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Abstract

The proliferation of the Internet has affected the business
model of almost all semiconductor and VLSI CAD compa-
nies that rely on intellectual property (IP) as their main
source of revenues. The fact that IP has become more acces-
sible and easily transferable, has influenced the emergence
of copyright infringement as one of the most common ob-
structions to e-commerce of IP.

In this paper, we propose a generic forensic engineering
technique that addresses a number of copyright infringement
scenarios. Given a solution Sp to a particular optimization
problem instance P and a finite set of algorithms A appli-
cable to P, the goal is to identify with a certain degree of
confidence the algorithm A; which has been applied to P
in order to obtain Sp. We have applied forensic analysis
principles to two problem instances commonly encountered
in VLSI CAD: graph coloring and boolean satisfiability. We
have demonstrated that solutions produced by strategically
different algorithms can be associated with their correspond-
ing algorithms with high accuracy.

1 Introduction

The emergence of the Internet as the global communication
paradigm, has enforced almost all semiconductor and VLSI
CAD companies to market their intellectual property on-
line. Currently, companies such as ARM Holdings [Arm99],
LSI Logic [Lsi99], and MIPS [Mip99], mainly constrain their
on-line presence to sales and technical support. However, in
the near future, it is expected that both core and synthe-
sis tools developers place their IP on-line in order to enable
modern hardware and software licensing models. There is a
wide consensus among the software giants (Microsoft, Ora-
cle, Sun, etc.) that the rental of downloadable software will
be their dominating business model in the new millennium
[Mic99]. It is expected that similar licensing models become
widely accepted among VLSI CAD companies.

Most of the CAD companies planning on-line IP services
believe that copyright infringement will be the main nega-
tive consequence of IP exposure. This expectation has its
strong background in an already "hot” arena of legal dis-
putes in the industry. In the past couple of years, a number
of copyright infringement lawsuits have been filed: Cadence
vs. Avant! [EET99], Symantec vs. McAfee [TW99], Gambit
vs. Silicon Valley Research [GCW99], and Verity vs. Lotus
Development [IDG99]. In many cases, the concerns of the
plaintiffs were related to the violation of patent rights fre-
quently accompanied with misappropriation of implemented
software or hardware libraries. Needless to say, court rulings
and secret settlements have impacted the market capitaliza-
tion of these companies enormously. In many cases, proving
legal obstruction has been a major obstacle in reaching a
fair and convincing verdict [Mot99, Afc99].

In order to address this important issue, we propose a
set of techniques for the forensic analysis of design solutions.
Although the variety of copyright infringement scenarios is
broad, we target a relatively generic case. The goal of our
generic paradigm is to identify one from a pool of synthesis

tools that has been used to generate a particular optimized
design. More formally, given a solution Sp to a particu-
lar optimization problem instance P and a finite set of al-
gorithms A applicable to P, the goal is to identify with a
certain degree of confidence that algorithm A; has been ap-
plied to P in order to obtain solution Sp. In such a scenario,
forensic analysis is conducted based on the likelihood that a
design solution, obtained by a particular algorithm, results
in characteristic values for a predetermined set of solution
properties. Solution analysis is performed in three steps:
collection of statistical data, clustering of heuristic proper-
ties for each analyzed algorithm, and decision making with
confidence quantification.

In order to demonstrate the generic forensic analysis plat-
form, we propose a set of techniques for forensic analysis of
solution instances for a set of problems commonly encoun-
tered in VLSI CAD: graph coloring and boolean satisfiabil-
ity. We have conducted a number of experiments on real-life
and abstract benchmarks to show that using our methodol-
ogy, solutions produced by strategically different algorithms
can be associated with their corresponding algorithms with
relatively high accuracy.

2 Related Work

We trace the related work along the following lines: copy-
right enforcement policies and law practice, forensic anal-
ysis of software and documents, steganography, and code
obfuscation. Software copyright enforcement has attracted
a great deal of attention among law professionals. McGahn
gives a good survey on the state-of-the-art methods used
in court for detection of software copyright infringement
[McG95]. In the same journal paper, McGahn introduces
a new analytical method, based on Learned Hand’s abstrac-
tions test, which allows courts to rely their decisions on well
established and familiar principles of copyright law. Grover
presents the details behind an example lawsuit case [Gro98]
where Engineering Dynamics Inc., is the plaintiff issuing a
judgment of copyright infringement against Structural Soft-
ware Inc., a competitor who copied many of the input and
output formats of Engineering Dynamics Inc.

Forensic engineering has received little attention among
the technology researchers. To the best knowledge of the
authors, to date, forensic techniques have been explored for
detection of authentic Java bytecodes [Bak98] and to per-
form identity or partial copy detection for digital libraries
[Bri95]. Recently, researchers have endorsed steganography
and code obfuscation techniques as viable strategies for con-
tent and design protection. Protocols for watermarking ac-
tive IP have been developed at the physical layout [Cha99,
Wol98], partitioning [Kah98], logic synthesis [Oli99, Kir98],
partial scan selection [Kir98t], and behavioral specification
[Qu98, Hon98] level. A routing-level approach for finger-
printing FPGA digital designs has been introduced [Lac98].
In the software domain, good survey of techniques for copy-
right protection of programs has been presented by Collberg
and Thomborson [Col99]. They have also developed a code
obfuscation method which aims at hiding watermarks in pro-
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Figure 1: Global flow of the forensic engineering methodology.

gram’s data structures.

Although steganography has demonstrated its potential
to protect software and hardware implementations, its ap-
plicability to algorithm protection is still an unsolved issue.
In order to provide a foundation for associating algorithms
with their creations, in this paper, for the first time, we
present a set of techniques which aim at detecting copyright
infringement by giving quantitative and qualitative analysis
of the algorithm-solution correspondence.

3 Existing Methods for Establishing Copyright Infringe-
ment

In this subsection, we present an overview of techniques used

in court to distinguish substantial similarity between a copy-

right protected design or program and its replica.

The dispositive issue in copyright law is the idea-expression

dichotomy, which specifies that any idea (system) of opera-
tion (concept), regardless of the form in which it is described,
is unprotectable [McG95]. Copyright protection extends
only to the expression of ideas, not the ideas themselves.
Although courts have fairly effective procedures for distin-
guishing ideas from expressions [McG95], they lack persua-
sive methods for quantifying substantial similarity between
expressions; a necessary requirement for establishing a case
of copyright infringement. Since modern reverse engineering
techniques have made both hardware [Tae99] and software
[Beh98] vulnerable to partial resynthesis, frequently, plain-
tiffs have problems identifying the degree of infringement.
Methods used by courts to detect infringement are cur-
rently still rudimentary. The three most common tests: the
“ordinary observer test”, the extrinsic/intrinsic test, and the
“total concept and feel test” are used in cases when it is easy
to detect a complete copy of a design or a program’s source
code [McG95]. The widely adopted “iterative approach”
enables better abstraction of the problem by requiring: (i)
substantial similarity and a proof of copying or access and
(ii) proof that the infringing work is an exact duplication of
substantial portions of the copyrighted work [McG95]. Ob-
viously, neither of the tests addresses the common case in
contemporary industrial espionage, where stolen IP is either
hard to abstract from synthesized designs or difficult to cor-
relate to the original because of a number of straightforward
modifications which are hard to trace back. For instance,
performing peephole optimizations can alter a solution to
an existing optimization problem in such a way that the
end product does not resemble the original design. This is-
sue is highly important for VLSI CAD tool developers, due
to the difficulty of rationalizing similarities between differ-
ent or slightly modified synthesis algorithms. For example, a

probabilistic partitioning engine would create different par-
titions for the same graph instance, if only the seed of the
random number generator is altered. Similarly, a construc-
tive graph coloring algorithm is likely to yield a different
coloring for a graph with permuted node ordering.

4 Forensic Engineering: The New Generic Approach

In this section, we introduce generic forensic engineering
techniques that can be used to obtain fair rulings in copy-
right infringement cases. Forensic engineering aims at pro-
viding both qualitative and quantitative evidence of sub-
stantial similarity between the design original and its copy.
The generic problem that a forensic engineering methodol-
ogy tries to resolve can be formally defined as follows. Given
a solution Sp to a particular optimization problem instance
P and a finite set of algorithms A applicable to P, the goal
is to identify with a certain degree of confidence which algo-
rithm A; has been applied to P in order to obtain solution
Sp. An additional restriction is that the algorithms (their
software or hardware implementations) have to be analyzed
as black boxes. This requirement is based on two facts: (i)
similar algorithms can have different executables and (i1)
parties involved in the ruling are not eager to reveal their
IP even in court.

The global flow of the generic forensic engineering ap-
proach is presented in Figure 1. It consists of three fully
modular phases:

Statistics collection. Initially, each algorithm A4; € A
is applied to a large number of isomorphic representations
Pj,j = 1...N of the original problem instance P. Note
that “isomorphism” indicates pseudo-random perturbation
of the original problem instance P. Then, for each obtained
solution S};J_,z' =1...]A|,j =1... M, an analysis program

computes the values w;?, k = 1...L for a particular set of
solution’s properties mx,k = 1... L. The reasoning behind
performing iterative optimizations of perturbed problem in-
stances is to obtain a valid statistical model on certain prop-
erties of solutions generated by a particular algorithm.
Next, the collected statistical data (w,”) is integrated
into a separate histogram x& for each property 7 under the
application of a particular algorithm A;. Since the proba-
bility distribution function for xj, is in general not known,
using non-parametric statistical methods [DeG89], each al-
gorithm A; is associated with probability Pyi=x that its
solution results in property =, being equal to X.
Algorithm clustering. In order to associate an al-
gorithm A, € A with the original solution Sp, the set of
algorithms is clustered according to the properties of Sp.



The value w,‘jp for each property 7 of Sp is then compared

to the collected histograms (x}, x3) of each pair of consid-
ered algorithms A; and A;. Two algorithms A;, A; remain
in the same cluster, if the likelihood z, , s, that their
i Ajwy
properties are not correlated is greater than some predeter-
mined bound € < 1 (K is the index of the property 7xk,
which induces the highest anti-correspondence between the
two algorithms).
|7 likelihaod(‘rrlic:w:P)

sp = max,. . -
AiAjwE k=1 ikelihood(ni =w’ P ) +likelihood(n) =w' P)

It is important to stress that a set of properties associ-
ated with algorithm A; can be correlated with more than one
cluster of algorithms. For instance, this can happen when an
algorithm A; is a blend of two different heuristics (A;, Ax)
and therefore its properties can be statistically similar to the
properties of Aj, Ax. Obviously, in such cases exploration
of different properties or more expensive and complex struc-
tural analysis of programs is the only solution.

Decision making. This process is straightforward. If
the plaintift’s algorithm A, is clustered jointly with the de-
fendant’s algorithm A, and A, is not clustered with any
other algorithm from A, substantial similarity between the
two algorithms is positively detected at a degree quantified

using the parameter 2y Ay WP The court may adjoin to
a Ay ,wp

the experiment several slightly modified replicas of A, as
well as a number of strategically different algorithms from

A, in order to validate that the value of z sp points
A,.E,Ay,u)K

to the correct conclusion.

Obviously, the selection of properties plays an important
role in the entire system. Two obvious candidates are the ac-
tual quality of solution and the run-time of the optimization
program. Needless to say, such properties may be a decisive
factor only in specific cases when copyright infringement has
not occured. Only detailed analysis of solution structures
can give useful forensic insights. In the remainder of this
manuscript, we demonstrate how such analysis can be per-
formed for graph coloring and boolean satisfiability.

5 Forensic Engineering: Statistics Collection
5.1 Graph Coloring

We present the developed forensic engineering methodol-
ogy using the problem of graph K-colorability. In order to
position the proposed approach, initially, we formalize the
optimization problem and then survey a number of exist-
ing widely accepted heuristics. Finally, we propose a set of
heuristic properties that can be used to correlate individual
graph coloring solutions to their algorithms.

Since many resource assignment problems can be mod-
eled using graph coloring, its applications in VLSI CAD are
numerous (logic minimization, register assignment, cache
line coloring, circuit testing, operations scheduling [Cou97]).
The problem can be formally described using the following
standard format:

PROBLEM: GRAPH K-COLORABILITY

INSTANCE: Graph G(V, E), positive integer K < |V|.

QUESTION: Is G K-colorable. i.e., does there exist a function
f:V —1,2,3,..,K such that f(u) # f(v) whenever u,v € E?

In general, graph coloring is an NP-complete problem
[Gar79]. Particular instances of the problem that can be
solved in polynomial time are listed in [Gar79]. For instance,
graphs with maximum vertex degree less than four, and bi-
partite graphs can be colored in polynomial time.

Due to its applicability, a number of exact and heuristic
algorithms for graph coloring has been developed to date.
For brevity and due to limited source code availability, in

this paper, we constrain our research to a few of them. The
simplest constructive algorithm for graph coloring is the ”se-
quential” coloring algorithm (SEQ). SEQ sequentially tra-
verses and colors vertices with the lowest index not used by
the already colored neighboring vertices. DSATUR [Bre79]
colors the next vertex with a color C selected depending on
the number of neighbor vertices already connected to nodes
colored with C (saturation degree) (Figure 2). RLF [Lei79]
colors the vertices sequentially one color class at a time.
Vertices colored with one color represent an independent
subset (IS) of the graph. The algorithm tries to color with
each color maximum number of vertices. Since the problem
of finding the maximum IS is intractable [Gar79], a heuristic
is employed to select a vertex to join the current IS as the
one with the largest number of neighbors already connected
to that IS. An example how RLF colors graphs is presented
in Figure 3. Node 6 is randomly selected as the first node
in the first IS. Two nodes (2,4) have maximum number of
neighbors which are also neighbors to the current IS. The
node with the maximum degree is chosen (4). Node 2 is the
remaining vertex that can join the first IS. The second IS
consists of randomly selected node 1 and the only remain-
ing candidate to join the second IS, node 5. Finally, node 3
represents the last IS.
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Figure 2: Example of the DSATUR algorithm.
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Figure 3: Example of the RLF algorithm.

Iterative improvement techniques try to, using various
search techniques, find better colorings usually generating



successive colorings by random moves. The most common
search techniques are simulated annealing [Mor86, Joh91,
Mor94] and tabu search [dWe85, Fle96]. In our experi-
ments, we will constrain the pool of algorithms A to a greedy,
DSATUR, MAXIS (RLF based), backtrack DSATUR, iter-
ated greedy, and tabu search (descriptions and source code
at [Cul99)).

A succesful forensic technique should be able to, given
a colored graph, distinguish whether a particular algorithm
has been used to obtain the solution. The key to the effi-
ciency of the forensic method is the selection of properties
used to quantify algorithm-solution correlation. We propose
a list of properties that aim at analyzing the structure of the
solution:

[r1] Color class size. Histogram of IS cardinalities is
used to filter greedy algorithms that focus on color-
ing graphs constructively (e.g. RLF-like algorithms).
Such algorithms tend to create large initial indepen-
dent sets at the beginning of their coloring process.

[r2] Number of edges in large independent sets. This
property is used to aid the accuracy of 71 by excluding
easy-to-find large independent sets from consideration
in the analysis.

[r3] Number of edges that can switch color classes.
This criteria analyzes the quality of the coloring. Good
coloring result will have fewer nodes that are able to
switch color classes. It also characterizes the greedi-
ness of an algorithm because greedy algorithms com-
monly create at the end of their coloring process many
color classes that can absorb large portion of the re-
maining graph.

[r4] Color saturation in neighborhoods. This prop-
erty assumes creation of a histogram that counts for
each vertex the number of adjacent nodes colored with
one color. Greedy algorithms and algorithms that tend
to sequentially traverse and color vertices are more
likely to have node neighborhoods dominated by fewer
colors.

[r5] Sum of degrees of nodes included in the largest
(smallest) color classes. This property aims at
identifying algorithms that perform peephole optimiza-
tions, since they are not likely to create color classes
with high-degree vertices.

[r6] Sum of degrees of nodes adjacent to the ver-
tices included in the largest (smallest) color
classes. The analysis goal of this property is simi-
lar to 75 with the exception that it focuses on select-
ing algorithms that perform neighborhood lookahead
techniques [Kir98gc].

[r7] Percent of maximal independent subsets. This
property can be highly effective in distinguishing algo-
rithms that color graphs by iterative color class selec-
tion (RLF). Supplemented with property ms, it aims
at detecting fine nuances among similar RLF-like al-
gorithms.

The itemized properties can be effective only on large
instances where the standard deviation of histogram values
is relatively small. Using standard statistical approaches
[DeG89], the function of standard deviation for each his-
togram can be used to determine the standard error incor-
porated in the reached conclusion.

Although instances with small cardinalities cannot be
a target of forensic methods, we use a graph instance in

Figure 4 to illustrate how two different graph coloring al-
gorithms tend to have solutions characterized with different
properties. The applied algorithms are DSATUR and RLF
(described earlier in the section). Specified algorithms color
the graph constructively in the order denoted in the fig-
ure. If property m; is considered, the solution created using
DSATUR has a histogram XflsATUR = {12,23,04}, where
histogram value z, denotes x sets of color classes with car-
dinality y. Similarly, the solution created using RLF results
in XflLF = {22,03,14}. Commonly, extreme values point
to the optimization goal of the algorithm or characteristic
structure property of its solutions. In this case, RLF has
found a maximum independent set of cardinality y = 4, a
consequence of algorithm’s strategy to search in a greedy

fashion for maximal ISs.
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Figure 4: Example of two different graph coloring solutions
obtained by two algorithms DSATUR and RLF. The index
of each vertex specifies the order in which it is colored ac-
cording to a particular algorithm.

5.2 Boolean Satisfiability

We illustrate the key ideas of watermarking-based intellec-
tual property protection techniques using the SAT prob-
lem. The SAT problem can be defined in the following way
[Gar79]:

Problem: SATISFIABILITY (SAT)

Instance: A set of wariables V and a collection C of clauses
over V.

Question: Is there a truth assignment for V that satisfies all

the clauses in C'?

For instance, V = {v1,v2} and C = {{v1,v2}, {v1}, {v1,v5}}

is an instance of SAT for which the answer is positive. A
satisfying truth assignment is #(v;) = F' and #(v2) =T. On
the other hand, if we have collection C' = {{v},v5},{v1}}
there is no satisfying solution.

Boolean satisfiability is an NP-complete problem [Gar79].
It has been proven that every other problem in NP can be
polynomially reduced to satisfiability [Coo71, Kar72]. SAT
has an exceptionally wide application range. Many problems
in CAD are often modeled as SAT instances. For exam-
ple, SAT techniques have been used in testing [Sil97, Ste96,
Cha93, Kon93], logic synthesis, and physical design [Dev89].
There are at least three broad classes of solution strategies
for the SAT problem. The first class of techniques are based
on probabilistic search [Gu99, Sil99, Sel95, Dav60], the sec-
ond are approximation techniques based on rounding the
solution to a nonlinear program relaxation [Goe95], and the
third is a great variety of BDD-based techniques [Bry95].
For brevity and due to limited source code availability, we
demonstrate our forensic engineering technology on the fol-
lowing SAT algorithms.

e GSAT identifies for each variable v the difference DIFF
between the number of clauses currently unsatisfied



that would become satisfied if the truth value of v were
reversed and the number of clauses currently satisfied
that would become unsatisfied if the truth value of
v were flipped [Sel92, Sel93, Sel93a]. The algorithm
pseudo-randomly flips assignments of variables with
the greatest DIFF.

e WalkSAT Selects with probability p a variable oc-
curring in some unsatisfied clause and flips its truth
assignment. Conversely, with probability 1 — p, the
algorithm performs a greedy heuristic such as GSAT
[Sel93a).

e NTAB performs a local search to determine weights
for the clauses (intuitively giving higher weights cor-
responds to clauses which are harder to satisfy). The
clause weights are then used to preferentially branch
on variables that occur more often in clauses with
higher weights [Cra96].

e Rel SAT rand represents an enhancement of GSAT
with look-back techniques [Bay96].

In order to correlate an SAT solution to its corresponding
algorithm, we have explored the following properties of the
solution structure.

[r1] Percentage of non-important variables. A vari-
able v; is non-important for a particular set of clauses
C and satisfactory truth assignment ¢(V') of all vari-
ables in V, if both assignments t(v;) = T and t(v;) = F
result in satisfied C. For a given truth assignment ¢,
we denote the subset of variables that can switch their
assignment without impact on the satisfiability of C'
as Vi;. In the remaining set of properties only func-
tionally significant subset of variables Vo = V —V}, is
considered for further forensic analysis.

[r2] Clausal stability - percentage of variables that
can switch their assignment such that K% of
clauses in C are still satisfied. This property aims
at identifying constructive greedy algorithms, since they
assign values to variables such that as many as possible
clauses are covered with each variable selection.

[r3] Ratio of true assigned variables vs. total num-
ber of variables in a clause. Although this property
depends by and large on the structure of the problem,
in general, it aims at qualifying the effectiveness of
the algorithm. Large values commonly indicate usage
of algorithms that try to optimize the coverage using
each variable.

[r4] Ratio of coverage using positive and negative
appearance of a variable. While property 73 ana-
lyzes the solution from a perspective of a single clause,
this property analyzes the solution from a perspective
of each variable. Each variable v; appears in p; clauses
as positively and n; clauses as negatively inclined. The
property quantifies the possibility that an algorithm
assigns a truth value to t(v;) = pi > n;.

[r5] The GSAT heuristic. For each variable v the dif-
ference DIFF=a-b is computed, where a is the num-
ber of clauses currently unsatisfied that would become
satisfied if the truth value of v were reversed, and b
is the number of clauses currently satisfied that would
become unsatisfied if the truth value of v were flipped.

As in the case of graph coloring, the listed properties
demonstrate significant statistical proof only for large prob-
lem instances. Instances should be large enough to result in

low standard deviation of collected statistical data. Stan-
dard deviation impacts the decision making process accord-
ing to the Central Limit Theorem [DeG89].

6 Forensic Engineering: Algorithm Clustering and Deci-
sion Making

Once statistical data is collected, algorithms in the initial

pool are partitioned into clusters. The goal of partitioning

is to join strategically similar algorithms (e.g. with similar

properties) in a single cluster. This procedure is presented

formally using the pseudo-code in Figure 5.

The clustering process is initiated by setting the starting
set of clusters to empty C = (). In order to associate an
algorithm A, € A with the original solution Sp, the set of
algorithms is clustered according to the properties of Sp.
The value w,‘jp for each property 7 of Sp is then compared

to the collected histograms (x4, Xfc) of each pair of consid-
ered algorithms A; and A;. Two algorithms A;, A; remain

in the same cluster, if the likelihood Z, 4 5P that their

AW
properties are not correlated is greater than some prede-
termined bound ¢ < 1 (K is the index of the property 7k,
which induces extreme anti-correspondence between the two

algorithms).
=l likelihood(ri=wy ¥)

= mazx,"
k=1 likelihood (x 1 =wy P ) +likelihood (r T =w, F)
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The function that computes the mutual correlation of
two algorithms takes into account the fact that two proper-
ties can be mutually dependent. Algorithm A; is added to
a cluster C}, if its correlation with all algorithms in C} is
greater than some predetermined bound € < 1. If A; cannot
be highly correlated with any algorithm from all existing
clusters in C then a new cluster C|¢|4 is created with A;
as its only member and added to C. If there exists a cluster
Cy for which A; is highly correlated with a subset C,f of
algorithms within C}, then C} is partitioned into two new
clusters Cff U A; and Cp — CF. Finally, algorithm A; is
removed from the list of unprocessed algorithms A. These
steps are iteratively repeated until all algorithms are pro-
cessed.

Given A.
C=90.
For each A; € A
For each Cy € C
add = true; none = true
For each A; € (),
If ZA,-,A]-,wSP > €.
Then add = false Else none = false
End For
If add Then merge A; with Cy
Else create new cluster U4 with
A; as its only element.
If none Then create two new clusters
CH U A; and Oy — OF where CH € ¢,
is a subset of algorithms highly correlated with A;.
End For
End For

Figure 5: Pseudo-code for the algorithm clustering proce-
dure.

Obviously, according to this procedure, an algorithm A;
can be correlated with two different algorithms A;, A that
are not mutually correlated (as presented in Figure 6). For
instance, this situation can occur when an algorithm A; is
a blend of two different heuristics (A;, Ax) and therefore its
properties can be statistically similar to the properties of
Aj, Ai. In such cases, exploration of different properties or
more expensive and complex structural analysis of algorithm
implementations is the only solution to detecting copyright
infringement.



Once the algorithms are clustered, the decision making
process is straightforward.
e If plaintiff’s algorithm A, is clustered jointly with the
defendant’s algorithm A,
e and A, is not clustered with any other algorithm from
A which has been previously determined as strategi-
cally different,

e then substantial similarity between the two algorithms
is positively detected at a degree quantified using the

rameter .
paramete ZAE,Ay,wf(P

The court may adjoin to the experiment several slightly
modified replicas of A, as well as a number of strategically
different algorithms from A, in order to validate that the
sp points to the correct conclusion.

k

value of z
Az, Ay,w

Figure 6: Two different examples of clustering three dis-
tinct algorithms. The first clustering (figure on the left)
recognizes substantial similarity between algorithms A; and
Az and substantial dissimilarity of A, with respect to A;
and As. Accordingly, in the second clustering (figure on
the right) the algorithm Ajs is recognized as similar to both
algorithms A; and As, which were found to be dissimilar.

7 Experimental Results (Figure 7)

In order to demonstrate the effectiveness of the proposed
forensic methodologies, we have conducted a set of experi-
ments on both abstract and real-life problem instances. In
this section, we present the obtained results for a large num-
ber of graph coloring and SAT instances. The collected data
is partially presented in Figure 7. It is important to stress,
that for the sake of external similarity among algorithms,
we have adjusted the run-times of all algorithms such that
their solutions are of approximately equal quality.

We have focused our forensic exploration of graph color-
ing solutions on two sets of instances: random (1000 nodes
and 0.5 edge existence probability [Joh91]) and register allo-
cation graphs. The last five subfigures in Figure 7 depict the
histograms of property value distribution for the following
pairs of algorithms and properties: DSATUR with back-
tracking vs. maxis and w3, DSATUR with backtracking vs.
tabu search and 77, iterative greedy vs. maxis and m and
74, and maxis vs. tabu and m respectively.

Each of the diagrams can be used to associate a particu-
lar solution with one of the two algorithms A; and A, with
1% accuracy (100 instances attempted for statistics collec-
tion). For a given property value m; = = (X-dimension), a
test instance can be associated to algorithm A; with like-
lihood equal to the ratio of the Y-dimensions of the his-
ﬁ;gg For the complete set of instances and
algorithms that we have explored, as it can be observed
from the diagrams, on the average, we have succeeded to as-
sociate 90% of solution instances with their corresponding
algorithms with probability greater than 0.95. According to
the Central Limit Theorem [DeG89] in one half of the cases,
we have achieved association likelihood better than 1—107°.

The forensic analysis techniques, that we have developed
for solutions to SAT instances, have been tested using a real-
life (circuit testing) and an abstract benchmark set of in-
stances adopted from [Kam93, Tsu93]. Parts of the collected

togram for

statistics are presented in the first ten subfigures in Figure 7.
The subfigures represent the following comparisons: m; and
NTAB, Rel_SAT, and WalkSAT and then zoomed version of
the same property with only Rel SAT, and WalkSAT (for
two different sets of instances - total: first four subfigures),
mp for NTAB, Rel SAT, and WalkSAT, and w3 for NTAB,
Rel_SAT, and WalkSAT respectively.

The diagrams clearly indicate that solutions provided by
NTAB can be easily distinguished from solutions provided
by the other two algorithms using any of the three proper-
ties. However, solutions provided by Rel_SAT, and Walk-
SAT appear to be similar in structure (which is expected
because they both use GSAT as the heuristic guidance for
their propositional search). We have succeeded to differen-
tiate their solutions on per instance basis. For example, in
the second subfigure it can be noticed that solutions pro-
vided by Rel_SAT have much wider range for 7; and there-
fore, according to the second subfigure, approximately 50%
of its solutions can be easily distinguished from WalkSAT’s
solutions with high probability. Significantly better results
were obtained using another set of structurally different in-
stances (zoomed comparison presented in the fourth subfig-
ure), where among 100 solution instances no overlap in the
value of property w1 was detected for Rel_ SAT, and Walk-
SAT.

8 Conclusion

With the emergence of the Internet, intellectual property
has become accessible and easily transferable. The improve-
ments in product delivery and maintenance have a negative
side-effect: copyright infringement has become one of the
most commonly feared obstacles to IP e-commerce. We have
proposed a forensic engineering technique that addresses the
generic copyright infringement scenario. Given a solution
Sp to a particular optimization problem instance P and a
finite set of algorithms A applicable to P, the goal is to iden-
tify with certain degree of confidence the algorithm A; which
has been applied to P in order to obtain Sp. The applica-
tion of the forensic analysis principles to graph coloring and
boolean satisfiability has demonstrated that solutions pro-
duced by strategically different algorithms can be associated
with their corresponding algorithms with high accuracy.
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Figure 7: Experimental results: each subfigure represents the following comparison (from upper left to bottom right): (1,3) m
and NTAB, Rel_SAT, and WalkSAT and (2,4) then zoomed version of the same property with only Rel_SAT, and WalkSAT
(for two different sets of instances - total: first four subfigures), (5,6,7) w2 for NTAB, Rel SAT, and WalkSAT, and (8,9,10) 73
for NTAB, Rel_SAT, and WalkSAT respectively. The last five subfigures depict the histograms of property value distribution
for the following pairs of algorithms and properties: (11) DSATUR, with backtracking vs. maxis and w3, (12) DSATUR with
backtracking vs. tabu search and 77, (13,14) iterative greedy vs. maxis and m; and 74, and (15) maxis vs. tabu and 1.



