroneous control flow to alter the state of the processor, e.g,
write registers, or initiate memory write accesses. Fortunately, these actions happen
usually at the last pipeline stage. Therefore, the detection of the corrupted control
flow should be as fast as possible which results that the checker unit should monitor
the control flow on the first pipeline stage.

The second step is to insert the address of the corrupted instruction at the first
pipeline stage which results in a re-fetch and re-execution of the instruction. To
identify the responsible instruction and the corresponding instruction address, the
information of the stored graph inside the checker memories can be used.

The example program in Figure 4.17 demonstrates the proposed re-execution tech-
nique. On the left side, let the branch instruction at address 0x4d be responsible for
a wrong branch target (0xde). The checker unit cannot recognize this error before
the corrupt instruction reaches the third pipeline stage. Therefore, the branch and the
following two instructions are annulled by setting a corresponding annul flag A and
the branch instruction address is forwarded to the pipeline by the checker unit to fetch
the branch instruction again. During the second try shown on the right side, let the
branch be executed correctly. Furthermore, the previously annulled instructions have
now moved to later pipeline stages, but the annul bit prevents these instructions from
execution.

To support this re-execution technique by the basic checker architectures, we need
two additional outputs of the checker unit. The first one is the instruction address
(CPCREEXPC) from where the re-execution should start. The second output (CPC-
REEXCODE) tells the processor pipeline how many instructions should be annulled.
The CPCREEXPC signal is derived from the STARTADDR register, if the the erro-
neous instruction is an CFI. If not, the signal is taken from a history register, which
stores the program counter value of the previous cycle (see Figure 4.18). The number
of annulled instructions (CPCREEXCODE) can be derived from the checker flags

215



4. Control Flow Checking

 0xde | mul <d> <e>

 0x4d | b <0xab>

Memory Inst

 0x4e | mov <a> <c> 

 0x4b | ld <0xf7> <a>

 0x4a | mov <a> <b>

 0x4c | st <a> <0xfe>

Checker
Unit

 PCn+1

 PCn

A

A

A

-

-

-

 0x4d

 0xde | mul <d> <e>

 0x4d | b <0xab>

 0x4e | mov <a> <c> 

 0x4e | mov <a> <c>

 0x4d | b <0xab>

 0xab | nopChecker
Unit

 PCn+1

 PCn

A

A

A

-

-

-

Figure 4.17: A processor pipeline with checker unit and an example program be-
fore (left side) and after (right side) the successful re-execution of an
erroneous instruction to demonstrate this technique. Each instruction
carries in each pipeline stage an additional annul flag which can be set
(A) or not (-) to prevent this instruction from being executed. Note
that the instruction set architecture used in this example has a delayed
control flow concept. This means that the branch is executed after a
delay of a single instruction (see Section 4.5.1 for the SPARC delayed
control flow concept).

which denote the type of the next checking point instruction (CFI instruction or BB
end) as well as the output of comparator b which identifies a checking point. Note
that the re-execution technique can be adapted for the CF as well as for the CFI basic
architecture.

Further, the processor pipeline must be extended to handle the re-execution from
the CPCREEXPC address as well as the invalidation of the corresponding instruc-
tions. The number of instructions to be annulled depends on the erroneous instruction
and the processor architecture and implementation.

4.4.7 Bus Interface

By introducing an additional bus interface from the checker memories to the system
bus, the checker memory contents become accessible also from the processor side.
This can be very useful for debugging or for updating the memory content, if a new
software program is loaded into the system. The disadvantage of this concept is that
also malicious programs might get access to the checker memories, and thus open a
side channel for security attacks.

216



4.4 Architectures for Control Flow Checking

PCn

PCn+1

 a

 c

TARGET
ADDR

 b

START
ADDR

CTRL

jAdrRamsAdrRam ctrlRam

=

=

=

+

1

+

1

CUPCflags

INDEX

+

1

histPC

CPCREEXCODE

CPCREEXPC

Figure 4.18: The basic CFI architecture with the re-execution extension. The two
additional outputs (CPCREXPC and CPCREEXCODE) are shown.
Note, the re-execution extensions work also with the CF basis archi-
tecture as well as with the return stack extension.

Another fact is that internal on-chip memory is very expensive (see Section 1.2.6).
If the checker unit has a bus interface, the contents or part of the content of the
checker memory may also be stored in the external system memory. Only the con-
tent for checking the current part of the program (e.g., the current function or a
set of functions which are currently in use) may therefore be held in the internal
checker memories. If the checker needs information which is not stored inside the
local checker memories, the checker can generate a page-fault-like event to reload
the checker memories with the needed contents. This concept of caching may reduce
the amount of internal memory overhead significantly.

To have access to an existing system memory, the checker memories need a bus
interface. The architecture and implementation of the bus interface depends highly
on the used bus protocol.

217



4. Control Flow Checking

4.4.8 IP Core Control Flow Checking

In Section 4.3.5, possibilities for identifying control path registers in general IP cores
are shown. In this section, we concentrate on checking finite state machines (FSMs)
in general and counters in control paths when specified by FSMs.

An FSM is defined as a 6-tuple (ΣM,ΓM,SM,s0M,δM,ωM), where ΣM is the input
alphabet, ΓM is the output alphabet, SM is a finite set of states, s0M is the initial state,
δM is the state-transition function, and ωM is the output function. The internal state
qM ∈ SM is stored in a state register. The transitions between the states are controlled
by the state-transition function δM : SM×ΣM → SM which uses the current state qM
and the current inputs xM ∈ ΣM into the FSM to calculate the next state δ (qM,xM).
This function is implemented using combinatorial logic. If a Moore model is used, the
outputs ΓM depend only on the states: ωM : SM→ ΓM. Whereas the output of a Mealy
machine depends on the states and the inputs: ωM : SM × ΣM → ΓM. Faults (e.g.,
SEU, SET) inside an FSM can lead to an erroneous state or to erroneous transitions
between the states. The general IP core checking methods can check if a state qM is
valid, i.e., qM ∈ SM. Furthermore, it checks for a given next state qMn if this state is
valid according to δM, i.e., ∃xM ∈ ΣM : δM(qMn−1,xM) = qMn. It does not check the
condition and the timing depending on the inputs xM when a state is entered or left.

A counter is a specific FSM, more precisely the implementation of a specific Moore
automaton. The state qM is given uniquely by the counter value. The states are
sequentially ordered in a chain, which can be traversed in any direction. Here, we
can also check the states (the counter range) and the transitions between the states
(counting up/down).

Checking the State

An FSM has a finite number of states qM ∈ SM. These states are encoded in a specified
manner into a state vector, which can be implemented and stored by a register. There
exist many different encodings, e.g., gray, sequential, or 1-hot coding. Depending on
the encoding, and the available bits for the state register, the number of presentable
states can be higher than the actually used states. This means that not all possible
states which can be represented by an n-bit register are valid.

To check if a state encoded into a register value is valid, we can use a combinatorial
logic which has the state register qM as input and an error signal as output. If the
state is valid, i.e., qM ∈ SM, the output is ’0’, otherwise ’1’. A straight forward
implementation of this logic is a lookup table, where all invalid states are marked
with a ’1’ as output. One problem with this technique is that an erroneous transition
from one valid state to an other valid state is not detected. If the state vector has a
normal binary encoding, the number of invalid state encoding is low which may lead
to many undetected erroneous transitions.

218



4.4 Architectures for Control Flow Checking

The valid range for counter values can also be restricted. A checker unit can mon-
itor the counter value and checks if this value is inside the specified range. This can
also be done using a lookup table, where all invalid states are marked, but here an
implementation with comparators is more resource-efficient.

Checking the Transitions

The transitions between the states can be checked by registering the current state qMn
into a second state register with one clock cycle delay qMn−1 (see Figure 4.19). Look-
ing at both registers, we see the transition from the old to the new state: qMn−1→ qMn.
Now, both registers can be used as an input for a combinatorial logic which deter-
mines if the transition is correct (∃xM ∈ ΣM : δM(qMn−1,xM) = qMn) or not (@xM ∈
ΣM : δM(qMn−1,xM) = qMn). Straight forward, this can also be done using a lookup
table. Both inputs from the registers are connected together to become an new bit
vector which has twice the size of the register. In the lookup table, all correct transi-
tions as well as correct states for the new and the old value are marked with a ’0’ as
an error free output. The rest is marked with a ’1’ which indicates an error.

STATE Register q
Mn

Error

STATE Registered q
Mn-1

Input & 
Transition
Logic δ

M

Output Logic
 ω

M

Checker Logic

Outputs

Inputs

Checker Unit

Figure 4.19: A finite state machine (FSM) is shown with a state register, transition
and output logic. The checker unit on the right side is able to check
the correctness of states as well as the correctness of state transitions.
This can be done by registering the state register inside the checker
unit to monitor the state change. If the checker logic detects an error,
the corresponding signal goes high.

219



4. Control Flow Checking

For checking the transitions of counters, the same technique can be used. How-
ever, we can see here that a lookup table implementation is very resource consuming.
Implementing this function with a redundant counter saves more resources.

Implementation Issues

Implementing the checker logic with unoptimized lookup tables requires a very large
resource overhead for larger state register width. For an n-bit state register, the max-
imal number of lookup table entries nE for checking only the correct state is:

nE = 2n (4.2)

For checking the correct states and the transitions the maximal number of required
lookup table entries is:

nE = 22n (4.3)

For checking an 8-bit state register, we thus require at least 256 lookup table entries
(1-bit correct/not correct) for checking the state and 65536 entries for checking the
states and the transitions for correctness. This overhead is quite huge. But depending
on the number of available used states there is also a large optimization potential. If
we look at a 1-hot encoding, we can check the state if we add all bits from the state
register together and check if the result is one. This can be done for the 8-bit state
register with a extremely low overhead than with a lookup table with 256 entries.
Furthermore, the number of valid transitions is usually very low in contrast to all
possible (valid + invalid) transitions. This has also a high optimization potential
to bring the resource overhead down. Fortunately, synthesis tools are excellently
suitable for optimizing this combinatorial problem.

One problem of the implementation is that the added checker unit represents re-
dundant logic according to the synthesis tools which is usually removed due to area
optimization. Also, the kind of state encoding as well as the proper encoding of each
state of the FSM is usually decided by the synthesis tool. To handle these problems,
the checker logic and the functional IP core shall be synthesized separately.

First, the IP core is synthesized without checker units. The different control paths
of the IP core which should be checked can now be chosen and the corresponding
state encoding scheme as well as the proper state coding can be taken from the syn-
thesis report. Furthermore, a specification of the correct state transitions for the FSMs
and/or the valid range for counters as well as the counter type (up, down, up/down)
for generation of the checker unit is needed. For each checked control path a separate
checker unit is instantiated. These checker units can now be optimized and translated
into a netlist by a synthesis tool. Finally, in the IP core netlist, we must insert black
box instances which ingest later the checker units and connect the state or counter

220



4.4 Architectures for Control Flow Checking

register to these black boxes as well as the error signal to an IP core output. The IP
core and the checker units will be integrated in the following implementation steps.

In summary, this method and architecture can check the state and the state transi-
tions of FSMs and counters embedded in general IP cores. Only errors which result
in an erroneous state or take an erroneous transition can be detected. The robustness
of an FSM can be increased by using a state encoding, e.g., 1-hot encoding, where
errors lead to an erroneous state in most cases. The overhead depends on the register
bit width as well as on the encoding type. By using different checking domains with
different configurations (only checking states or states and transitions), checking the
control paths in hardware IPs is modular and widely parametrical. Furthermore, a
design flow to implement these methods was shown.

4.4.9 Fault Coverage

In the previous sections, the building blocks of an architecture which is able to check
and correct the control flow of CPU programs for RISC processors were introduced.
The cadre of this architecture is based on one of the two alternative basic modules for
the CF and CFI method (see Section 4.4.1). These methods can be extended by the
return stack and/or the other indirect checking architectures shown in Section 4.4.2 to
also support the checking of indirect jumps as well as methods to support and check
interrupts and traps (see Section 4.4.3).

Obviously, which different types of faults can be detected depends heavily on the
proposed error detection method. Fault coverage refers to the percentage of faults
which can be detected from a defined set of faults. With the instruction integrity
checker (see Section 4.4.5) and the conditional branch checker extensions (see Sec-
tion 4.4.4), we are able to detect more errors and faults than using the basic methods.
Finally, the re-execution extension (see Section 4.4.6) gives us the possibility to cor-
rect errors which lead, if uncorrected, to an erroneous control flow.

The basic architecture of the CFI and CF method described in Section 4.4.1 is able
to detect the following types of faults:

• All permanent and transient faults in instruction memory, memory bus, mem-
ory controller, instruction cache instruction register, and logic between differ-
ent pipelined instruction registers, if the instruction affects the control flow.

• All permanent and transient faults which lead to errors in the program counter
register, the logic between different pipelined program counter registers as well
as the logic of the calculation of the next program counter.

• Security flaws which affect the control flow (e.g., stack and heap smashing
attacks) with the return stack extension.

221



4. Control Flow Checking

• Design faults in hardware which can be detected through diversity of the pro-
cessor core and the checker unit, and in software caused by diversity between
the compiled program and the checker unit entries (e.g., unauthorized software
update).

Using the CF-method with the additional instruction integrity checker extension
presented in Section 4.4.5, we can further detect the following types of faults besides
those mentioned above:

• All permanent and transient faults leading to errors in the instruction mem-
ory, memory bus, memory controller, instruction cache instruction register, and
logic between different pipelined instruction registers which appear before the
pipeline step where the instruction integrity checker is instantiated.

Furthermore, using the conditional branch checker extensions (see Section 4.4.4),
we are able to detect the following faults besides the previously mentioned faults
above:

• All permanent and transient faults which lead to a false decoding of branch
instructions which results in an erroneous decision of taking or not taking a
branch.

The general IP checker method is able to detect faults in FSMs and counters which
lead to invalid states or to erroneous, unspecified transitions. Note that the timing
behavior of the transition and the conditions are not checked.

4.4.10 Overhead Discussion

To evaluate the control flow checking architectures, it is necessary to consider the
required overhead. In this section, mainly the area and execution time overheads are
in focus. The memory overhead for the different basic architectures were already dis-
cussed in Section 4.4.1. To have a technology independent area overhead discussion,
we decided to use primitive components (see Section 1.2.6) to describe the overhead.

Overhead of the Basic Architectures

The overhead in terms of primitive components of the basis architecture of the CFI
method (see Section 4.4.1) is:

• 1×30-bit adder,

• 1×ncupc-bit adder,

• 3×30-bit comparator,

222



4.4 Architectures for Control Flow Checking

• 11 flip-flops,

where ncupc denotes to the CUPC width.
Additionally, three block memories and some resources for the control logic which

cannot be measured in terms of primitive components are required. Also, the bit
width of the adders and the flip-flops can alter slightly due to different memory sizes.
An important hint of complexity is the number of checker memory entries which is
dependent on the index and therefore the CUPC width (ncupc) to address the memo-
ries. Furthermore, the CUPC width also has impact on the word width of the ctrlRam.
The number of necessary checker memory entries depends on the checked program
and the number of checked functions. For both methods, the number of necessary
checker entries for the SPEC CINT2000 benchmark programs, if all functions are
checked, is shown in Table 4.2 in Section 4.3.2.

The area overhead of the basic architecture using the CF method (see Section 4.4.1)
is very similar to the values above. However, due to more complex control logic (two
accesses to the RAM), the area overhead of the CF method is always higher than the
overhead of the CFI method.

The resource requirements in terms of primitive components of the CF method are:

• 2×30-bit adder,

• 2×ncupc-bit adder,

• 3×30-bit comparators,

• 44 flip-flops.

Additionally, two local memories and additional resources for the control logic
are required. Alike the CFI method, the bit width of the adders and the number of
flip-flops can vary slightly due to different memory sizes.

The memory overhead of the CF method has already been discussed in Section
4.3.2. In summary, the CF method usually requires fewer memory resources for the
same program than the CFI method.

If the program code contains basic blocks consisting of only one instruction, there
might be an extra CPU time penalty. Usually, the processors stall in many wait cycles
due to cache misses or pipeline stalls. However, an additional CPU wait cycle will
only be produced for a basic block which consists of only one instruction and if no
other wait cycles exist, which are not caused by the checker unit. Hence, it is not even
sure that a basic block with only one instruction will actually cause an additional wait
cycle if the CF method is used.

We have introduced several extensions for both basic methods of control flow
checking. The overhead of these extensions is discussed next.

223



4. Control Flow Checking

Overhead of the Return Stack

Returns from subroutine can be verified by introducing an additional hardware stack.
Upon a call (direct or indirect), the return address may be stored on the stack. When
the return instruction is executed, the target address can be verified.

The caused memory overhead depends on the depth of the stack. To store an in-
struction address, we need 30-bits for a 32-bit processor. The last 2 bits address the
individual bytes inside an instruction and do not need to be stored on the stack. Ad-
ditionally, we must store the corresponding CUPC value to denote the next checking
point in case of a return instruction. Using a 32-bit processor, the memory overhead
is therefore (30 bit+ncupc)×dstack, where dstack is the stack depth.

Also, the return stack causes additional area overhead for control logic which de-
pends on the implementation.

Overhead of Indirect Jump Extensions

The memory overhead of the extensions for checking indirect jumps as introduced in
Section 4.4.2 depends on the number of the indirect jump memory (iJmpRam) entries
and the width of the CUPC (checker unit program counter) register ncupc. For each
indirect jump which we would like to check in the code, we need one memory row in
both methods. The total memory overhead for the first method for a 32-bit processor
is therefore in bits:

(30 bit +ncupc)×nT (4.4)

where nT denotes to the number of all indirect jump targets.
For the second method in Section 4.4.2, the total memory overhead in bits is:

((30 bit +ncupc)×Dmax +ncupc)×niJ (4.5)

where niJ denotes to the number of all indirect jumps.
The area overhead in terms of primitive components for the first method is there-

fore:

• min. 1×30-bit comparator and
• logic for searching the indirect jump (e.g., bisection method).

The area overhead for the second method is:

• Dmax×30-bit comparators,
• 1×ncupc-bit Dmax to 1 multiplexer, and

224



4.4 Architectures for Control Flow Checking

• control logic.

The execution time overhead for the first methods depends on the search algorithm.
Using a bisection method, we need n+1 clock cycles for searching an indirect jump
target among 2n entries. During this time, the processor must be stalled if we want to
have the possibility to re-execute an indirect jump if an error has occurred.

In the second method, we are able to check Dmax targets during one single clock
cycle. If the indirect jump has more then Dmax possible targets, we produce an ex-
ecution time overhead. The overhead in terms of clock cycles can be determined
as

⌊ nt

Dmax

⌋
, (4.6)

where nt is the number of possible targets of an indirect jump.

Overhead of the Interrupt and Trap Extension

The interrupt and trap extension (see Section 4.4.3) enhances the basic method to
support interrupts and traps. The easiest way is to evaluate signals from the processor
pipeline which indicate if an interrupt or a trap occurs or if the interrupt or traps
service routine is left to continue the execution of the checked function (return from
interrupt or trap). In this case, we only need some additional control logic to evaluate
these signals to deactivate or activate the checker unit.

If also the jump to and from the service routine should be checked, we need a
register where the address of the service routine is stored. Also a comparator is
needed which identifies if a trap occurs. The back-jump can be verified using the
return stack. Here, the trap signaling from the processor pipeline is not obligatory,
but both techniques can be combined. The additional area overhead is therefore:

• 1×30-bit register,

• 1×30-bit comparator,

• control logic.

If the checker unit should check more than one thread in a multi threading op-
eration system, we need additional memory to store the context of the checker unit
for each thread. This memory space can be on the external memory or on chip lo-
cal memory. For each thread, the context of the checker unit consists of the current
CUPC, the current program counter, and the whole return stack.

225



4. Control Flow Checking

Overhead of Checking Conditional Branch Extension

The area overhead of checking the conditional of direct branch instructions (see Sec-
tion 4.4.4) consists of the redundant instruction decoder and a one bit multiplexer
(see Figure 4.15 in Section 4.4.4). The overhead of the decoder depends highly on
the used processor architecture and implementation.

Overhead of the Instruction Integrity Checker

The overhead of the instruction integrity checker extension (see Section 4.4.5) de-
pends mainly on the bit width of the used CRC values. The CRC width is important
for the robustness of the error detection against multiple bit errors. On the other hand,
a large CRC value causes a higher area and memory overhead.

The area overhead in terms of primitive components is:

• 1×ncrc comparator and

• ncrc flip-flops.

Additionally, block ram and some logic for calculating the CRC and control logic
is needed. The memory overhead evaluates to:

ncrc×2ncupc (4.7)

This checker unit enhancement causes no further CPU time overhead.

Overhead of the Re-Execution Extension

With the re-execution extension (see Section 4.4.6), we are able to correct a corrupt
control flow. To re-execute an erroneous instruction, we need the start point of re-
execution (CPCREEXPC) as well as the number of instructions (CPCREXCODE)
which must be annulled to prevent them from execution. The area overhead in terms
of primitive components inside the checker unit to calculate both values is:

• 1×30-bit adder (increment),

• 1×30-bit register (hist register),

• 1×30-bit 2 to 1 multiplexer, and

• control logic.

Furthermore, we need some additional logic in the processor pipeline to start the
re-execution from the CPCREEXPC and also to annul the erroneous instruction as
well as their following instructions.

226



4.4 Architectures for Control Flow Checking

Summarized Overhead Functions for Embedded Processor Control
Flow Checking

In this section, all overhead functions of the introduced control flow checking ar-
chitectures are summarized in one table (see Table 4.3). Here, ncupc denotes the
CUPC bit width. The CFI method can handle 2ncupc control flow instructions and
the CF method can handle 2ncupc basic blocks. dstack denotes the return stack depth,
nT denotes the number of different targets for all indirect jumps, Dmax is number of
different targets for one indirect jump for the indirect jump method 2 which can be
checked within one clock cycle, niJ denotes to the number of all indirect jumps, nt
is the number of possible targets of an indirect jump, and finally ncrc is the CRC bit
width. However, in Table 4.3 the overhead for control and other logic is omitted.

Area Overhead Memory CPU time
Overhead Overhead

Architecture adders compara- flip- multi- bits cyclestors flops plexers

CFI Method
1×30-bit, 3×30-bit 5+ncupc

(65+ncupc) none1×ncupc-bit ×2ncupc

CF Method
2×30-bit, 3×30-bit 5+ncupc (35+ncupc) none2×ncupc-bit +30 ×2ncupc

Return (30+ncupc) none
Stack ×dstack

Ind. Jump min. (30+ncupc) n+1 for
Method 1 1×30-bit ×nT 2n entries

Ind. Jump
Method 2

Dmax×
30-bit

1× ((30+ncupc)× ⌊
nt

Dmax

⌋
ncupc-bit Dmax +ncupc)
Dmax to 1 ×niJ

Interrupt/ 1×30-bit 1×30 none none
Traps

Conditional 1×2 to 1 none none
Branch Ch.

Inst. Integrity 1×
ncrc ncrc×2ncupc none

Checker ncrc-bit
Re-Execution 1×30-bit 1×30 1×30-bit none depends
Architecture 2 to 1 on proc.

Table 4.3: Comparison of different overheads for each control flow checking
method and its extensions for a 32-bit RISC processor.

In summary, CFI and CF are two alternative methods and the presented extensions
can be combined with these methods and further extensions, resulting in a modu-
lar framework for control flow checking. One exception is the instruction integrity
checker which can only be combined with the CF method.

227



4. Control Flow Checking

4.5 Prototypical Implementation

In this section, the proposed control flow checker architectures for embedded pro-
cessors are integrated into a given Leon3 processor system from Gaisler Research
[Gaib] using the SPARC V8 [SPA] instruction set. The two basic architectures for
control flow checking (CFI and CF architecture) with the return stack, interrupt and
trap handling, and the re-execution extension are implemented on an FPGA proto-
type.

First, the control flow instructions of the SPARC V8 instruction set are presented
and some mannerism of the SPARC architecture are shown. Next, an overview of the
Leon3 processor system is given. After the presentation of the processor platform, the
integration of the control flow architectures and their extensions is shown. To analyze
the compiled program code, we need an analyzer tool which generates the proper
entries for the checker memories. In the next section, the integration and interaction
with the data path protection technique developed by the project partner TU Munich
(TUM) [BZS+06] is shown. Finally, for better understanding, some examples and
experimental results from the simulation and implementation on an FPGA prototype
are given.

4.5.1 The SPARC V8 Instruction Set Architecture

The SPARC (Scalable Processor Architecture) V8 is a 32-bit RISC (Reduced Instruc-
tion Set Complexity) instruction set architecture (ISA). Like other 32-bit RISC ISAs,
each of the 72 different basic instructions are encoded in a single 32-bit word which
means that all instructions have the same word length. The SPARC V8 architec-
ture consists of an integer unit (IU) and an optional floating point unit (FPU) or a
co-processor (CP). The FPU and CP have their own registers and are accessed by
special floating point and co-processor instructions. Beside the 32-bit SPARC V8
ISA, also the 64-bit SPARC V9 ISA exists.

Instruction Overview

The instructions of the SPARC V8 ISA are encoded in 32-bit words. The format of
each 32-bit word is depending on the type of instruction. In general, there are six
different categories of instructions:

• Data Transfer (Load/Store): These instructions are able to access the mem-
ory. 16-bit, 32-bit, and 64-bit accesses are supported.

• Arithmetic/Logical/Shift: These instructions initiate an arithmetic, logical or
shift operation.

228



4.5 Prototypical Implementation

• Control Flow: All instructions which affect the control flow. This category is
described in detail later.

• Read/Write Control Register: Using these instructions, special control regis-
ters can be accessed.

• Floating Point Operate: This kind of instructions initiate a floating point op-
eration, if a FPU is present. If not, a trap is generated, which gives the program
or operating system the possibility to emulate floating point instructions in soft-
ware.

• Co-Processor Operate: These instructions initiate a co-processor operation.

For a detailed description of each type of instruction, see the SPARC V8 manual
[SPA].

Control Flow Instructions

The SPARC ISA consists of control flow instructions for direct jump and branches
as well as indirect jumps. The target addresses of direct branches and jumps are
calculated in a relative manner, i.e., a value which is stored inside the instruction is
added to the current program counter in order to calculate the target address. The
targets of the indirect jumps are register indirect, which means that the target is the
program counter added with the result of an operation of two register values, or an
operation with a register and a constant value.

The SPARC ISA uses a delayed control flow concept for almost all control flow
instructions (except conditional traps). This means that the instruction following di-
rectly a control flow instruction is executed, and then, the control flow transfer is
initiated. The effect of the control flow instruction is therefore delayed by one in-
struction. The instruction after a CFI is called delay instruction. Furthermore, all
CFIs which use this delayed concept have a flag (annul flag or a) encoded into the
instruction which indicates if the delay instruction should be executed or not. If the
annul bit is not set (a = 0), the delayed instruction is executed. Whereas, if the an-
nul bit is set (a = 1), the delay instruction is prevented from execution. This has the
same effect as executing a non operation instruction (NOP). However, if the CFI is a
conditional branch and the branch is taken, the delay instruction is always executed,
independent of the annul flag. Figure 4.20 shows an example of this delayed control
flow concept.

The different types of control flow instructions of the SPARC V8 architecture are
described in the following:

Call and Link (CALL) The call and link instruction is a direct jump to an address
which is encoded inside the instruction relatively to the current program counter.

229



4. Control Flow Checking

 MOV <r6> <r4>
 CALL <0x5a> a=0
 ADD <r4> <r5>
 ...
 MOV <r5> <r3>

0x40
0x44
0x48
...
0x5a

0x40

0x44

0x48

0x5a

Figure 4.20: On the left side, a program memory snippet with a call instruction
(CALL) where the annul flag is not set (a = 0) is depicted. If this
program code is executed (right side), the delayed instruction ADD
after the call CFI is executed before the control flow is transferred to
the call target on address 0x5a.

The instruction has no annul flag, so that the following delay instruction is always
executed. Furthermore, the current program counter is copied into a special register
(r[15]). This instruction is usually used to call a subroutine.

Jump and Link (JMPL) The jump and link instruction is the common indirect
jump instruction for the SPARC architecture. This unconditional jump exists in two
versions. In the first version, the target address is calculated by an addition of two
register values. The addresses of the registers are part of the instruction. In the
second version, the target address is calculated by an addition of a register value
and a constant value, stored inside the instruction. The current program counter is
stored in a register which can be selected by the instruction. Register indirect calls
and returns from subroutine are in fact also special jump and link instructions. For
example, the RET (return from subroutine) and RETL (return from leaf subroutine)
assembler instructions are only aliases for special JMPL instructions.

Branch on Integer Condition Codes (Bicc) The branch on integer condition
codes instruction family consists of different branch instructions with different con-
ditions which evaluate the integer condition codes (icc). The icc is a special register
which is updated by an arithmetic operation. There exist four different icc flags: n is
set if the result is negative; z is set if the result is zero; v is set if there was an overflow
at the operation; c is set if the carry bit is set. The condition encoded in the branch in-
struction evaluates these bits and decides if the branch is taken or not. Some example
Bicc instructions are: BE (branch on equal), BG (branch on greater), BLEU (branch
on less or equal unsigned). There exist also two unconditional branch instructions:
BA (branch always) and BN (branch never). If the branch is taken, first the delayed
instruction is executed, and then the control flow is transferred to a target address
which is stored inside the instruction relatively to the current program counter. The
Bicc instructions have further an annul (a) bit, which only has effect if the branch is

230



4.5 Prototypical Implementation

not taken. One exception, however, is the BA instruction which also evaluates this
bit to decide if the delay instruction is executed or not.

Branch on Floating Point Condition Codes (FBfcc) The branch on floating
point condition codes instruction family is very similar to the Bicc instructions. The
difference is that the floating point condition codes are evaluated instead of the inte-
ger condition codes. The floating point condition codes result from a floating point
operation.

Branch on Co-Processor Condition Codes (CBccc) Like the FBfcc in-
structions, these instructions are very similar to the Bicc instructions. Here, the co-
processor condition codes are evaluated.

Trap on Integer Condition Codes (Ticc) The trap on integer condition codes
instruction can be used for programmed traps. Like the Bicc instruction, the integer
condition codes are evaluated with the conditions programmed inside the instruction.
Depending of this evaluation, a trap is generated or not. The conditions are the same
as for the Bicc instructions. The target of this CFI is one of the 128 software trap
routines. Which trap routine is called depends either on the addition of two register
values or on an addition of one register value with a constant which is included in the
instruction. More about traps is discussed later in this section. The Ticc instruction
transfers the control flow immediately without executing a delay instruction. Like the
call instruction, the current program counter is stored in a register, if the trap is taken.

Return from Trap (RETT) The return from trap instruction is an indirect jump
which is used for the back-jump from the trap routine to the instruction where the
trap has occurred. The format and behavior of this instruction is very similar to the
JMPL instruction. However, this instruction further leaves the supervisor mode and
enables traps.

Registers

In the SPARC V8 ISA, general purpose and control and status registers are available.
All registers have a word length of 32-bit. The general purpose registers, denoted
r, consist of 8 global registers and a register window consisting of 24 registers. The
global registers are always available, whereas the register window is dynamic.

The register window is divided into three groups: 8 in registers, 8 local registers,
and 8 out registers. The register window is only a visible part of a greater register
file. With special instructions, the register window can be shifted, so that another
part of the register file is visible. With the SAVE instruction, the window is shifted
16 registers to the right, whereas on a RESTORE instruction, the window is shifted

231



4. Control Flow Checking

16 registers to the left. The register window position is given by the current window
pointer (CWP). Hence, the register window has 24 registers, and the different window
positions overlap (see Figure 4.21). The in and out registers are shared with the
neighborhood window positions. After a SAVE instruction, the current out registers
are the new in register, whereas at a RESTORE instruction, the current in register
are the new out registers. The number of different window positions is depending on
the implementation. Up to 32 window position are supported by the SPARC V8 ISA
which corresponds to a total number of 520 general purpose registers.

w7ins

w7locals

w7outs

w6ins

w6locals

w6outs

w5ins

w5locals

w5outs

w4ins

w4localsw4outs

w3ins

w3locals

w3outs

w2ins

w2locals

w2outsw1ins

w1locals

w1outs

w0ins

w0locals
w0outs

CWP+1

CWP

(current window)

CWP 1-

WIM

RESTORE,

RETT

SAVE,

trap

Figure 4.21: The SPARC register window concept. At a given time, only a subset
of the registers are visible (ins, locals, outs). With the instructions
SAVE and RESTORE, the visible area of the register file can be shifted
[SPA].

The windowed register concept is mostly used by calls and returns from subrou-
tine. For each nested subroutine, a window position is assigned. The input and output
variables, like parameters, the program counter, or return values can be handled ef-
fectively by using the in and out registers. This extremely reduces the amount of

232



4.5 Prototypical Implementation

memory accesses for calls and returns in comparison to, e.g., the x86 architecture,
where all these variables must be copied into the memory stack on a call and need to
be restored from memory on a return. However, if the windowed registers overflow, a
trap is triggered which copies the content into the memory and enables an unlimited
nesting depth.

A further advantage of this concept is the improved robustness against buffer over-
flows attacks, because of the return address is mostly stored into registers which can
only be addressed directly. This enormously hinders code injection attacks and thus
improves the security of the system. A study about exploits for the SPARC architec-
ture [Sch08] shows that stack smashing with buffer overflows can only be exploited
with a high effort to execute malicious code.

Traps

A trap of the SPARC ISA is a vectored transfer of control to trap service routines.
The behavior is like an unexpected subroutine call. A vectored transfer of control
means that a trap table is used which has a certain base address which can be altered
with a specific control register. The target of a trap is therefore the first 20 bits of
the trap table base address, following 8 bits to encode the different types of traps (tt
field) and 4 zero bits. The trap table has also 256 (28) entries whereas every entry
has space for a maximum of 4 instructions (24 = 16/4 bytes per instruction). In this
space usually the call to the service routine is initiated which is finished by a RETT
instruction. This means that in case of a trap the control flow jumps directly to the
correct trap table entry which handles this type of trap.

Traps can be generated by exceptions during the execution, by external interrupt
events, or by software using the Ticc instruction. Each type of exception or interrupt
uses a special tt encoding to jump to the correct service routine. For software traps,
the tt field is encoded in the Ticc instruction which enables us to call different service
routines.

4.5.2 An Overview of the Leon3 Processor Architecture

The Leon3 processor from Gaisler Research [Gaib] is an implementation of the 32-
bit SPARC V8 architecture. The processor core is included in the GRLIB library with
many other IP cores which are suitable to build a complete SoC. The communication
between the different IP cores inherits an advanced high performance bus (AHB)
which is defined in the AMBA (advanced micro controller bus architecture) specifica-
tion [ARM99]. The complete GRLIB, including the highly configurable Leon3 core
and the AHB, is an open source VHDL implementation and can be downloaded from
the Gaisler website. After the configuration of the SoC, it is possible to synthesize
and implement the system for different ASIC or FPGA target technologies.

233



4. Control Flow Checking

The Leon3 core consists of an integer unit (IU3), data and instruction caches, the
register file, a debug port, the AMBA bus interface, and an optional FPU. The inte-
ger unit is implemented with a 7 stage pipeline including data and instruction cache
interfaces as well as the register file interface. The pipeline consists of the following
stages [Gaib] (see also Figure 4.22):

• FE (Instruction Fetch): In this stage, the instruction address is forwarded to
the instruction cache and the instruction is fetched from the cache.

• DE (Instruction Decode): In this stage, the instructions are decoded and the
target addresses are calculated for direct CFIs (CALL and Bicc).

• RA (Register Access): The operands are read from the register file or from
internal data bypasses.

• EX (Execute): The ALU performs arithmetic, logical, or shift operations. Fur-
thermore, the target addresses for indirect CFIs (JMPL and RETT) are calcu-
lated.

• ME (Memory): The memory over the data cache is accessed. For write oper-
ations, the data calculated by the EX stage is written to the data cache.

• XC (Exception): Traps and interrupts are resolved. For memory read opera-
tion, the data inquired from the ME stage are aligned.

• WR (Write Back): Any result from the EX or XC stage is written back to the
register file.

Before the fetch stage, the next instruction address is calculated (see upper left
corner in Figure 4.22). The next address can be an increment of the current address
of the fetch stage, if no CFI is executed. The relative target address of a direct CFI is
decoded in the DE stage and added to the current DE stage program counter before
the result is fed back to the address calculation multiplexer. The target address of
the indirect JMPL or RETT CFI is calculated in the EX stage. The target addresses
of traps are available in the WE stage. Both target addresses are also fed back to
the address calculation multiplexer before entering the pipeline. Furthermore, the
pipeline can be stalled, e.g., for cache misses or register interlocks. In this case, no
new address is fed into the pipeline for several clock cycles.

4.5.3 Integration of the Control Flow Checker Architecture

We prototyped and analyzed the architectures implementing the CFI and CF method
(see Section 4.4.1) for the open source SPARC CPU Leon3 from Gaisler Research
[Gaib] on a Virtex-4 FPGA from Xilinx. The checker can monitor direct branches,

234



4.5 Prototypical Implementation

alu/shift mul/div

y

register file

D-cache
address/dataout
datain

32
32

operand2rs1

imm

Ywres

result m_y

Decode

Execute

Memory

Write-back

rs2rs1

rd

tbr, wim, psr

30 jmpl address

e pc

30

+1

d_pc

jmpa

f_pc

Add

call/branch address

tbr‘0’

e_pc

m_pc

w_pc

d_inst

e_inst

m_inst

w_inst

Fetch

I-cache
addressdata

Register Access

x_yxres

Exception

x_pcx_inst

r_pcr_inst

y, tbr, wim, psr

r_imm

Figure 4.22: The Leon3 integer unit pipeline. On the left side, the control paths are
shown with the calculation of the next instruction address in the upper
left corner. On the right side, the data paths with the interface to the
data cache are shown [Gaib].

jumps and calls as well as indirect returns and also has the ability to re-execute a
corrupted jump or branch instruction by fetching it again from the memory. Other
features of the checker are the support of the activate and deactivate procedures de-
scribed in Section 4.4.1. The complete implementation for control flow checking of
the Leon3 core consists of the proposed architectures of checking of direct jumps and
branches (Section 4.4.1), the return stack (Section 4.4.2) and the repair mechanism
(Section 4.4.6). To minimize the resource overhead, some features can be disabled
(see Section 4.5.8). Indirect jumps which are not returns, are not supported so far,
but many application programs or routines in embedded systems have none of these
instructions, or should avoid their use.

235



4. Control Flow Checking

Implementation Overview

The implementation consists of a control path checker module (cpc basicReEx) and
the logic for re-execution in the integer pipeline of the Leon3 processor (iu3) (see
Figure 4.23). The different modular architectures of control flow checking are imple-
mented into this checker module. The interface of this unit is kept generic, so the unit
can in principle be attached to any embedded RISC processor. For the Leon3 core,
the checker module is attached to the integer pipeline.

Figure 4.23 shows the interface between the integer unit (iu3) of the Leon3 core
and the checker module. Also, an interface to the on-chip AMBA bus is shown
which enables the access to the checker memories from the processor and debugger
side. Furthermore, Figure 4.24 shows the connection of the checker module interface
to the integer pipeline, which is part of the iu3 module.

proc3

iu3cpc_basicReEx

cpc_cfLut

cpc_
returnStack

Instruction Cache 
Interface (ICI)

AMBA 
Bus

PC
n
 / PC

n+1

VALID

BRANCH

TRAP

RETT

CPCREEX

CPCREEXCODE

CPCREEXPC

ERROR

CPCEN

cpc
Amba

Re-
execution 

logic

Figure 4.23: An overview of the control flow checker unit with the interface to the
Leon3 integer unit (iu3). Each module (box) represents a VHDL mod-
ule. All additional modules for the control flow checker are shown in
gray.

The current program counter value (PCn) and the next program counter value
(PCn+1) are taken from the first pipeline stages of the Leon3 core (see Figure 4.24).
The current program counter for the checker is the program counter in the decode

236



4.5 Prototypical Implementation

PCn

PCn+1

+1

Fetch PC

Jump 
Addr

Branch 
Addr

Decode PC

Execute PC

Memory PC

Decode Inst

Execute Inst

Memory Inst

Control 
Flow

Checker

Instruction
Cache

Reg. Access PCReg. Access I.

Except. PCExcep. Inst

Write PCWrite Inst

Re-Execute PC

Memory Inst

Figure 4.24: The checker unit is placed between the first two pipeline stages of the
Leon3 core [Gaib]. All bold lines denote new signal paths needed for
monitoring and re-execution of jump and branch instructions.

pipeline step and the next program counter is the program counter of the fetch pipeline
step. For re-executing a jump or branch, the re-execution program counter from the
checker unit is fed to the program counter generation (a step prior to the fetch step),
and the erroneous instructions are annulled, so the incorrect instructions are not exe-
cuted and no registers or memories are written.

Checker Module (cpc basicReEx)

The general control flow checker (cpc basicReEx) consists of the control flow lookup
table (cfLut), the return stack (returnStack) and the checker logic. Additionally, an
AMBA slave interface is included.

The interface of the checker module is depicted in Figure 4.23. The VALID sig-
nal should be only active if the CURRPC and NEXTPC values are valid. For each
executed instruction, the VALID signal should be high for exactly one clock cycle.
CURRPC is the current program counter and NEXTPC the next program counter.
Both signals are taken from the instruction cache interface. The NEXTPC is the pro-
gram counter after the fetch stage; CURRPC denotes the program counter before the

237



4. Control Flow Checking

fetch stage. TRAP signals the control path checker that a trap has occurred. The
RETT (return from trap) signals that the trap routine has finished.

If the checker unit detects an error in the control flow, the ERROR signal is asserted.
The CPCEN signal is active when the checker unit is active. For the re-execution
procedure, we need the following signals:

• CPCREX signals that the re-execution is in progress.

• CPCREXCODE signals the type of erroneous instruction. This indicates how
many instructions must be invalidated.

• CPCREEXPC is the program counter where the re-execution starts.

This general checker module is able to implement either the CFI or the CF method.
The methods differ in the way of storing the information from the compiled code into
memory structures inside the checker which is implemented into the cfLUT module.
The top level module of the checker module and several extensions, such as the acti-
vate/deactivate feature, the return stack, or the re-execution possibility are the same
and can be used for both methods. For switching the direct control flow method, only
the cfLUT module must be exchanged.

Inside the control flow checker module, four comparators exist (see in Figure 4.25
a-d). Comparator a checks if the next program counter is incremented by one in the
case if no control flow instruction is executed or a branch is not taken. If the executed
program reaches a control flow transfer point (the end of a basic block in the CF
method, or a control flow instruction in the CFI method), the result of comparator b
is true. In this case, the next program counter can be checked either with comparator c
in the case of a direct jump (call or taken branch), comparator d in case of an indirect
return, or comparator a in the case of a non-taken branch. The instruction type of
the control flow transfer point is encoded in the control flags, which are part of the
entry of the control memory (see Figure 4.25 and 4.26). The type of control flow
transfer instruction decides which results of the comparators must be true to ensure
a correct control flow (see Table 4.4). For the Leon3 architecture, the delay slots of
direct jumps and branches must be considered. This can be done by delaying the
result of the b comparator for one instruction (VALID signal). Furthermore, the index
of the next control flow transfer point is included in the control memory entry. In the
example in Figure 4.26, 9 bits for the next CUPC are used which corresponds to a
maximum of 512 checker entries inside these memories. If larger memories are used,
the next CUPC value, and therefore the word length of the control memory, must be
extended to the corresponding bit length.

Besides the type of instruction flags, there is an activation and a deactivation flag
(see Figure 4.26). These flags can be used for the global activation/deactivation of
the checker as well as local activation/deactivation if, for example, a function should
be excluded from checking.

238



4.5 Prototypical Implementation

CURRPC

NEXTPC

 a

 c

TARGET
ADDR

 b

START
ADDR CTRL

jAdrRamsAdrRam ctrlRam

=

=

=

+

1

+

1

CUPC

 d=return
Stack

flags

INDEX

+

1

histPC

CPCREEXCODE

CPCREEXPC

cpc_cfLut

cpc_returnStack

Figure 4.25: The architecture of the general module cpc basicReEx with compara-
tors and RAMs. The return stack and re-execution extensions are al-
ready integrated within the basic architecture. The cpc cfLut shows
the architecture for the CFI method.

Instruction ctrlRam flag Comparators which must be true
non CFI a

branch (Bicc) B b and (a or c)
call (CALL) C b and c
return (RET) R b and d

end of BB with non CFI E b and a

Table 4.4: Depending on the current instruction, different comparators must be true
to signal a correct program flow. Also, the different control memory flags
are shown.

239



4. Control Flow Checking

D A E R C B next CUPC
15 14 13 12 11 10 9 8 0

15 : Deactivate CPC
14 : Activate CPC
13 : Unused
12 : End of Basic Block without CFI
11 : Return from Subroutine
10 : Call subroutine
9 : Branch

  8..0 : next CUPC

Figure 4.26: Control memory (ctrlRam) entry. The flags in the front denote the kind
of the control flow transfer point. The last 9 bits represents the index
for the next control flow point in case of a call or branch instruction.

If a trap occurs during the execution, which is signaled by the TRAP input, the
checker unit deactivates itself and the checker will be activated again by leaving the
trap routine (RETT signal).

Furthermore, logic and registers for the re-execution procedure are included in
the top level of the control path checker module. If the re-execution is triggered by
a control transfer point, the correct start address is taken as the re-execution start
address. If not, the value of a history register is taken which saves the last executed
program counter (see Figure 4.25).

Control Flow LUT (cpc cfLut)

The only difference between the architecture of the CF and CFI method is in the
control flow LUT which implements the information of the control flow graph or the
control flow instruction graph. For both methods, the cfLut has the same interface,
but different implementations. The LUT has also an AMBA bus interface to allow
for access to the LUT from the processor side.

The interface consists of the following signals: STARTADDR is the address of
the next control flow transfer point and TARGETADDR is the corresponding target
address if the instruction is a direct jump or branch. CTRL is the control vector with
the control flags and the index of the next control flow point if the jump is executed
(e.g., call or branch taken), as depicted in Figure 4.26. INDEX is the address of the
checker memories and the next values are fetched when the NEXTVALUE signal is
active. We need the VALID signal for the CF method, because the CF method needs
two clock cycles to fetch or calculate all values from the RAMs.

The implementation of the control flow LUT is depicted for the CFI method in
Figure 4.25 and for the CF method in Figure 4.27.

240



4.5 Prototypical Implementation

adrRam ctrlRam

+
1/2

-
1

cpc_cfLut 

INDEX

STARTADDR TARGETADDR CTRL

StartAddr CtrlReg

Figure 4.27: The cpc cfLut module for the CF method. Here, we need two times
access to the adrRam per basic block. The calculation of the TAR-
GETADDR depends on the type of the instruction at the end of the
previous basic block. If this instruction is a control flow instruction,
we have to add two instruction positions to the address, due to the
additional delay instruction.

Return Stack (cpc returnStack)

The return stack saves the current program counter incremented by one (PCn+1) and
the CUPC is also incremented by one if a call is executed and the checker unit is
active. This is done when the call control flag (C) is high and the current program
counter is equal to STARTADDR (comparator b in Figure 4.25).

If a return instruction is reached (current program counter is equal to STARTADDR
and the return control flag (R) is set), the entry is popped off the stack. The CUPC is
overwritten with the value from the stack and next program counter is checked against
the program counter value from the stack (comparator d in Figure 4.25). Currently, a
stack with 32 entries is implemented.

Modification of the Leon3 Integer Unit (iu3)

Besides the separate control path checker module, the VHDL files implementing the
Leon3 integer unit are modified. The Leon3 integer unit needs three additional inputs
for the re-execution procedure: CPCREEX, CPCREEXCODE, and CPCREEXPC.
CPCREEX is active if an error is detected and the re-execution procedure is initiated.
In this case, the address of the erroneous instruction CPCREEXPC is forwarded to
the fetch stage. The result is a re-fetch of the instruction which causes the error.

241



4. Control Flow Checking

The CPCREEXCODE denotes the kind of erroneous instruction. A non control
flow instruction is encoded with “00”, a direct call or branch is encoded with “10”
and a return from subroutine is encoded with “01”. If the re-executed instruction is
a direct call or branch, the current register window pointer CWP from the decode
stage must be restored from the access stage so to ensure that the CWP has the same
value before the erroneous instruction was executed. Also the integer condition codes
icc must be restored. In case of an erroneous return from subroutine instruction, the
CWP must be restored from the execute stage.

At last, the erroneous and the following instructions must be invalidated. This can
be done by setting the annul bit at the corresponding stage. In case of a direct call or
branch, the annul bit is set for the decode, register access, and execute stage and in
case of an indirect return from subroutine, the annul bit for decode, register access,
execute, memory and exception stage must be set. If the erroneous instruction was
not a control flow instruction, only the decode stage must be invalidated.

4.5.4 A Tool for Program Analysis
To prepare an application for control flow checking, the compiled code is analyzed by
a program called “AISTool” which decodes the instructions and searches for control
flow instructions. This tool is able to generate the content of the checker memories
for the CF and the CFI cfLut module. The functions of the analyzed program which
should be checked (user functions) can be specified in a separate file which is com-
mitted to the analyzer program. The program first extracts all functions and searches
for the user functions.

For the CFI method, all CFIs of the user functions are extracted and their addresses
are stored in the sAdrRam initialization file and the destination address, except for the
return instruction, is stored in the jAdrRam initialization file. For the CF method, the
analyzed program is first structured into basic blocks. The basic block end addresses
are stored in the adrRam initialization file. For both methods, the corresponding
initialization file for the control Ram (ctrlRam) is generated. If a user function is
left by a call to a non user function, the checker will be deactivated and activated
again on the back-jump. This is done by setting the corresponding activate (A) and
deactivate (D) flags in the control memory. Furthermore, the call to the first defined
user function (usually main()) which is the starting point for the checker is searched
and at this call, the checker unit will be activated. The index of this call must be
’0’, because after global reset, the value at address ’0’ is loaded from the checker
memories. Finally, the memory initialization files and, optionally, a graph (CFG or
CFIG) of the analyzed functions in the Graphviz .dot format [AR] are written. The
analyzed application program remains completely unchanged.

The memory initialization files can be used for the synthesis of the checker unit,
or for Xilinx FPGAs, the content of the rams can be initialized directly in the bitfile
using the Xilinx tool “data2mem”. We also implemented an AMBA bus interface

242



4.5 Prototypical Implementation

for the checker unit to have access to the checker memories from the processor side.
Using the bus interface, the memories can also be initialized at runtime over the
memory bus or the processor (see Figure 4.28).

Figure 4.28: From the compiled code, the program analyzer extracts all branches,
calls, and return from subroutines and generates the memory initializa-
tion files for the checker memories. These memories can be initialized
during synthesis, later in the bitfile with the data2mem tool, or at run-
time using a bus interface.

4.5.5 Interaction between Control Flow Checking and Data
Path Protection

The goal of the AIS project partner TUM was to investigate techniques for data path
protection where single event effects in the data path can be detected and corrected
by means of a micro rollback [BZS+06]. The fault detection is done by using shadow
registers as introduced by Nicolaidis [Nic99]. In this concept, the original main reg-
ister and an additional shadow register have the same input, but the shadow register
is clocked with a delayed clock. The result is that the input signal is sampled at two
different points. The delay time of the shadow register is chosen in a way that the
time delay between the two sample points is greater than the largest duration of a
single event perturbation (glitch). If a particle impact and therefore a single transient
effect occurs, only one of both registers is affected. By comparing the value of both

243



4. Control Flow Checking

registers, these effects can be detected. Furthermore, this technique allows also to
detect a single event upset which occurs in one of these registers as well as timing
errors. To detect errors in the data path, all pipeline registers of the Leon3 integer
unit are extended with this second shadow register.

If an error is detected, the latest error-free register values of the pipeline should
be restored. This can be done at low latency, by introducing a third category of
registers, so-called history registers [BZS+06]. A history register samples the main
register value with one clock cycle delay. If an error occurs, the history registers
carry the latest correct state which can be used for the micro rollback. This is done
by restarting the operation from the history registers which are now used as inputs for
the following pipeline step. Figure 4.29 shows the replacement of a pipeline register
with the error-resilient triple register set. For correcting an error, two additional clock
cycles are needed for detecting and correcting the error.

ERROR
XOR

main

hist

MUX_SEL

Figure 4.29: This figure shows the replacement of a single pipeline register with
an error resilient register set, consisting of the main and shadow reg-
ister (above) as well as the history register (below). By comparing
the main and shadow registers SEEs which manifests in errors can be
detected. Using the history register, the latest correct state can be re-
covered [BZS+06, Koh08].

The data path protection method serves mainly to detect and correct transient single
event effects and timing errors which happen at the register pipeline, whereas the
control flow checking methods can detect all errors which affect the control flow.
To these errors belong also permanent errors as well as errors in cache and memory
structures and software buffer overflows. The intersection of the error coverage of
both techniques is small, and therefore, a combination of both techniques makes
sense and complement each other which leads to a robust control- and data path-
protected processor core.

244



4.5 Prototypical Implementation

However, both techniques cannot easily be combined without modification, be-
cause the error correction of one method affects the error detection of the other
method. For example, consider a micro rollback of the data path protection caused
by an error. The currently executed instruction is stalled and executed again, which
is identified by the control flow checker as a control flow error. It is obvious that the
method must communicate its correction action to the complementary method. Here,
we cover only the control flow checking method. The question is how the control
flow checker deals with a micro rollback of the data path protection.

The easiest way is to deactivate the checker on a micro rollback and activate the
checker again after the reconstruction of a correct state. This can be easily done by
evaluating a rollback signal from the data path protection control unit. The disadvan-
tage is that during the rollback, the control flow checker unit is deactivated and the
control paths of the processor are unprotected.

The second possibility is to check also the control flow of the micro rollback.
As mentioned before, the micro rollback consists of two steps. The first step is the
detection and freeze step. After successful detection of a data path error, the pipeline
is stalled and the data path protection feeds the value of the history register of the fetch
step back to the program counter generation step in order to start the micro rollback
(see Figure 4.30). From the control flow checker view, the PCn+1 input is set back
to the PCn−1 value. To get this value, we can use the registered value from the PCn
input. Actually, if the control flow re-execute feature is implemented, we already
have such a register (histPC) that is used for the re-execution program counter value.
To check the first rollback step, a new comparator f is introduced, which checks the
correct new next program counter value in order to start the rollback [Koh08] (see
Figure 4.31).

The next step is the retry step, where the input of all pipeline stages is switched to
the history registers and as a result, the state of the data pipeline is rolled back to the
state before the error occurs. From the control flow checker view, the last instruction
is executed again. The internal state of the control flow checker has also changed,
hence, the state of this checker unit must also be rolled back. This can be done by
introducing history registers for the registers used inside the checker unit (see Figure
4.31). For checking the control flow of the retried instruction, the values from these
history registers must be used. After successfully verifying the rollback, the control
flow checking unit is switched back to the normal registers just as the other registers
of the data path pipeline.

If an (control path) error occurs during the micro rollback, the control flow checker
is able to correct this error by initializing a re-execution. If the error happens in the
detection/freeze step, the re-execution starts from the histPC register. However, if
the error is inside this register, we have a problem which cannot be solved using this
architecture. A possible solution is to protect this register with an error correcting
code (ECC) or provide an additional redundant register. If the error occurs during the
second rollback step, the normal re-execution procedure of the control flow checker

245



4. Control Flow Checking

main

CF
CheckerCPCREEXPC

hist

PC
gen.

PC
n+1

PC
n

Fetch
Stage

main

hist

Figure 4.30: The integration of control flow checking and data path protection into
the first pipeline stages of the Leon3 processor. The PCn and the PCn+1
signals as well as the CPCREEXPC of the control flow checker and
the history and shadow registers of the data path protection are shown.
In the first phase of the micro rollback, the PC from the first history
register is fed back to the PC generation multiplexer. In the second
phase, the history register is taken as input for the following pipeline
stage. Here, only the fetch stage is shown. It can also be shown that the
data path protection can only detect errors using the shadow register
concept from the fetch and the following stage. The program counter
generation step is protected by the control flow checker.

unit is used which, depending of the type of erroneous instruction, re-executes one to
several instructions.

The standard control flow checking unit cannot check the conditions of branches.
The checker allows to take and not take the branch. Using the additional data path
protection facilities, the integer condition codes (icc) are protected. The final gap for
checking also the conditions of branches thus closes the conditional branch checking
extension, introduced in Section 4.4.4. Using all these techniques together, condi-
tional branches can be fully checked for correctness.

In summary, the integration of both concepts increases the reliability and also the
security (keyword: buffer overflows) of the Leon3 processor core significantly.

246



4.5 Prototypical Implementation

CURRPC
PC

n

NEXTPC
PC

n+1

 a

 c

TARGET
ADDR

 b

START
ADDR CTRL

jAdrRamsAdrRam ctrlRam

=

=

=

+

1

+

1

CUPC

 d=return
Stack

flags

INDEX

+

1

histPC

CPCREEXCODE

CPCREEXPC

cpc_cfLut

cpc_returnStack

h. TARGET
ADDR

h. START
ADDR hist. CTRL

 f=

hist. stackTo

Figure 4.31: The architecture of the control flow checker with rollback protection
for the data path protection technique. All internal state registers are
duplicated by history registers. Comparator f checks the first roll-
back phase. If control flow errors during the rollback are detected, the
checker can initialize a re-execution (see CPCREEXPC).

4.5.6 Example

To test the proposed concept and architectures for control flow checking, a real ex-
ample is provided in this section. The simple example program is given in Listing 4.3
and a snippet of the resulting compiled assembler code for the SPARC V8 architec-
ture is shown in Listing 4.4. The numbers on the left side denote to the corresponding
instruction addresses. Additionally, for better understanding, the corresponding in-
dexes of the CFI and CF method are shown as comments behind the instruction.

The compiled code is processed by the program analyzer tool AISTool for the CFI
and the CF method. The program analyzer creates the initialization files for the
checker memories and an optional graph. The created content of the checker memo-
ries for the CFI method is depicted in Figure 4.32 on the right side. Furthermore, the

247



4. Control Flow Checking

Listing 4.3 Example program written in C

1 int inc = 0;
2

3 void incr () {
4 inc++;
5 }
6

7 int main (int argc, char** argv) {
8 while (inc < 3) {
9 incr();

10 }
11 }

Listing 4.4 The compiled example program for the SPARC V8 architecture

1 40001054: call 40001180 <main> !CFI index: 0, CF index: 0
2 40001058: nop
3 ...
4 4000116c: restore !CF index: 1
5

6 40001170 <incr>:
7 40001170: save %sp, -104, %sp
8 40001174: inc %g1
9 40001178: ret !CFI index: 1, CF index: 2

10 4000117c: restore
11

12 40001180 <main>:
13 40001180: save %sp, -104, %sp !CF index: 3
14 40001184: cmp %g1, 2
15 40001188: bg 400011a0 !CFI index: 2, CF index: 4
16 4000118c: nop
17 40001190: call 40001170 <incr> !CFI index: 3, CF index: 5
18 40001194: nop
19 40001198: b 40001184 !CFI index: 4, CF index: 6
20 4000119c: nop
21 400011a0: ret !CFI index: 5, CF index: 7
22 400011a4: restore

248



4.5 Prototypical Implementation

ctrlRam column is decoded in the last column for better understanding. The descrip-
tion of the flags are shown in Figure 4.26. On the left side, the CFIG is shown which
is originally generated by the program analyzer tool. Figure 4.33 shows the memory
content and the corresponding CFG for the CF method.

sAdrRAM jAdrRAM ctrlRAM

40001054
40001178
40001188
40001190
40001198
400011a0

40001180
00000000
400011a0
40001170
40001184
00000000

4402 
0800
0205
0401
0202
8800

index

0
1
2
3
4
5

dec. ctrlR.

C A 2
R ?
B 5
C 1
B 2
R D ?

Figure 4.32: Results after processing the example program in Listing 4.4 with the
program analyzer tool AISTool. On the left side, the CFIG graph, gen-
erated from the AISTool is shown. On the right side, the content of the
checker memories are depicted. The last column shows the decoded
ctrlRAM column with the flags and the decoded next CUPC index.

In the following, an example of error detection and correction is shown. This is
done by using the CFI method with the example program from Listing 4.4 and the
corresponding checker entries from Figure 4.32. Note that the CF method produces
very similar results.

Figure 4.34 shows a waveform plot. In the first rows, the current program counter
(PC) and the next program counter are shown (nPC). The checker unit checks the call
instruction for calling the incr() subroutine. The CUPC points to the row in the
checker memories where the call address as well as the call target address is stored
(see the from and to rows). Furthermore, the ctrl register (ctrl content 0401) indicates
the type of instruction (call) and the next CUPC index (1).

• In the second cycle, the program flow reaches the call (PC = 1190). The com-
parator b (PC eq from) denotes that a checking point is reached. Due to the

249



4. Control Flow Checking

adrRAM ctrlRAM

40001054
4000116c
40001178
40001180
40001188
40001190
40001198
400011a0

4403
8000
0800
1004
0207
0402
0204
8800

index

0
1
2
3
4
5
6
7

dec. ctrlR.

C A 3
D 2
R ?
E 4
B 7
C      2
B      4
R D ?

Figure 4.33: The results after processing the example program in Listing 4.4 with
the program analyzer tool AISTool for the CF method. On the left side
the generated CFG is shown and on the right side the corresponding
checker memory content.

delay slot concept of the SPARC architecture, the call is executed in the next
cycle.

• In the third cycle, the call is first executed correctly (nPC = 1170), but then
an error occurs. The correct next program counter address 1170 is falsified
to 3170. The error is detected by the checker unit because the comparator c
(nPC eq to) is not longer true.

• In the forth cycle, the detected error is indicated by the error signal and the re-
execution procedure is initialized. The starting point of the re-execution is the
call instruction (address 1190) which is shown by the reexPC signal. The reex-
code signal indicates that the falsified instruction was a call, and therefore, the
latest three instructions in the pipeline should be annulled. This is done by an-
nulling the decode (d.annull), the register access (a.annull), and the execution
(e.annull) pipeline stages.

250



4.5 Prototypical Implementation

nPC

clk

PC

valid

nPC_eq_PC++

PC_eq_from

nPC stackTo_eq_

nPC_eq_to

reexPC

ctrl

from

to

stackCUPC

1190

118c

1194

1190

1170

1194 3170

1194

CUPC

stackTo

1190

1170

0401

03

105c

01

branch

error

reexcode

a.annull

11a0

1188

0205

02

3170

d.annull

e.annull

m.annull

x.annull

histPC

1170

1194

1174

1170

04

1178

0000

0800

01

1198

1190

1190

1190

10 0000

1188 1190 1194 3170 11941190118c

118c 1190 1194 3174 11981194

Figure 4.34: An example waveform showing the execution of the example program
from Listing 4.4. During the execution of the call instruction on ad-
dress 1190, an error occurs. The checker unit detects this error and
starts the re-execution procedure which corrects the error [Koh08].

251



4. Control Flow Checking

• In the fifth cycle, the call is executed again.

• In the sixth cycle, the jump is performed without error (comparator c is high).

After successfully executing the call, the values for the next checking point, the return
instruction with index 1 is loaded into the register from, to, and ctrl. Furthermore, it
is also shown that the back-jump address for the return is put on the stack (stackTo =
1198).

4.5.7 Simulation and Verification

In this section, we will discuss the verification of our control flow checker using
simulation. For testing the handling of faults and errors with our control path checker,
we need a fault model and methods for fault and error injection. The fault model and
the different kinds of fault and error injection are discussed in Section 4.2. For the
verification, only intentional fault injections are used.

Fault and Error Injection

Now, we present the implementation of different kinds of fault and error injection
methods as introduced in Section 4.2.

Permanent Memory Errors: The memory content of the SDRAM is stored for
simulation in *.srec files (sram.srec, sdram.srec, and prom.srec). The
VHDL model of the external SDRAM reads the content from these files during the
simulation. To inject permanent memory errors for simulation, we can alter the
*.srec file. The checker memories of the checker unit which store the control
flow graph or control flow instruction graph, are generated using Xilinx Core Gen-
erator (coregen) [Xilg]. The content of these checker memories is stored in *.mif
files for simulation. Here, we can also alter these files to inject permanent memory
errors.

To generate permanent memory errors on the FPGA implementation, we can fur-
ther use the in-circuit debugger of the Leon3 processor. Using this debugger, we are
able to change the contents of all memory cells which are writable and mapped to
the address space of the processor over the AMBA bus interface. Since this applies
to the main memory of the processor system and the checker memories, it is easy to
alter values and memory contents in this way.

Transient on Chip Processor Faults: There are two different ways to inject
transient faults for simulation. The first method is to use a simulator built-in com-
mand to set a signal to a specific value. In Modelsim 6.3e, the command is called
force.

252



4.5 Prototypical Implementation

VSIM> force -freeze signame forceval forcetime -cancel releasetime

The signal signame is forced to the value forceval at forcetime until releasetime.
The freeze parameter indicates that the original signal value is overwritten with force-
val.

The second method to inject transient faults into the processor system is to use a
fault injection unit instantiated in the integer pipeline of the Leon3. The injection unit
can inject multiple faults in the control path on the same signals as the simulation
command method (rin.d.pc). The faults are triggered by a PRNG (see Section
4.2 and [Koh08]). This method is able to inject single event transitions (SET) on a
(pseudo-)random time with (pseudo-)random duration. This is done using the VHDL
statements wait for and transport after. Because of the usage of these
statements, the method is only working in simulation.

A synthesizable injection unit is coupled with the clock frequency. This restricts
us to use a free time pattern for fault injection. We inject faults on the same signals
as in the fault injection methods above. For triggering the injection, we use a 5-bit
counter. If the counter overflows and the integer pipeline of the Leon3 executes an
instruction, a fault is injected. The processor executes approximately one instruction
every 5 clock cycles in average. But this pattern is very irregular due to pipeline
stalls caused by cache misses, branches, bus arbitration and so on. The combination
of both, the counter overflow and the irregular pattern of execution of instructions,
generates a (pseudo-)random distribution of injected faults.

Testbench and Verification

To verify the correctness of the checker unit by simulation, we are using the Leon3
debug log. With the debug log enabled, the Leon3 simulation model prints the address
and name of every executed instruction on the ModelSim console. The output of the
console can be logged into a file. If the debug log with and without fault or error
injection is the same, the checker unit passes the test for the used test program.

For the complete verification, we used several test programs. These test programs
are pbm and qsort from the Mibench benchmark [GRE+01] and the turbo decoder
from AIS project partner TU Kaiserslautern (adapted from [BGT93]). We are using
the counter fault injection method, because of this method is synthesizable. We can
use this method for simulation and for an FPGA implementation. On the FPGA
implementation, we check the output which is transferred over the RS232 link to the
PC and compare it with the run without error injection.

Table 4.5 shows the simulation results of the test programs. Each program is ex-
ecuted twice, one run without and one run with error injection. The number of exe-
cuted instructions and the overall clock cycles are measured. With these values, the
CPI (Clocks per Instruction) value can be calculated. Furthermore, the number of in-
jected errors are depicted. It can been shown that the CPI value increases with enabled

253



4. Control Flow Checking

fault injection which indicates the performance overhead due to the re-execution of
erroneous instructions (see also Figure 4.35).

test error no. checker inj. errors executed clock CPI
program inject. entries (IER) inst. cycles

pbm 45 0 (0) 524925 844043 1.61
X 45 12097 (≈ 10−2) 524925 884071 1.68

qsort 24 0 (0) 444086 857969 1.93
X 24 353 (≈ 10−4) 444086 865393 1.95

turbo 113 0 (0) 3415530 5323733 1.56
X 113 72516 (≈ 10−2) 3415530 5585277 1.64

Table 4.5: This table shows the simulation results for the CFI method. Each test
program is executed with and without error injection. The number of
injected errors and the corresponding injection error rate (IER) in errors
per clock cycles are depicted. Furthermore, the executed instructions, the
used clock cycles and the CPI (Clocks per Instructions) are shown.

The number of needed clock cycles for re-execution of an erroneous control flow
depends on the currently executed instruction. For a simple program counter incre-
ment (no control flow instruction), we are able to correct the error in one additional
clock cycle, whereas the correction of an erroneous return instruction needs five clock
cycles. Furthermore, cache misses due to falsified branch or jump targets have also
an impact on the latency.

4.5.8 Synthesis and Implementation

The Leon3 processor and the different versions of the checker unit are synthesized
using the Xilinx XST synthesis tool of the ISE 8.2 framework and implemented on a
Xilinx Virtex-4 FPGA. In the following, an overhead analysis is provided for different
versions of the checker which supports different jump instructions and error detection
features and thus, result in different area overheads.

The smallest version of the checker (version A) implements the CFI basic method
which can only monitor direct jumps or branches. No indirect jumps are supported
and are therefore not allowed in the code, but it is allowed that indirect jumps can
occur in the unchecked code. This includes also returns from subroutine. So, this
technique can only be used for a single procedure or function. But many of these
procedures and functions can be checked if the checker unit is de-activated at calls
and returns, and activated inside each function.

254



4.5 Prototypical Implementation

0,
00

E+00
0

2,
00

E-0
03

4,
00

E-0
03

6,
00

E-0
03

8,
00

E-0
03

1,
00

E-0
02

1,
20

E-0
02

1,
40

E-0
02

1,4

1,5

1,6

1,7

1,8

1,9

2

2,1

pbm
qsort
turbo

IER

C
P

I

Figure 4.35: Plot of the number of cycles per instruction (CPI) over the injected
error rate (IER) according to the results reported in Table 4.5 for the
three test programs.

The second version (version B) has an additional 32-entry return stack extension.
With this version, we can also monitor calls and returns, so most application programs
can be fully monitored.

The last version (version C) has the additional capability of repairing an incorrect
control flow by re-execution (re-execution extension).

Table 4.6 shows the measured resource overheads of these three versions. The
results show that the area overhead for logic (in terms of lookup tables and flip-
flops) is very small compared to the amount of resources needed by the processor
core. If more control flow instructions shall be monitored and more checker memory
entries are needed, only the overhead of necessary block rams (BRAMs) increases.
Using the CF methods instead of the CFI, the area overhead increases slightly for the
same maximum number of checker memory entries whereas the memory overhead
decreases. Note that typically, the CF method needs more checker entries than the
CFI method for the same program. The bus interface for the AMBA bus creates an
additional area overhead of 68 LUTs and 5 flip-flops which can be subtracted from
the values above if the bus interface is not needed.

The overhead values above consider the control flow checker implementations
only. If these methods should be combined with the data path protection technolo-
gies as described in Section 4.5.5, the area overhead increases. For example, a CFI
method in version C configuration (with return stack and re-execution extension)
which is able to check also the micro rollback from the data path protection needs

255



4. Control Flow Checking

Overhead Leon3
CFI Method CF Method

Version A Version B Version C diff. to CFI
checker memories with 512 entries

LUTs 13554 325 2.40% 491 3.62% 579 4.27% +51 +0.38%
flip-flops 3476 69 1.99% 74 2.13% 106 3.05% +48 +1.38%
BRAMs 50 3 6% 3 6% 3 6% -1 -2%

checker memories with 1024 entries
LUTs 13554 329 2.43% 494 3.64% 582 4.29% +54 +0.40%

flip-flops 3476 71 2.04% 76 2.19% 108 3.11% +49 +1.41%
BRAMs 50 5 10% 5 10% 5 10% -2 -4%

checker memories with 2048 entries
LUTs 13554 335 2.47% 499 3.68% 575 4.24% +57 +0.42%

flip-flops 3476 73 2.10% 78 2.24% 110 3.16% +50 +1.44%
BRAMs 50 8 16% 8 16% 8 16% -3 -6%

checker memories with 4096 entries
LUTs 13554 343 2.53% 507 3.74% 595 4.39% +60 +0.44%

flip-flops 3476 75 2.16% 80 2.30% 112 3.22% +51 +1.47%
BRAMs 50 10 20% 10 20% 10 20% -4 -8%

Table 4.6: Resource overheads in terms of FPGA primitives for different checker
unit versions (including the bus interface) with respect to a Leon3 core
without PCI and Ethernet. The area (4-input LUTs) and memory over-
heads (flip-flops and BRAMs) of the full version C and the reduced ver-
sions (A and B) and for different checker memory sizes are shown in
absolute numbers and in percent of the resources needed by the Leon3
core. The difference between the CF and CFI method is depicted in the
last columns. Note that the difference is independent of the used version
(A, B, or C).

561 4-input LUTs and 202 flip-flops [Koh08]. Of course, the data path protection
itself causes also an additional area overhead.

If we implement also the error injection unit, we must reduce the clock frequency
to 25 MHz. The reason is that we inject errors at the falling edge of the clock. Due
to this reason, we have only half of a clock cycle time to meet the timing constraints
for these paths which are additionally extended by logic of the error injection unit.
Without the error injection unit, we have no timing degeneration compared to the
original Leon3 core.

256



4.6 Case Study: Turbo Decoder

4.6 Case Study: Turbo Decoder

In this section, we present another case study for control flow checking on a demon-
strator platform consisting of an FPGA board and a turbo en/decoding example appli-
cation. This demonstrator combines the joint integrative work of the different project
partners of the AIS project to show the increase of reliability as well as the corre-
sponding overheads. Furthermore, a deeper look into the control flow checking part
is given which shows also some error detection and correction scenarios.

4.6.1 The AIS Demonstrator

The AIS demonstrator consists of the FPGA board Leon3-GR-CPCI-XC4V from
Gaisler [Gaia] and an example application, a rapid prototyping turbo de/encoder ap-
plication delivered by the project partner TU Kaiserslautern [MW08]. The FPGA
board consists of a Xilinx Virtex-4 XC4LX100 FPGA, 256MB SDRAM, and com-
pact PCI, Ethernet, JTAG, and RS232 as interfaces (see Figure 4.36). The FPGA is
large enough to include at least four Leon3 [Gaib] CPUs.

Figure 4.36: The Gaisler Leon3-GR-CPCI-XC4V FPGA-board [Gaia] used as AIS
demonstrator.

We use the SDRAM as a shared main memory for the Leon3 MPSoC (Multi Pro-
cessor Sytem on Chip). The SDRAM is connected with a memory controller from

257



4. Control Flow Checking

Gaisler, implemented inside the FPGA, to the AMBA-Bus system which is the cen-
tral communication infrastructure for all FPGA cores including the Leon3 CPUs.
Furthermore, we use the RS232 interface for the debugging link to the Gaisler Leon3
debugging and monitor software grmon. Over the JTAG interface, we can configure
and debug the FPGA with the Xilinx software Chipscope and Impact.

The application is a turbo en/decoder rapid prototyping system (see Figure 4.37a).
The system consists of different modules of a data transmission chain. From a data
generator, the data is channel-encoded by a turbo encoder and binary phase-shift
keying (BPSK)-modulated. After that, the data passes through the AWGN (Additive
White Gaussian Noise) channel. Inside the AWGN channel simulation, the signal
subject to noise so that errors which occur on a real AWGN channel transmission
can be simulated. Finally, the received data is demodulated and is handed over to the
turbo decoder. The decoded data is finally compared to the generated data and the
emerged errors are monitored.

Turbo
SlaveAHB

Controller
Memory

Controller

SDRAM

AHB Slave
Interface Serial

Dbg Link

RS232

Turbo Encoder

AWGN Channel

Error
Monitor

Data Generator

LEON 3

Software

LEON 3

Software

Turbo
Decoder

Turbo
Decoder

Source

Channel

Sink

Channel
Encoding

Modula-
tion

Channel
Decoding Demod.

Comparing

(a)

(b)

Figure 4.37: On the upper right side (a) the turbo en/decoding application pro-
vided by AIS project partner TU Kaiserslautern [MW08, MWB+10]
is shown. The data flow from the generator over all different modules
to the channel decoding is depicted. Finally, the received data is com-
pared with the original one, and the emerged errors are recorded. On
the left side (b), the demonstrator system architecture with the mapped
components is shown. The turbo decoding part is running in soft-
ware on different Leon3 CPUs, whereas the other components are im-
plemented in hardware and are accessible over an AMBA Advanced
High-performance Bus (AHB) interface.

258



4.6 Case Study: Turbo Decoder

This system is mapped into our demonstrator architecture (see Figure 4.37b). The
data generator, turbo encoder, AWGN channel, and the error monitor are imple-
mented as a hardware module inside the FPGA. The channel and the error monitor
are connected to the AMBA bus. The turbo decode module is implemented in soft-
ware running on one or more Leon3 CPUs. The data to and from the turbo decoder
is transmitted over the AMBA Bus. Additionally, the main memory (SDRAM) is
connected to the AMBA Bus over the memory controller.

With this architecture, we are able to evaluate and demonstrate the autonomous
units developed for the AIS project. We can inject faults into the AMBA bus com-
munication and the control and data paths of the Leon3 CPUs.

4.6.2 Control Flow Checking Contribution

For the control flow protected Leon3 CPU, we implemented the VHDL model of the
CFI method with the return stack, re-execution, and bus interface extensions. To em-
ulate control path errors, we used a synthesizable error injection unit based on a 5-bit
counter as introduced in Section 4.5.7. The number of detected and corrected errors
is recorded by an error counter which is accessible from software over a memory-
mapped register. Also, the fault injection unit can be switched on or off by software,
by setting a certain bit in a control register. The status of the fault injection unit is
shown in the output of the software which is transferred over a RS232 link and can
be displayed using a serial terminal program. Also, the read values from the error
counter register as well as a clock cycle and executed instructions counter register are
displayed.

Additionally, the program counter signals from the first pipeline steps as well as
the CPCREEX (see Section 4.5.3) signal which shows that a re-execution procedure
is in progress, are recorded and can be displayed with the Xilinx debugging tool
Chipscope.

Measuring the executed instructions and clock cycles when the turbo decoding
software is executed shows us that the average CPI (clocks per instructions) increases
when the error injection is switched on due to additional clock cycles for correcting
errors than without error injection (see Table 4.7). An additional latency of 4.7 clock
cycles on average for each injected error is measured.

Figure 4.38 shows screenshots from Chipscope. In the upper trace (a), a fault is
injected at a non control flow instruction. The normal sequence from 0x40001F68
over 0x40001F6C to 0x40001F70 is interrupted by an error of the program counter
(0x40009F6C). The checker unit has detected this error and re-executes the erro-
neous instruction (0x40001F6C).

In the trace below (b), the error is the wrong target (0x40009898 instead of
0x40001898) of a branch (0x40001EA8). In this case, the error is also detected
and the branch is re-executed. Note that 0x40001EAC is the delay instruction.

259



4. Control Flow Checking

operation clock cycles instruct. inj. errors ×106 CPI
×106 ×106 (IER)

no error inj. 2575 1386 0 (0) 1.86
error inj. 3078 1565 37.430 (≈ 10−2) 1.97

Table 4.7: Number of executed clock cycles and instructions of the Turbo decoding
software to show the additional latency of the CPU correction methods.
Also, the clock cycles per instructions (CPI) are shown.

(a)

(b)

Figure 4.38: These recorded signal traces from Chipscope show error detection and
correction. In the upper trace (a) the correction of a non control flow
instruction is shown. The successive linear execution is disturbed by
an error at the instruction address 0x40001F6C and after successful
detection, the erroneous instruction is re-executed. The trace below (b)
shows an error at a branch instruction with the following re-execution
of the branch.

4.7 Summary

We have introduced a systematic methodology for autonomous control flow checking
for embedded RISC CPUs which can monitor and correct the control flow. Different
methods and architectures were introduced which cover all different types of instruc-
tions as well as many faults and errors in control paths of an embedded processor. The
cadre of the architecture are the basic methods (CFI / CF method). Based thereupon,
the proposed architectures are modular, so it is easy to remove and add features like
the return stack, to get a lower area overhead or support more types of instructions.
A huge repertoire of different extensions which enhance the error detection possi-
bilities, supporting different types of control flow instructions, enable re-execution
features, and simplify the debugging of the checker unit are introduced which have
the possibility to increase the reliability as well as security of a processor enormously.
Furthermore, techniques for checking general IP cores are introduced which can in
particular detect single event effects and permanent faults.

260



4.7 Summary

Implementations of some of these embedded processor checking modules were
provided which can monitor and correct direct jumps and branches as well as returns
from subroutine. Experimental results show that the additional hardware overhead is
quite small. In particular, lookup tables and flip-flops overhead amount to an over-
head of less than 5% of the CPU core requirements in all cases. So, the actual over-
head results from the additional memory needed to monitor the control flow instruc-
tions. According to Michel et al. [MLS91], the Cerberus-16 processor has a memory
overhead of 34-85%, whereas the WDP approach has an overhead of 24-61% (see
Section 2.4.2). Our control flow checking approach has a memory overhead of only
15-30% according results reported in Table 4.2. Please note that these values are only
comparable with care due to different processor architectures and benchmarks. Fur-
thermore, the values from Table 4.2 do not include the overhead for the instruction
integrity checker (IIC). When also considering the IIC, the memory overhead of our
method is increased by approximate 5-10%.

A modular concept for generation of generic micro-programmable checker units
has been proposed, so the area overhead can be further reduced by removing some
modular components. The detection of errors happens during the execution of the
erroneous instruction, so we have the possibility to react immediately and prevent any
incorrect instruction from being executed. Furthermore, an incorrect jump or branch
instruction can be re-fetched and re-executed. With this technique, we therefore have
no performance impact on the CPU in the error-free case and the compiled program
code remains also unchanged.

In our implementations, an independent program counter CUPC with its own state
machine and own micro-code with own micro-instructions (ctrlRam) was introduced.
The checker micro-program code is based on the extracted branch and jump instruc-
tions from the program code. This reduced code covers only direct branches or jumps
without the instructions between two branch points. With this technique, we en-
hanced the CPU with a reduced second independent program counter and instruction
unit at minimum additional hardware cost and full control of the program flow. The
approach of Arora et al. [ARRJ06] has some similarities with our approach. The
advantages of ours, however, is that we are a) more flexible in using memories to
store the control flow (instruction) graph instead of synthesizing a dedicated finite
state machine (FSM) in logic for each program to be executed. Moreover, we have b)
no performance impact in the error-free case, and c) our checker unit is simpler and
thus requires less resources. Compared to all existing approaches, however, the main
advantage is the tight integration into the processor, which enables us to detect errors
very fast and before the error manifests into the register of the processor which often
might be too late to circumvent failures or attacks. This allows us also to immediately
correct an error by a simple re-execution of the last instructions.

Finally, using the bus interface of the checker unit, the contents or part of the
content of the checker memories might also be stored in the system memory instead
of dedicated memories. Only the content for checking the current part of the program

261



4. Control Flow Checking

(e.g., the current function or a set of functions which are current in use) may be
held in the local checker memories. If the checker needs information which is not
stored inside the checker memories, the checker can generate a page-fault-like event
to signal the operating system to reload the these memories with the needed contents.
This concept of caching can reduce the memory overhead significantly.

262



5
Conclusions

This dissertation provides an overview of security and reliability issues for IP cores
in embedded systems. Potential faults and attacks, which cause common security
and reliability problems, were classified. Major contributions of this thesis are novel
techniques for IP protection of cores and control flow checking for RISC processor
cores.

The justification of the existence of such methods which clearly cause additional
overhead and costs, are the ongoing technical advances of the underlying semicon-
ductor technology. These advances lead, on the one hand, to more complex systems,
consisting of billions of transistors. On the other hand, the individual transistors are
becoming more and more unreliable in new technology generations due to increased
process variation, accelerated aging, and increased sensitivity for single event effects.
Current design methodologies like worst-case design flow or proprietary interfaces
cannot keep up with this development. New design methodologies are needed to
handle these challenges for systems using billions of transistors, which include the
massive reuse of designs and cores. Interface standardization of IP cores will be
a huge topic in the future, which will provide solutions, but also cause problems.
Standardized IP core interfaces will boost the growth of the already vast market for
reusable IP cores for ASIC and FPGA technologies enormously. Clearly, the ques-
tion of confidentiality and protection against unlicensed usage of IP cores is becoming
more and more important. Our presented watermarking techniques can be a solution
to this problem for several IP cores. Furthermore, these complex systems consisting
of manifold kinds of IP cores, such as processors, bus systems, interface cores, hard-
ware accelerators, stand on shaky ground. The decreased reliability of the individual
transistors leads to the loss of faith that the underlying semiconductor technology,

263



5. Conclusions

combined with the corresponding verified design flow are error-free. The well known
worst case design flow is not longer applicable. Future designs and systems must deal
with the unreliable foundation they are built upon. They have to autonomously react
to environmental changes, and monitor faults. In other words, future designs must
take care of the underlying resources by using them resource-aware. However, this
resource-aware autonomous methodology needs new design paradigms which results
in a redesign of existing cores. To circumvent the need to redesign, existing cores
must be extended by additional elements to implement this autonomous behavior.
The control flow checking methodology proposed in this thesis provides one of these
units which is able to monitor faults and errors caused by the underlying unreliable
technology and which can correct them autonomously.

Summary

A brief summary of the three parts of this dissertation is given as follows:

• Overview of Security and Reliability Issues for Embedded Systems: In
Chapter 1, security and reliability problems for embedded systems are ana-
lyzed and described. Basic definitions in the area of security, and dependabil-
ity are given. A taxonomy of faults and attacks in embedded systems is pre-
sented and the severity of these issues is emphasized, in particular for future
technology generations. In Chapter 2, related work on techniques to increase
security and reliability is presented. In focus are techniques for IP protection
and countermeasures for code injection attacks which corresponds to security
issues, as well as common techniques for increasing the reliability of IP cores
in embedded systems. Finally, control flow checking techniques for embedded
processors are discussed which combine security and reliability issues.

• Watermarking and Identification Techniques for FPGA IP Cores: In Chap-
ter 3, novel IP core watermarking and identification techniques for FPGA de-
signs are presented. These techniques were developed in order to detect an
unlicensed usage of IP cores. First, a general watermarking model, introduced
by Li et al. [LMS06], is extended and adapted to watermarking and identifi-
cation of IP cores used in the electronic design automation flow. Techniques
for identification of HDL and netlist cores as well as approaches for water-
marking of netlist and bitfile cores are proposed. All these methods have in
common that only the FPGA bitfile is needed from the company suspected of
IP fraud. Moreover, novel watermarking techniques that verify the authorship
by monitor the power consumption, so-called power watermarking, are intro-
duced. Starting from a basic approach, many different encoding and decoding
methods are analyzed. Furthermore, different multiplexing techniques for con-
current sending of different watermarked cores, combined in the same FPGA,

264



are investigated. Finally, the effectiveness, but also the additional costs are
confirmed by experimental results.

• Control Flow Checking for Embedded RISC Processors: In Chapter 4,
new methods, architectures, and implementations for autonomous control flow
checking in embedded RISC processors are described. First, an overview of
the project Autonomous Integrated Systems (AIS) and some initial remarks for
fault injection are given. After that, methods and architectures for control flow
checking of all types of control flow instructions in embedded RISC cores and
common IP cores are introduced. For direct jumps and branches, two alterna-
tive methods are proposed which form a basis architecture. This basis architec-
ture can be extended towards support of indirect jumps, detecting more types of
errors, or error correction measures. An example implementation of the basis
control flow checker for RISC processors as well as many extensions is shown
for the Leon3 SPARC V8 core. Moreover, the interaction with a data path pro-
tection scheme and the corresponding overheads are elaborated. Finally, a case
study consisting of an error protected multi-processor rapid prototyping plat-
form which implements a turbo encoding/decoding system is demonstrated.

Future Directions

Security and reliability issues in embedded systems are becoming more and more
important with future generations of semiconductor technology. Therefore, the need
for methods and concepts as presented in this dissertation, will increase. However,
there are several extensions to these methods and new techniques which worth to
investigate in the future.

In the area of IP protection, several links are still missing to complete the chain
for identification of HDL cores in FPGA bitfiles. The identification of netlist cores
in the FPGA bitfile and the comparison of different netlists in order to decide if they
were generated from the same source is possible. Future work might bring both
methods together to identify HDL cores in bitfiles. Another interesting technique is
to verify watermarks using electromagnetic radiation. The advantages over power
watermarking techniques are an easy measurement without soldering wires onto the
PCB board, and the raster scanning over the FPGA area which provides additional
geometric location information. Power watermarking techniques can be further im-
proved by investigation of new encoding and decoding methods in order to be more
resistant against noise and disturbances. Furthermore, these techniques can be used
to transfer general data from the cores out of the FPGA. Power communication might
be useful if a communication possibility must be added later in the development and
no further dedicated pins of the FPGA or wires on the board are available. Possi-
ble applications include monitoring core status information or debugging. With the
methods presented in this dissertation, we achieve data transfer rates of up to 500

265



5. Conclusions

kbit/s. Finally, all these watermarking and identification techniques can be bundled
into a framework which can be tightly integrated with the design flow in development
environments.

Future research in the context of control flow checking techniques for embedded
RISC processors might consider the minimization of the memory overhead, full sup-
port for indirect jumps and support of other processor architectures. The memory
overhead can be reduced by introducing hierarchical checker structures as, for exam-
ple, in [ARRJ06], and compression methods. Using hierarchical checkers, relative
addresses can be used and combined with memory compression algorithms and thus,
the memory overhead can be drastically decreased. By using caching techniques
where the checker content is stored in the system memory and loaded into a cache-
like on-chip memory for checking the current part or function, the amount of expen-
sive on-chip memory can be further reduced. The reloading of the cache may be
done by the operation system or autonomously by the checker unit. The approaches
for checking indirect jumps can also benefit from the memory overhead reduction
techniques. Furthermore, the identification of valid indirect jump targets is also a
potential area of future research. Finally, our control flow checking approaches can
be adapted to other types of processor architectures. In particular single instruction,
multiple data (SIMD) architectures and multi-cores which execute the program syn-
chronously in parallel are suitable for our checking approach. On these architectures,
only one checker unit is needed which reduces the relative hardware overhead.

Finally, the IP core watermarking techniques are applicable only to FPGA targets
and design flow, whereas the reliability methods presented in this dissertation are
focused on ASIC designs. The combination and adaption of both so to increase the
reliability of FPGA designs might also be an interesting future area of research.

266



A
German Part

Methoden zur Verbesserung der
Sicherheit und Zuverlässigkeit
von eingebetteten IP-Cores in

FPGA- und ASIC-Designs

267



A. German Part

268



Zusammenfassung

Die vorliegende Arbeit gibt einen Überblick über Sicherheits- und Zuverlässigkeits-
aspekte in eingebetteten Systemen. Hierbei wurden mögliche Fehlerquellen und Si-
cherheitsangriffe, sowie geeignete Gegenmaßnahmen aufgezeigt. Speziell wurden
neue Techniken zum Schutze geistigen Eigentums (engl. Intellectual Property – IP)
von Schaltungsblöcken sowie Kontrollflussüberwachungsmaßnahmen für RISC Pro-
zessoren untersucht.

Der Einsatz solcher Methoden, die zusätzliche Ressourcen benötigen und damit
Mehrkosten verursachen, ist notwendig und gerechtfertigt durch die Fortschritte in
der Halbleitertechnologie. Diese Fortschritte erlauben komplexere Systeme, die ei-
nerseits aus Milliarden von Transistoren bestehen können, jedoch andererseits mit je-
der neuen Technologiegeneration immer unzuverlässiger werden. Gründe hierfür sind
höhere Variationen in der Herstellung, eine schnellere Alterung, sowie eine höhere
Anfälligkeit gegenüber sogenannten Single-Event-Effects. Heutige Entwurfsstrate-
gien wie der Worst-Case Entwicklungsfluss oder proprietäre Schnittstellen können
mit dieser Entwicklung nicht mithalten. Um zum Beispiel Schaltungen zu beherr-
schen, die aus Milliarden von Transistoren bestehen, müssen neue Entwurfsstrate-
gien angewandt werden wie die massive Wiederverwendung von gekauften oder
selbst geschriebenen Schaltungsblöcken. Die Standardisierung der Schnittstellen von
Schaltungsblöcken, die zwar Lösungen bringt aber auch Probleme verursachen kann,
wird eine Herausforderung sein. Das Wachstum des Markts von wiederverwendbaren
Schaltungsblöcken für die FPGA oder ASIC Technologie wird durch die Standardi-
sierung der Schnittstellen enorm beschleunigt. Natürlich wird dadurch auch die Fra-
ge nach dem Schutz von geistigem Eigentum immer wichtiger. Die in dieser Arbeit
vorgestellten Wasserzeichenmethoden können für viele Schaltungsblöcke eine Ant-
wort auf diese Frage sein. Andererseits stehen diese komplexen Systeme – bestehend
aus vielseitigen Schaltungsblöcken wie Prozessoren, Bussen, Schnittstellenschaltun-
gen, Hardwarebeschleunigern, usw. – auf wackligen Beinen. Dass die grundlegen-
de Halbleitertechnologie kombiniert mit dem entsprechenden verifizierten Entwurfs-
fluss fehlerfrei ist, kann durch die abnehmende Zuverlässigkeit der einzelnen Tran-
sistoren nicht mehr sichergestellt werden. Der bekannte Worst-Case Entwurfsfluss
ist in Zukunft nicht mehr anwendbar. Zukünftige Systeme müssen sich mit der un-
zuverlässigen Halbleitertechnologie auf der sie aufbauen auseinandersetzen und au-
tonom auf Änderungen der Umgebungsbedingungen sowie Fehler reagieren. Mit an-

269



A. German Part

deren Worten: Sie müssen auf die zugrundeliegende Halbleitertechnologie Rücksicht
nehmen, indem sie diese ressourcengewahr verwenden. Diese neue autonome res-
sourcengewahre Benutzung verlangt aber auch neuen Entwurfsparadigmen, welche
üblicherweise einen Neuentwurf existierender Schaltungen nach sich zieht. Um dies
zu verhindern, können auch existierende Schaltungen mit neuen Elementen, welche
dieses autonome Verhalten bereit stellen, erweitert werden. Die in dieser Arbeit vor-
gestellte Kontrollflussüberwachungseinheit ist eine solche autonome Einheit, die dem
entsprechenden Prozessor die Möglichkeit gibt, Fehler der zugrundeliegenden Halb-
leitertechnologie zu erkennen, und diese selbstständig zu korrigieren.

Kapitelübersicht

Im Folgenden wird eine kurze Zusammenfassung der Kapitel gegeben:

• Sicherheits- und Zuverlässigkeitsaspekte in eingebetteten Systemen: In Ka-
pitel 1 werden aktuelle Sicherheits- und Zuverlässigkeitsprobleme aufgezeigt,
die in heutigen eingebetteten Systemen vorkommen. Dazu werden auch grund-
legende Begriffe und Definitionen aus dem Sicherheits- und Verlässlichkeits-
bereich, sowie mögliche Fehler und Sicherheitsangriffe vorgestellt. Die Wich-
tigkeit dieser Aspekte, sowie die Notwendigkeit von Gegenmaßnahmen wird
dadurch unterstrichen. Diese Maßnahmen werden in Kapitel 2 vorgestellt. Im
Mittelpunkt standen insbesondere Maßnahmen zum Schutz geistigen Eigen-
tums, Gegenmaßnahmen für sogenannte Code-Injection-Angriffe zur Erhöhung
der Sicherheit, sowie Maßnahmen um die Zuverlässigkeit von eingebetteten
Schaltungen zu verbessern. Des Weiteren werden Kontrollflussüberwachungs-
methoden vorgestellt, die gleichzeitig Sicherheits- als auch Zuverlässigkeitsas-
pekte vereinen.

• Wasserzeichen und Identifikationsmethoden für FPGA-Schaltungen: Ka-
pitel 3 beschäftigt sich mit neuen Wasserzeichen- und Identifikationsmethoden
zum Schutz geistigen Eigentums von FPGA-Schaltungsblöcken. Diese Metho-
den können eine nicht lizenzierte Verwendung des Schaltungsblocks aufde-
cken. Zuerst wird ein von Li und anderen [LMS06] entwickeltes allgemeines
Modell für Wasserzeichenmethoden um Identifikationsvefahren für elektrische
Schaltungen erweitert. Danach werden Identifikationsmethoden für sogenann-
te Netzlisten- und HDL-Schaltungsblöcke, sowie Wasserzeichenmethoden für
Netzlisten- und Bitfile-Schaltungsblöcke vorgestellt. Alle diese Verfahren be-
nötigen nur das FPGA-Bitfile aus dem Produkt der Firma, die im Verdacht
steht, Schaltungsblöcke anderer illegal einzusetzen. Des Weiteren wird ein neu-
er Ansatz vorgestellt, bei dem das Wasserzeichen durch den Energieverbrauch
des FPGAs ausgelesen und verifiziert wird – das sogenannte Power Water-
marking. Zuerst wird eine Basismethode dieses Verfahrens vorgestellt, die um

270



verschiedene Kodierungs- und Dekodierungsansätze erweitert wird. Zusätzlich
werden noch verschiedene Multiplexverfahren präsentiert, die ein gleichzeiti-
ges Senden von mehreren Wasserzeichen verschiedener Schaltungsblöcke in
einem FPGA erlauben. Zum Schluss werden die Kosten und die Funktionswei-
se aller Methoden durch Experimente an Beispielschaltungen verifiziert.

• Kontrollflussüberwachung für eingebettete RISC Prozessoren: In Kapi-
tel 4 werden Methoden, Architekturen und Implementierungen für autonome
Kontrollflussüberwachung in eingebetteten Prozessoren vorgestellt. Diese Ver-
fahren werden im Rahmen des Projekts Autonome Integrierte Systeme (AIS)
untersucht, welches zu Beginn erörtert wird. Zusätzlich werden grundlegen-
de Aspekte zur Fehlerinjektion analysiert. Danach werden die Methoden und
Architekturen für die Kontrollflussüberwachung vorgestellt, welche alle Ar-
ten von Kontrollflussbefehlen eines eingebetteten RISC Prozessors abdecken.
Dabei werden allgemeine Schaltungsblöcke nicht außer Acht gelassen. Zwei
alternative Verfahren zur Überwachung von direkten Sprüngen und Verzwei-
gungen bilden die Basisarchitekturen, welche durch zusätzliche Module zur
Überwachung von indirekten Sprüngen, Erkennung von anderen Arten von
Fehlern oder Fehlerkorrekturmaßnahmen erweitert werden können. Eine bei-
spielhafte Implementierung der Basisarchitekturen und einige Erweiterungen
wurde für den SPARC V8 Prozessor Leon3 realisiert. Zusätzlich wurde eine
Datenpfadüberwachung in unsere Verfahren integriert und der zusätzliche Res-
sourcenaufwand untersucht. Zum Schluss wird eine Fallstudie präsentiert, die
aus einem Multiprozessorsystem besteht, welches um unsere Fehlererkennungs-
und Korrekturverfahren erweitert wurde, und auf dem eine Kodierungs- und
Dekodierungsanwendung nach dem Turbo-Verfahren ausgeführt wird.

Ausblick auf weiterführende Themen

Auch mit zukünftigen Halbleitergenerationen werden Sicherheits- und Zuverlässig-
keitsaspekte in eingebetteten Systemen immer wichtiger. Damit wird auch die Not-
wendigkeit der in dieser Arbeit entwickelten Methoden und Konzepte steigen. Jedoch
ist die Arbeit an diesen Methoden keinesfalls abgeschlossen und zukünftige Erweite-
rungen und neue Techniken bieten genug Raum für weitere Forschungen.

Auf dem Forschungsgebiet des Schutz geistigen Eigentums von FPGA-Schaltungs-
blöcken fehlen noch einige Glieder der vollständigen Kette um HDL-Schaltungsblö-
cke in einem FPGA-Bitfile ohne Wasserzeichen zu identifizieren. Die Identifikati-
on von Netzlistenschaltungen in FGPA-Bitfiles, sowie die Entscheidung, ob mehrere
Netzlistenschaltungen von dem gleichen HDL-Schaltungsblock generiert wurden, ist
jetzt schon möglich. In zukünftigen Arbeiten können diese beide Verfahren vereinigt
werden, um HDL-Schaltungblöcke in FPGA-Bitfiles zu identifizieren. Das Ausle-
sen und Verifizieren von Wasserzeichen mittels elektro-magnetischer Abstrahlung ist

271



A. German Part

auch ein interessantes zukünftiges Forschungsgebiet. Vorteile gegenüber dem Aus-
lesen über die Spannungsversorgung sind unter anderem das einfache Messen oh-
ne aufwändige Lötarbeiten an der Platine und die Möglichkeit eines Abtasten der
Abstrahlung an verschiedenen Stellen über der FPGA-Fläche, welches zusätzliche
geometrische Lokalisierungsinformationen liefert. Aber auch das Power Watermar-
king Verfahren lässt sich mit neuen Kodierungs- und Dekodierungsmethoden er-
weitern, um im Falle von Störungen noch bessere Dekodierungsergebnisse zu be-
kommen. Darüber hinaus lassen sich diese Verfahren auch zur Übertragung allge-
meiner Daten aus dem FPGA einsetzen. Diese sogenannte Power Communication
könnte dann in Fällen hilfreich sein, wenn diese Kommunikationsmöglichkeit erst
spät in der Entwicklung eingesetzt werden muss und keine weiteren dafür vorgese-
hene Pins oder Leitungen auf der Platine vorhanden sind. Mögliche Anwendungen
wären z.B. das Übertragen von Überwachungsinformationen des Schaltungblocks
oder das Debuggen und Testen. Mit den in dieser Arbeit vorgestellten Verfahren las-
sen sich Übertragungsraten bis zu 500 kbit/s realisieren. Schließlich lassen sich al-
le diese Wasserzeichen- und Identifikationsverfahren in einem Framework zusam-
menfassen, welches in den bestehenden Entwicklungsumgebungen integriert werden
kann.

Weitere Forschungsrichtungen für die Kontrollflussüberwachung von eingebette-
ten RISC-Prozessoren sind die Minimierung des Speicheraufwands, die komplette
Unterstützung von indirekten Sprüngen, sowie die Unterstützung von mehr Prozes-
sorarchitekturen. Der Speicheraufwand kann durch hierarchische Überwachungsstruk-
turen, wie z.B. in [ARRJ06] und durch Kompressionsmethoden verringert werden.
Hierarchische Überwachungseinheiten verwenden relative Speicheradressen, wel-
che zusätzlich durch Kompressionsverfahren weit weniger Speicher benötigen als
die heutigen Methoden. Des Weiteren kann durch die Implementierung des Cache-
Verfahrens der Bedarf des teuren On-chip-Speichers verringert werden. In diesem
Verfahren werden die Informationen, die zur Überwachung benötigt werden, im Sys-
temspeicher abgelegt und zum Überwachen einer gerade ausgeführten Funktion oder
Teil des Programms in einen Cache-artigen On-chip-Speicher geladen. Das Wieder-
auffüllen des Caches mit neuen Daten kann durch das Betriebssystem oder selbst-
ständig von der Überwachungseinheit veranlasst werden. Auch die Verfahren zur
Überwachung von indirekten Sprüngen können von den Speicherreduktionstechniken
profitieren. Die automatische Identifizierung von indirekten Sprungzielen im Pro-
gammcode ist auch ein mögliches zukünftiges Forschungsgebiet. Schließlich sollte
auch die Portierung der hier vorgestellten Überwachungseinheit auf anderen Pro-
zessorarchitekturen untersucht werden. Vor allem Single-Instruction, Multiple-Data
(SIMD) Architekturen und Multiprozessorsysteme, bei denen das Programm syn-
chron parallel ausgeführt wird, eignen sich für unseren Überwachungsansatz, da in
diesen Architekturen nur eine Überwachungseinheit mehrere Ausführungseinheiten
kontrollieren kann.

272



Die in dieser Arbeit vorgestellten Wasserzeichenverfahren sind für den FPGA-
Entwurfsfluss entwickelt worden, während die Methoden zur Verbesserung der Zu-
verlässigkeit eher für den ASIC-Entwurf ausgelegt sind. Eine Kombination und An-
passung dieser Methoden um die Zuverlässigkeit von FPGA-Schaltungen zu verbes-
sern könnte auch ein interessantes zukünftiges Forschungsgebiet sein.

273



A. German Part

274



Bibliography

[AAN00] Lorena Anghel, Dan Alexandrescu, and Michael Nicolaidis. Evalua-
tion of a Soft Error Tolerance Technique based on Time and/or Space
Redundancy. In Integrated Circuits and Systems Design, 2000. Pro-
ceedings. 13th Symposium on, pages 237–242, 2000.

[AARR03] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Ro-
hatgi. The EM Side-Channel(s). In CHES ’02: 4th International Work-
shop on Cryptographic Hardware and Embedded Systems, pages 29–
45, London, UK, 2003. Springer-Verlag.

[ABEL05] Martı́n Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-
flow Integrity. In CCS ’05: Proceedings of the 12th ACM Confer-
ence on Computer and Communications Security, pages 340–353, New
York, NY, USA, 2005. ACM Press.

[ABEL09] Martı́n Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-
flow Integrity: Principles, Implementations, and Applications. ACM
Trans. Inf. Syst. Secur., 13(1):1–40, 2009.

[ABMF04] Todd Austin, David Blaauw, Trevor Mudge, and Krisztián Flautner.
Making Typical Silicon Matter with Razor. Computer, 37(3):57–65,
2004.

[ADM04] Sobeeh Almukhaizim, Petros Drineas, and Yiorgos Makris. Concur-
rent Error Detection for Combinational and Sequential Logic via Out-
put Compaction. In ISQED ’04: Proceedings of the 5th International
Symposium on Quality Electronic Design, pages 459–464, Washington,
DC, USA, 2004. IEEE Computer Society.

[AGM+71] Algirdas Anthony Avizienis, GC Gilley, Francis Parkash Mathur,
David Allen Rennels, JA Rohr, and DK Rubin. The STAR (self-testing
and repairing) computer: An investigation of the theory and practice
of fault-tolerant computer design. IEEE Transactions on Computers,
100(20):1312–1321, 1971.

275



Bibliography

[AHTA04] Amr T. Abdel-Hamid, Sofiéne Tahar, and El Mostapha Aboulhamid. A
Survey on IP Watermarking Techniques. Design Automation for Em-
bedded Systems, 9(3):211–227, 2004.

[Ajl95] Cheryl Ajluni. Two new Imaging Techniques Promise to Improve IC
Defect Identification. Electronic Design, 43(14):37–38, 1995.

[AK96] Ross Anderson and Markus Kuhn. Tamper Resistance: A Cautionary
Note. In WOEC’96: Proceedings of the 2nd conference on Proceedings
of the Second USENIX Workshop on Electronic Commerce, pages 1–11,
Berkeley, CA, USA, 1996. USENIX Association.

[Ale96] Aleph One. Smashing the Stack for Fun and Profit. Phrack magazine,
49(7), 1996.

[All00] VSI Alliance. Intellectual Property Protection White Paper: Schemes,
Alternatives and Discussion Version 1.1. Issued by Intellectual Prop-
erty Protection Development Working Group, Ver, 1.1, 2000.

[All07] Business Software Alliance. Fifth Annual BSA and IDC Global Soft-
ware Piracy Study. Technical report, 2007.

[ALR01] Algirdas Avižienis, Jean-Claude Laprie, and Brian Randell. Funda-
mental concepts of dependability. Technical Report Series – University
of Newcastle upon Tyne Computing Science, 2001.

[ALRL04] Algirdas Avižienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. Basic Concepts and Taxonomy of Dependable and Secure
Computing. IEEE transactions on dependable and secure computing,
pages 11–33, 2004.

[Alta] Altera. Error Detection and Recovery Using CRC in Altera FPGA De-
vices. URL: http://www.altera.com/literature/an/an357.
pdf.

[Altb] Altera. FPGA Design Security Solution Using MAX II Devices. URL:
http://www.altera.com/literature/wp/wp_m2dsgn.pdf.

[And72] James P. Anderson. Computer Security Technology Planning Study,
1972.

[ANKA99] Z. Alkhalifa, V. S. Sukumaran Nair, Narayanan Krishnamurthy, and
Jacob A. Abraham. Design and Evaluation of System-Level Checks for
On-Line Control Flow Error Detection. IEEE Trans. Parallel Distrib.
Syst., 10(6):627–641, 1999.

276



Bibliography

[AR] AT&T-Research. Graphviz - Graph Visualization Software. URL:
http://graphviz.org/.

[ARM99] ARM. AMBA specification (rev 2.0). ARM Limited, 1999.

[ARRJ06] Divya Arora, Srivaths Ravi, Anand Raghunathan, and Niraj K. Jha.
Hardware-assisted Run-time Monitoring for Secure Program Execu-
tion on Embedded Processors. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 14(12):1295–1308, 2006.

[ARS04] André Adelsbach, Markus Rohe, and Ahmad-Reza Sadeghi. Over-
coming the Obstacles of Zero-knowledge Watermark Detection. In
MM&Sec ’04: Proceedings of the 2004 workshop on Multimedia and
security, pages 46–55, New York, NY, USA, 2004. ACM.

[Aus95] Kenneth Austin. Data Security Arrangements for Semiconductor Pro-
grammable Devices, February 7 1995. US Patent 5,388,157.

[Aus99] Todd M. Austin. DIVA: A Reliable Substrate for Deep Submicron Mi-
croarchitecture Design. In MICRO 32: Proceedings of the 32nd annual
ACM/IEEE international symposium on Microarchitecture, pages 196–
207, Washington, DC, USA, 1999. IEEE Computer Society.

[BA02] Michael L. Bushnell and Vishwani D. Agrawal. Essentials of Elec-
tronic Testing for Digital, Memory, and Mixed-signal VLSI Circuits.
Kluwer Academic, 2002.

[BAFS05] Elena Gabriela Barrantes, David H. Ackley, Stephanie Forrest, and
Darko Stefanović. Randomized Instruction Set Emulation. ACM Trans.
Inf. Syst. Secur., 8(1):3–40, 2005.

[Bar] Scott Barrick. Designing Around an Encrypted Netlist: Is
The Pain Worth the Gain? D&R Industry Articles. URL:
http://www.design-reuse.com/articles/18205/

encrypted-netlist.html.

[Bar81] Joel F. Bartlett. A NonStop Kernel. In SOSP ’81: Proceedings of the
eighth ACM symposium on Operating systems principles, pages 22–29,
New York, NY, USA, 1981. ACM.

[Bau05] Robert C. Baumann. Radiation-induced soft errors in advanced semi-
conductor technologies. IEEE Transactions on Device and materials
reliability, 5(3):305–316, 2005.

277



Bibliography

[Bau08] Florian Baueregger. Identifikation von signierten Schaltungen an-
hand von Leistungsverbrauchsmessungen. Dilpomarbeit, Department
of Computer Science 12, University of Erlangen-Nuremberg, January
2008.

[BBB+97] S. Buchner, M. Baze, D. Brown, D. McMorrow, J. Melinger, SFA Inc,
and MD Largo. Comparison of Error Rates in Combinational and
Sequential Logic. IEEE Transactions on Nuclear Science, 44(6 Part
1):2209–2216, 1997.

[BBC05] BBC. 1986: Coal Mine Canaries made Redundant. URL:
http://news.bbc.co.uk/onthisday/hi/dates/stories/

december/30/newsid_2547000/2547587.stm, 2005.

[BDH+98] Feng Bao, Robert H. Deng, Yongfei Han, Albert B. Jeng, A. Desai
Narasimhalu, and Teow-Hin Ngair. Breaking Public Key Cryptosys-
tems on Tamper Resistant Devices in the Presence of Transient Faults.
In Proceedings of the 5th International Workshop on Security Proto-
cols, pages 115–124, London, UK, 1998. Springer-Verlag.

[BDS03] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address Obfus-
cation: An Efficient Approach to Combat a Broad Range of Memory
Error Exploits. In SSYM’03: Proceedings of the 12th conference on
USENIX Security Symposium, pages 8–8, Berkeley, CA, USA, 2003.
USENIX Association.

[BEA06] Mihai Budiu, Úlfar Erlingsson, and Martı́n Abadi. Architectural Sup-
port for Software-based Protection. In ASID ’06: Proceedings of the 1st
workshop on Architectural and system support for improving software
dependability, pages 42–51, New York, NY, USA, 2006. ACM.

[BGB06] Lilian Bossuet, Guy Gogniat, and Wayne Burleson. Dynamically Con-
figurable Security for SRAM FPGA Bitstreams. International Journal
of Embedded Systems, 2(1):73–85, 2006.

[BGT93] Claude Berrou, Alain Glavieux, and Punya Thitimajshima. Near Shan-
non Limit Error-Correcting Coding and Decoding: Turbo-Codes. In
Proc. 1993 International Conference on Communications (ICC ’93),
pages 1064–1070, Geneva, Switzerland, May 1993.

[BGXC07] Fujun Bai, Zhiqiang Gao, Yi Xu, and Xueyu Cai. A Watermarking
Technique for Hard IP Protection in Full-custom IC Design. In Interna-
tional Conference on Communications, Circuits and Systems (ICCCAS
2007), pages 1177–1180, 2007.

278



Bibliography

[BK00] Bulba and Kil3r. Bypassing Stackguard and Stackshield. Phrack Mag-
azine, 2000.

[BKIL03] Saurabh Bagchi, Zbigniew Kalbarczyk, Ravishankar Iyer, and Y. Lev-
endel. Design and Evaluation of Preemptive Control Signature
(PECOS) Checking. IEEE Transactions on Computers, 2003.

[BLW+01] Saurabh Bagchi, Y Liu, Keith Whisnant, Zbigniew Kalbarczyk, Rav-
ishankar K. Iyer, Y. Levendel, and Larry Votta. A Framework for
Database Audit and Control Flow Checking for a Wireless Telephone
Network Controller. In DSN ’01: Proceedings of the 2001 Interna-
tional Conference on Dependable Systems and Networks (formerly:
FTCS), pages 225–234, Washington, DC, USA, 2001. IEEE Computer
Society.

[BM07] Jan A. Bergstra and C. A. Middelburg. Instruction Sequences with
Indirect Jumps. Electronic Report PRG0709, Programming Research
Group, University of Amsterdam, 2007.

[Bor05] Shekhar Borkar. Designing Reliable Systems from Unreliable Compo-
nents: The Challenges of Transistor Variability and Degradation. IEEE
Micro, 25(6):10–16, 2005.

[BPS00] William R. Bush, Jonathan D. Pincus, and David J. Sielaff. A Static An-
alyzer for Finding Dynamic Programming Errors. Software-Practice
Experience, 30(7):775–802, 2000.

[BRSS08] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage.
When Good Instructions go Bad: Generalizing Return-oriented Pro-
gramming to RISC. In CCS ’08: Proceedings of the 15th ACM con-
ference on Computer and communications security, pages 27–38, New
York, NY, USA, 2008. ACM.

[BS97] Eli Biham and Adi Shamir. Differential Fault Analysis of Secret Key
Cryptosystems. In CRYPTO ’97: Proceedings of the 17th Annual In-
ternational Cryptology Conference on Advances in Cryptology, pages
513–525, London, UK, 1997. Springer-Verlag.

[BSO07] Fred A. Bower, Daniel J. Sorin, and Sule Ozev. Online Diagnosis of
Hard Faults in Microprocessors. ACM Transactions on Architecture
and Code Optimization (TACO), 4(2):8, 2007.

[BSOS04] Fred A. Bower, Paul G. Shealy, Sule Ozev, and Daniel J. Sorin. Tolerat-
ing Hard Faults in Microprocessor Array Structures. In DSN ’04: Pro-
ceedings of the 2004 International Conference on Dependable Systems

279



Bibliography

and Networks, page 51, Washington, DC, USA, 2004. IEEE Computer
Society.

[BSR09] Daniel Baldin, Katharina Stahl, and Franz Rammig. Ergebnisbericht
über Selbstorganisierende Betriebssysteme für autonome Integrierte
Schaltungen. AIS Meilensteinbericht UPB-HNI-Q12, 2009.

[BST00] Arash Baratloo, Navjot Singh, and Timothy Tsai. Transparent Run-
time Defense against Stack Smashing Attacks. In ATEC ’00: Proceed-
ings of the annual conference on USENIX Annual Technical Confer-
ence, pages 251–262, Berkeley, CA, USA, 2000. USENIX Associa-
tion.

[BTH96] Laurence Boney, Ahmed H. Tewfik, and Khaled N. Hamdy. Digital
Watermarks for Audio Signals. In International Conference on Multi-
media Computing and Systems, pages 473–480, 1996.

[BWWA06] Edson Borin, Cheng Wang, Youfeng Wu, and Guido Araujo. Software-
Based Transparent and Comprehensive Control-Flow Error Detection.
In CGO ’06: Proceedings of the International Symposium on Code
Generation and Optimization, pages 333–345, Washington, DC, USA,
2006. IEEE Computer Society.

[BZS+06] Abdelmajid Bouajila, Johannes Zeppenfeld, Walter Stechele, Andreas
Herkersdorf, Andreas Bernauer, Oliver Bringmann, and Wolfgang
Rosenstiel. Organic Computing at the System on Chip Level. In Pro-
ceedings of the IFIP International Conference on Very Large Scale In-
tegration of System on Chip (VLSI-SoC 2006). Springer, October 2006.

[BZSH09] Abdelmajid Bouajila, Johannes Zeppenfeld, Walter Stechele, and An-
dreas Herkersdorf. Multi-bit Soft-and Timing Error Detection for CPU
Pipelines. In Proceedings of edaWorkshop 09. VDE VERLAG GmbH,
2009.

[CBB+01] Crispin Cowan, Matt Barringer, Steve Beattie, Greg Kroah-Hartman,
Mike Frantzen, and Jamie Lokier. FormatGuard: Automatic Protection
from printf Format String Vulnerabilities. In SSYM’01: Proceedings
of the 10th conference on USENIX Security Symposium, Berkeley, CA,
USA, 2001. USENIX Association.

[CBD+99] Crispin Cowan, Steve Beattie, Ryan Finnin Day, Calton Pu, Perry Wa-
gle, and Erik Walthinsen. Protecting Systems from Stack Smashing
Attacks with StackGuard. In Linux Expo, 1999.

280



Bibliography

[CBJW03] Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. Point-
guardTM: Protecting Pointers from Buffer Overflow Vulnerabilities. In
SSYM’03: Proceedings of the 12th conference on USENIX Security
Symposium, Berkeley, CA, USA, 2003. USENIX Association.

[CD00] Roy Chapman and Tariq S. Durrani. IP Protection of DSP Algorithms
for System on Chip Implementation. IEEE Transactions on Signal Pro-
cessing, 48(3):854–861, 2000.

[CE99] Cristina Cifuentes and Mike Van Emmerik. Recovery of Jump Table
Case Statements from Binary Code. In IWPC ’99: Proceedings of the
7th International Workshop on Program Comprehension, pages 192–
199, Washington, DC, USA, 1999. IEEE Computer Society.

[CH01] Tzi-Cker Chiueh and Fu-Hau Hsu. RAD: A Compile-time Solution to
Buffer Overflow Attacks. In International Conference on Distributed
Computing Systems, volume 21, pages 409–420. IEEE Computer Soci-
ety; 1999, 2001.

[Cha75] K. Mani Chandy. A Survey of Analytic Models of Rollback and Re-
covery Stratergies. Computer, 8(5):40–47, 1975.

[Cha98] Edoardo Charbon. Hierarchical Watermarking in IC Design. In Pro-
ceedings of the IEEE Custom Integrated Circuits Conference, pages
295–298, 1998.

[CHP97] Po-Yung Chang, Eric Hao, and Yale N. Patt. Target Prediction for Indi-
rect Jumps. Proceedings of the 24th Annual International Symposium
on Computer Architecture, 25(2):274–283, 1997.

[CK06] Nathaniel Couture and Kenneth B. Kent. Periodic Licensing of FPGA
based Intellectual Property. In FPGA ’06: Proceedings of the 2006
ACM/SIGDA 14th international symposium on Field programmable
gate arrays, pages 234–234, New York, NY, USA, 2006. ACM.

[CNV96] T. Calin, Michael Nicolaidis, and Raoul Velazco. Upset Hardened
Memory Design for Submicron CMOS Technology. IEEE Transac-
tions on Nuclear Science, 43(6 Part 1):2874–2878, 1996.

[Con99] Matt Conover. w00w00 on Heap Overflows. URL: http://www.
w00w00.org/files/articles/heaptut.txt, 1, 1999.

[CPG+06] Encarnacion Castillo, Luis Parrilla, Antonio Garcia, Antonio Loris, and
Uwe Meyer-Baese. IPP Watermarking Technique for IP Core Pro-
tection on FPL Devices. In International Conference on Field Pro-

281



Bibliography

grammable Logic and Applications, 2006. FPL’06, pages 487–492,
2006.

[CPG+08] Encarnacion Castillo, Luis Parrilla, Antonio Garcia, Uwe Meyer-
Baese, Guillermo Botella, and Antonio Lloris. Automated Signature
Insertion in Combinational Logic Patterns for HDL IP Core Protection.
In 4th Southern Conference on Programmable Logic, 2008, pages 183–
186, 2008.

[CPM+98] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan
Walpole, Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and
Qian Zhang. StackGuard: Automatic Adaptive Detection and Pre-
vention of Buffer-overflow Attacks. In SSYM’98: Proceedings of the
7th conference on USENIX Security Symposium, Berkeley, CA, USA,
1998. USENIX Association.

[CPW74] J. R. Connet, E. J. Pasternak, and B. D. Wagner. Software Defenses in
Real-time Control Systems. Digest of papers, page 94, 1974.

[CRH90] P. J. Clarke, A. K. Ray, and C. A. Hogarth. Electromigration–A Tuto-
rial Introduction. International Journal of Electronics, 69(3):333–338,
1990.

[Cro79] Dwight L. Crook. Method of Determining Reliability Screens for
Time Dependent Dielectric Breakdown. Reliability Physics Sympo-
sium, 1979. 17th Annual, pages 1–7, 1979.

[CSB92] Anantha P. Chandrakasan, Samuel Sheng, and Robert W. Brodersen.
Low-power CMOS Digital Design. IEEE Journal of Solid-State Cir-
cuits, 27(4):473–484, 1992.

[CSW89] Fan R. K. Chung, Jawad A. Salehi, and Victor K. Wei. Optical Orthog-
onal Codes: Design, Analysis and Applications. IEEE Transactions on
Information Theory, 35(3):595–604, 1989.

[Dau06] Andrew Dauman. An Open IP Encryption Flow Permits Industry-wide
Interoperability. Synopsys, Inc. White Paper, June 2006.

[Des97] Solar Designer. Non-executable Stack Patch. URL: http://www.
openwall.com/linux/, 1997.

[DH76] Whitfield Diffie and Martin E. Hellman. New Directions in Cryptogra-
phy. IEEE Transactions on Information Theory, 22(6):644–654, 1976.

[Dig] Digilent. Spartan-3 Starter Board. URL: http://www.

digilentinc.com/.

282



Bibliography

[DMW98] J. H. Daniel, D. F. Moore, and J. F. Walker. Focused Ion Beams for Mi-
crofabrication. Engineering Science and Education Journal, 7(2):53–
56, 1998.

[Dob03] Igor Dobrovitski. Exploit for CVS Double free() for Linux
pserver. Neohapsis Archives (http://www.security-express.
com/archives/fulldisclosure/2003-q1/0545.html), 2003.

[Dri09] Saar Drimer. Security for Volatile FPGAs. November 2009.

[DRS03] Nurit Dor, Michael Rodeh, and Mooly Sagiv. CSSV: Towards a Re-
alistic Tool for Statically Detecting All Buffer Overflows in C. ACM
SIGPLAN Notices, 38(5):155–167, 2003.

[DS90] X. Delord and Gabriele Saucier. Control Flow Checking in Pipelined
RISC Microprocessors: the Motorola MC88100 Case Study. In Pro-
ceedings of the Euromicro’90 Workshop on Real Time, pages 162–169,
1990.

[DS91] X. Delord and Gabriele Saucier. Formalizing Signature Analysis for
Control Flow Checking of Pipelined RISC Multiprocessors. In Pro-
ceedings of the IEEE International Test Conference on Test, pages 936–
945, Washington, DC, USA, 1991. IEEE Computer Society.

[DS99] Debatosh Debnath and Tsutomu Sasao. Fast Boolean Matching under
Permutation using Representative. In Proceedings of the ASP-DAC’99
Asia and South Pacific Design Automation Conference, 1999, pages
359–362, 1999.

[DSG05] Nij Dorairaj, Eric Shiflet, and Mark Goosman. PlanAhead Software
as a Platform for Partial Reconfiguration. Xilinx XCELL Journal, Art,
55:68–71, 2005.

[DTP+09] Shidhartha Das, Carlos Tokunaga, Sanjay Pant, Wei-Hsiang Ma, Sud-
herssen Kalaiselvan, Kevin Lai, David M. Bull, and David T. Blaauw.
RazorII: In Situ Error Detection and Correction for PVT and SER Tol-
erance. IEEE Journal of Solid-State Circuits, 44(1):32–48, 2009.

[EAV+06] Úlfar Erlingsson, Martı́n Abadi, Michael Vrable, Mihai Budiu, and
George C. Necula. XFI: Software Guards for System Address Spaces.
In OSDI ’06: Proceedings of the 7th symposium on Operating systems
design and implementation, pages 75–88, Berkeley, CA, USA, 2006.
USENIX Association.

283



Bibliography

[EKD+03] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao,
Toan Pham, Conrad Ziesler, David Blaauw, Todd Austin, Krisztian
Flautner, and Trevor Mudge. Razor: A Low-Power Pipeline Based
on Circuit-Level Timing Speculation. In MICRO 36: Proceedings of
the 36th annual IEEE/ACM International Symposium on Microarchi-
tecture, page 7, Washington, DC, USA, 2003. IEEE Computer Society.

[EL02] David Evans and David Larochelle. Improving Security Using Exten-
sible Lightweight Static Analysis. IEEE Software, 19(1):42–51, 2002.

[Erl07] Úlfar Erlingsson. Low-level Software Security: Attacks and Defenses.
Foundations of Security Analysis and Design IV, 4677:92, 2007.

[ES84] James B. Eifert and John Paul Shen. Processor Monitoring Using Asyn-
chronous Signatured Instruction Streams. In Twenty-Fifth Interna-
tional Symposium on Fault-Tolerant Computing, 1995,’Highlights from
Twenty-Five Years’, Reprinted from FTGS-14 1984, pages 394–399,
1984.

[Est] Chip Estimate. ChipEstimate.com. URL: http://www.

chipestimate.com/.

[Fed01] Federal Information Processing Standards Publication 197. Announc-
ing the Advanced Encryption Standard (AES). URL: http://csrc.
nist.gov/publications/fips/fips197/fips-197.pdf,
2001.

[FHSL96] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas A.
Longstaff. A Sense of Self for Unix Processes. In SP ’96: Proceed-
ings of the 1996 IEEE Symposium on Security and Privacy, page 120,
Washington, DC, USA, 1996. IEEE Computer Society.

[FKF+03] Henry Hanping Feng, Oleg M. Kolesnikov, Prahlad Fogla, Wenke Lee,
and Weibo Gong. Anomaly Detection Using Call Stack Information.
In SP ’03: Proceedings of the 2003 IEEE Symposium on Security and
Privacy, page 62, Washington, DC, USA, 2003. IEEE Computer Soci-
ety.

[FKK96] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The SSL Proto-
col – Version 3.0. URL: http://www.mozilla.org/projects/
security/pki/nss/ssl/draft302.txt, 1996.

[Fra] Fraunhofer IISB. FIB Focused Ion Beam - Anwendungs-
beispiele, Spezifikationen und Prinzip. URL: http://www.iisb.
fraunhofer.de/de/arb_geb/technologie_an_fib.htm.

284



Bibliography

[Fra95] Matthew Franklin. A Study of Time Redundant Fault Tolerance Tech-
niques for Superscalar Processors. In DFT ’95: Proceedings of the
IEEE International Workshop on Defect and Fault Tolerance in VLSI
Systems, page 207, Washington, DC, USA, 1995. IEEE Computer So-
ciety.

[FS01] Mike Frantzen and Mike Shuey. StackGhost: Hardware Facilitated
Stack Protection. In SSYM’01: Proceedings of the 10th conference on
USENIX Security Symposium, pages 55–66, Berkeley, CA, USA, 2001.
USENIX Association.

[FS03] Niels Ferguson and Bruce Schneier. Practical Cryptography. John
Wiley & Sons, Inc., New York, NY, USA, 2003.

[FT03] Y. C. Fan and H. W. Tsao. Watermarking for Intellectual Property Pro-
tection. Electronics Letters, 39(18):1316–1318, 2003.

[Gaia] Gaisler Research. GR-CPCI-XC4V LEON Compact-PCI Development
board. URL: http://www.gaisler.com.

[Gaib] Gaisler Research. LEON3 SPARC V8 Processor core. URL: http:
//www.gaisler.com.

[Gai94] Jiri Gaisler. Concurrent Error-detection and Modular Fault-tolerance in
a 32-bit Processing Core for Embedded Space Flight Applications. In
Twenty-Fourth International Symposium on Fault-Tolerant Computing
FTCS, 1994, pages 128–130. IEEE Computer Society Press, 1994.

[Gai02] Jiri Gaisler. A Portable and Fault-Tolerant Microprocessor Based on
the SPARC V8 Architecture. In DSN ’02: Proceedings of the 2002
International Conference on Dependable Systems and Networks, pages
409–415, Washington, DC, USA, 2002. IEEE Computer Society.

[GCvDD02] Blaise Gassend, Dwaine Clarke, Marten van Dijk, and Srinivas De-
vadas. Silicon Physical Random Functions. In CCS ’02: Proceedings
of the 9th ACM conference on Computer and communications security,
pages 148–160, New York, NY, USA, 2002. ACM.

[GDWL92] Daniel D. Gajski, Nikil D. Dutt, Allen C.-H. Wu, and Steve Y.-L. Lin.
High-level Synthesis: Introduction to Chip and System Design. Kluwer
Academic Publishers, Norwell, MA, USA, 1992.

[Ger91] Anne Geraci. IEEE Standard Computer Dictionary: Compilation of
IEEE Standard Computer Glossaries. IEEE Press, Piscataway, NJ,
USA, 1991.

285



Bibliography

[GHB07] Chloe Guerin, Vincent Huard, and Alain Bravaix. The Energy-Driven
Hot-Carrier Degradation Modes of nMOSFETs. IEEE Transaction on
Device and Materials Reliability, 7(2):225–235, 2007.

[GHJM05] Dan Grossman, Michael Hicks, Trevor Jim, and Greg Morrisett. Cy-
clone: A Type-safe Dialect of C. C/C++ Users Journal, 23(1):112–
139, 2005.

[GKST07] Jorge Guajardo, Sandeep S. Kumar, Geert-Jan Schrijen, and Pim Tuyls.
FPGA Intrinsic PUFs and Their Use for IP Protection. In CHES ’07:
Proceedings of the 9th international workshop on Cryptographic Hard-
ware and Embedded Systems, pages 63–80, Berlin, Heidelberg, 2007.
Springer-Verlag.

[GO98] Anup K. Ghosh and Tom O’Connor. Analyzing Programs for Vulner-
ability to Buffer Overrun Attacks. In Proceedings of the 21st National
Information Systems Security Conference, Crystal City, VA, pages 274–
382, 1998.

[Gor96] Michael B. Gordy. GA.M: A Matlab Routine for Function Maximiza-
tion using a Genetic Algorithm. ftp://all.repec.org/RePEc/

cod/html/Matlab/gordy.m, 1996.

[Gra] Mentor Graphics. Precision Synthesis. URL: http:

//www.mentor.com/products/fpga/synthesis/precision_

rtl/upload/PrecisionFamilyAug2007.pdf.

[GRE+01] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M.
Austin, Trevor Mudge, and Richard B. Brown. MiBench: A Free, Com-
mercially Representative Embedded Benchmark Suite. In WWC ’01:
Proceedings of the Workload Characterization, 2001. WWC-4. 2001
IEEE International Workshop, pages 3–14, Washington, DC, USA,
2001. IEEE Computer Society.

[GRRV03] Olga Goloubeva, Maurizio Rebaudengo, Matteo Sonza Reorda, and
Massimo Violante. Soft-Error Detection Using Control Flow Asser-
tions. In DFT ’03: Proceedings of the 18th IEEE International Sympo-
sium on Defect and Fault Tolerance in VLSI Systems, pages 581–588,
Washington, DC, USA, 2003. IEEE Computer Society.

[GRRV05] Olga Goloubeva, Maurizio Rebaudengo, Matteo Sonza Reorda, and
Massimo Violante. Improved Software-based Processor Control-flow
Errors Detection Technique. In Reliability and maintainability sympo-
sium, pages 583–589, 2005.

286



Bibliography

[GSB+04] Matthew J. Gadlage, Ronald D. Schrimpf, Joseph M. Benedetto,
Paul H. Eaton, David G. Mavis, Mike Sibley, Keith Avery, and
Thomas L. Turflinger. Single Event Transient Pulse Widths in Digi-
tal Microcircuits. IEEE Transactions on Nuclear Science, 51(6 Part
2):3285–3290, 2004.

[GSS64] Izrail Moissevich Gel’fand, Georgi E. Shilov, and Eugene Saletan.
Generalized Functions. Academic Press New York, 1964.

[GSVP03] Mohamed A. Gomaa, Chad Scarbrough, T. N. Vijaykumar, and Irith
Pomeranz. Transient-fault Recovery for Chip Multiprocessors. ISCA
’03: Proceedings of the 30th annual international symposium on Com-
puter architecture, 31(2):98–109, 2003.

[GV05] Mohamed A. Gomaa and T. N. Vijaykumar. Opportunistic Transient-
Fault Detection. In ISCA ’05: Proceedings of the 32nd annual inter-
national symposium on Computer Architecture, pages 172–183, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[GWA79] C. S. Guenzer, E. A. Wolicki, and R. G. Allas. Single Event Upset
of Dynamic RAMs by Neutrons and Protons. IEEE Transactions on
Nuclear Science, 26(6):5048–5052, 1979.

[Hag] Hagai Bar-El, Discretix Technologies Ltd. Known Attacks
Against Smartcards. URL: http://www.discretix.com/PDF/

KnownAttacksAgainstSmartcards.pdf.

[Har65] Michael A. Harrison. Introduction to Switching and Automata Theory.
McGraw-Hill, 1965.

[HB03] Eric Haugh and Matt Bishop. Testing C Programs for Buffer Overflow
Vulnerabilities. In Proceedings of the Network and Distributed System
Security Symposium, volume 2. Citeseer, 2003.

[HBF07] Daniel E. Holcomb, Wayne P. Burleson, and Kevin Fu. Initial SRAM
State as a Fingerprint and Source of True Random Numbers for RFID
Tags. In Proceedings of the Conference on RFID Security. Citeseer,
2007.

[HFS98] Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion
Detection using Sequences of System Calls. Journal of Computer Se-
curity, 6(3):151–180, 1998.

[HJ92] R. Hastings and B. Joyce. Purify: Fast Detection of Memory Leaks
and Access Errors. In Proceedings of the Winter USENIX Conference,
volume 136, 1992.

287



Bibliography

[HKW+03] Peter Hazucha, Tanay Karnik, Steven Walstra, Bradley Bloechel, James
Tschanz, Jose Maiz, Krishnamurthy Soumyanath, Greg Dermer, Siva
Narendra, Vivek De, and Shekhar Borkar. Measurements and analysis
of SER tolerant latch in a 90 nm dual-Vt CMOS process. In Proceed-
ings of the IEEE Custom Integrated Circuits Conference, 2003., pages
617–620, 2003.

[HP99] Inki Hong and Miodrag Potkonjak. Behavioral Synthesis Techniques
for Intellectual Property Protection. In Design Automation Conference,
pages 849–854, 1999.

[Hüt03] Markus Hütter. Logic Synthesis with Complex Gates. dissertation,
2003.

[IBM] IBM. Rational Purify. URL: http://www-01.ibm.com/

software/awdtools/purify/.

[IFI90] IFIP WG. Dependability: Basic Concepts and Terminology: in En-
glish, French, German, Italian and Japanese: IFIP WG 10.4. Depend-
able Computing and Fault Tolerance, 1990.

[ISO05] ISO JTC. 1/SC 27: Information Technology–Security Techniques–
Code of Practice for Information Security Management. 2005.

[ITR05] ITRS. International Technology Roadmap for Semiconductors,
2005 Edition, URL: http://www.itrs.net/Links/2005ITRS/

Home2005.htm. Technical report, 2005.

[ITR07] ITRS. International Technology Roadmap for Semiconductors,
2007 Edition, URL: http://www.itrs.net/Links/2007ITRS/

Home2007.htm. Technical report, 2007.

[ITS91] ITSEC. Information Technology Security Evaluation Criteria (ITSEC).
Office for Official Publications of the European Communities, 1991.

[Jal94] Pankaj Jalote. Fault Tolerance in Distributed Systems. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1994.

[JK97] Richard W. M. Jones and Paul H. J. Kelly. Backwards-compatible
Bounds Checking for Arrays and Pointers in C Programs. Automated
and Algorithmic Debugging, pages 13–26, 1997.

[JMG+02] Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks,
James Cheney, and Yanling Wang. Cyclone: A Safe Dialect of C. In
ATEC ’02: Proceedings of the General Track of the annual conference

288



Bibliography

on USENIX Annual Technical Conference, pages 275–288, Berkeley,
CA, USA, 2002. USENIX Association.

[JMKP07] José A. Joao, Onur Mutlu, Hyesoon Kim, and Yale N. Patt. Dynamic
Predication of Indirect Jumps. IEEE Computer Architecture Letter,
6(2):25–28, 2007.

[Joh00] Allan H. Johnston. Scaling and Technology Issues for Soft Error Rates.
In 4th Annual Research Conference on Reliability, Stanford University,
2000.

[JWSK06] Nikhil Joshi, Kaijie Wu, Jayachandran Sundararajan, and Ramesh
Karri. Concurrent Error Detection for Involutional Functions with ap-
plications in Fault Tolerant Cryptographic Hardware Design. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 25(6):1163–1169, 2006.

[JYPQ03] Adarsh K. Jain, Lin Yuan, Pushkin R. Pari, and Gang Qu. Zero Over-
head Watermarking Technique for FPGA Designs. In GLSVLSI ’03:
Proceedings of the 13th ACM Great Lakes symposium on VLSI, pages
147–152. ACM Press, 2003.

[KBT08] Dirk Koch, Christian Beckhoff, and Jürgen Teich. ReCoBus-Builder - a
Novel Tool and Technique to Build Statically and Dynamically Recon-
figurable Systems for FPGAs. In Proceedings of International Confer-
ence on Field-Programmable Logic and Applications (FPL 08), pages
119–124, Heidelberg, Germany, September 2008.

[KC08] Kris Kaspersky and Alice Chang. Remote Code Execution through In-
tel CPU Bugs. In Hack In The Box (HITB) 2008 Malaysia Conference,
2008.

[KE91] David R. Kaeli and Philip G. Emma. Branch History Table Predic-
tion of Moving Target Branches due to Subroutine Returns. SIGARCH
Computer Architecture News, 19(3):34–42, 1991.

[Kea01] Tom Kean. Secure Configuration of a Field Programmable Gate Array.
In FCCM ’01: Proceedings of the the 9th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines, pages 259–260,
Washington, DC, USA, 2001. IEEE Computer Society.

[Kes00] David Kessner. Copy Protection for SRAM based FPGA
Designs. Application Note, Free IP Project, URL:
http://web.archive.org/web/20031010002149/http:

//free-ip.com/copyprotection.html, 2000.

289



Bibliography

[KHPC98] Darko Kirovski, Yean-Yow Hwang, Miodrag Potkonjak, and Jason
Cong. Intellectual Property Protection by Watermarking Combina-
tional Logic Synthesis Solutions. In ICCAD ’98: Proceedings of the
1998 IEEE/ACM international conference on Computer-aided design,
pages 194–198, New York, NY, USA, 1998. ACM.

[KHT08] Dirk Koch, Christian Haubelt, and Jürgen Teich. Efficient Reconfig-
urable On-Chip Buses for FPGAs. In 16th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines (FCCM 2008),
pages 287–290. IEEE Computer Society, April 2008.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power
Analysis. In CRYPTO ’99: Proceedings of the 19th Annual Interna-
tional Cryptology Conference on Advances in Cryptology, pages 388–
397, London, UK, 1999. Springer-Verlag.

[KK99] Oliver Kömmerling and Markus G. Kuhn. Design Principles for
Tamper-Resistant Smartcard Processors. In USENIX Workshop on
Smartcard Technology (Smartcard ’99), pages 9–20, 1999.

[KK07] Israel Koren and C. Mani Krishna. Fault Tolerant Systems. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

[KKP03] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Coun-
tering Code-injection Attacks with Instruction-set Randomization. In
CCS ’03: Proceedings of the 10th ACM conference on Computer and
communications security, pages 272–280, New York, NY, USA, 2003.
ACM.

[KLMR04] Paul Kocher, Ruby Lee, Gary McGraw, and Anand Raghunathan. Se-
curity as a new Dimension in Embedded System Design. In DAC ’04:
Proceedings of the 41st annual Design Automation Conference, pages
753–760, New York, NY, USA, 2004. ACM. Moderator-Ravi, Srivaths.

[KLMS+98] Andrew Byun Kahng, John Lach, William Henry Mangione-Smith,
Stefanus Mantik, Igor Leonidovich Markov, Miodrag M. Potkonjak,
Paul Askeland Tucker, Huijuan Wang, and Gregory Wolfe. Water-
marking Techniques for Intellectual Property Protection. In DAC ’98:
Proceedings of the 35th annual Design Automation Conference, pages
776–781, New York, NY, USA, 1998. ACM.

[KLMS+01] Andrew Byun Kahng, John Lach, William Henry Mangione-Smith,
Stefanus Mantik, Igor Leonidovich Markov, Miodrag M. Potkonjak,
Paul Askeland Tucker, Huijuan Wang, and Gregory Wolfe. Constraint-
Based Watermarking Techniques for Design IP Protection. IEEE

290



Bibliography

Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 20(10):1236–1252, 2001.

[klo99] klog. The Frame Pointer Overwrite. Phrack magazine, 55(9), 1999.

[KMM+98] Andrew Byun Kahng, Stefanus Mantik, Igor Leonidovich Markov,
Miodrag M. Potkonjak, Paul Askeland Tucker, Huijuan Wang, and Gre-
gory Wolfe. Robust IP Watermarking Methodologies for Physical De-
sign. In DAC ’98: Proceedings of the 35th annual Design Automation
Conference, pages 782–787, New York, NY, USA, 1998. ACM.

[KMM08] Tom Kean, David McLaren, and Carol Marsh. Verifying the Authen-
ticity of Chip Designs with the DesignTag System. In HOST ’08:
Proceedings of the 2008 IEEE International Workshop on Hardware-
Oriented Security and Trust, pages 59–64, Washington, DC, USA,
2008. IEEE Computer Society.

[KNKA96] Ghani A. Kanawati, V. S. Sukumaran Nair, Narayanan Krishnamurthy,
and Jacob A. Abraham. Evaluation of Integrated System-level Checks
for on-line Error Detection. In IPDS ’96: Proceedings of the 2nd Inter-
national Computer Performance and Dependability Symposium (IPDS
’96), pages 292–301, Washington, DC, USA, 1996. IEEE Computer
Society.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In CRYPTO ’96: Proceedings of
the 16th Annual International Cryptology Conference on Advances in
Cryptology, pages 104–113, London, UK, 1996. Springer-Verlag.

[Koh08] Christian Kohn. Integration of Concepts for Assuring Correct Pro-
gram Execution at Control and Data Path Level for Embedded RISC-
Processors. Projektarbeit, Department of Computer Science 12, Uni-
versity of Erlangen-Nuremberg, October 2008.

[Kop97] Hermann Kopetz. Real-time Systems: Design Principles for Dis-
tributed Embedded Applications. Springer, 1997.

[Kot06] Arun Kottolli. The Economics of Structured- and Standard-cell-ASIC
Designs. EDN Magazine, 51(6):61–68, 2006.

[KP98] Darko Kirovski and Miodrag Potkonjak. Intellectual Property Pro-
tection Using Watermarking Partial Scan Chains For Sequential Logic
Test Generation. In ICCAD ’98: Proceedings of the 1998 IEEE/ACM
international conference on Computer-aided design, 1998.

291



Bibliography

[KR06] Ian Kuon and Jonathan Rose. Measuring the Gap between FPGAs and
ASICs. In FPGA ’06: Proceedings of the 2006 ACM/SIGDA 14th inter-
national symposium on Field programmable gate arrays, pages 21–30,
New York, NY, USA, 2006. ACM.

[Kre03] Andreas Krennmair. ContraPolice: A libc Extension for Protecting
Applications from Heap-smashing Attacks, 2003.

[KT05] M. Moiz Khan and Spyros Tragoudas. Rewiring for Watermarking
Digital Circuit Netlists. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 24(7):1132–1137, 2005.

[Lal01] Parag K. Lala, editor. Self-checking and Fault-tolerant Digital Design.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.

[LB94] James R. Larus and Thomas Ball. Rewriting Executable Files to Mea-
sure Program Behavior. Software-Practice and Experience, 24(2):197–
218, 1994.

[LBD+04] James R. Larus, Thomas Ball, Manuvir Das, Robert DeLine, Manuel
Fahndrich, Jon Pincus, Sriram K. Rajamani, and Ramanathan Venkat-
apathy. Righting Software. IEEE Software, 21(3):92–100, 2004.

[LBMC94] Carl E. Landwehr, Alan R. Bull, John P. McDermott, and William S.
Choi. A Taxonomy of Computer Program Security Flaws. ACM Com-
puting Surveys (CSUR), 26(3):211–254, 1994.

[LC02] Kyung-suk Lhee and Steve J. Chapin. Type-Assisted Dynamic Buffer
Overflow Detection. In Proceedings of the 11th USENIX Security Sym-
posium, pages 81–88, Berkeley, CA, USA, 2002. USENIX Associa-
tion.

[LC06] Qiming Li and Ee-Chien Chang. Zero-knowledge Watermark Detec-
tion Resistant to Ambiguity Attacks. In MMSec ’06: Proceedings of
the 8th workshop on Multimedia and security, pages 158–163, New
York, NY, USA, 2006. ACM.

[LD03] Tri Van Le and Yvo Desmedt. Cryptanalysis of UCLA Watermarking
Schemes for Intellectual Property Protection. In IH ’02: Revised Pa-
pers from the 5th International Workshop on Information Hiding, pages
213–225, London, UK, 2003. Springer-Verlag.

[LKMS04] Ruby B. Lee, David K. Karig, John P. McGregor, and Zhijie Shi. En-
listing Hardware Architecture to Thwart Malicious Code Injection. Se-
curity in Pervasive Computing, pages 237–252, 2004.

292



Bibliography

[LLG+04] Jae W. Lee, Daihyun Lim, Blaise Gassend, G. Edward Suh, Marten
Van Dijk, and Srini Devadas. A Technique to Build a Secret Key in
Integrated Circuits for Identification and Authentication Applications.
In Proceedings of the IEEE VLSI Circuits Symposium, pages 176–179.
Citeseer, 2004.

[LLG+05] Daihyun Lim, Jae W. Lee, Blaise Gassend, G. Edward Suh, Marten
Van Dijk, and Srini Devadas. Extracting Secret Keys from Integrated
Circuits. IEEE Transactions on Very Large Scale Integration Systems,
13(10):1200, 2005.

[LMS06] Qiming Li, Nasir Memon, and Husrev T. Sencar. Security Issues in
Watermarking Applications – A Deeper Look. In MCPS ’06: Proceed-
ings of the 4th ACM international workshop on Contents protection and
security, pages 23–28, New York, NY, USA, 2006. ACM.

[LMSP98] John Lach, William H. Mangione-Smith, and Miodrag Potkonjak. Sig-
nature Hiding Techniques for FPGA Intellectual Property Protection.
In ICCAD ’98: Proceedings of the 1998 IEEE/ACM international con-
ference on Computer-aided design, pages 186–189, New York, NY,
USA, 1998. ACM.

[LMSP99] John Lach, William H. Mangione-Smith, and Miodrag Potkonjak. Ro-
bust FPGA Intellectual Property Protection through Multiple Small
Watermarks. In DAC ’99: Proceedings of the 36th annual ACM/IEEE
Design Automation Conference, pages 831–836, New York, NY, USA,
1999. ACM.

[LMSP01] John Lach, William H. Mangione-Smith, and Miodrag Potkonjak. Fin-
gerprinting Techniques for Field-Programmable Gate Array Intellec-
tual Property Protection. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, volume 20, 2001.

[LTRN92] Jien-Chung Lo, Suchai Thanawastien, T. R. N. Rao, and Michael Nico-
laidis. An SFS Berger Check Prediction ALU and its Application to
Self-checking Processor Designs. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 11(4):525–540, 1992.

[Lu82] David J. Lu. Watchdog Processors and Structural Integrity Checking.
IEEE Transaction on Computers, 31(7):681–685, 1982.

[MAF+99] M. Mueller, L. C. Alves, W. Fischer, M. L. Fair, and I. Modi. RAS
Strategy for IBM S/390 G5 and G6. IBM Journal of Research and
Development, 43(5):875–888, 1999.

293



Bibliography

[MAS+07] Mojtaba Mehrara, Mona Attariyan, Smitha Shyam, Kypros Constan-
tinides, Valeria Bertacco, and Todd Austin. Low-cost Protection for
SER Upsets and silicon Defects. In DATE ’07: Proceedings of the con-
ference on Design, automation and test in Europe, pages 1146–1151,
San Jose, CA, USA, 2007. EDA Consortium.

[MBS07] Albert Meixner, Michael E. Bauer, and Daniel Sorin. Argus: Low-
Cost, Comprehensive Error Detection in Simple Cores. In MICRO ’07:
Proceedings of the 40th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 210–222, Washington, DC, USA, 2007.
IEEE Computer Society.

[MBS08] Albert Meixner, Michael E. Bauer, and Daniel Sorin. Argus: Low-Cost,
Comprehensive Error Detection in Simple Cores. IEEE Micro-Institute
of Electrical and Electronics Engineers, 28(1):52–59, 2008.

[MdR99] Todd C. Miller and Theo de Raadt. strlcpy and strlcat: Consistent,
Safe, String Copy and Concatenation. In ATEC ’99: Proceedings of
the annual conference on USENIX Annual Technical Conference, pages
41–41, Berkeley, CA, USA, 1999. USENIX Association.

[ME02] David G. Mavis and Paul H. Eaton. Soft Error Rate Mitigation Tech-
niques for Modern Microcircuits. In 40th Annual Reliability Physics
Symposium Proceedings, pages 216–225, 2002.

[Mey71] John F. Meyer. Fault Tolerant Sequential Machines. IEEE Transactions
on Computers, 20(10):1167–1177, 1971.

[MH91] Edgar Michel and Wolfgang Hohl. Concurrent Error Detection using
Watchdog Processors in the Multiprocessor System MEMSY. In Fault-
tolerant computing systems: tests, diagnosis, fault treatment: 5th Inter-
national GI/ITG/GMA Conference, Nürnberg, September 25-27, 1991:
proceedings, page 54. Springer, 1991.

[MHPS96] István Majzik, Wolfgang Hohl, András Pataricza, and Volker Sieh.
Multiprocessor Checking using Watchdog Processors. Computer Sys-
tems Science and Engineering, 11(5):301–310, 1996.

[Mic03] Giovanni De Micheli. Designing Robust Systems with Uncertain In-
formation. In Asia and South Pacific Design Automation Conference
(ASPDAC 03), 2003.

[MKGT92] Ghassem Miremadi, Johan Karlsson, Ulf Gunneflo, and Jan Torin. Two
Software Techniques for On-line Error Detection. In Digest of Papers,

294



Bibliography

Twenty-Second International Symposium on Fault-Tolerant Comput-
ing. FTCS-22., pages 328–335, 1992.

[MKP09] Mehrdad Majzoobi, Farinaz Koushanfar, and Miodrag Potkonjak.
Techniques for Design and Implementation of Secure Reconfigurable
PUFs. ACM Transaction on Reconfigurable Technology Systems,
2(1):1–33, 2009.

[MKSL03] John P. McGregor, David K. Karig, Zhijie Shi, and Ruby B. Lee. A Pro-
cessor Architecture Defense against Buffer Overflow Attacks. In Pro-
ceedings of the IEEE International Conference on Information Tech-
nology: Research and Education (ITRE 2003), pages 243–250. Cite-
seer, 2003.

[MLS91] Thierry Michel, Régis Leveugle, and Gabriele Saucier. A New Ap-
proach to Control Flow Checking Without Program Modification. In
Digest of Papers of Twenty-First International Symposium of Fault-
Tolerant Computing, pages 334–343, 1991.

[MM88] Aamer Mahmood and Edward J. McCluskey. Concurrent Error De-
tection Using Watchdog Processors-A Survey. IEEE Transaction on
Computers, 37(2):160–174, 1988.

[MM00] Subhasish Mitra and Edward J. McCluskey. Which Concurrent Error
Detection Scheme to Choose? In ITC ’00: Proceedings of the 2000
IEEE International Test Conference, pages 985–994, Washington, DC,
USA, 2000. IEEE Computer Society.

[MN98] Lee D. McFearin and V. S. Sukumaran Nair. Control Flow Checking
Using Assertions. Dependable Computing and Fault Tolerant Systems,
10:183–200, 1998.

[MP00] Seapahn Meguerdichian and Miodrag Potkonjak. Watermarking while
Preserving the Critical Path. In DAC ’00: Proceedings of the 37th An-
nual Design Automation Conference, pages 108–111, New York, NY,
USA, 2000. ACM.

[MS91] Henrique Madeira and João G. Silva. On-line Signature Learning and
Checking: Experimental Evaluation. In CompEuro’91: Proceedings of
the 5th Annual European Computer Conference of Advanced Computer
Technology, Reliable Systems and Applications, pages 642–646, 1991.

[MSZ+05] Subhasish Mitra, Norbert Seifert, Ming Zhang, Quan Shi, and Kee Sup
Kim. Robust System Design with Built-In Soft-Error Resilience. Com-
puter, 38(2):43–52, 2005.

295



Bibliography

[MV05] Matt Messier and John Viega. Safe C String Library v1.0.3. URL:
http://www.zork.org/safestr/, 2005.

[MW04] Ritesh Mastipuram and Edwin C. Wee. Soft errors’ impact on system
reliability. Electrical Design News, 49:69–76, 2004.

[MW08] Matthias May and Norbert Wehn. Modelle für Demonstrator
übergeben. AIS Meilensteinbericht TUK-EMS-Q09, 2008.

[MWB+10] Matthias May, Norbert Wehn, Abdelmajid Bouajila, Johannes Zeppen-
feld, Walter Stechele, Andreas Herkersdorf, Daniel Ziener, and Jürgen
Teich. A Rapid Prototyping System for Error-Resilient Multi-Processor
Systems-on-Chip. In Proceedings of DATE’10, pages 375–380, March
2010.

[MZS+08] Subhasish Mitra, Ming Zhang, Norbert Seifert, T. M. Mak, and
Kee Sup Kim. Soft error resilient system design through error cor-
rection. IFIP International Federation for Information Processing,
249:143–156, 2008.

[NAB03] Michael Nicolaidis, Nadir Achouri, and Slimane Boutobza. Dynamic
Data-bit Memory Built-In Self- Repair. In ICCAD ’03: Proceedings of
the 2003 IEEE/ACM international conference on Computer-aided de-
sign, page 588, Washington, DC, USA, 2003. IEEE Computer Society.

[Nam82] Masood Namjoo. Techniques for Concurrent Testing of VLSI Proces-
sor Operation. In Proceedings of International Test Conference, pages
461–468, 1982.

[Nam83] Massod Namjoo. CERBERUS-16: An Architecture for a General Pur-
pose Watchdog Processor. In Proceedings of Symposium on Fault-
Tolerant Computing, pages 216–219, 1983.

[NCH+05] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak,
and Westley Weimer. CCured: Type-safe Retrofitting of Legacy Soft-
ware. ACM Transactions on Programming Languages and Systems
(TOPLAS), 27(3):477–526, 2005.

[NDMF97] Michael Nicolaidis, Ricardo O. Duarte, Salvador Manich, and Joan
Figueras. Fault-Secure Parity Prediction Arithmetic Operators. IEEE
Design & Test of Computers, 14(2):60–71, 1997.

[Nic93] Michael Nicolaidis. Efficient Implementations of Self-checking
Adders and ALUs. In FTCS-23: Digest of Papers of the Twenty-
Third International Symposium on Fault-Tolerant Computing, pages
586–595, 1993.

296



Bibliography

[Nic99] Michael Nicolaidis. Time Redundancy based Soft-error Tolerance to
Rescue Nanometer Technologies. In Proceedings of the 17th IEEE
VLSI Test Symposium, pages 86–94, 25-29 April 1999.

[NKIX04] Nithin M. Nakka, Zbigniew T. Kalbarczyk, Ravi K. Iyer, and J. Xu. An
Architectural Framework for Providing Reliability and Security Sup-
port. In DSN ’04: Proceedings of the 2004 International Conference
on Dependable Systems and Networks, pages 585–594, Washington,
DC, USA, 2004. IEEE Computer Society.

[NMCB97] Jeffrey M. Nick, Brian B. Moore, Jen Yao Yao Chung, and Nicholas S.
Bowen. S/390 Cluster Technology: Parallel Sysplex. IBM Systems
Journal, 36(2):172–201, 1997.

[NNC+01] Naveen Narayan, Rexford D. Newbould, Jo Dale Carothers, Jefrey J.
Rodriguez, and W. Timothy Holman. IP Protection for VLSI Designs
via Watermarking of Routes. In Proceedings of the 14th Annual IEEE
International ASIC/SOC Conference, pages 406–410, 2001.

[NX06] Vijaykrishnan Narayanan and Yuan Xie. Reliability Concerns in Em-
bedded System Designs. Computer, 39(1):118–120, 2006.

[OCK+75] Severo M. Ornstein, William R. Crowther, M. F. Kraley, R. D. Bressler,
A. Michel, and Frank E. Heart. Pluribus: A Reliable Multiprocessor.
In AFIPS ’75: Proceedings of the May 19-22, 1975, national computer
conference and exposition, pages 551–559, New York, NY, USA, 1975.
ACM.

[Oli01] Arlindo L. Oliveira. Techniques for the Creation of Digital Watermarks
in Sequential Circuit Designs. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 20(9):1101–1117, 2001.

[OMM02] Nahmsuk Oh, Subhasish Mitra, and Edward J. McCluskey. ED4I: Error
Detection by Diverse Data and Duplicated Instructions. IEEE Transac-
tion on Computers, 51(2):180–199, 2002.

[Opea] Opencores.org. Basic DES Crypto Core. URL: http://www.

opencores.org/project,basicdes.

[Opeb] Opencores.org. Keyboardcontroller. URL: http://www.

opencores.org/project,keyboardcontroller.

[Opec] Opencores.org. Opencores. URL: http://www.opencores.org.

297



Bibliography

[OR95] Joakim Ohlsson and Marcus Rimen. Implicit Signature Checking. In
FTCS ’95: Proceedings of the Twenty-Fifth International Symposium
on Fault-Tolerant Computing, pages 218–227, Washington, DC, USA,
1995. IEEE Computer Society.

[OSM02] Nahmsuk Oh, Philip P. Shirvani, and Edward J. McCluskey. Control-
flow Checking by Software Signatures. IEEE Transactions on Relia-
bility, 51(1):111–122, 2002.

[OVB+06] Hilmi Özdoganoglu, T. N. Vijaykumar, Carla E. Brodley, Benjamin A.
Kuperman, and Ankit Jalote. SmashGuard: A Hardware Solution to
Prevent Security Attacks on the Function Return Address. IEEE Trans-
action on Computers, 55(10):1271–1285, 2006.

[PAX03] PAX Team. Non Executable Data Pages. URL: http://pax.

grsecurity.net/docs/pax.txt, 2003.

[PB04] Jonathan Pincus and Brandon Baker. Beyond stack smashing: Recent
advances in exploiting buffer overruns. IEEE Security and Privacy,
02(4):20–27, 2004.

[PBA10] Andrea Pellegrini, Valeria Bertacco, and Todd Austin. Fault-Based
Attack of RSA Authentication. In Proceedings of Design and Test in
Europe (DATE’10), pages 855–860, March 2010.

[PMHH93] András Pataricza, István Majzik, Wolfgang Hohl, and Joachim Hönig.
Watchdog Processors in Parallel Systems. Microprocessing and Micro-
programming, 39(2-5):69–74, 1993.

[PS95] John G. Proakis and Masoud Salehi. Digital Communications.
McGraw-Hill New York, 1995.

[PV01] Matthias Pflanz and Heinrich Theodor Vierhaus. Online Check and Re-
covery Techniques for Dependable Embedded Processors. IEEE Micro,
21(5):24–40, 2001.

[QP00] Gang Qu and Miodrag Potkonjak. Fingerprinting Intellectual Property
using Constraint-addition. In DAC ’00: Proceedings of the 37th Annual
Design Automation Conference, pages 587–592, New York, NY, USA,
2000. ACM.

[QP03] Gang Qu and Miodrag Potkonjak. Intellectual Property Protection in
VLSI Designs. Kluwer Academic Publisher, 2003.

298



Bibliography

[Qu02] Gang Qu. Publicly Detectable Watermarking for Intellectual Prop-
erty Authentication in VLSI Design. IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems, 21(11):1363–1367,
2002.

[Rag06] Roshan G. Ragel. Architectural Support for Security and Reliability
in Embedded Processors. PhD thesis, University of New South Wales,
Sydney, Australia, 2006.

[RAMSP99] Azra Rashid, Jeet Asher, William H. Mangione-Smith, and Miodrag
Potkonj. Hierarchical Watermarking for Protection of DSP Filter
Cores. In Proceedings of the Custom Integrated Circuits Conference.
Piscataway, NJ, pages 39–45. IEEE Press, 1999.

[RBD+01] Rob A. Rutenbar, Max Baron, Thomas Daniel, Rajeev Jayaraman, Zvi
Or-Bach, Jonathan Rose, and Carl Sechen. (When) will FPGAs kill
ASICs? (panel session). In DAC ’01: Proceedings of the 38th annual
Design Automation Conference, pages 321–322, New York, NY, USA,
2001. ACM.

[RCV+05] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and
David I. August. SWIFT: Software Implemented Fault Tolerance. In
CGO ’05: Proceedings of the international symposium on Code gener-
ation and optimization, pages 243–254, Washington, DC, USA, 2005.
IEEE Computer Society.

[Reu] Design & Reuse. Catalyst of Collaborative IP Based SoC Design. URL:
http://www.design-reuse.com/.

[RF89] Thammavarapu R. N. Rao and Eiji Fujiwara. Error-control Coding for
Computer Systems. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1989.

[RHF01] Joydeep Ray, James C. Hoe, and Babak Falsafi. Dual Use of Super-
scalar Datapath for Transient-fault Detection and Recovery. In MICRO
34: Proceedings of the 34th annual ACM/IEEE international sympo-
sium on Microarchitecture, pages 214–224, Washington, DC, USA,
2001. IEEE Computer Society.

[Ric02] Gerardo Richarte. Four different tricks to bypass stackshield and
stackguard protection. URL: http://www1.corest.com/files/
files/11/StackGuardPaper.pdf, 2002.

[Ric08] Robert Richardson. CSI Computer Crime and Security Survey. Tech-
nical report, 2008.

299



Bibliography

[Riv92a] Ronald Linn Rivest. RFC 1321: The MD-5 Message Digest Algorithm.
In Internet Activities Board, 1992.

[Riv92b] Ronald Linn Rivest. The RC4 Encryption Algorithm. In RSA Data
Security, Inc., 1992.

[RKMV03] William Robertson, Christopher Kruegel, Darren Mutz, and Fredrik
Valeur. Run-time Detection of Heap-based Overflows. In LISA ’03:
Proceedings of the 17th USENIX conference on Large Installation Sys-
tems Administraton, pages 51–60, Berkeley, CA, USA, 2003. USENIX
Association.

[RL04] Olatunji Ruwase and Monica S. Lam. A Practical Dynamic Buffer
Overflow Detector. In Proceedings of the 11th Annual Network and
Distributed System Security Symposium, pages 159–169, 2004.

[RLC+07] Eduardo L. Rhod, Calisboa A. Lisbôa, L. Carro, Massimo Violante, and
Matteo Sonza Reorda. A Non-intrusive On-line Control Flow Error De-
tection Technique for SoCs. In IEEE Latin-Americam Test Workshop,
LATW, volume 8, 2007.

[RM00] Steven K. Reinhardt and Shubhendu S. Mukherjee. Transient Fault De-
tection via Simultaneous Multithreading. ACM SIGARCH Computer
Architecture News, 28(2):25–36, 2000.

[Rot99] Eric Rotenberg. AR-SMT: A Microarchitectural Approach to Fault Tol-
erance in Microprocessors. In FTCS ’99: Proceedings of the Twenty-
Ninth Annual International Symposium on Fault-Tolerant Computing,
pages 84–93, Washington, DC, USA, 1999. IEEE Computer Society.

[RP06] Roshan G. Ragel and Sri Parameswaran. Hardware Assisted Pre-
emptive Control Flow Checking for Embedded Processors to Improve
Reliability. In CODES+ISSS ’06: Proceedings of the 4th interna-
tional conference on Hardware/software codesign and system synthe-
sis, pages 100–105, New York, NY, USA, 2006. ACM.

[RRKH04] Srivaths Ravi, Anand Raghunathan, Paul Kocher, and Sunil Hattan-
gady. Security in Embedded Systems: Design Challenges. ACM Trans-
action on Embedded Computer Systems, 3(3):461–491, 2004.

[RRP06] Vimal K. Reddy, Eric Rotenberg, and Sailashri Parthasarathy. Un-
derstanding Prediction-based Partial Redundant Threading for Low-
overhead, High-coverage Fault Tolerance. ACM SIGOPS Operating
Systems Review, 40(5):83–94, 2006.

300



Bibliography

[RSA78] Ronald Linn Rivest, Adi Shamir, and Leonard Max Adleman. A
Method for Obtaining Digital Signatures and Public-key Cryptosys-
tems. Communications of the ACM, 21(2):120–126, 1978.

[RSR00] Faisal Rashid, Kewal K. Saluja, and Parameswaran Ramanathan. Fault
Tolerance through Re-Execution in Multiscalar Architecture. In DSN
’00: Proceedings of the 2000 International Conference on Dependable
Systems and Networks (formerly FTCS-30 and DCCA-8), pages 482–
491, Washington, DC, USA, 2000. IEEE Computer Society.

[SAH] Bassel Soudan, Wael Adi, and Abdulrahman Hanoun. Enabling Se-
cure Integration of Multiple IP Cores in the Same FPGA. D&R Indus-
try Articles. URL: http://www.design-reuse.com/articles/
21638/secure-integration-ip-cores-fpga.html.

[Sal89] Jawad A. Salehi. Code Division Multiple-access Techniques in Optical
Fiber Networks – Part I: Fundamental Principles. IEEE Transactions
on Communications, 37(8):824–833, 1989.

[San] Sanyo. Quality and Reliability Handbook Ver. 3. URL: http://www.
semiconductor-sanyo.com/reliability/index.htm.

[SB89] Jawad A. Salehi and Charles A. Brackett. Code Division Multiple-
access Techniques in Optical Fiber Networks – Part II: Systems Perfor-
mance Analysis. IEEE Transactions on Communications, 37(8):834–
842, 1989.

[SBDB01] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A Fast Automaton-
Based Method for Detecting Anomalous Program Behaviors. In SP
’01: Proceedings of the 2001 IEEE Symposium on Security and Pri-
vacy, pages 144–155, Washington, DC, USA, 2001. IEEE Computer
Society.

[SBE+07a] Walter Stechele, Oliver Bringmann, Rolf Ernst, Andreas Herkersdorf,
Katharina Hojenski, Peter Janacik, Franz Rammig, Jürgen Teich, Nor-
bert Wehn, Johannes Zeppenfeld, and Daniel Ziener. Autonomic MP-
SoCs for Reliable Systems. In Proceedings of Zuverlässigkeit und En-
twurf (ZuD 2007), pages 137–138, Munich, Germany, March 2007.

[SBE+07b] Walter Stechele, Oliver Bringmann, Rolf Ernst, Andreas Herkersdorf,
Katharina Hojenski, Peter Janacik, Franz Rammig, Jürgen Teich, Nor-
bert Wehn, Johannes Zeppenfeld, and Daniel Ziener. Concepts for Au-
tonomic Integrated Systems. In Proceedings of edaWorkshop07, Mu-
nich, Germany, June 2007.

301



Bibliography

[SBH+09] Volker Schöber, Oliver Bringmann, Andreas Herkersdorf, Walter
Stechele, Norbert Wehn, Matthias May, Daniel Ziener, Abdelmajid
Bouajila, Daniel Baldin, Johannes Zeppenfeld, Björn Sanders, Jürgen
Teich, Maurice Sebastian, Rolf Ernst, and Dieter Treytnar. AIS –
Autonomous Integrated Systems. newsletter edacentrum, (04):05–13,
2009.

[Sch08] Moritz G. Schmid. Proof of Concept Exploit for Leon3 Core. Technical
report, Universität Erlangen-Nürnberg, 2008.

[SD07] G. Edward Suh and Srinivas Devadas. Physical Unclonable Functions
for Device Authentication and Secret Key Generation. In DAC ’07:
Proceedings of the 44th annual Design Automation Conference, pages
9–14, New York, NY, USA, 2007. ACM.

[SE09] Maurice Sebastian and Rolf Ernst. Reliability Analysis of Single Bus
Communication with Real-Time Requirements. In PRDC ’09: Pro-
ceedings of the 2009 15th IEEE Pacific Rim International Sympo-
sium on Dependable Computing, pages 3–10, Washington, DC, USA,
November 2009. IEEE Computer Society.

[See99] Ralf Seepold. Special Session—Virtual Socket Interface Alliance. In
DATE ’99: Proceedings of the conference on Design, automation and
test in Europe, pages 182–182, New York, NY, USA, 1999. ACM.

[SFF+02] Oliverio J. Santana, Ayose Falcón, Enrique Fernández, Pedro Medina,
Alex Ramı́rez, and Mateo Valero. A Comprehensive Analysis of Indi-
rect Branch Prediction. In ISHPC ’02: Proceedings of the 4th Interna-
tional Symposium on High Performance Computing, pages 133–145,
London, UK, 2002. Springer-Verlag.

[Sha07] Hovav Shacham. The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the x86). In CCS ’07:
Proceedings of the 14th ACM conference on Computer and commu-
nications security, pages 552–561, New York, NY, USA, 2007. ACM.

[SHB68] Frederick F. Sellers, Mu-Yue Hsiao, and Leroy W. Bearnson. Error
Detecting Logic for Digital Computers. McGraw-Hill, 1968.

[SKB02] Li Shang, Alireza S. Kaviani, and Kusuma Bathala. Dynamic Power
Consumption in Virtex-II FPGA Family. In FPGA ’02: Proceed-
ings of the 2002 ACM/SIGDA tenth international symposium on Field-
programmable gate arrays, pages 157–164, New York, NY, USA,
2002. ACM Press.

302



Bibliography

[SM90] Nirmal Raj Saxena and Edward J. McCluskey. Control-Flow Checking
Using Watchdog Assists and Extended-Precision Checksums. IEEE
Transactions on Computers, 39(4):554–559, 1990.

[SPA] SPARC International, Inc. The SPARC Architecture Manual V8. URL:
http://www.sparc.com/standards/V8.pdf.

[SPE] SPEC (Standard Performance Evaluation Corporation). SPEC
CPU2000 V1.3. URL: http://www.spec.org.

[SPR00] Karthik Sundaramoorthy, Zach Purser, and Eric Rotenberg. Slipstream
Processors: Improving Both Performance and Fault Tolerance. ACM
SIGPLAN Notices, 35(11):257–268, 2000.

[SS87] Michael A. Schuette and John Paul Shen. Processor Control Flow
Monitoring using Signatured Instruction Streams. IEEE Transaction
on Computers, 36(3):264–277, 1987.

[SS98] Daniel P. Siewiorek and Robert S. Swarz. Reliable Computer Systems
(3rd ed.): Design and Evaluation. A. K. Peters, Ltd., Natick, MA,
USA, 1998.

[SS06] Eric Simpson and Patrick Schaumont. Offline Hardware/Software Au-
thentication for Reconfigurable Platforms. Cryptographic Hardware
and Embedded Systems (CHES 2006), pages 311–323, 2006.

[SSB09] Björn Sander, Jürgen Schnerr, and Oliver Bringmann. ESL Power
Analysis of Embedded Processors for Temperature and Reliability Es-
timations. In CODES+ISSS ’09: Proceedings of the 7th IEEE/ACM
international conference on Hardware/software codesign and system
synthesis, pages 239–248, New York, NY, USA, 2009. ACM.

[SSK+06] Norbert Seifert, Paul Gregory Slankard, M. Kirsch, Balaj Narasimham,
Victor Zia, Chris Brookreson, A. Vo, Subhasish Mitra, Balkaran Gill,
and Jose A. Maiz. Radiation-Induced Soft Error Rates of Advanced
CMOS Bulk Devices. In Proceedings of the 44th Annual IEEE Inter-
national Reliability Physics Symposium, pages 217–225, 2006.

[SSK07] Debasri Saha and Susmita Sur-Kolay. Fast Robust Intellectual Property
Protection for VLSI Physical Design. In ICIT ’07: Proceedings of the
10th International Conference on Information Technology, pages 1–6,
Washington, DC, USA, 2007. IEEE Computer Society.

[ST82] Thirumalai Sridhar and Satish M. Thatte. Concurrent Checking of Pro-
gram Flow in VLSI Processors. In Proceedings International Test Con-
ference (ITC 1982), Philadelphia, PA, USA, pages 191–199, 1982.

303



Bibliography

[ST87] John Paul Shen and Stephen P. Tomas. A Roving Monitoring Processor
for Detection of Control Flow Errors in Multiple Processor Systems.
Microprocessing and Microprogramming, 20(4-5):249–269, 1987.

[SXZ+04] Zili Shao, Chun Xue, Qingfeng Zhuge, Edwin Hsing Mean Sha, and
Bin Xiao. Security Protection and Checking in Embedded System In-
tegration Against Buffer Overflow Attacks. In ITCC ’04: Proceedings
of the International Conference on Information Technology: Coding
and Computing (ITCC’04) Volume 2, pages 409–412, Washington, DC,
USA, 2004. IEEE Computer Society.

[Syna] Synopsys. Synplify Premier. URL: http://www.synopsys.

com/Tools/Implementation/FPGAImplementation/

CapsuleModule/syn_prem_ds.pdf.

[Synb] Synopsys. Synplify Pro. URL: http://www.synopsys.

com/Tools/Implementation/FPGAImplementation/

CapsuleModule/syn_pro_ds.pdf.

[SZHS03] Zili Shao, Qingfeng Zhuge, Yi He, and Edwin Hsing Mean Sha. De-
fending Embedded Systems Against Buffer Overflow via Hardware/-
Software. In ACSAC ’03: Proceedings of the 19th Annual Computer
Security Applications Conference, pages 352–361, Washington, DC,
USA, 2003. IEEE Computer Society.

[SZT08] Moritz Schmid, Daniel Ziener, and Jürgen Teich. Netlist-Level IP
Protection by Watermarking for LUT-Based FPGAs. In Proceedings
of IEEE International Conference on Field-Programmable Technology
(FPT 2008), pages 209–216, Taipei, Taiwan, December 2008.

[TC00] Ilhami Torunoglu and Edoardo Charbon. Watermarking-based Copy-
right Protection of Sequential Functions. IEEE Journal of Solid-State
Circuits, 35(3):434–440, 2000.

[TH07] Jürgen Teich and Christian Haubelt. Digitale Hardware/Software-
Systeme: Synthese und Optimierung. Springer, 2007.

[TM97] Nur A. Touba and Edward J. McCluskey. Logic Synthesis of Mul-
tilevel Circuits with Concurrent Error Detection. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
16(7):783–789, 1997.

[TT90] Yuval Tamir and Marc R. Tremblay. High-Performance Fault-Tolerant
VLSI Systems Using Micro Rollback. IEEE Transactions on Comput-
ers, 39(4):548–554, 1990.

304



Bibliography

[UR94] Shambhu J. Upadhyaya and Bina Ramamurthy. Concurrent Process
Monitoring with No Reference Signatures. IEEE Transaction on Com-
puters, 43(4):475–480, 1994.

[US-08] US-CERT. Vulnerability Notes Database CERT Coordination Center.
URL: http://www.kb.cert.org/vuls/, 2008.

[VBKM00] John Viega, J. T. Bloch, Yoshi Kohno, and Gary E. McGraw. ITS4: A
Static Vulnerability Scanner for C and C++ Code. In ACSAC ’00: Pro-
ceedings of the 16th Annual Computer Security Applications Confer-
ence, page 257, Washington, DC, USA, 2000. IEEE Computer Society.

[vdV04] Arjan van de Ven. New Security Enhancements in Red Hat Enterprise
Linux v.3, update 3. Red Hat, August, 2004.

[Ven00] Vendicator. Stack Shield: A Stack Smashing Technique Protec-
tion Tool for Linux. URL: http://www.angelfire.com/sk/

stackshield/info.html, 2000.

[VIS] VISENGI. VHDL Obfuscator & Watermarker. URL: http://www.
visengi.com/en/products/software/vhdl_obfuscator.

[Vit90] Andrew J. Viterbi. Very Low Rate Convolutional Codes for Maximum
Theoretical Performance of Spread-Spectrum Multiple-Access Chan-
nels. IEEE Journal on Selected Areas in Communications, 8(4):641–
649, 1990.

[Vit95] Andrew J. Viterbi. CDMA: Principles of Spread Spectrum Communi-
cation. Addison Wesley Longman Publishing Co., Inc., Redwood City,
CA, USA, 1995.

[VPC02] T. N. Vijaykumar, Irith Pomeranz, and Karl Cheng. Transient-Fault Re-
covery using Simultaneous Multithreading. In ISCA ’02: Proceedings
of the 29th annual international symposium on Computer architecture,
pages 87–98, Washington, DC, USA, 2002. IEEE Computer Society.

[WA01] Chris Weaver and Todd M. Austin. A Fault Tolerant Approach to Mi-
croprocessor Design. In DSN ’01: Proceedings of the 2001 Interna-
tional Conference on Dependable Systems and Networks (formerly:
FTCS), pages 411–420, Washington, DC, USA, 2001. IEEE Computer
Society.

[WD01] David Wagner and Drew Dean. Intrusion Detection via Static Anal-
ysis. In SP ’01: Proceedings of the 2001 IEEE Symposium on Secu-
rity and Privacy, pages 156–169, Washington, DC, USA, 2001. IEEE
Computer Society.

305



Bibliography

[WEMR04] Christopher Weaver, Joel Emer, Shubhendu S. Mukherjee, and
Steven K. Reinhardt. Techniques to Reduce the Soft Error Rate of a
High-Performance Microprocessor. In ISCA ’04: Proceedings of the
31st annual international symposium on Computer architecture, page
264, Washington, DC, USA, 2004. IEEE Computer Society.

[WFBA00] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken.
A First Step towards Automated Detection of Buffer Overrun Vulnera-
bilities. In Network and Distributed System Security Symposium, pages
3–17, 2000.

[Whe] David A. Wheeler. Flawfinder Home Page. URL: http://www.

dwheeler.com/flawfinder.

[Wil07] Ron Wilson. Panel Unscrambles Intellectual Property Encryption
Issues. EDN Magazine URL: http://www.edn.com/article/

CA6412249.html, 2007.

[WLG+89] John H. Wensley, Leslie Lamport, Jack Goldberg, Milton William
Green, Karl N. Levitt, Peter Michael Milliar-Smith, Robert E. Shostak,
and Charles Burr Weinstock. SIFT: Design and Analysis of a Fault-
tolerant Computer for Aircraft Control. In Tutorial: Hard Real-time
Systems, pages 560–575. IEEE Computer Society Press, Los Alamitos,
CA, USA, 1989.

[Woj98] Rafal Wojtczuk. Defeating Solar Designer Nonexecutable Stack Patch.
Bugtraq mailinglist, 1998.

[WP06] Nicholas J. Wang and Sanjay J. Patel. ReStore: Symptom-based Soft
Error Detection in Microprocessors. IEEE Transactions on Dependable
and Secure Computing, 3(3):188–201, 2006.

[Wri08] Craig Wright. Hacking Coffee Makers. URL: http://www.

securityfocus.com/archive/1/493387, 2008.

[WS90] Kent Wilken and John Paul Shen. Continuous Signature Monitoring:
Low-cost Concurrent Detection of Processor Control Errors. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 9(6):629–641, 1990.

[Xila] Xilinx Inc. FPGA IFF Copy Protection Using Dallas Semi-
conductor/Maxim DS2432 Secure EEPROMs. URL: http:

//www.xilinx.com/support/documentation/application_

notes/xapp780.pdf.

306



Bibliography

[Xilb] Xilinx Inc. ISE Design Suite Software Manuals and Help - PDF
Collection These. URL: http://www.xilinx.com/support/

documentation/sw_manuals/xilinx11/manuals.pdf.

[Xilc] Xilinx Inc. JBits 3.0 SDK for Virtex-II. URL: www.xilinx.com/
labs/projects/jbits/.

[Xild] Xilinx Inc. MicroBlaze Processor Reference Guide. URL:
http://www.xilinx.com/support/documentation/sw_

manuals/mb_ref_guide.pdf.

[Xile] Xilinx Inc. Protect Your Brand with Extended Spartan-3A
FPGAs. URL: http://www.xilinx.com/products/design_

resources/security/devicedna.htm.

[Xilf] Xilinx Inc. Virtex-II Platform FPGAs: Complete Data Sheet. URL:
http://www.xilinx.com/support/documentation/data_

sheets/ds031.pdf.

[Xilg] Xilinx Inc. Xilinx Core Generator. URL: http://www.xilinx.
com/ise/products/coregen_overview.pdf.

[Xilh] Xilinx Inc. Xilinx Virtex-II Pro Libraries Guide for HDL De-
signs. URL: www.xilinx.com/itp/xilinx10/books/docs/

virtex2p_hdl/virtex2p_hdl.pdf.

[Xili] Xilinx Inc. XST User Guide. URL: http://toolbox.xilinx.
com/docsan/xilinx5/pdf/docs/xst/xst.pdf.

[Xil03] Xilinx Inc. Next-Generation Virtex Family From Xilinx to top one Bil-
lion Transistor Mark. URL: http://www.xilinx.com/prs_rls/
silicon_vir/03131_nextgen.htm, 2003.

[Xil05] Xilinx Inc. Virtex-II Platform FPGA User Guide (UG002). 2.0, pages
269–358. March 2005.

[XKI03] Jun Xu, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. Transparent
Runtime Randomization for Security. In Proceedings of the Symposium
on Reliable Distributed Systems, pages 260–272, 2003.

[XKPI02] Jun Xu, Zbigniew Kalbarczyk, Sanjay Patel, and Ravishankar K. Iyer.
Architecture Support for Defending against Buffer Overflow Attacks.
In Workshop on Evaluating and Architecting Systems for Dependabil-
ity, 2002.

307



Bibliography

[YC80] Stephen S. Yau and Fu-Chung Chen. An Approach to Concurrent
Control Flow Checking. IEEE Transactions on Software Engineering,
6(2):126–137, 1980.

[YP97] Lynn Youngs and Siva Paramanandam. Mapping and Repairing
Embedded-Memory Defects. IEEE Design and Test of Computers,
14(1):18–24, 1997.

[ZAT06] Daniel Ziener, Stefan Aßmus, and Jürgen Teich. Identifying FPGA
IP-Cores based on Lookup Table Content Analysis. In Proceedings
of 16th International Conference on Field Programmable Logic and
Applications (FPL 2006), pages 481–486, Madrid, Spain, August 2006.

[ZBT10a] Daniel Ziener, Florian Baueregger, and Jürgen Teich. Multiplexing
Methods for Power Watermarking. In Proceedings of the IEEE Int.
Symposium on Hardware-Oriented Security and Trust (HOST 2010),
Anaheim, USA, June 2010.

[ZBT10b] Daniel Ziener, Florian Baueregger, and Jürgen Teich. Using the Power
Side Channel of FPGAs for Communication. In Proceedings of the
18th Annual International IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM 2010), pages 237–244, May
2010.

[Zim95] Philip R. Zimmermann. The official PGP user’s guide. MIT Press,
Cambridge, MA, USA, 1995.

[ZT05] Daniel Ziener and Jürgen Teich. Evaluation of Watermarking Methods
for FPGA-Based IP-cores. Technical Report 01-2005, University of
Erlangen-Nuremberg, Department of CS 12, Hardware-Software-Co-
Design, Am Weichselgarten 3, D-91058 Erlangen, Germany, March
2005.

[ZT06] Daniel Ziener and Jürgen Teich. FPGA Core Watermarking Based on
Power Signature Analysis. In Proceedings of IEEE International Con-
ference on Field-Programmable Technology (FPT 2006), pages 205–
212, Bangkok, Thailand, December 2006.

[ZT07a] Daniel Ziener and Jürgen Teich. Watermarking Apparatus, Software
Enabling an Implementation of an Electronic Circuit Comprising a
Watermark, Method for Detecting a Watermark and Apparatus for
Detecting a Watermark Europäisches Patent EP1835425, Anmelde-
tag 17.03.2006, veröffentlicht 19.09.2007, Patentklassen (IPC) G06F
17/50; G06F 21/00, September 2007.

308



Bibliography

[ZT07b] Daniel Ziener and Jürgen Teich. Watermarking Apparatus, Soft-
ware Enabling an Implementation of an Electronic Circuit Compris-
ing a Watermark, Method for Detecting a Watermark and Apparatus
for Detecting a Watermark. US-Patent US2007/0220263, Anmeldetag
19.10.2006 aus EP 1835425, veröffentlicht 20.09.2007, Patentklassen
(IPC) H04L 9/00, September 2007.

[ZT08a] Daniel Ziener and Jürgen Teich. Concepts for Autonomous Control
Flow Checking for Embedded CPUs. In Proceedings of the 5th Interna-
tional Conference on Autonomic and Trusted Computing (ATC 2008),
pages 234–248, Oslo, Norway, June 2008.

[ZT08b] Daniel Ziener and Jürgen Teich. Power Signature Watermarking of IP
Cores for FPGAs. Journal of Signal Processing Systems, 51(1):123–
136, April 2008.

[ZT09] Daniel Ziener and Jürgen Teich. Concepts for Run-time and Error-
resilient Control Flow Checking of Embedded RISC CPUs. Int. Jour-
nal of Autonomous and Adaptive Communications Systems, 2(3):256–
275, July 2009.

[ZV96] Zeljko Zilic and Zvonko G. Vranesic. Using BDDs to design ULMs
for FPGAs. In Proceedings of the 1996 ACM fourth international sym-
posium on Field-programmable gate arrays, pages 24–30, New York,
NY, USA, 1996. ACM Press.

[ZZPL04] Tao Zhang, Xiaotong Zhuang, Santosh Pande, and Wenke Lee. Hard-
ware Supported Anomaly Detection: Down to the Control Flow Level.
Technical report, Georgia Institute of Technology, 2004.

[ZZPL05] Tao Zhang, Xiaotong Zhuang, Santosh Pande, and Wenke Lee. Anoma-
lous Path Detection with Hardware Support. In CASES ’05: Proceed-
ings of the 2005 international conference on Compilers, architectures
and synthesis for embedded systems, pages 43–54, New York, NY,
USA, 2005. ACM.

309



Bibliography

310



Symbols

AdrLUT F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . address of LUTF
AdrLUT G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . address of LUTG
A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . attacker
BB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of basic blocks
BBi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . basic block
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . scaling factor
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . criterion value for HDL core identification
CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cost to develop a core
CO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cost to obtain a core
CP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .cost to purchase a core
CFlut0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .first LUT frame in a CLB
CFG(BB,T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . control flow graph
CFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of control flow instructions
CFIi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . control flow instruction
CFIG(CFI,T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . control flow instruction graph
CY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of CLB rows in an FPGA
d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LUT distance
Dmax . . . . . . maximal number of verified indirect jump destination in one clock cycle
dstack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . return stack depth
D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . watermark or core detector
ei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . power event
E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . watermark embedder
f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . function
fclk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . clock frequency
fBPSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . frequency of SBPSK

FCLB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of CLB frames
Fcy0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . frame number of the first CLB frame
FGCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of GCLK frames

311



Symbols

FIOB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of IOB frames
FIOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of IOI frames
fl f (xS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . frame storing LUTs of xS

FL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . frame length
Fp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . fitting value of p
fu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of different unique function
fwm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . signature bit rate
f̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . predicted function
G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . watermark generator
h(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . impulse response
i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . index variable
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . work
IA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . author’s work
IB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . bitfile core or design
IL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . core at logic level
IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . fake original work
Ĩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . watermarked work
ĨA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . author’s watermarked work
ĨB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . watermarked bitfile core
ĨL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . watermarked core at logic level
ĨP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . pirate’s watermarked work
Î . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . published work
ÎAx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a variant of author’s watermarked work
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . universe of work elements
IB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . universe Bit
j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . index variable
k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . discrete point in time
K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . key
KA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . author’s key
Kc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of applied additional constraints
Kmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . signal length
Kx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . extracted key
l . . . . . . . . . . . . . . . . . . . . . . number of different frequency components of approx. h(t)
Le f f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .physical gate length
lutLi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a LUT primitive cell in a netlist

312



L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lookup table extractor
n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . word width
ncrc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . bit width of the CRC
ncupc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . bit width of the CUPC
nE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of lookup table entries
ni, αi, fi, φi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . parameters for h(t) approximation
niJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of all indirect jumps
nl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of LUT inputs
nmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of power watermarked cores
no . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of non-watermarked solutions
npnrg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . bit width of the PNRG
ns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of signature repetitions in a signal
nt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of targets of an indirect jump
nT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of all indirect jump targets
nw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of watermarked solutions
n(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . noise signal
m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . length of something
p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . signature start position
P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . equivalence class with input permutation
Pa in b . . . . . . . . . . . . . . . . . . . . . . . . percent of the unique functions of the core ILA in ILB

Pb in a . . . . . . . . . . . . . . . . . . . . . . . . percent of the unique functions of the core ILB in ILA

PE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . probability of successful decoding of a signal
Pf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . probability that a fault is injected
Pc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . probability of carry the watermark by chance
pq . . . . . . . . . . . . . . . . . . . . . . . . . . . probability distribution of the unique functions of q
P(n, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . density function of the χ2

n -distribution
PCn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . current program counter
PCn+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . next program counter
q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of lookup tables in a netlist core
q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of unique functions in a netlist core
qi . . . . . . . . . . . . . . . . . . . . . . . . . . . number of appearance of unique function i in a core
qM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .current state of an FSM
r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of lookup tables in a bitfile design
r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of unique functions in a bitfile design
ri . . . . . . . . . . . . . . . . . . . . . . . . . number of appearance of unique function i in a design

313



Symbols

s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of combinations of cores
S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . signal
S0, S90, S180, S270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . phase signals
s1, s2 , s3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . different signatures
SAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . accumulated signal
SBPSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BPSK modulated signal
Scc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . combined base band signal
SD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . signal after the differential step
SDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . down sampled signal
Spr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sampled probed voltage signal
SM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . finite set of states of an FSM
ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . signature sequence
Ssb1,Ssb2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . side bands of the carrier signal
Sφ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . signal after the phase detection step
s0M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . initial state of an FSM
SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . signal to noise ratio
t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . time
T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of transitions
tdec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . time span for the first collision-free decoding
t j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . transition
tI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . threshold value
tox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . oxide thickness
trst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . reset time
tsig,i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . time for sending the signature
twait,i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . waiting time
T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . abstraction level transformation
Vdd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . power supply voltage
Vt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . threshold voltage
wi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . watermark element
W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . watermark
WA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . author’s watermark
W ′A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . fake watermark
WB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . watermark at device level
WL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . watermark at logic level
We f f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . physical gate width

314



WP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . pirate’s watermark
W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . universe of watermark elements
X ,Y,Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . example abstraction levels
xBi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . bitfile element
xi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . work element
xM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . current input of an FSM
xS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . slice x coordinate
x(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . input signal
x∗(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .complex conjugate of x(t)
X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . watermark extractor
yS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . slice y coordinate
YS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of slice rows in an FPGA
y(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . output signal
Zx,y(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cross-correlation
Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . encoding alphabet
δi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . period length
δM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . state-transition function of an FSM
δ (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dirac-pulse
γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . power consumption event through a shift operation
γ̄ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . no power consumption event
ΓM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . output alphabet of an FSM
Γ (x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . gamma function
ωi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of repetitions
ωM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . output function of an FSM
φi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . period length
σi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . symbol which carries modulated data
ΣM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . input alphabet of an FSM
τ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . symbol length
τ ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . transmitting slot length

315



Symbols

316



Curriculum Vitae

Daniel Ziener took his university entrance qualification in 1998. He received his
diploma degree (Dipl.-Ing. (FH)) in Electrical Engineering from University of Ap-
plied Science Aschaffenburg, Germany, in August 2002. Beside his studies, he
gained industrial research experience during an internship at the IBM Germany De-
velopment Labs in Böblingen. From 2003 to 2009 he worked for the Fraunhofer In-
stitute of Integrated Circuits (IIS) in Erlangen, Germany as a research staff in the elec-
tronic imaging department. Furthermore, in 2003 he joined the Chair of Hardware-
Software-Co-Design at the University of Erlangen-Nuremberg, Germany, headed by
Prof. Jürgen Teich as Ph.D. student. His main research interests are IP core wa-
termarking, the efficient usage of the FPGA structures, design of signal processing
FPGA cores, and reliable and fault tolerant embedded systems. Daniel Ziener has
been a reviewer for several international conferences, for the IET Journal on Com-
puters & Digital Techniques, the IEEE Transactions on Very Large Scale Integration
Systems, and the Elsevier Journal for Microprocessors and Microsystems.

317


