
Forensic Engineering Techniques for VLSI CAD ToolsDavid Liu, Jennifer Wong, Darko Kirovski, and Miodrag PotkonjakComputer Science Department, University of California, Los AngelesAbstractThe proliferation of the Internet has a�ected the businessmodel of almost all semiconductor and VLSI CAD compa-nies that rely on intellectual property (IP) as their mainsource of revenues. The fact that IP has become more acces-sible and easily transferable, has in
uenced the emergenceof copyright infringement as one of the most common ob-structions to e-commerce of IP.In this paper, we propose a generic forensic engineeringtechnique that addresses a number of copyright infringementscenarios. Given a solution SP to a particular optimizationproblem instance P and a �nite set of algorithms A appli-cable to P , the goal is to identify with a certain degree ofcon�dence the algorithm Ai which has been applied to Pin order to obtain SP . We have applied forensic analysisprinciples to two problem instances commonly encounteredin VLSI CAD: graph coloring and boolean satis�ability. Wehave demonstrated that solutions produced by strategicallydi�erent algorithms can be associated with their correspond-ing algorithms with high accuracy.1 IntroductionThe emergence of the Internet as the global communicationparadigm, has enforced almost all semiconductor and VLSICAD companies to market their intellectual property on-line. Currently, companies such as ARM Holdings [Arm99],LSI Logic [Lsi99], and MIPS [Mip99], mainly constrain theiron-line presence to sales and technical support. However, inthe near future, it is expected that both core and synthe-sis tools developers place their IP on-line in order to enablemodern hardware and software licensing models. There is awide consensus among the software giants (Microsoft, Ora-cle, Sun, etc.) that the rental of downloadable software willbe their dominating business model in the new millennium[Mic99]. It is expected that similar licensing models becomewidely accepted among VLSI CAD companies.Most of the CAD companies planning on-line IP servicesbelieve that copyright infringement will be the main nega-tive consequence of IP exposure. This expectation has itsstrong background in an already "hot" arena of legal dis-putes in the industry. In the past couple of years, a numberof copyright infringement lawsuits have been �led: Cadencevs. Avant! [EET99], Symantec vs. McAfee [IW99], Gambitvs. Silicon Valley Research [GCW99], and Verity vs. LotusDevelopment [IDG99]. In many cases, the concerns of theplainti�s were related to the violation of patent rights fre-quently accompanied with misappropriation of implementedsoftware or hardware libraries. Needless to say, court rulingsand secret settlements have impacted the market capitaliza-tion of these companies enormously. In many cases, provinglegal obstruction has been a major obstacle in reaching afair and convincing verdict [Mot99, Afc99].In order to address this important issue, we propose aset of techniques for the forensic analysis of design solutions.Although the variety of copyright infringement scenarios isbroad, we target a relatively generic case. The goal of ourgeneric paradigm is to identify one from a pool of synthesis

tools that has been used to generate a particular optimizeddesign. More formally, given a solution SP to a particu-lar optimization problem instance P and a �nite set of al-gorithms A applicable to P , the goal is to identify with acertain degree of con�dence that algorithm Ai has been ap-plied to P in order to obtain solution SP . In such a scenario,forensic analysis is conducted based on the likelihood that adesign solution, obtained by a particular algorithm, resultsin characteristic values for a predetermined set of solutionproperties. Solution analysis is performed in three steps:collection of statistical data, clustering of heuristic proper-ties for each analyzed algorithm, and decision making withcon�dence quanti�cation.In order to demonstrate the generic forensic analysis plat-form, we propose a set of techniques for forensic analysis ofsolution instances for a set of problems commonly encoun-tered in VLSI CAD: graph coloring and boolean satis�abil-ity. We have conducted a number of experiments on real-lifeand abstract benchmarks to show that using our methodol-ogy, solutions produced by strategically di�erent algorithmscan be associated with their corresponding algorithms withrelatively high accuracy.2 Related WorkWe trace the related work along the following lines: copy-right enforcement policies and law practice, forensic anal-ysis of software and documents, steganography, and codeobfuscation. Software copyright enforcement has attracteda great deal of attention among law professionals. McGahngives a good survey on the state-of-the-art methods usedin court for detection of software copyright infringement[McG95]. In the same journal paper, McGahn introducesa new analytical method, based on Learned Hand's abstrac-tions test, which allows courts to rely their decisions on wellestablished and familiar principles of copyright law. Groverpresents the details behind an example lawsuit case [Gro98]where Engineering Dynamics Inc., is the plainti� issuing ajudgment of copyright infringement against Structural Soft-ware Inc., a competitor who copied many of the input andoutput formats of Engineering Dynamics Inc.Forensic engineering has received little attention amongthe technology researchers. To the best knowledge of theauthors, to date, forensic techniques have been explored fordetection of authentic Java bytecodes [Bak98] and to per-form identity or partial copy detection for digital libraries[Bri95]. Recently, researchers have endorsed steganographyand code obfuscation techniques as viable strategies for con-tent and design protection. Protocols for watermarking ac-tive IP have been developed at the physical layout [Cha99,Wol98], partitioning [Kah98], logic synthesis [Oli99, Kir98],partial scan selection [Kir98t], and behavioral speci�cation[Qu98, Hon98] level. A routing-level approach for �nger-printing FPGA digital designs has been introduced [Lac98].In the software domain, good survey of techniques for copy-right protection of programs has been presented by Collbergand Thomborson [Col99]. They have also developed a codeobfuscation method which aims at hiding watermarks in pro-
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ow of the forensic engineering methodology.gram's data structures.Although steganography has demonstrated its potentialto protect software and hardware implementations, its ap-plicability to algorithm protection is still an unsolved issue.In order to provide a foundation for associating algorithmswith their creations, in this paper, for the �rst time, wepresent a set of techniques which aim at detecting copyrightinfringement by giving quantitative and qualitative analysisof the algorithm-solution correspondence.3 Existing Methods for Establishing Copyright Infringe-mentIn this subsection, we present an overview of techniques usedin court to distinguish substantial similarity between a copy-right protected design or program and its replica.The dispositive issue in copyright law is the idea-expressiondichotomy, which speci�es that any idea (system) of opera-tion (concept), regardless of the form in which it is described,is unprotectable [McG95]. Copyright protection extendsonly to the expression of ideas, not the ideas themselves.Although courts have fairly e�ective procedures for distin-guishing ideas from expressions [McG95], they lack persua-sive methods for quantifying substantial similarity betweenexpressions; a necessary requirement for establishing a caseof copyright infringement. Since modern reverse engineeringtechniques have made both hardware [Tae99] and software[Beh98] vulnerable to partial resynthesis, frequently, plain-ti�s have problems identifying the degree of infringement.Methods used by courts to detect infringement are cur-rently still rudimentary. The three most common tests: the\ordinary observer test", the extrinsic/intrinsic test, and the\total concept and feel test" are used in cases when it is easyto detect a complete copy of a design or a program's sourcecode [McG95]. The widely adopted \iterative approach"enables better abstraction of the problem by requiring: (i)substantial similarity and a proof of copying or access and(ii) proof that the infringing work is an exact duplication ofsubstantial portions of the copyrighted work [McG95]. Ob-viously, neither of the tests addresses the common case incontemporary industrial espionage, where stolen IP is eitherhard to abstract from synthesized designs or di�cult to cor-relate to the original because of a number of straightforwardmodi�cations which are hard to trace back. For instance,performing peephole optimizations can alter a solution toan existing optimization problem in such a way that theend product does not resemble the original design. This is-sue is highly important for VLSI CAD tool developers, dueto the di�culty of rationalizing similarities between di�er-ent or slightly modi�ed synthesis algorithms. For example, a

probabilistic partitioning engine would create di�erent par-titions for the same graph instance, if only the seed of therandom number generator is altered. Similarly, a construc-tive graph coloring algorithm is likely to yield a di�erentcoloring for a graph with permuted node ordering.4 Forensic Engineering: The New Generic ApproachIn this section, we introduce generic forensic engineeringtechniques that can be used to obtain fair rulings in copy-right infringement cases. Forensic engineering aims at pro-viding both qualitative and quantitative evidence of sub-stantial similarity between the design original and its copy.The generic problem that a forensic engineering methodol-ogy tries to resolve can be formally de�ned as follows. Givena solution SP to a particular optimization problem instanceP and a �nite set of algorithms A applicable to P , the goalis to identify with a certain degree of con�dence which algo-rithm Ai has been applied to P in order to obtain solutionSP . An additional restriction is that the algorithms (theirsoftware or hardware implementations) have to be analyzedas black boxes. This requirement is based on two facts: (i)similar algorithms can have di�erent executables and (ii)parties involved in the ruling are not eager to reveal theirIP even in court.The global 
ow of the generic forensic engineering ap-proach is presented in Figure 1. It consists of three fullymodular phases:Statistics collection. Initially, each algorithm Ai 2 Ais applied to a large number of isomorphic representationsPj ; j = 1 : : : N of the original problem instance P . Notethat \isomorphism" indicates pseudo-random perturbationof the original problem instance P . Then, for each obtainedsolution SiPj ; i = 1 : : : jAj; j = 1 : : :M , an analysis programcomputes the values !i;jk ; k = 1 : : : L for a particular set ofsolution's properties �k; k = 1 : : : L. The reasoning behindperforming iterative optimizations of perturbed problem in-stances is to obtain a valid statistical model on certain prop-erties of solutions generated by a particular algorithm.Next, the collected statistical data (!i;jk ) is integratedinto a separate histogram �ik for each property �k under theapplication of a particular algorithm Ai. Since the proba-bility distribution function for �ik is in general not known,using non-parametric statistical methods [DeG89], each al-gorithm Ai is associated with probability p�ik=X that itssolution results in property �k being equal to X.Algorithm clustering. In order to associate an al-gorithm Ax 2 A with the original solution SP , the set ofalgorithms is clustered according to the properties of SP .



The value !SPk for each property �k of SP is then comparedto the collected histograms (�ik, �jk) of each pair of consid-ered algorithms Ai and Aj . Two algorithms Ai; Aj remainin the same cluster, if the likelihood zAi;Aj ;!SPK that theirproperties are not correlated is greater than some predeter-mined bound � � 1 (K is the index of the property �K ,which induces the highest anti-correspondence between thetwo algorithms).zAi;Aj ;!SPK = maxj�jk=1 likelihood(�ik=!SPk )likelihood(�ik=!SPk )+likelihood(�jk=!SPk )It is important to stress that a set of properties associ-ated with algorithm Ai can be correlated with more than onecluster of algorithms. For instance, this can happen when analgorithm Ai is a blend of two di�erent heuristics (Aj ; Ak)and therefore its properties can be statistically similar to theproperties of Aj ; Ak. Obviously, in such cases explorationof di�erent properties or more expensive and complex struc-tural analysis of programs is the only solution.Decision making. This process is straightforward. Ifthe plainti�'s algorithm Ax is clustered jointly with the de-fendant's algorithm Ay and Ay is not clustered with anyother algorithm from A, substantial similarity between thetwo algorithms is positively detected at a degree quanti�edusing the parameter zAx;Ay ;!SPK . The court may adjoin tothe experiment several slightly modi�ed replicas of Ax aswell as a number of strategically di�erent algorithms fromAx in order to validate that the value of zAx;Ay ;!SPK pointsto the correct conclusion.Obviously, the selection of properties plays an importantrole in the entire system. Two obvious candidates are the ac-tual quality of solution and the run-time of the optimizationprogram. Needless to say, such properties may be a decisivefactor only in speci�c cases when copyright infringement hasnot occured. Only detailed analysis of solution structurescan give useful forensic insights. In the remainder of thismanuscript, we demonstrate how such analysis can be per-formed for graph coloring and boolean satis�ability.5 Forensic Engineering: Statistics Collection5.1 Graph ColoringWe present the developed forensic engineering methodol-ogy using the problem of graph K-colorability. In order toposition the proposed approach, initially, we formalize theoptimization problem and then survey a number of exist-ing widely accepted heuristics. Finally, we propose a set ofheuristic properties that can be used to correlate individualgraph coloring solutions to their algorithms.Since many resource assignment problems can be mod-eled using graph coloring, its applications in VLSI CAD arenumerous (logic minimization, register assignment, cacheline coloring, circuit testing, operations scheduling [Cou97]).The problem can be formally described using the followingstandard format:PROBLEM: GRAPH K-COLORABILITYINSTANCE: Graph G(V;E), positive integer K � jV j.QUESTION: Is G K-colorable. i.e., does there exist a functionf : V ! 1; 2; 3; ::;K such that f(u) 6= f(v) whenever u; v 2 E?In general, graph coloring is an NP-complete problem[Gar79]. Particular instances of the problem that can besolved in polynomial time are listed in [Gar79]. For instance,graphs with maximum vertex degree less than four, and bi-partite graphs can be colored in polynomial time.Due to its applicability, a number of exact and heuristicalgorithms for graph coloring has been developed to date.For brevity and due to limited source code availability, in

this paper, we constrain our research to a few of them. Thesimplest constructive algorithm for graph coloring is the "se-quential" coloring algorithm (SEQ). SEQ sequentially tra-verses and colors vertices with the lowest index not used bythe already colored neighboring vertices. DSATUR [Bre79]colors the next vertex with a color C selected depending onthe number of neighbor vertices already connected to nodescolored with C (saturation degree) (Figure 2). RLF [Lei79]colors the vertices sequentially one color class at a time.Vertices colored with one color represent an independentsubset (IS) of the graph. The algorithm tries to color witheach color maximum number of vertices. Since the problemof �nding the maximum IS is intractable [Gar79], a heuristicis employed to select a vertex to join the current IS as theone with the largest number of neighbors already connectedto that IS. An example how RLF colors graphs is presentedin Figure 3. Node 6 is randomly selected as the �rst nodein the �rst IS. Two nodes (2,4) have maximum number ofneighbors which are also neighbors to the current IS. Thenode with the maximum degree is chosen (4). Node 2 is theremaining vertex that can join the �rst IS. The second ISconsists of randomly selected node 1 and the only remain-ing candidate to join the second IS, node 5. Finally, node 3represents the last IS.
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successive colorings by random moves. The most commonsearch techniques are simulated annealing [Mor86, Joh91,Mor94] and tabu search [dWe85, Fle96]. In our experi-ments, we will constrain the pool of algorithms A to a greedy,DSATUR, MAXIS (RLF based), backtrack DSATUR, iter-ated greedy, and tabu search (descriptions and source codeat [Cul99]).A succesful forensic technique should be able to, givena colored graph, distinguish whether a particular algorithmhas been used to obtain the solution. The key to the e�-ciency of the forensic method is the selection of propertiesused to quantify algorithm-solution correlation. We proposea list of properties that aim at analyzing the structure of thesolution:[�1] Color class size. Histogram of IS cardinalities isused to �lter greedy algorithms that focus on color-ing graphs constructively (e.g. RLF-like algorithms).Such algorithms tend to create large initial indepen-dent sets at the beginning of their coloring process.[�2] Number of edges in large independent sets. Thisproperty is used to aid the accuracy of �1 by excludingeasy-to-�nd large independent sets from considerationin the analysis.[�3] Number of edges that can switch color classes.This criteria analyzes the quality of the coloring. Goodcoloring result will have fewer nodes that are able toswitch color classes. It also characterizes the greedi-ness of an algorithm because greedy algorithms com-monly create at the end of their coloring process manycolor classes that can absorb large portion of the re-maining graph.[�4] Color saturation in neighborhoods. This prop-erty assumes creation of a histogram that counts foreach vertex the number of adjacent nodes colored withone color. Greedy algorithms and algorithms that tendto sequentially traverse and color vertices are morelikely to have node neighborhoods dominated by fewercolors.[�5] Sum of degrees of nodes included in the largest(smallest) color classes. This property aims atidentifying algorithms that perform peephole optimiza-tions, since they are not likely to create color classeswith high-degree vertices.[�6] Sum of degrees of nodes adjacent to the ver-tices included in the largest (smallest) colorclasses. The analysis goal of this property is simi-lar to �5 with the exception that it focuses on select-ing algorithms that perform neighborhood lookaheadtechniques [Kir98gc].[�7] Percent of maximal independent subsets. Thisproperty can be highly e�ective in distinguishing algo-rithms that color graphs by iterative color class selec-tion (RLF). Supplemented with property �3, it aimsat detecting �ne nuances among similar RLF-like al-gorithms.The itemized properties can be e�ective only on largeinstances where the standard deviation of histogram valuesis relatively small. Using standard statistical approaches[DeG89], the function of standard deviation for each his-togram can be used to determine the standard error incor-porated in the reached conclusion.Although instances with small cardinalities cannot bea target of forensic methods, we use a graph instance in

Figure 4 to illustrate how two di�erent graph coloring al-gorithms tend to have solutions characterized with di�erentproperties. The applied algorithms are DSATUR and RLF(described earlier in the section). Speci�ed algorithms colorthe graph constructively in the order denoted in the �g-ure. If property �1 is considered, the solution created usingDSATUR has a histogram �DSATUR�1 = f12; 23; 04g, wherehistogram value xy denotes x sets of color classes with car-dinality y. Similarly, the solution created using RLF resultsin �RLF�1 = f22; 03; 14g. Commonly, extreme values pointto the optimization goal of the algorithm or characteristicstructure property of its solutions. In this case, RLF hasfound a maximum independent set of cardinality y = 4, aconsequence of algorithm's strategy to search in a greedyfashion for maximal ISs.
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DSATUR generated solution RLF generated solutionFigure 4: Example of two di�erent graph coloring solutionsobtained by two algorithms DSATUR and RLF. The indexof each vertex speci�es the order in which it is colored ac-cording to a particular algorithm.5.2 Boolean Satis�abilityWe illustrate the key ideas of watermarking-based intellec-tual property protection techniques using the SAT prob-lem. The SAT problem can be de�ned in the following way[Gar79]:Problem: SATISFIABILITY (SAT)Instance: A set of variables V and a collection C of clausesover V .Question: Is there a truth assignment for V that satis�es allthe clauses in C?For instance, V = fv1; v2g and C = ffv1; v2g; fv01g; fv01; v02ggis an instance of SAT for which the answer is positive. Asatisfying truth assignment is t(v1) = F and t(v2) = T . Onthe other hand, if we have collection C0 = ffv01; v02g; fv1ggthere is no satisfying solution.Boolean satis�ability is an NP-complete problem [Gar79].It has been proven that every other problem in NP can bepolynomially reduced to satis�ability [Coo71, Kar72]. SAThas an exceptionally wide application range. Many problemsin CAD are often modeled as SAT instances. For exam-ple, SAT techniques have been used in testing [Sil97, Ste96,Cha93, Kon93], logic synthesis, and physical design [Dev89].There are at least three broad classes of solution strategiesfor the SAT problem. The �rst class of techniques are basedon probabilistic search [Gu99, Sil99, Sel95, Dav60], the sec-ond are approximation techniques based on rounding thesolution to a nonlinear program relaxation [Goe95], and thethird is a great variety of BDD-based techniques [Bry95].For brevity and due to limited source code availability, wedemonstrate our forensic engineering technology on the fol-lowing SAT algorithms.� GSAT identi�es for each variable v the di�erence DIFFbetween the number of clauses currently unsatis�ed



that would become satis�ed if the truth value of v werereversed and the number of clauses currently satis�edthat would become unsatis�ed if the truth value ofv were 
ipped [Sel92, Sel93, Sel93a]. The algorithmpseudo-randomly 
ips assignments of variables withthe greatest DIFF.� WalkSAT Selects with probability p a variable oc-curring in some unsatis�ed clause and 
ips its truthassignment. Conversely, with probability 1 � p, thealgorithm performs a greedy heuristic such as GSAT[Sel93a].� NTAB performs a local search to determine weightsfor the clauses (intuitively giving higher weights cor-responds to clauses which are harder to satisfy). Theclause weights are then used to preferentially branchon variables that occur more often in clauses withhigher weights [Cra96].� Rel SAT rand represents an enhancement of GSATwith look-back techniques [Bay96].In order to correlate an SAT solution to its correspondingalgorithm, we have explored the following properties of thesolution structure.[�1] Percentage of non-important variables. A vari-able vi is non-important for a particular set of clausesC and satisfactory truth assignment t(V ) of all vari-ables in V , if both assignments t(vi) = T and t(vi) = Fresult in satis�ed C. For a given truth assignment t,we denote the subset of variables that can switch theirassignment without impact on the satis�ability of Cas V tNI . In the remaining set of properties only func-tionally signi�cant subset of variables V0 = V �V tNI isconsidered for further forensic analysis.[�2] Clausal stability - percentage of variables thatcan switch their assignment such that K% ofclauses in C are still satis�ed. This property aimsat identifying constructive greedy algorithms, since theyassign values to variables such that as many as possibleclauses are covered with each variable selection.[�3] Ratio of true assigned variables vs. total num-ber of variables in a clause. Although this propertydepends by and large on the structure of the problem,in general, it aims at qualifying the e�ectiveness ofthe algorithm. Large values commonly indicate usageof algorithms that try to optimize the coverage usingeach variable.[�4] Ratio of coverage using positive and negativeappearance of a variable. While property �3 ana-lyzes the solution from a perspective of a single clause,this property analyzes the solution from a perspectiveof each variable. Each variable vi appears in pi clausesas positively and ni clauses as negatively inclined. Theproperty quanti�es the possibility that an algorithmassigns a truth value to t(vi) = pi � ni.[�5] The GSAT heuristic. For each variable v the dif-ference DIFF=a-b is computed, where a is the num-ber of clauses currently unsatis�ed that would becomesatis�ed if the truth value of v were reversed, and bis the number of clauses currently satis�ed that wouldbecome unsatis�ed if the truth value of v were 
ipped.As in the case of graph coloring, the listed propertiesdemonstrate signi�cant statistical proof only for large prob-lem instances. Instances should be large enough to result in

low standard deviation of collected statistical data. Stan-dard deviation impacts the decision making process accord-ing to the Central Limit Theorem [DeG89].6 Forensic Engineering: Algorithm Clustering and Deci-sion MakingOnce statistical data is collected, algorithms in the initialpool are partitioned into clusters. The goal of partitioningis to join strategically similar algorithms (e.g. with similarproperties) in a single cluster. This procedure is presentedformally using the pseudo-code in Figure 5.The clustering process is initiated by setting the startingset of clusters to empty C = ;. In order to associate analgorithm Ax 2 A with the original solution SP , the set ofalgorithms is clustered according to the properties of SP .The value !SPk for each property �k of SP is then comparedto the collected histograms (�ik, �jk) of each pair of consid-ered algorithms Ai and Aj . Two algorithms Ai; Aj remainin the same cluster, if the likelihood zAi;Aj ;!SPK that theirproperties are not correlated is greater than some prede-termined bound � � 1 (K is the index of the property �K ,which induces extreme anti-correspondence between the twoalgorithms).zAi;Aj ;!SPK = maxj�jk=1 likelihood(�ik=!SPk )likelihood(�mk =!SPk )+likelihood(�mk =!SPk )The function that computes the mutual correlation oftwo algorithms takes into account the fact that two proper-ties can be mutually dependent. Algorithm Ai is added toa cluster Ck if its correlation with all algorithms in Ck isgreater than some predetermined bound � � 1. If Ai cannotbe highly correlated with any algorithm from all existingclusters in C then a new cluster CjCj+1 is created with Aias its only member and added to C. If there exists a clusterCk for which Ai is highly correlated with a subset CHk ofalgorithms within Ck, then Ck is partitioned into two newclusters CHk [ Ai and Ck � CHk . Finally, algorithm Ai isremoved from the list of unprocessed algorithms A. Thesesteps are iteratively repeated until all algorithms are pro-cessed. Given A.C = ;.For each Ai 2 AFor each Ck 2 Cadd = true; none = trueFor each Aj 2 CkIf zAi;Aj;!SPK � �.Then add = false Else none = falseEnd ForIf add Then merge Ai with CkElse create new cluster CjCj+1 withAi as its only element.If none Then create two new clustersCHk [Ai and Ck � CHk where CHk 2 Ckis a subset of algorithms highly correlated with Ai.End ForEnd ForFigure 5: Pseudo-code for the algorithm clustering proce-dure.Obviously, according to this procedure, an algorithm Aican be correlated with two di�erent algorithms Aj , Ak thatare not mutually correlated (as presented in Figure 6). Forinstance, this situation can occur when an algorithm Ai isa blend of two di�erent heuristics (Aj ; Ak) and therefore itsproperties can be statistically similar to the properties ofAj ; Ak. In such cases, exploration of di�erent properties ormore expensive and complex structural analysis of algorithmimplementations is the only solution to detecting copyrightinfringement.



Once the algorithms are clustered, the decision makingprocess is straightforward.� If plainti�'s algorithm Ax is clustered jointly with thedefendant's algorithm Ay,� and Ay is not clustered with any other algorithm fromA which has been previously determined as strategi-cally di�erent,� then substantial similarity between the two algorithmsis positively detected at a degree quanti�ed using theparameter zAx;Ay ;!SPK .The court may adjoin to the experiment several slightlymodi�ed replicas of Ax as well as a number of strategicallydi�erent algorithms from Ax in order to validate that thevalue of zAx;Ay ;!SPk points to the correct conclusion.
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-1Figure 6: Two di�erent examples of clustering three dis-tinct algorithms. The �rst clustering (�gure on the left)recognizes substantial similarity between algorithms A1 andA3 and substantial dissimilarity of A2 with respect to A1and A3. Accordingly, in the second clustering (�gure onthe right) the algorithm A3 is recognized as similar to bothalgorithms A1 and A2, which were found to be dissimilar.7 Experimental Results (Figure 7)In order to demonstrate the e�ectiveness of the proposedforensic methodologies, we have conducted a set of experi-ments on both abstract and real-life problem instances. Inthis section, we present the obtained results for a large num-ber of graph coloring and SAT instances. The collected datais partially presented in Figure 7. It is important to stress,that for the sake of external similarity among algorithms,we have adjusted the run-times of all algorithms such thattheir solutions are of approximately equal quality.We have focused our forensic exploration of graph color-ing solutions on two sets of instances: random (1000 nodesand 0.5 edge existence probability [Joh91]) and register allo-cation graphs. The last �ve sub�gures in Figure 7 depict thehistograms of property value distribution for the followingpairs of algorithms and properties: DSATUR with back-tracking vs. maxis and �3, DSATUR with backtracking vs.tabu search and �7, iterative greedy vs. maxis and �1 and�4, and maxis vs. tabu and �1 respectively.Each of the diagrams can be used to associate a particu-lar solution with one of the two algorithms A1 and A2 with1% accuracy (100 instances attempted for statistics collec-tion). For a given property value �i = x (X-dimension), atest instance can be associated to algorithm A1 with like-lihood equal to the ratio of the Y-dimensions of the his-togram for A1(x)A2(x) . For the complete set of instances andalgorithms that we have explored, as it can be observedfrom the diagrams, on the average, we have succeeded to as-sociate 90% of solution instances with their correspondingalgorithms with probability greater than 0.95. According tothe Central Limit Theorem [DeG89] in one half of the cases,we have achieved association likelihood better than 1�10�6.The forensic analysis techniques, that we have developedfor solutions to SAT instances, have been tested using a real-life (circuit testing) and an abstract benchmark set of in-stances adopted from [Kam93, Tsu93]. Parts of the collected

statistics are presented in the �rst ten sub�gures in Figure 7.The sub�gures represent the following comparisons: �1 andNTAB, Rel SAT, and WalkSAT and then zoomed version ofthe same property with only Rel SAT, and WalkSAT (fortwo di�erent sets of instances - total: �rst four sub�gures),�2 for NTAB, Rel SAT, and WalkSAT, and �3 for NTAB,Rel SAT, and WalkSAT respectively.The diagrams clearly indicate that solutions provided byNTAB can be easily distinguished from solutions providedby the other two algorithms using any of the three proper-ties. However, solutions provided by Rel SAT, and Walk-SAT appear to be similar in structure (which is expectedbecause they both use GSAT as the heuristic guidance fortheir propositional search). We have succeeded to di�eren-tiate their solutions on per instance basis. For example, inthe second sub�gure it can be noticed that solutions pro-vided by Rel SAT have much wider range for �1 and there-fore, according to the second sub�gure, approximately 50%of its solutions can be easily distinguished from WalkSAT'ssolutions with high probability. Signi�cantly better resultswere obtained using another set of structurally di�erent in-stances (zoomed comparison presented in the fourth sub�g-ure), where among 100 solution instances no overlap in thevalue of property �1 was detected for Rel SAT, and Walk-SAT.8 ConclusionWith the emergence of the Internet, intellectual propertyhas become accessible and easily transferable. The improve-ments in product delivery and maintenance have a negativeside-e�ect: copyright infringement has become one of themost commonly feared obstacles to IP e-commerce. We haveproposed a forensic engineering technique that addresses thegeneric copyright infringement scenario. Given a solutionSP to a particular optimization problem instance P and a�nite set of algorithms A applicable to P , the goal is to iden-tify with certain degree of con�dence the algorithm Ai whichhas been applied to P in order to obtain SP . The applica-tion of the forensic analysis principles to graph coloring andboolean satis�ability has demonstrated that solutions pro-duced by strategically di�erent algorithms can be associatedwith their corresponding algorithms with high accuracy.9 References[Afc99] Advanced Fibre Communications Inc. Private communication,1999.[Arm99] http://www.arm.com[Bak98] B.S. Baker and U. Manber. Deducing similarities in Java sourcesfrom bytecodes. USENIX Technical Conference, pp.179-90,1998.[Bay96] R.J. Bayardo and R. Schrag. Using CSP look-back techniquesto solve exceptionally hard SAT instances. Principles and Prac-tice of Constraint Programming, pp.46-60, 1996.[Beh98] B.C. Behrens and R.R. Levary. Practical legal aspects of soft-ware reverse engineering. Communications of the ACM, vol.41,(no.2), pp.27-9, 1998.[Bre79] D. Brelaz. New methods to color the vertices of a graph. Com-munications of the ACM, vol.22, (no.4), pp.251-6, 1979.[Bri95] S. Brin, J. Davis, and H. Garcia-Molina. Copy detection mech-anisms for digital documents. SIGMOD Record, vol.24, (no.2),pp.398-409, 1995.[Bry95] R.E. Bryant. Binary decision diagrams and beyond: enablingtechnologies for formal veri�cation. International Conferenceon Computer-Aided Design, pp. 236-243, 1995.[Cha93] S.T. Chakradhar, V.D. Agrawal, and S.G.Rothweiler. A tran-sitive closure algorithm for test generation. Transactions onComputer-Aided Design of Integrated Circuits and Systems,vol.12, (no.7), pp.1015-28, 1993.
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Figure 7: Experimental results: each sub�gure represents the following comparison (from upper left to bottom right): (1,3) �1and NTAB, Rel SAT, and WalkSAT and (2,4) then zoomed version of the same property with only Rel SAT, and WalkSAT(for two di�erent sets of instances - total: �rst four sub�gures), (5,6,7) �2 for NTAB, Rel SAT, and WalkSAT, and (8,9,10) �3for NTAB, Rel SAT, and WalkSAT respectively. The last �ve sub�gures depict the histograms of property value distributionfor the following pairs of algorithms and properties: (11) DSATUR with backtracking vs. maxis and �3, (12) DSATUR withbacktracking vs. tabu search and �7, (13,14) iterative greedy vs. maxis and �1 and �4, and (15) maxis vs. tabu and �1.


