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Abstract—Intellectual property (IP) right violations are an
increasing problem for hardware designers. Illegal copies of
IP cores can cause multi-million dollar damages and are thus
considered a serious threat. One possible solution to this problem
can be digital watermarking schemes for integrated circuits.
We propose a new watermarking technique that employs side-
channels as building blocks and can easily and reliably be
detected by methods adapted from side-channel analysis. The
main idea is to embed a unique signal into a side-channel of
the device that serves as a watermark. This enables circuit
designers to check integrated circuits for unauthorized use of
their watermarked cores. The watermark is hidden below the
noise floor of the side channel and is thus hidden from third
parties. Furthermore, the proposed schemes can be implemented
with very few gates and are thus even harder to detect and
to remove. The proposed watermarks can also be realized in a
programmable fashion to leak a digital signature.

I. INTRODUCTION

The hardware design process is an expensive and time con-
suming task. From an economical point of view the increasing
complexity of applications often prevents designing an entire
chip from scratch. Instead, parts of the design are reused from
earlier developments or bought from other companies as so-
called IP cores (intellectual property cores). These IP cores
implement specialized functionality to be used as building
blocks within integrated circuit designs. IP cores can be
separated into soft and hard IP cores. A soft IP core consists of
an implementation in a synthesizable register transfer language
(RTL) such as Verilog or VHDL. It can be sold either directly
in an RTL format or as a generic gate-level netlist. RTL
IP cores allow the user to adapt the licensed design to his
application specific requirements, while this is cumbersome
with a plain netlist IP core. Nevertheless both, netlist cores as
well as RTL cores, are not restricted to a specific technology
and can be ported to any process or foundry. Hard IP cores on
the other hand are physical designs that come as completely
laid out function blocks that cannot be modified and are thus
restricted to a specific technology. Analog circuits are usually
sold as hard IP.

The TP core market has risen to a multi-billion dollar
business, making it a valuable target for frauds and piracy. The
threats of cloned products, IP theft, and copyright infringement
necessitate semiconductor designers and manufacturers to im-
plement countermeasures into their products. Several possible
protection methods against illegal IP usage have been proposed
in the past. One solution to prevent IP core theft is to deliver
encrypted IP cores only. These IP cores can then only be
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decrypted by the tools which synthesize the design and their
plain sources will therefore never be seen by the customer [4].
However, this approach is logistically very difficult and does
not prevent customers who legally bought the IP core from
illegally sharing or reusing it for multiple designs.

A promising solution proposed to counter the IP theft threat
is the concept of watermarking for IP cores [6], [9], [10], [11].
Watermarking is a wide-spread concept already used in many
other contexts, e.g. picture, audio, or video data. The idea is
to embed information into a signal, that is very difficult to be
removed. This way each copy of the signal will also include
the embedded watermark information. Watermarks are most
often used in copyright protection systems for digital media
to deter unauthorized copying.

When adapting the watermarking to protect designs of
digital systems the threat to counter is unauthorized usage of
IP cores. The goal of the designer of a circuit is therefore to be
able to distinguish if his design is used in a given Integrated
Circuit (IC). As the IC that needs to be tested is in most cases
only available as a completely assembled and packaged chip,
the goal of watermarks should be to keep the detectability even
after manufacturing. In many watermarking schemes for IP
cores, the watermark is implemented to protect only the high
level representation of a chip design, e.g., the digital VHDL
or Verilog representation. This kind of watermark cannot be
detected in synthesized products anymore.

When implementing a watermark-protected design, detect-
ing unauthorized use is the most interesting motivation. How-
ever, once having detected illegal usage it is also interesting
to be able to prove this finding to a third party. This goal is
called proof-of-ownership and is important to perform legal
actions against the discovered theft.

We summarize the goals of IP watermarking schemes:

1) Detectability: Given an IC, the owner of an IP core can

examine whether or not his IP core is used in the IC.

2) Proof-of-ownership: Given an IC, the owner of an IP

core can prove to a third party that his IP core is used
in the IC.

Consequently, attacking a watermarking scheme means to
either violate the detectability or proof-of-ownership goal.
Violating the detectability goal is to remove the embedded
information of the watermark from the IP core or to render
it useless. Furthermore, in a successful attack the removal of
the watermark must not destroy the functionality of the IP
core. Violating the detectability goal obviously also implies
breaking the proof-of-ownership property. If a designer can
find valid watermarks with his signature in foreign designs
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the proof-of-ownership goal is violated as well. Unless special
precautions are taken an attacker can in this case claim being
the owner of the watermark himself.

A short overview of different watermarking techniques for
IP protection can be found in [2]. Concepts for watermarks
have been proposed for many different levels of the hardware
design process. One of the most popular schemes suited
for IP cores are the constraint-based watermarks introduced
in [5], [9]. In these schemes hardware designs are tagged by
defining additional design constraints which do not affect the
functionality of the IP core. One major drawback of constraint-
based watermarks is that the watermark can only be discovered
at the same level of abstraction they were inserted, i.e., these
watermarks cannot feasibly be detected in produced chips [2].
As in most cases a verifier will not have access to the high
abstraction levels of a suspicious integrated circuit, this type
of watermarking is impracticable for many scenarios.

The idea to use a side-channel, e.g., power consumption,
to embed a watermark into an IP core has been introduced
in [12]. During the reset phase of an FPGA the proposed
watermark modulates the power consumption side-channel
to transmit a signature by means of On-Off Keying (OOK)
and Binary Phase Shift Keying (BPSK). The advantage of
embedding a watermark in the characteristics of the power
consumption of a circuit is that it can easily be detected
even post-manufacturing, although being embedded at a high
level of abstraction, e.g., as a code in a hardware description
language like VHDL or Verilog.

In this contribution we propose a new watermarking tech-
nique which also employs the power side-channel of an
embedded device to implement a hidden tag. This tag can
also be implemented in a high-level description and allows
easy and reliable detection even post manufacturing. The used
methods to tag the side-channel leakage of the device originate
from the concept of Trojan side-channels introduced in [8]
and allow for extremely small watermark designs. We propose
two different methods to implement a side-channel based
watermark: a spread-spectrum based watermark and a scheme
we call input-modulated watermark. While our watermarks
are well suited to tag hard IP and netlist cores, they should
not be applied to embed watermarks into RTL IP cores since
identification and removal of the watermarking circuit would
be an easy and straightforward task. While this approach is
closely related to the method presented in [12], our schemes
are superior to earlier published results, as they allow for much
smaller watermarks. Our watermarks can also be adapted to
ASICs and they allow hiding the watermark signal below the
noise floor of the power side-channel. This is mainly due
to our decoding mechanism: It is based on correlation and
is thus very robust and requires a much smaller signal to
noise ratio (SNR) than the earlier works. This property also
avoids destroying the watermark signal by increasing the noise
level and allows reliable operation of the watermark not only
when the protected circuit is in its idle state but also when
it is under heavy workload. Furthermore, the hidden nature
of the watermark makes jamming the watermark signal by

generating inverse watermark signals much more difficult. In
[7] a very similar design to embed a side-channel watermark
was proposed that is based on a thermal side-channel instead
of power. While the thermal side-channel has the advantage
that temperature measurements can be performed easier, it
has the big disadvantage of being very slow and needing
a lot of energy compared to the power side-channel. This
makes it very difficult to hide the watermark, especially as
a potential attacker can try to reveal the watermark using the
more precise power side-channel. Thereby the attacker can
gain an advantage over to the verifier that uses the heat side-
channel. Overall, a power watermark is easier to hide and
probably more robust than a heat based watermark, especially
against transmitting an inverse watermark (see III-C).

The remainder of the paper is structured as follows. In
the next sections we introduce the technical details of our
watermarking schemes. At the end of each section we provide
a short overview of the results from first practical implemen-
tations. We then present a scheme to extend the watermarks
to achieve full proof-of-ownership support. In Section III we
discuss three attack scenarios, namely reverse-engineering,
raising of noise and implementing an inverse watermark.
We finally conclude the paper with a short summary of the
achieved results.

II. WATERMARK DESIGN

The main idea of the design of our watermark is similar to
the side-channel based hardware Trojan introduced at CHES
2009 [8]. In [8], an artificial side-channel is used to leak
out secret information. In our watermarking design we also
insert an artificial side-channel into the IP core. The difference
between the side-channel based hardware Trojan and the
side-channel based watermark is that instead of leaking out
secret information, the side-channel is engineered to contain a
watermarking signal. In this paper we examine two different
approaches to embed a watermarking signal into a side-
channel:

1) Spread spectrum based watermark

2) Input-modulated watermark

The main difference between these two approaches can be
summarized as followed: For the spread spectrum watermark
a single measurement with several sample points is used
to detect the watermark. In contrast, the input-modulated
watermark is detected by evaluating several measurements
acquired at an instance of time and with different input values.

A. Spread spectrum based watermark

In the spread spectrum based watermark a pseudo random
number generator (PRNG) is used to generate a watermarking-
sequence that is leaked out by means of a low power binary
amplitude modulation of the power consumption. The water-
mark can be revealed by correlating the correct watermarking-
sequence with the measured power traces. This is the same
method as used in spread spectrum communication systems
(also called CDMA - code division multiple access), where
the transmission power of a signal is distributed over a wide
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bandwidth in a way that it can still be reliably recovered even
if the signal is transmitted well below the noise floor. The
same applies to our spread spectrum based watermark. The
watermarking sequence can be leaked out well below the noise
floor of the used side-channel and can still be reliably detected.
This has two effects: First, the watermark is inherently very
robust to noise and second, the watermark can be hidden
below the noise floor of the power consumption and thus
cannot be seen by an adversary. This hidden nature can be
considered as a kind of physical encryption. The method of
hiding information using spread spectrum has been used before
in media watermarking schemes [3] and other applications
such as military communication. For example, the military
GPS signal is encrypted and hidden in basically the same way.

1) Embedding the watermark: The watermark consists of
two parts: a PRNG and a leakage circuit. The PRNG needs
to produce a pseudo-random bitstream, which needs to be
unpredictable to allow hiding of the signal. Long linear feed-
back shift registers (LFSR) with enough state bits to prevent
brute forcing the initialization vector (IV) are well suited
for this task. Nevertheless, the fact that LFSRs can easily
be recovered from their known output bitstreams has to be
taken into account when designing the transmission power
of the watermark. An attacker must not be able to recover
the transmitted bitstream from the generated leakage. This
assumption holds as long as the transmitted bits are properly
hidden in the noise. A way to avoid this requirement is to
replace the LFSR by a secure stream cipher using a secret
key. However, although stream ciphers can be implemented in
hardware very efficiently, they increase the complexity of the
watermark design compared to simpler PRNGs.

The circuit implementing the watermark and the PRNG
should be as small as possible. This reduces the cost of the
watermark while allowing to hide the design in the surrounding
circuit to defend reverse-engineering attacks. Thus the design
has to be balanced with respect to implementations size and
PRNG strength.

The second part of our watermark, the leakage circuit,
maps the PRNG output to a physical power consumption. It
generates additional leakage when its input is “one” and does
not generate any additional leakage when its input is “zero”.
In an ASIC design, the leakage circuit can be implemented
for example using big capacitances, toggling logic or pseudo-
NMOS gates. In an FPGA implementation, circular shift
registers can be used that are clocked according to the PRNG
output. Note that the amount of generated leakage is part of
the design space and can be engineered to take any desired
signal-to-noise ratio (SNR). Although we focus on the power
consumption side-channel throughout the paper, other side-
channels such as EM leakage could be employed as well.

2) Detecting the watermark: The embedded watermark can
be detected with similar techniques as they are used in a dif-
ferential power analysis. The verifier measures a single power
trace containing several clock cycles. He then compresses
this power trace to a power vector with one value per clock
cycle, e.g., by averaging all measurement points of each clock
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Fig. 1. Diagram of the implemented spread-spectrum based watermark

cycle. The verifier then simulates the bit stream generated
by the PRNG using his knowledge about the implementation
details. In the last detection step the verifier correlates the
simulated sequence to the compressed power vector. In case
he does not know the starting point of the PRNG, i.e.,
the correct position to align the simulated sequence to the
power vector, he has to slide one (the power vector) over
the other (the simulated sequence) and repeat the detection
for each possible alignment. If the watermark is embedded
in the examined IC, the correlation coefficient should show a
prominent peak at the position of correct alignment. If the
correlation coefficient does not show any significant peak,
then the watermark is not embedded in the design. Using
statistics to detect the watermark allows transmission with
very low SNR and provides robustness to noise. The length
of the simulated sequence used in the correlation step can be
increased for an even more reliable detection of the watermark.

3) Experimental results: To practically evaluate our pro-
posed watermarks we used a Side-channel Attack Standard
Evaluation-Board (SASEBO) [1] that is equipped with an
xc2vp7 Virtex-1I Pro FPGA. The power consumption leakage
was measured using a LeCroy WP715Zi 1.5GHz oscilloscope
at a sampling rate of 250MS/s.

We implemented a Ist order DPA resistant AES imple-
mentation and tagged it with the spread spectrum based
watermark introduced above. This setup serves as our proof of
concept implementation to experimentally verify our proposed
watermarking scheme. As shown by Fig. 1 we used a 32-bit
LFSR as the PRNG and connected it to a leakage circuit.
The leakage circuit itself was designed from 16 look-up
tables (LUTs) each configured as 16-bit circular shift registers
filled with alternating ones and zeros. These registers were
clocked in all clock cycles where the output of the PRNG
is “one”. In the first experiment we measured a long power
trace covering 1000 clock cycles while the AES core was idle.
The power trace was then compressed by averaging over each
clock cycle and then correlated to the corresponding simulated
PRNG sequence. Calculating the correlation for a window of
possible alignment positions leads to the vector of correlation
coefficients shown in Fig. 2(a). According to Fig. 2(b), using
the leakage of around 100 clock cycles would be enough to
detect the existence of the watermark in this case. In the
second experiment we took a longer trace (in comparison to
the first one) while the AES implementation was constantly
running and processing different random inputs. This time the
measured power trace covered 250 000 clock cycles, and the
results of the watermark detection are shown in Fig. 3. Clearly
adapting the number of clock cycles used for correlation can
overcome the existence of the either intentional or instinctive
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noise and makes the detection of the watermark feasible.
An implementer of the watermark has thus two handles to
design the watermark detection properties: He can use longer
sequences during detection or he can increase the amount of
the generated leakage. The later one has to be used carefully
to ensure that the generated leakage is still hidden below the
noise floor.

08| 09|

°
°

Correlation
° °
0 S
| Correlation
°
& °

L
°
°

600 100 300 900

0 200 400 0 500 700
Distance from Synchronization Point Number of Clock Cycles

(a) (b)

Fig. 2. Analysis of the spread spectrum based watermark while the AES
core was idle and waiting for the next plaintext (a) using the leakage of 1000
clock cycles, (b) over the number of clock cycles
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Fig. 3. Analysis of the spread spectrum based watermark while the AES
core was constantly encrypting (a) using the leakage of 250 000 clock cycles,
(b) over the number of clock cycles

B. Input-modulated watermark

The second approach to implement a watermark we pro-
pose in this paper uses the concept of an input-modulated
hardware Trojan as introduced at CHES 2009 [8]. We call
this proposal an input-modulated watermark. The idea of an
input-modulated hardware Trojan is to add additional logic to
the IC that results in a power consumption which relies on the
added logic, known input bits and some secret bits. This power
consumption can then be exploited using a differential power
analysis to reveal the secret bits. The main difference between
the input-modulated hardware Trojan and our watermark is
that the Trojan is designed to leak out secret information
while the watermark is not supposed to leak out any unknown
information but only its presence.
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Fig. 4. Diagram of an input-modulated watermark that consists of a
combinational function and a leakage circuit

1) Embedding an input-modulated watermark: As shown
in Fig. 4, the watermarking-logic consists of two parts, a
combinational function and a leakage circuit. The combina-
tional function uses some known input bits to compute one
output bit. This output bit is then transmitted by means of
the leakage circuit. The idea of this watermark is that we
have an artificial data-dependent power consumption that is
engineered by introducing the combinational function. The
owner of the watermark knows the implemented function and
which bits were used as inputs and can use this knowledge
to perform a differential power analysis. If the watermark
is embedded in the IC, then this differential power analysis
will be successful, while it should not be successful if no
watermark or a watermark with a different combinational
function or different input bits is used.

To be able to implement this type of watermark some bits of
the IP core need to be known by the verifier and these bits need
to vary for different measurements. They do not necessarily
need to be direct inputs or outputs of the IP core but can
also be determined by internal states as long as the verifier
is able to determine these bits for a given measurement. By
using internal states as “known bits” a systematic analysis with
chosen inputs can be prevented and the number of possible
values used as inputs to the combination function increases.
A very easy and straightforward combinational function that
was used in the proof of concept implementation of the Trojan
side-channel paper is to pairwise combine the input bits with
an and conjunction and then compute the exclusive-or sum
of the outputs of all and operations.

Nevertheless, in practice a more complex function should
be used to increase the difficulty of reverse engineering the
combinational function given its input and output behavior.

2) Experimental results: As mentioned before, the input-
modulated watermark is based on the same idea as the
input-modulated side-channel hardware Trojan. In [8] practical
results for a hardware Trojan for an FPGA implementation of
an AES key schedule were presented where the input to the
combinational function was 8 bits of the plaintext and 8 bits
of the round key. The input-modulated watermark may use the
same circuit and changes only the inputs of the combinational
function. We thus omitted to present the experiments and
refer the interested reader to the experimental results already
given in [8]. For our input-modulated watermark, we would
use known values for all 16 input bits of our combinational
function and then perform a similar correlation power analysis.
If the watermark is not embedded in the IC, then there should
not be any significant correlation between the power traces
and the expected output of the combinational function.

C. Proof-of-ownership

The watermarks as proposed so far only allow to distinguish
whether the watermark is embedded or not, i.e., they only
provide a single bit of information. To prove to another party
that an IP core was used in a design detecting the watermark
is not sufficient, as the ownership of the watermark remains
unproven. To provide proof-of-ownership the watermarking
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scheme needs to be expanded to bind a watermark to a unique
identity. This can be achieved by means of digital signatures.
In a first step the company generates the hash value of some
design ID (e.g., the part number). Then, the private key of the
company is used to sign this hash value. The signature can
then be transmitted by the watermarks. To allow the proposed
designs of the watermarks to transmit information we again
employ the initial concept of Trojan side channels. That is, for
the spread-spectrum watermark, storing the information to be
used for transmission in a circular shift register and XORing
the MSB or LSB with the output of the PRNG to generate a
specific watermarking sequence. However, an additional shift
register of the size of the signature is needed for this solution,
which increases the size of the watermark. Another solution
to bind the digital signature to the watermark is to use parts
or whole of the signature as the initial value of the PRNG.
In this case the area overhead of the additional shift register
can be omitted. An input-modulated watermark transmitting a
signature can be designed by storing the signature in internal
registers and subsequently feeding it bytewise as inputs to the
combinational function in the same way the input-modulated
Trojan side-channel encodes the bytes of the secret key.

The method proposed here prevents attackers from illegally
claiming ownership of the used watermark, since the signature
can only be generated by the owner of the private key. Note
that the modifications discussed in this section also allow to
protect the circuit against piracy. For this the signature trans-
mitted by the watermark is stored in a programmable part of
the device and will be programmed independently from manu-
facturing. As the signature is programmed post-manufacturing,
it can be generated over a device specific serial number in
addition to the part number, so that each device contains a
unique watermark. This way only devices programmed by the
circuit designer include the correct signature and mere cloning
of the semiconductor is not sufficient to build indistinguishable
copies of a design. The watermarking schemes previously
proposed in scientific literature cannot protect against cloning,
as either the watermark signal is visible to everyone [12] or
the watermark cannot be programmed after manufacturing [6],
[9], [10], [11]. In summary, a semiconductor device should
include two watermarks: One that is programmed after man-
ufacturing to protect against piracy and cloning and one that
is implemented fully in hardware to detect IP theft.

III. ATTACKS

In this section we discuss three intuitive approaches to
remove a side-channel based watermark: Remove or destroy
the circuit implementing the watermark, increase the noise on
the side-channel, or transmit an inverse watermarking signal.
The later two attacks both aim at reducing the available SNR
for detection of the watermark.

A. Reverse-engineering attack

Obviously, if the circuit implementing the side-channel wa-
termark is destroyed or removed from the IP core, both design
goals detectability and proof-of-ownership are violated. To be

able to destroy or remove the watermark an attacker first needs
to identify the corresponding part of the circuit. Note that the
attacker does not know whether a watermark is applied to
protect a circuit and what kind of watermark is implemented.
Therefore, similar to Trojan hardware, watermarks have to be
implemented very small and subtle to evade identification dur-
ing reverse engineering attacks. Furthermore, they should be
implemented in a way to be interwoven with the surrounding
functional circuit. This can further increase the difficulty to
identify the watermark while impeding removal of the circuit
without destroying the functionality of the surrounding circuit.
Especially the input-modulated watermark can be very small
and could be as small as around hundred gates.

The complexity of the reverse engineering attack in practice
depends on the design level at which the attacker has access to
the protected circuit. If the attacker has access only to the IP
core at the post manufacturing level, detecting the watermark
will be much more difficult than detecting it in a netlist or even
in RTL sources of the design. In this case the attacker would
need to first reverse engineer the hardware design to higher
abstraction levels for a feasible analysis of its functionality.

Reverse engineering an entire design is usually a very
difficult, complex, and thus expensive task. For watermarking
purposes the goal of the watermark can be considered achieved
if the efforts required to illegally use an unlicensed IP core
are equivalent to the efforts necessary to reverse engineer a
circuit to the level of fully understanding the design.

B. Raising the noise

How easy a verifier is able to detect a watermark depends
on the signal-to-noise ratio (SNR) of the watermarking signal.
The lower the SNR, the more (or the longer) measurements
are needed to detect the watermark. Increasing the noise of the
side-channel will thus reduce the SNR and therefore impedes
detection. However, adding additional noise sources results
in an increase of power consumption and is thus limited by
practical constraints such as battery lifetimes.

Both watermarks are very robust to this kind of attacks. To
detect a spread-spectrum watermark a verifier can lower the
effect of the noise by averaging over multiple measurements
or by increasing the number of clock cycles covered by
the measured trace. For an input-modulated watermark the
amount of acquired power traces used during detection is also
only limited by the time required to perform the additional
measurements. Since the size of the leakage circuit is a design
choice of the designer, the SNR and hence the robustness to
noise is part of the design space.

C. Transmission of an inverse watermark signal

The idea of our third attack scenario is to hide the signal of
the watermark by adding another leakage source that generates
leakage in all clock cycles where the watermark itself does not
generate any leakage. The idea of this attack is that this inverse
signal counterbalances the original watermarking signal and
results in a constant power consumption for both signals.
We call this introduction of an inverse watermark signal. In
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theory this makes the detection of the watermarking signal
impossible. We will now show that this attack can not be put
into practice.

In contrast to the side-channel watermarks proposed in [12]
in our design the watermarking signal is hidden well below the
noise floor and unknown to an attacker. Without the knowledge
of the details of the used PRNG and its initial vector (for a
spread spectrum based watermark) or the used combinational
function and input bits (for an input-modulated watermark) an
attacker can not even compose the inverse signal. Additionally
the attacker would need to know the design of the leakage
generating circuit to achieve the correct amplitude for the
inverse signal. We now consider that the attacker has full
access to the details of the used watermark (which is very
unlikely) and is able to implement an inverse copy of the
watermarking circuit. This can still not avoid detection of the
watermarking signal. Process variations during manufacturing
as well as slight changes in internal capacitances will result in
subtle differences in the power consumptions of the watermark
and the inverse watermark. Also very small delays of the clock
signal result in inaccurate alignments of the two signals. This
makes detection of the proposed watermarking signals possible
in practice even with the presence of an inverted watermarking
signal.

To experimentally demonstrate this we implemented the
inverse-signal transmission attack in our FPGA implementa-
tion of the spread spectrum based watermark. We added an
exact copy of the watermarking circuit to our design that
consists of the same leakage circuit and the same PRNG with
the only exception that the output of the PRNG is inverted.
The results of this attack can be seen in Fig. 5.
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Fig. 5. Detection of a spread spectrum based watermark that was counter-
balanced by an inverse watermarking signal. We performed the same analysis
as described in II-A2 while the AES core was idle (a) using the leakage of
10000 clock cycles, (b) over the number of clock cycles.

We have tested this configuration when the AES core was
idle. It turned out that the watermark was still clearly visible
with as few as 10000 clock cycles. The correlation coefficient
decreased and thus the attack led to a 10 fold increase of the
required number of covered clock cycles. However, although
both, the watermarking circuit and the inverse one, use equal
building blocks of the FPGA, detecting the watermark is still
possible because the power consumption of the two circuits are
not exactly inverse due to the different routing of both parts.
In practice this attack is equivalent to reducing the SNR of
the watermark and cannot prevent detection of the watermark
due to the arguments given in the previous section.

IV. CONCLUSION

In this paper we introduced new watermarking techniques
for integrated circuits which employ side-channels as build-
ing blocks. The advantage of the introduced watermarks is
that they can easily and reliably be detected in physical
implementations by means of a side-channel analysis. Our
proposed watermarks do not alter the functionality of the
original IP core, and their overhead is very small and can be
neglected in bigger designs. We gave first experimental results
that demonstrate the feasibility of our approach and show its
robustness against typical attacks. Our discussion explained
that removal of the watermark signal is very difficult due to its
hidden nature and the stochastic nature of the applied detection
methods. The fact that our watermarks are hidden is also
interesting from a system perspective as it allows to embed
these watermarks completely unnoticed. If an attacker can not
tell whether there is an embedded watermark in a device, it is
an even more challenging task to remove it. The proposed
scheme additionally allows to embed multiple independent
watermarks within a single circuit. Our schemes can be used
to counter both IP theft and piracy. It can be implemented in
a programmable way to transmit a company specific digital
signature information.
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