
INTELLECTUAL PROPERTY PROTECTION BY WATERMARKING
COMBINATIONAL LOGIC SYNTHESIS SOLUTIONS

Darko Kirovski, Yean-Yow Hwang, Miodrag Potkonjak, and Jason Cong
Computer Science Department, University of California, Los Angeles

ABSTRACT

The intellectual property (IP) business model is vulnerable to a
number of potentially devastating obstructions, such as misappro-
priation and intellectual property fraud. We propose a new method
for IP protection (IPP) which facilitates design watermarking at the
combinational logic synthesis level. We developed protocols for
embedding designer- and/or tool-specific information into a logic
network while performing multi-level logic minimization and tech-
nology mapping. We demonstrate that the difficulty of erasing au-
thor’s signature or finding another signature in the synthesized de-
sign can be made arbitrarily computationally difficult. We also
developed a statistical method which enables us to establish the
strength of the proof of authorship. The watermarking method has
been tested on a standard set of real-life benchmarks where ex-
ceptionally high probability of authorship has been achieved with
negligible overhead in solution quality.

1. INTRODUCTION

The complexity of modern system synthesis as well as shortened
time-to-market requirement has resulted in design reuse as a pre-
dominant system development paradigm. The new core develop-
ment strategies have affected the business model of virtually all
CAD and semiconductor companies. To overcome the difficulties
in core-based system design, the VSI Alliance has identified six
technologies crucial for enabling effective design reuse: system
verification, mixed signal design integration, standardized on-chip
bus, manufacturing related test, system-level design, and intellec-
tual property protection (IPP) [VSI97].

We have developed the first approach for IPP which facilitates
design watermarking at the combinational logic synthesis level.
The watermark, a designer- and/or tool-specific information, is
embedded into the logic network of a design at a preprocessing
step. The watermark is encoded as a set of design constraints
which do not exist in the original specification. The constraints
are uniquely dependent upon author’s signature. Upon imposing
these constraints to the original logic network, a new input is gen-
erated which has the same functionality and contains user-specific
information. The added constraints result in a trade-off. The more
additional constraints, the stronger the proof of authorship, but the
higher overhead in terms of quality of the synthesis solution. How-
ever, the application of the synthesis algorithm results in a solution
which satisfies both the original and constrained input. Proof of
authorship is based upon the fact that the likelihood that another
application returns a solution to both the original and constrained
input is exceptionally small. The developed watermarking tech-
nique is transparent to the synthesis step and can be used with any
logic synthesis tool. We demonstrate that the developed IPP ap-
proach can be used to:

� Prove authorship of the design at levels of abstraction equal
or lower than logic synthesis. Existence of a user-specific
signature in the solution of a multi-level optimization or
technology mapping problem clearly identifies the author of
the input design specification (initial input logic network).

� Protect the synthesis tool. The signature of the tool devel-
oper, embedded in logic synthesis solutions, clearly indi-
cates the origin of the synthesis tool.

2. RELATED WORK

Watermarking of artifacts has received great attention in the re-
search community. A variety of techniques have been proposed for
hiding data in images [Ber96, Cox96], audio [Ben96, Cox96], text
[Ber96] and video [Har97]. Protocols for watermarking active IP
have been developed at the physical layout [Kah98] and behavioral
specification [Hon98] level. A routing-level approach for finger-
printing FPGA designs has been introduced [Lac98]. Embedding
signatures into a design at the logic synthesis level has advantages
over corresponding efforts at the higher and lower levels of the
design process. Firstly, watermarking a behavioral specification
often does not exhibit sufficient potential for embedding large sig-
natures which are crucial for high authorship credibility. Physical
layout should not be an exclusive domain for IPP because in that
case only the solution to the physical design is protected.

Combinational logic synthesis has been extensively studied.
A good survey of minimization techniques and existing synthe-
sis frameworks is presented in [DeM94, Hac96]. Recent improve-
ments in combinational logic synthesis include refined covering al-
gorithms [Lia97], optimizations on networks described using black
boxes [Liu97], power optimization [Tiw96], etc. In addition, logic
synthesis for FPGAs has been a very active research area (see sur-
vey in [Con96a]).

3. WATERMARKING DESIDERATA

The recently proposed Strawman initiative [VSI97] of the Devel-
opment Working group on IPP calls for the following desiderata
for techniques which act as deterrents in order to properly ensure
the rights of the original designers.

� Functionality Preservation. Design specific functional and
timing requirements should not be altered by the applica-
tion of IPP tools.

� Minimal Hassle. The technique should be fully transparent
to already complex design and verification process.

� Minimal Cost. Both the cost of applying the protection
technique and its hardware overhead should be as low as
possible.

� Enforceability. The technique should provide strong and
undeniable proof of authorship.

� Flexibility. The technique should enable a spectrum of pro-
tection levels which correspond to variable cost overheads.

� Persistence. The removal of the watermark should result in
a task of the difficulty equal to the complete redesign of the
specified functionality.

In addition to the stated VSI intellectual protection require-
ments, our approach also provides proportional protection of all
parts of the design.

4. WATERMARKING LOGIC SYNTHESIS

The synthesis flow which employs watermarking of combinational
logic synthesis solutions encompasses several phases illustrated in
Figure 1. The first three phases in the watermarking approach are
the same for both multi-level logic minimization and technology
mapping.

The Original
Design

Specification

Assignment of an unique ID
to each gate in the netlist

Keyed one-way
pseudo-random

node permutation

Author’s ID
Secret Key

Adding signature-specific constraints to the design.

Applying the Synthesis Automation tool.

Enforcement of first-K nodes to appear in the final
solution. The existance of these nodes in the solution

constitutes the watermark of the logic synthesis solution.

The Watermarked Optimized Design.

EDA Standard
for IP Protection

Netlist

Ordered set of nodes

Signature-driven node permutation

First-K nodes

Enforced
primary output

The Additionally
Constrained
Specification Netlist

Netlist Technology-mapping

T
he

 S
yn

th
es

is
 A

ut
om

at
io

n
T

oo
l

Figure 1: The protocol for hiding information in solutions for
multi-level logic optimization and technology mapping.

In the first step, to ensure that the watermark cannot be mis-
interpreted, the gates in the initial logic network specification are
sorted using an industry standard. As a result of this procedure,
each gate of a given logic network can be assigned a single identi-
fier which is unique with respect to the identifiers assigned to gates
in the remainder of the network. Next, K gates are selected in a
way specific to the designer’s or tool developer’s signature. We
use a keyed RSA one-way function to generate pseudo-random
bits [Men97] which guide the process of iterative gate selection.
The outputs of the selected gates are explicitly assigned to become
primary outputs. We have applied this protocol to the technology
mapping synthesis step. Although the same protocol can be ap-
plied to watermark multi-level logic minimization solutions, for
this task we provide an alternative protocol. Initially, it also gen-
erates pseudo-primary outputs according to the user’s signature,
and, in addition, uses them as inputs into an additional logic net-
work which is embedded into the initial design specification. The
protocol builds the embedded network according to the designer’s
or tool developer’s signature.

After additionally constraining the initial design specification,
the optimization algorithms are applied to the constrained logic
network. The result retrieved by the synthesis algorithm satisfies
both the initial and constrained design specification. The proof of
authorship is dependent upon the likelihood that some other algo-
rithm, when applied to the initial input, retrieves solution which
also satisfies the constrained input.

4.1. Gate Ordering

The watermarking process starts by assigning a unique identifica-
tion number IDi to each gate Gi from the set G of gates which
are not used as primary outputs. The unique identification number
IDi is selected from the set IDi 2 ID = f1:::Ng of N succes-
sive numbers, where N is the cardinality of the set G. We have
two main goals in this step: to map the network into a linear array
so that cryptographical tools can be directly applied and to develop
a uniquely defined IPP procedure in such a way that the degrees of
freedom for potential attackers are maximally reduced.

To avoid misinterpretation of this ordering, we propose that
an industry standard has to be established. The network has to
be numbered in such a way that any two nodes that have different
functionality and different transitive fan-in and fan-out networks
are assigned different IDs. However, finding whether two nodes
are functionally and topologically identical is a hard problem. The
special case of the problem of finding whether two networks are
identical, when all gates perform equivalent functions, is equiva-
lent to the graph isomorphism problem. This problem has been
listed as open in terms of its complexity [Gar79]. Therefore, we
propose a heuristic function that exploits the functional and timing
properties of a node, to sort the nodes in a logic network. This
function is explained using the pseudo-code in Figure 2. It per-
forms iterative sorting of nodes, not used as primary outputs, using
a list of criteria with distinct priorities. The objective of the order-
ing function is to partition a logic network LN(G;C), where G is
a set of nodes and C is a set of connections between nodes, into
an ordered set M of node subsets Mi 2 G such that each subset
contains exactly one node. We propose the following list of eight
criteria for node identification:

C[1] The level LINi of node Gi with respect to the input. A
node Gi has a level K if the longest path in the logic net-
work from any input to Gi is of cardinality K.

C[2] The level LOUTi of node Gi with respect to the output.
A node Gi has a level K if the longest path in the logic
network from any output to Gi is of cardinality K.

C[3] Number of nodes in the transitive fan-in of Gi at level K <

LINi.

C[4] Number of nodes in the transitive fan-out of Gi at level
K < LOUTi .

C[5] Functionality, fan-in, and fan-out of nodes in the transitive
fan-in of Gi at level K < LINi.

C[6] Functionality, fan-in, and fan-out of nodes in the transitive
fan-out of Gi at level K < LOUTi.

C[7] Functionality, fan-in, and fan-out of the fan-in and fan-out
of nodes in the transitive fan-in of Gi at level K < LINi.

C[8] Functionality, fan-in, and fan-out of the fan-in and fan-out
of nodes in the transitive fan-in ofGi at levelK < LOUTi .

Given a logic network LN = fG1; :::;GN ; Cg with a set
I = fI1; :::; IKg of inputs and set O = fO1; :::;OLg 2 G

of output nodes.
Ordered set M of sets of nodes M = fM0 = G�Og
For each Criteria Function C[i]; i = 1::8

For each set of nodes Mi 2 M with jMij > 1

For each node Gj 2 Mi compute Gj :objective = C[i](Gj)

Partition Mi into an ordered set of unordered sets
Mi;P1 ; :::;Mi;PK such that all Gj 2 Mi;Pk

have
the same Pk = Gj :objective and Pk > Pk+1.
Augment the new set of partitions into the initial set
M in the following order :::;Mi�1;Mi;1; :::;Mi;K ;Mi+1; :::

For each set of nodes Mi 2M with jMij > 1

Randomly partition Mi into an ordered set of unordered sets
Mi;P1 ; :::;Mi;PK each of cardinality equal to 1.
Augment the new set of partitions into the initial set
M in the following order :::;Mi�1;Mi;1; :::;Mi;K ;Mi+1; :::

Figure 2: Proposed function for completely defined node ordering.

1 2 543

fanout=2

fanout=3

fanout=1

Tfout[3].fanout=1,1

Tfout[3].fanout=1,2

fanout=2

Tfin[2].nodes=1
Tfin[2].nodes=2

Tfin[3].fanin.func=
OR,3AND

Tfin[3].fanin.func=
3AND

Primary
output

Figure 3: An example of ordering nodes according to the proposed
set of sorting criteria.

An example how nodes are identified using the proposed set of
sorting rules is given in Figure 3. Note that it is unlikely that two

nodes have all parameters identical. This is due to the dependen-
cies and non-symmetry between nodes in logic networks. If two
nodes cannot be distinguished using the proposed set of rules, we
assign random unique identifiers to these nodes and memorize the
assignment for future proof of authorship.

4.2. Watermark Encoding and Embedding

In the next phase of watermarking, from the sorted set M of non-
primary nodes, a subset S 2 M of cardinality jSj = K is selected.
The selection is pseudo-random and corresponds uniquely to the
designer’s or tool developer’s signature. Next, each node in the
selected subset S is explicitly added to the list of pseudo-primary
outputs. By performing this step, the watermarking routine en-
forces nodes from the set S to be:

� visible in the final technology mapping solution.

� computed during the multi-level logic minimization of the
logic network. Note that many subfunctions that exist in
the input logic network do not exist in the optimized output
logic network.

The node selection is performed in the following way. Since
the node selection step of watermarking is not assumed to be the
computation bottleneck, we use the RSA cryptographically secure
pseudo-random bit-generator [Men97] to generate a sequence of
bits which decides upon node selection. The keys used to drive
the randomization process represent the user signature. The result
of this phase is a pseudo-random signature-specific selection of a
combination of K network nodes.

In the case of technology mapping of LUT-based FPGAs, the
described node selection phase is the last phase in the protocol.
However, it is important to stress the implications of a specific
phenomenon in this problem. Cong and Ding [Con96a] have iden-
tified a class of MFFC nodes which are more likely to appear in the
final solution than the remaining nodes. We have statistically eval-
uated the impact of this phenomenon on the strength of the proof of
authorship enabled by our approach. For each instance of the prob-
lem, we have explicitly enumerated the ratio of MFFC nodes in the
initial input specification (rin) and in the final solution (rout). We
compute the likelihood of solution coincidence using the following
formula: p = (

rout�F
rin�T

)
rout�W

� (
(1�rout)�F

(1�rin)�T
)
(1�rout)�W , where F

is the number of non-primary gates in the final solution, T is the
total number of non-primary gates in the initial logic network, and
W is the number of gates pseudo-randomly selected to become
pseudo-primary outputs during the watermarking phase.

The protocol described for technology mapping can be ap-
plied to watermark solutions to the multi-level logic minimiza-
tion problem. However, we propose an alternative protocol which
provides stronger proof of authorship due to embedded additional
constraints. This protocol augments signature-specific constraints
into the input logic network in two phases. In the first phase which
is equivalent to the already described protocol for watermarking
technology mapping solutions, the protocol marks the outputs of
selected gates as visible by explicitly denoting them as pseudo-
primary outputs. In the second phase, an additional network is
augmented into the input. The additional network has as input
variables the pseudo-primary output variables generated in the pre-
vious phase. The network is built according to the user’s signature.
The pseudo-code for building the additional signature is presented
in Figure 4. The sequence of pseudo-random bits from the previ-
ous phase is used to provide a source of undeniable determination.

ILN is an input logic network.
PPN is an ordered set of pseudo primary nodes.
PRS = RSAbitGenerator(key1, key2), where key1; key2
are the designer and/or tool developer signature.
ListAddedGates = null

Repeat (Standard.cardinality of added gates)
Gate G = Select(Library, PRS, Pointer)
AddedGates:Add(G)

ILN:Add(G;G:fanin[Select(PPN;PRS;Pointer)

PPN:Add(G:fanout)

End Repeat
For each gate G 2 AddedGates

If G.fanout = null ILN:fanout:Add(G)

Figure 4: Proposed function for watermarking multi-level logic
minimization solutions using network augmentation.

Using this sequence, firstly, a gate G from the available library of
gates is selected. Then according to the pseudo-random sequence
of bits, G:fanin pseudo primary outputs are selected and used as
inputs to the selected gate G. The output G:fanout is added to
the list of pseudo-primary outputs. This output is subject to se-
lection in the future iterations of this procedure. This procedure
can be infinitely repeated. A possible termination policy may be
established using industry adopted standards.

The additionally constrained original input netlist is fetched to
the optimization algorithm (multi-level logic minimization or tech-
nology mapping). The final solution is a network of cells (or sub-
functions) which contains solution to the original problem and to
the user-specific augmentation of the original problem. The proof
of authorship relies on the difficulty to: modify the input in such
a way that the pseudo primary outputs that correspond to the at-
tacker’s signature and the modified network that corresponds to
the the attacker’s key have a subsolution that is a subsolution to
the initial problem watermarked with the designer’s watermark.

4.3. Persistence to Possible Attacks

The attacker may try to modify the output locally in such a way
that the watermark disappears or the proof of authorship is low-
ered bellow a predetermined standard. Therefore, the watermark-
ing scheme has to be such that, to delete the watermark and still
preserve solution quality, the attacker has to perturb great deal of
the obtained solution. This requires the attacker to develop a new
optimization algorithm. For example, consider a design that has
a total of 100000 gates. In the final solution S, 10000 nodes are
visible (LUT or cell outputs) and therefore the average probability,
that a node from the initial network is visible in the final solution,
is p = 1

10
. If the watermarking strategy results in a pseudo-random

selection of 1000 visible vertices, inherently, the average probabil-
ity that a node, visible in S, is visible in a solution obtained by
some other algorithm is p. That is, if the challenging algorithm
retrieves a solution of the same quality. The probability expecta-
tion P , that some other algorithm selects exactly the same subset
S of nodes in the final solution, is P = p1000 or one in 10

1000 .
Consider that the attacker aims to reduce the likelihood of author-
ship by doing local changes to the design in order to remove the
watermark. To reduce the proof of authorship to one in a million,
the attacker has to alter 851 node from the watermark, i.e. 85.1%
of the final solution. To remove the watermark in such a way that

the remaining proof of authorship is P = 0:1, the attacker has to
modify 888 vertices in the watermark or 88.8% of the entire tech-
nology mapping solution.

There are two scenarios how the attacker can try to find his or
her signature in an already watermarked solution (see Figure 5).
The first one is a top-down approach, where the attacker modifies
the input hoping that the tool will produce an output that contains
attacker’s signature (as well as the author’s signature). Since node
permutation is pseudo-randomized, the likelihood that attacker’s
signature appears in the output is the same as the probability of
two different algorithms retrieving the same solution. Thus, this
attack is less efficient than trying to delete the signature.

In the bottom-up approach the attacker concludes from the
output (or its modification), what is the input that produces out-
put that contains her or his signature. However, in order to produce
such an input (and possibly output), the attacker has to know which
pseudo-random selection of nodes (and augmented network) cor-
responds to a specific input sequence. The attacker may obtain
such information only if the reverse to the one-way function is
known. For RSA-type one-way hash functions such inverses are
not known [Men97].

The Original
Design

Specification

Assignment of an unique ID
to each gate in the netlist

Keyed one-way pseudo-
random node permutation

Author’s ID
Secret Key

Adding signature-specific
constraints to the design.

Applying the Synthesis Automation tool.

The Watermarked Optimized Design.

Netlist

Netlist Technology-mapping

Top-Down

Change the
input according

to "SOME"
heuristic

Apply the tool and
"EXPECT"

a solution with
attacker’s and

author’s
signature

Bottom-Up

Change the
output according

to "SOME"
heuristic

Conclude
what input corresponds
to the changed output
in such a way that both
attacker’s and author’s

signature can be detected
in the output

Figure 5: A top-down and bottom-up approach to finding at-
tacker’s signature in an already watermarked solution.

5. EXPERIMENTAL RESULTS

We demonstrate the effectiveness and quality of the developed IP
protection approach on the problem of technology mapping for
the set of MCNC benchmark designs (see Table 1). For LUT-
based 5-input technology mapping we used the CutMap algorithm
[Con96b]. Although the designs evaluated on the MCNC bench-
mark suite are much smaller than current industrial circuits (re-
cently announced Xilinx Virtex series of FPGAs implemented us-
ing a 0.25 micron technology are expected to encompass 1,000,000
gates), we have achieved likelihood of watermarked solution coin-
cidence on average equal to p < 10

�13 with average overhead of
4%. In two cases design watermarking resulted in negative over-
head. Similarly, we obtained average p < 10

�26 with average
hardware overhead of 7.6%.

We have applied the IPP protocol for technology mapping to
a large industrial design example with over 47,000 non-primary

Circuit PO Non-PO Orig 0.50% 1% 2%

i7 67 439 139 139 0.00% 0.01891 141 1.44% 0.00040 111 -20.14% 1.69E-09
i2 1 530 121 121 0.00% 0.01952 123 1.65% 0.00042 127 4.96% 2.44E-07
i9 63 471 140 140 0.00% 0.01405 142 1.43% 0.00022 145 3.57% 7.05E-08

alu4 8 603 220 220 0.00% 0.04278 221 0.45% 0.00188 226 2.73% 4.69E-06
frg2 139 507 302 302 0.00% 0.05632 304 0.66% 0.00337 305 0.99% 1.21E-05
rot 107 593 287 287 0.00% 0.02916 287 0.00% 0.00085 291 1.39% 9.38E-07

apex6 99 628 242 242 0.00% 0.00960 244 0.83% 0.00010 249 2.89% 1.55E-08
C2670 140 716 330 330 0.00% 0.00866 331 0.30% 7.78E-05 335 1.52% 8.15E-09

x3 99 681 266 266 0.00% 0.00835 268 0.75% 7.55E-05 273 2.63% 8.49E-09
k2 45 820 446 448 0.45% 0.05434 449 0.67% 0.00301 453 1.57% 1.07E-05
i8 81 827 517 515 -0.39% 0.06952 505 -2.32% 0.00399 493 -4.64% 9.88E-06

dalu 16 1065 382 385 0.79% 0.00354 388 1.57% 1.36E-05 397 3.93% 3.10E-10
t481 1 1144 543 545 0.37% 0.01424 540 -0.55% 0.00018 545 0.37% 4.11E-08

C3540 22 1336 563 563 0.00% 0.00238 568 0.89% 6.43E-06 580 3.02% 7.39E-11
C5315 123 1373 460 459 -0.22% 6.36E-05 457 -0.65% 3.72E-09 474 3.04% 5.42E-17

pair 137 1426 520 525 0.96% 9.32E-05 535 2.88% 1.25E-08 554 6.54% 5.90E-16
C6288 32 2417 690 705 2.17% 1.95E-07 725 5.07% 7.70E-14 746 8.12% 2.51E-26
C7552 108 2441 764 774 1.31% 1.30E-07 788 3.14% 2.82E-14 809 5.89% 3.52E-27

des 245 2788 1141 1097 -3.86% 6.65E-08 1110 -2.72% 6.75E-15 1132 -0.79% 1.85E-28
i10 224 2974 1315 1324 0.68% 3.78E-07 1339 1.83% 2.13E-13 1356 3.12% 1.12E-25

Table 1. Watermarking
technology mapping solutions for

the MCNC suite. Columns
present, respectively: name of the

circuit, number of primary
outputs, number of non-primary
gates in the project description,
and the solution quality (number
of LUTs) when algorithm CutMap
[Con96] is applied to the original

design. Each three-column
subtable contains a column

describing the number of LUTs in
the watermarked solution, the

hardware overhead with respect
to the non-watermarked solution,

and the likelihood that some
other algorithm retrieves a

solution which also contains the
watermark.

and 5,000 primary gates. For 0.5% and 1% of non-primary gates
selected for assignment to pseudo-primary outputs, our approach
resulted in solution coincidence likelihood of 10�124 and 10�244 ,
and with incurred hardware overhead of 0.8% and 1.87%, respec-
tively. The run-time of the optimization program for the water-
marked input was within �5% of the program execution run-time
for the original input.

The evaluation of the developed watermarking technique for
multi-level logic minimization resulted in results similar to tech-
nology mapping. We applied the MIS suite of optimization al-
gorithms [Bra87] to the standard and watermarked set of MCNC
benchmark designs. After specifying 1% or 2% of non-primary
output nodes to become pseudo-primary outputs, the MIS suite re-
trieved in average solutions with 2% fewer or 6% more literals,
respectively.

6. CONCLUSION

We have developed the first watermarking-based approach for IPP
of tools and designs in the combinational logic synthesis domain.
The watermark, a set of constraints which correspond to the de-
signer’s and/or tool developer’s signature, are added to the orig-
inal design specification in a synthesis preprocessing step. After
the synthesis tool retrieves a solution to the optimization problem,
the added constraints are satisfied in addition to the original set of
design constraints. This property is used to prove authorship in
court. We demonstrated that the embedded watermarks are: hard
to delete and hard to find in an arbitrary solution. We have effec-
tively applied our approach to the problem of technology mapping
for LUT-based FPGAs using a set of benchmark designs.

ACKNOWLEDGMENTS

Darko Kirovski was partially supported by NSF under grant CCB-
9734166. Yean-Yow Hwang was partially supported by Quickturn
under the California MICRO program.

7. REFERENCES

[Ben96] W. Bender et al. Techniques for data hiding. IBM Systems Journal,
vol.35, no.3-4, pp.313-336, 1996.

[Ber96] H. Berghel and L. O’Gorman. Protecting ownership rights through
digital watermarking. Computer, vol.29, no.7, pp.101-103, 1996.

[Bra87] R.K. Brayton et al. MIS: a multiple-level logic optimization sys-
tem. TCAD, vol.6, no.6, pp.1062-81, 1987.

[Con96a] J. Cong and Y. Ding. Combinational Logic Synthesis for LUT
Based Field Programmable Gate Arrays. Trans. on Design Au-
tomation of Electronic Systems, vol.1, no.2, pp.145-204, 1996.

[Con96b] J. Cong and Y.-Y. Hwang. Simultaneous Depth and Area Mini-
mization in LUT-based FPGA Mapping. 3rd International Sympo-
sium on FPGA, pp. 68-74, 1995.

[Cox96] I.J. Cox et al. Secure spread spectrum watermarking for images,
audio and video. Intl Conference on Image Processing, vol.3, pp.
243-246, 1996.

[DeM94] G. De Micheli. Synthesis and optimization of digital circuits. McGraw-
Hill, New York, 1994.

[Hac96] G.D. Hachtel and F. Somenzi. Logic synthesis and verification al-
gorithms. Kluwer, Boston, 1996.

[Har97] F. Hartung and B. Girod. Watermarking of MPEG-2 encoded video
without decoding and re-encoding. Multimedia Computing and
Networking, pp.264-274, 1997.

[Hon98] I. Hong and M. Potkonjak. IPP Techniques for Behavioral Specifi-
cations. Unpublished manuscript. 1998.

[Kah98] A.B. Kahng et al. Robust IP Watermarking Methodologies for
Physical Design. Design Automation Conference, 1998.

[Lac98] J. Lach, W.H. Mangione-Smith, and M. Potkonjak. Fingerprinting
Digital Circuits on Programmable Hardware. Workshop in Infor-
mation Hiding, 1998.

[Lia97] S. Liao and S. Devadas. Solving Covering Problems using LPR-
based Lower Bounds. Design Automation Conference, pp.117-
120, 1997.

[Liu97] T.H. Liu et al. Optimizing Designs Containing Black Boxes. De-
sign Automation Conference, pp.113-116, 1997.

[Men97] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of
applied cryptography. Boca Raton, 1997.

[Tiw96] V. Tiwari et al. Technology mapping for low power in logic syn-
thesis. Integration. vol.20, (no.3), 1996.

[VSI97] VSI Alliance. Fall Worldwide Member Meeting: A Year Of Achieve-
ment. October 1997.

