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Computational Forensic Techniques for Intellectual
Property Protection

Jennifer L. Wong, Darko Kirovski, and Miodrag Potkonjak

Abstract—Computational forensic engineering (CFE) aims to identify
the entity that created a particular intellectual property (IP). Specifically,
our goal is to identify the synthesis tool or compiler which was used to pro-
duce a specific design or program. Rather than relying on watermarking
content or designs, the generic CFE methodology analyzes the statistics of
certain features of a given IP and quantizes the likelihood that a well known
source has created it. In this paper, we describe the generic methodology of
CFE and present a set of techniques that, given a set of compilation tools,
identify the one used to generate a particular hardware/software design.
The generic CFE approach has four phases: 1) feature and statistics data
collection; 2) feature extraction; 3) entity clustering; and 4) validation. In
addition to IP protection, the developed CFE paradigm can have other po-
tential applications: optimization algorithm selection and tuning, bench-
mark selection, and source-verification for mobile code.

Index Terms—Boolean functions, design automation, intellectual prop-
erty protection.

1. INTRODUCTION

The rapid expansion of the Internet, and e-commerce, in particular,
has impacted the business model of almost all semiconductor and soft-
ware companies that rely on intellectual property (IP) as their main
source of revenues. In such a competitive environment, IP protection
(IPP) is a must. Watermarking is currently the most popular form of IPP.
To enforce copyrights, watermark protocols rely on detecting a hidden
mark specific to the copyright owner. However, watermarking has a
number of limitations, in particular when it is applied to hardware and
software protection: 1) impact on system performance; 2) robustness
of watermark detection with respect to design modularity; and 3) the
threat of reverse engineering.

Computational forensic engineering (CFE) copes with these prob-
lems by trying to identify the tool used to generate a particular IP. In
this paper, we present a set of techniques for CFE of design algorithms.
The developed CFE technique identifies a tool from a pool of synthesis
tools that has been used to generate a particular optimized design. More
formally, given a solution Sp to a particular optimization problem in-
stance I and a finite set of algorithms A applicable to P, the goal is to
identify with a certain degree of confidence that algorithm A; has been
applied to P in order to obtain solution Sp.

In such a scenario, forensic analysis is conducted based on the likeli-
hood that a design solution, obtained by a particular algorithm, results
in characteristic values for a predetermined set of solution properties.
Solution analysis is performed in four steps: 1) feature and statistics
data collection; 2) feature extraction; 3) clustering of heuristic proper-
ties for each analyzed tool; and 4) decision validation.

In order to demonstrate the generic forensic-analysis platform,
we propose a set of techniques for forensic analysis of solution
instances for a set of problems commonly encountered in very large
scale integrated computer-aided design: graph coloring and Boolean
satisfiability.
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II. RELATED WORK

We trace the related work along the following lines: forensic engi-
neering in general, copyright infringement policies and law practice,
forensic analysis of software and documents, stenography, and code
obfuscation. Forensic analysis is a key methodology in many scientific
and art fields, such as anthropology, science, literature, and visual art.
For example, forensics is most commonly used in DNA identification.
Rudin et al. present the details on DNA profiling and forensic DNA
analysis [1].

Software copyright enforcement has attracted a great deal of atten-
tion among law professionals. McGahn gives a good survey on the
state-of-the-art methods used in court for detection of software copy-
right infringement [2]. In the same journal paper, McGahn introduces
a new analytical method based on Learned Hand’s abstractions test,
which allows courts to base their decisions on well established and fa-
miliar principles of copyright law. Grover presents the details behind
an example lawsuit case [3] where Engineering Dynamics Inc., is the
plaintiff issuing a judgment of copyright infringement against Struc-
tural Software Inc., a competitor who copied many of the input and
output formats of Engineering Dynamics Inc.

Forensic engineering has received little attention among the com-
puter science and engineering-research community. To the best knowl-
edge of the authors, forensic techniques have been explored for detec-
tion of authentic Java byte codes [4] and to perform identity or partial
copy detection for digital libraries [5]. Recently, steganography and
code obfuscation techniques have been endorsed as viable strategies
for content and design protection. Protocols for watermarking active
IP have been developed at the physical layout [6], partitioning [7], [8],
and behavioral specification [9] level. In the software domain, a good
survey of techniques for copyright protection of programs has been pre-
sented by Collberg and Thomborson [10]. They have also developed a
code-obfuscation method which performs code transformations such
that a program is converted into an equivalent program, which is more
difficult to reverse engineer.

Integrated circuit-reverse engineering techniques and the developed
forensic engineering approach have complementary roles in forming
an overall intellectual property protection approach. The reverse
engineering techniques extract information about the specification
of the design and forensic engineering establishes proof of authorship
using this information.

The key difference between the research presented in this paper and
all published forensic-engineering research is that our goal is not to
identify a copy of a program, text, or design among a large set of entities
but to establish the relationship between the design and tool that is used
to produce the artifact. Therefore, the previous research is essentially
focused on rapid search for an entity with particular properties in a large
database. Our goal, on the other hand, is to find the likelihood that a
specific program is used to produce a particular solution and therefore
the design of interest.

III. FORENSIC ENGINEERING: GENERIC APPROACH

Forensic engineering aims at providing both qualitative and quanti-
tative evidence of substantial similarity between the design tool and a
solution. The generic problem that a forensic-engineering methodology
tries to resolve can be formally defined as follows. Given a solution Sp
to a particular optimization problem instance P and a finite set of algo-
rithms A applicable to P, the goal is to identify with a certain degree
of confidence which algorithm A; has been applied to P in order to ob-
tain solution Sr. An additional restriction is that the algorithms (their
software or hardware implementations) have to be analyzed as black
boxes. This requirement is based on two facts: 1) similar algorithms
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can have different executables and 2) parties involved in the ruling are
not eager to reveal their IP, even in court. Another important assump-
tion is that in order for a distinction to exist between the solutions from
different algorithms, the problem instance for which a solution is found
must have a large number of solutions of equal or similar quality. Note
that this is almost always the case in real life. The global flow of the
generic forensic engineering approach, presented in Fig. 1, consists of
four fully modular phases: 1) feature and statistics collection; 2) fea-
ture extraction; 3) algorithm clustering; and 4) validation.

The first phase, feature and statistics collection, can be divided into
two subphases. The first subphase is to identify and analyze relevant
functional and structural properties of the problem solutions. The prop-
erties are obtained by analyzing solutions produced by various algo-
rithms and identifying common features in the solutions produced by a
particular algorithm. Alternatively, properties can be developed using
general intuition presented in Section IV-C. For example, the graph col-
oring RLF algorithm [11], which colors the graph by selecting large in-
dependent sets of nodes, is likely to have solutions with a large number
of nodes in the graph to be colored with the same color, as well as some
colors which only color one or two nodes.

The next step is to quantify each property by abstracting them to
their numerical values. The goal is to eventually position the solutions
for each algorithm into n-dimensional space. The dimensions are quan-
tified properties which characterize solutions created by all considered
algorithms.

Then, we identify the relevant properties, and discard the ones for
which all considered algorithms display equivalent statistics. A prop-
erty is considered as viable only if at least two algorithms have statis-
tically distinct probability distribution functions (pdfs) under it.

In the fourth step, we conduct principle component analysis [12]. We
attempt to eliminate any subset of features which will provide the same
information about the algorithms. The goal is to find the smallest set
of features needed to fully classify the algorithms in order to improve
efficiency and more importantly, statistical confidence.

The second subphase is instance preprocessing. We make order and
lexical perturbations to the format of the instance. This step is per-

formed to eliminate any dependencies an algorithm may have on the
naming or form of the input, such as variable labels.

In the feature extraction phase, we begin by running all the perturbed
instances through each of the algorithms, and gather all the solutions.
We apply fast algorithms for extraction of the selected properties from
each of the solutions.

In the third phase, algorithm clustering, we begin by placing the rel-
evant properties into n-dimensional space, and cluster the results. This
in itself is a NP-complete problem. The goal is to define areas in the
n-dimensional space which distinguishes each of the algorithms with
little or no error. If the selected properties/features which specifically
capture each of the algorithms have been used, the space will be divided
into single subspaces for each algorithm. However, it is possible that
multiple subspaces are found for each algorithm as the result of prop-
erties which are not relevant, or unique, for each and every algorithm.

The final step, validation, is the application of nonparametric
resubstitution software [13] to establish the validity of our ability
to distinguish distinct algorithms. Specifically, we run five hundred
resubstituitions of 80% of the sample points. When a new solution
is available, the generic flow and tools fully and automatically
determine which algorithm was used. The details of this phase and
the algorithm clustering phase are presented in Section V.

IV. FORENSIC ENGINEERING: FEATURE AND STATISTICS COLLECTION

In this section, we first introduce the graph coloring and Boolean-
satisfiability problems. For each of the problems, we illustrate the goals
of the feature and statistics collection phase. Additionally, at the end of
the section, we introduce a generic notion for solutions properties, and
illustrate how these generic notions can be used to formulate solution
properties for other optimization problems, such as the scheduling and
graph-partitioning problems.

A. Graph Coloring

In this section, we demonstrate the developed feature and statistics
collection phase of the forensic engineering methodology using the
graph K -colorability problem. We first define the problem and then
introduce properties for identifying solutions of graph coloring algo-
rithms. The graph-coloring problem is a well known optimization task
that can be defined in the following way:

PROBLEM: GRAPH K -COLORABILITY

INSTANCE: Graph G(V, E), positive integer K < |V|.
QUESTION: Is G K -colorable, i.e., does there exist a function
f:V — 1,2.3,., K such that f(u) # f(v) whenever u,
v € E?

Graph coloring is an NP-complete problem [14]. Due to its applica-
bility to a wide range of areas, a number of exact and heuristic algo-
rithms for graph coloring have been developed. For the sake of brevity
and diversity, in this paper, we focus our attention on a set of algorithms
that consists of sequential greedy (SEQ) [15], backtrack DSATUR [16],
MAXIS (RLF-based) [17], and Tabu search [18]. Detailed descriptions
of the algorithms can be found in [19] and [20].

A successful forensic technique should be able to distinguish, given
a colored graph, whether a particular algorithm has been used to obtain
the coloring solution. The key to the efficiency of the forensic method
is the selection of the properties used to quantify algorithm-solution
correlation. We have developed the following properties that aim at
analyzing the structure of the solution for the GC problem.

[m1] Color class size. A histogram of independent set (IS) cardi-
nalities is used to filter greedy algorithms that focus on coloring
graphs constructively (e.g., RLF-based algorithms). Such algo-
rithms tend to create large initial independent sets at the beginning
of their coloring process. To quantify this property, we compare
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the cardinality of the largest IS normalized against the size of the
average IS in the solution. Alternatively, as a slight generalization,
in order to achieve statistical robustness, we use 10% of the largest
sets instead of only the largest. Interestingly, on real-life applica-
tions the first metric is very effective, and on random graphs the
second is strong indicator of the coloring algorithm used.

[72] Number of edges incident to large independent sets. This
property is used to enhance the accuracy of m; by excluding
easy-to-find large independent sets from consideration in the
analysis. Note that large MISs are not necessarily good candi-
dates to be colored with a single color, in particular when many
constituent nodes have low degrees. We use k% of the largest
independent sets and measure the percentage of edges leaving
the IS.

[73] Number of vertices that can switch color classes. This cri-
teria, in a sense, analyzes the quality of the coloring. A good (in
a sense of being close to a deep local minima) coloring solution
will have more nodes that are able to switch color classes. It also
characterizes the greediness of an algorithm because greedy algo-
rithms commonly create many color classes that can absorb large
portion of the remaining graph at the end of their coloring process.
Note that probabilistic algorithms will often create solution that
have low value for this property because they will terminate their
search as soon as a solution with a given number of colors is
found. The percentage of nodes which can switch colors versus
the number of nodes is used as a quantitative measure.

[74] Color saturation in neighborhoods. This property is cal-
culated using a histogram that counts for each vertex the number
of adjacent nodes colored with one color. Greedy algorithms and
algorithms that tend to sequentially traverse and color vertices
are more likely to have node neighborhoods dominated by fewer
colors. We want to know the number of colors in which the neigh-
bors of any node are colored. The Ginni coefficient of the his-
togram is used as well as the average value to quantify this prop-
erty to a single number.

[75] Sum of degrees of nodes included in the smallest color
classes. The analysis goal of this property is similar to m4 with
the exception that it focuses on identifying algorithms that per-
form neighborhood look ahead techniques [21]. The values are
normalized against the average value.

[w6 ] Percent of maximal independent subsets. This property can
be highly effective in distinguishing algorithms that color graphs
by iterative color class selection (RLF). Supplemented with prop-
erty w3, it aims at detecting fine nuances among similar RLF-like
algorithms.

The itemized properties are effective only on relatively large in-
stances, where the standard deviation of the histogram values is rel-
atively small. Using standard statistical approaches [22], the function
of standard deviation for each histogram can be used to estimate the
standard error in the reached conclusion.

Although instances with small cardinalities cannot be a target of
forensic methods, for the sake of simplicity and clarity, we use the
graph instance in Fig. 2 to illustrate how two different graph-coloring
algorithms tend to have solutions characterized with different proper-
ties. The applied algorithms are DSATUR and MAXIS. Specified algo-
rithms color the graph constructively in the order denoted in the figure.
If property m; is considered, the solution created using DSATUR has
a histogram \P7*"YR = {15, 25,04}, where histogram value x,, de-
notes x sets of color classes with cardinality y. Similarly, the solution
created using MAXIS results in xy,**'® = {2,03, 14}. Commonly,
extreme values point to the optimization goal of the algorithm or char-
acteristic structure property of its solutions. In this case, MAXIS has
found a maximum independent set of cardinality y = 4, a consequence
of the algorithm’s strategy to search in a greedy fashion for maximal
ISs.

DSATUR generated solution

RLF generated solution

Fig. 2. Example of two different graph coloring solutions obtained by two
algorithms DSATUR and MAXIS.

MAXIS Tabu Greedy
L e oz IT; Il,, |DSATUR
IT,, I, MAXIS
I1,, Tabu

Fig. 3. Property distinction between algorithms.

We can distinguish each of the algorithms from each other using
properties m; — ms. We display the distinguishing properties in Fig. 3.
The distinction between DSATUR/Greedy is difficult because of the
similarities between how the algorithms color the vertices with the
lowest colors. However, in the majority of cases, properties w5 and
m should distinguish the algorithms. Also, the distinction between
DSATUR/MAXIS most often can be distinguished by properties 7
and 7¢, and in various cases by 72, 73, and 75.

B. Boolean Satisfiability

We also present the key ideas for applying the forensic engineering
methodology using the Boolean satisfiability (SAT) problem. The SAT
problem can be formally defined in the following way [14].

PROBLEM: BOOLEAN SATISFIABILITY (SAT)
INSTANCE: A set of variables V' and a collection C' of clauses
over V.

QUESTION: Is there a truth assignment for V' that satisfies all
the clauses in C'?

SAT was the first problem to be defined as NP-complete problem
[14]. It has been proven that every other problem in NP can be polyno-
mially reduced to the satisfiability problem [14]. SAT techniques have
been used in testing [23], [24], logic synthesis, and physical design
[25]. There are at least three broad classes of solution strategies for the
SAT problem. The first class of techniques are based on probabilistic
search [26], [27], the second are approximation techniques based on
rounding the solution to a nonlinear program relaxation [28], and the
third is a great variety of BDD-based techniques [29]. For the sake of
brevity, we demonstrate our forensic engineering technology on the fol-
lowing SAT algorithms: WalkSAT [30], NTAB [31], and Rel_Sat_Rand
[32] (more detailed descriptions can be found in [19]).

In order to correlate an SAT solution to its corresponding algorithm,
we have explored the following properties of the solution structure.

[71] Percentage of nonimportant variables. A variable v; is
nonimportant for a particular set of clauses C' and satisfactory
truth assignment ¢(V") of all variables in V', if both assignments
t(v;) = T and t(v;) = F result in satisfied C'. For a given truth
assignment ¢, we denote the subset of variables that can switch
their assignment without impacting the Satisfiability of C as V};;.
In the remaining set of properties, only functionally significant
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subset of variables V; = V — V¥, is considered for further
forensic analysis.
[w2] Clausal stability—percentage of variables that can switch
their assignment such that K% of clauses in C' are still satis-
fied. This property aims at identifying constructive greedy algo-
rithms, since they assign values to variables such that as many as
possible clauses are covered with each variable selection.
[73] Ratio of true assigned variables versus total number of
variables in a clause. Although this property depends by and
large on the structure of the problem, in general, it aims at quali-
fying the effectiveness of the algorithm. Large values commonly
indicate usage of algorithms that try to optimize the coverage
using each variable.
[74] Ratio of coverage using positive and negative appearances
of a variable. While property w3 analyzes the solution from
the perspective of a single clause, this property analyzes the
solution from the perspective of each variable. Each variable v;
appears in p, clauses as positively and n; clauses as negatively
inclined. The property quantifies the possibility that an algorithm
assigns a truth value to t(v;) = p; > n,.
[75] The GSAT heuristic. For each variable v the difference
DIFF = a — b is computed, where a is the number of clauses
currently unsatisfied that would become satisfied if the truth value
of v were reversed, and b is the number of clauses currently sat-
isfied that would become unsatisfied if the truth value of v were
flipped. This measure only applies to maximum SAT problems,
where the problem is to find the maximum number of clauses
which can be satisfied at once.

We present a brief analysis of the SAT algorithms and property 71
in order to illustrate how the SAT properties assist in the classification
of the algorithms in the statistical clustering phase.

For property 7, we are analyzing the percentage of variables which
can be assigned either True or False in the solution without making the
instance unsatisfiable. The WalkSAT algorithm builds a solution for a
random initial solution. When a solution is found, it is highly probable
that the solution is dependent on variables which would have been non-
important, because of the random initial assignment. Therefore, it is ex-
pected for WalkSAT to have a lower 7 value than the other algorithms
which build structured solutions. For example, NTAB constructively
builds its solution by building a search tree which branches on the vari-
ables which appear in clauses which are determined to be difficult to
satisfy. As a result, these variables are assigned early in the search tree.
When a solution is found, all the variables which were not branched on
in the search tree can be assigned either True or False. Therefore, it is
expected that the NTAB algorithm will have a large number of nonim-
portant variables.

C. Generic Property Development

Identification and the selection of solution properties is essential for
the effectiveness of any forensic engineering technique. While each
problem may require one or more unique properties, many of the prop-
erties can be applied to a wide set of problems. More importantly, there
is a systematic way to identify the corresponding features in different
problems that can be used to identify adequate properties. As a matter
of fact, it appears that a small number of features guide this task. Our
goal in this section is not to present an ultimate set of properties for all
possible problems, but more to provide intuition how one can define
relevant properties for a specific targeted problem. To make the dis-
cussion of the technique complete, we demonstrate its instantiation on
several canonical problems, such as scheduling and partitioning.

In order to be self-contained, we briefly introduce the scheduling and
partitioning problems. The scheduling problem is defined on a directed
graph where each vertex represents an operation and the edges indi-

cate the execution dependencies between the operations. The objective
is to minimize the amount and/or cost of functional units used, while
scheduling the graph in a given number of clock cycles and keeping all
the dependencies satisfied. The partitioning problem aims at dividing
all nodes of an undirected graph into % subsets, where the numbers of
nodes in each set are as nearly equal as possible and the number of
edges between nodes in different sets is minimized. One can identify
at least three types of properties.

[P ] Perturbation-based properties. These types of properties
aim to identify the structure of the solution by analyzing its be-
havior using local perturbations. The main focus is on perturbation
of a solution. The goal is to identify features of the neighborhood
of the generated solution for a variety of definitions of neighbor-
hood topology. Under the assumption that the problem instances
have many solutions with similar quality, these properties often
attempt to determine the strength of the solution with respect to
a particular criteria. For example, in the case of the SAT problem
the solution only needs to satisfy the each clause using a single
variable. If the variable assignment for the solution can handle
many changes, i.e., flips of variable assignments, we can assume
that the solution is resilient on changes and that some implicit ef-
fort was placed by the algorithm to produce the solution and to
achieve this property. Definition of perturbation-based properties
can be applied to instances in a variety of ways. For example, a
specific property of this type can focus on values while preserving
the solution or for a given distance from the solution.

Examples of this type of property for the SAT and GC prob-
lems are SAT 71, w2, and 75 and GC 73. Each of these properties
quantify the amount of flexibility in the solution. If we consider
the partitioning problem, an example of a perturbation property is
the number of pairs of nodes which can switch partitions without
reducing the quality of the solution. Properties such as the number
of operations which can change clock cycles (without violating
any constraints or a percentage of constraints) can be applied to
solutions of the scheduling problem.

[F2] Count. Alternatively, we can focus on the number of oc-
currences of specific feature in a solution. These properties often
correlate well with the tendencies of an algorithm when deciding
the assignment of the variables. As in the case with the perturba-
tion properties, one can select single entities, pairs, and subsets
as the scope of consideration. Additionally, this class of proper-
ties can be augmented with a variety of statistical measure mech-
anisms such as average, variance, mean, minimum, or maximum.
GC properties 7; and 75 along with SAT 3 are examples of count
properties. Measurements concerning both the variables and the
constraints of the problem solutions are illustrated. For the sched-
uling problem, the average or percentage of operations per cycle
can be considered. One could determine the number of saturated
clock cycles or the number of operations on the critical path in
clock cycles with small operation counts.

[P3] Tendency to follow natural algorithm constructs. Natural
algorithm constructs, such as greedy or maximally constrained
minimally constraining heuristic (MC/MC), are often used as the
underlying constructs for combinatorial optimization algorithms.
This class of properties has as the goal to identify to what level
these constructs were employed by a specific algorithm. For ex-
ample, in GC property 72, the number of edges incident to large
independent sets, tries to quantify the level of greedy optimiza-
tion principle used by the algorithm to select the largest number
of nodes possible which can be colored with a single color. In
terms of MC/MC constructs, the GC property m4 tries to identify
algorithms which focus on coloring the neighbors of a node with
the least constrained color as possible, implying the same color.
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Variables in the SAT problem can have a natural tendency, in
the sense that if the variable appears in constraints more often
complemented than uncomplemented, a greedy algorithm would
prefer to assign this variable to zero satisfying more constraints.
The percentage of variables which follow this bias is measured
using property 4.

The MC/MC constructs try to identify if the algorithm groups
together all the highly constrained (and often more difficult) parts
of the problem or are they spread throughout the solution. For
example, in the scheduling problem, one can consider the fanin
and fanout of the nodes in a single cycle. If the transitive fanin and
fanout counts of the cycles are either very high or very low, we can
assume that the algorithm groups together the most constraining
operations into a single cycle. On the other hand, if the counts per
clock cycle are often focused around a single value the algorithm
aims at balancing the two. In the case of the partitioning problem,
the number of nodes with high degrees in each partition can be
considered.

V. PROPERTY SELECTION AND ALGORITHM CLUSTERING

In this section, we present our approach to algorithm classification.
The first step is to analyze the property data and identify relevant prop-
erties of the solutions. Once the properties are selected, we conduct
algorithm clustering. The algorithm clustering task has two objectives:
1) to identify algorithms that are structurally similar, in the sense that
their solutions have the same crucial characteristics indicating that they
are using essentially identical mechanisms for optimization and 2) to
provide information required to determine which algorithm is used to
produce a particular solution on a particular instance.

A property used for forensic engineering can be irrelevant for one
of the following two reasons. The first is that it does not provide res-
olution capabilities, i.e., it does not facilitate differentiation between
the algorithms. The second is that a property should not be considered
if it is correlated with another property that provides better resolution
capability.

The relevance of an individual property is evaluated in the following
way. We use 100 different instances of the problem and at least three
different algorithms for this step. We denote the solution of each
instance for a given algorithm with a single letter that is unique for
that algorithm. Next, we establish an ordering among the obtained
values for all instances by sorting them in nondecreasing order. We
then identify the leftmost and rightmost instance for each algorithm.
The final step is to calculate how many letters that are not identical
to the boundary letters are contained in each region that correspond
to a given algorithm. We weight each letter that is not identical
to the boundary letter by its distance to the closest boundary. If
that number is higher than a user defined value, the property is
eliminated from further consideration.

The information obtained in the above procedure is also used to es-
tablish the level of correlation for two properties. Specifically, we cal-
culate the correlation level for two properties as the extent to which the
regions labeled by identical letter are in the same range. The property
that has better resolution capability is retained, if the correlation level
is above a user specified threshold.

The second step is algorithm clustering. Once statistical data is col-
lected, algorithms in the initial pool are partitioned into clusters. The
goal of this partitioning is to join strategically similar algorithms (e.g.,
with similar properties) into a single cluster. We present this procedure
formally using the pseudocode in Fig. 4.

The clustering process is initiated by setting the starting set of clus-
ters to empty C' = ). In order to associate an algorithm 4, € A with

Given A, C =10
For each A; € A
For each C € C
Similar = 0
For each A € O,
If Z(A,L', A]) S €
Then Similar = Similar UA;

End For
/* A; is similar to all A € C}, */
If |Similar| == |Cj| Then merge A; with C},

/* A; is not similar to any A € C}, */
Else If |Similar| ==
Then create new cluster C'y,; with A; as its only element.
/* Aj; is similar to a subset of A € C, */
Else create two new clusters Similar U A; and C), — Similar
End For
End For

Fig. 4. Pseudocode for the algorithm clustering procedure.

Fig. 5. Two different examples of clustering three distinct algorithms. The
first clustering (figure on the left) recognizes substantial similarity between
algorithms A, and A; and substantial dissimilarity of A, with respect to A,
and Aj;. Accordingly, in the second clustering (figure on the right) the algorithm
A3 is recognized as similar to both algorithms A, and A,, which were found
to be dissimilar.

the original solution Sp, the set of algorithms is clustered according to
the properties of Sp. For each property 7 of Sp, we compute its fea-
ture quantifier 7 (Sp) — wf" and compare it to the collected pdfs of
corresponding features Y} of each considered algorithm A; € A. The
clustering procedure is performed in the following way: two algorithms
A;, A; remain in the same cluster, if the likelihood z(A;, A;) that their
properties are correlated is smaller than a predetermined bound € < 1

(A A= 17l 5 . min (PI‘ [Trk(Ai) — MJ}C] ,Pr [Tflc(Aj) - wi])
(A, - J)_H Pl‘[Tl'k(Avi)—>uJ;;~]—|—Pr[7rk(A].)_>wZ] .

k=1

The function that computes the mutual correlation of two algorithms
takes into account the fact that two properties can be mutually depen-
dent. Algorithm A; is added to a cluster CY if its correlation with all
algorithms in C}, is smaller than some predetermined bound ¢ < 1.
If A; cannot be highly correlated with any algorithm from all existing
clusters in C' then a new cluster C |4 is created with A; as its only
member and added to C'. If there exists a cluster C, for which A; is
highly correlated with a subset Cf of algorithms within C', then C}
is partitioned into two new clusters Cf' U A; and Cy — C{'. Finally,
algorithm A; is removed from the list of unprocessed algorithms A.
These steps are iteratively repeated until all algorithms are processed.

According to this procedure, an algorithm A; can be correlated
with two different algorithms A;, A, that are not mutually correlated
(as presented in Fig. 5). For instance, this situation can occur when
an algorithm A; is a blend of two different heuristics (A4, Ax) and,
therefore, its properties can be statistically similar to the properties
of both A;, Ax. In such cases, exploration of different properties or
more expensive and complex structural analysis of algorithm imple-
mentations is the only solution to detecting copyright infringement.
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Fig. 6. Property 7v; for SAT applied to NTAB, Rel_SAT, and WalkSAT.
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Finally, note that a natural way to define similarity between two al-
gorithms A and B in our forensic engineering framework is consider the
size of the overlap between their clusters in the property space. Specif-
ically, if we denote the size of cluster C' by S(C'), the similarity of two
algorithms with corresponding clusters A and B is (S(ANB))/(S(AU
B)). Furthermore, note that simultaneous analysis of all clusters yields
a statistical estimate of the likelihood that a specific solution is pro-
duced using the considered algorithm. Specifically, this estimate for an
algorithm A4 for the forensic decision model built considering algo-
rithms Ay, 7 = 1,...,n can be obtain using the following formula:

S(A1))/ (32 5(Ad).

VI. EXPERIMENTAL RESULTS

In order to demonstrate the effectiveness of the proposed forensic
methodologies, we have conducted a set of experiments on both
common benchmarks and real-life problem instances. In this section,
we present the obtained results for a large number of graph coloring
and SAT instances.

The forensic analysis techniques for classifying algorithms used for
creating solutions of SAT instances, has been tested using real-life and
abstract benchmark sets of instances adopted from [33] and [34]. Parts
of the collected statistics are presented in Fig. 6.

Fig. 6 shows a histogram of the property values for 7; for the NTAB,
Rel_SAT, and WalkSAT algorithms. The value of the property is repre-
sented on the x axis and the frequency of occurrence on the y axis. The
nonimportant variables property has multimodal distribution for the al-
gorithms. Fig. 6(b) shows an enlarged portion of distribution. We can
see that this property provides a clear distinction between the Rel_SAT
and NTAB, as well as the WalkSAT and NTAB algorithms.

For example, in the Fig. 6(b) it can be noticed that solutions gen-
erated by Rel_SAT have significantly wider range for m and, there-
fore, according to the histogram, approximately 50% of its solutions
can be easily distinguished from WalkSAT’s solutions with high con-
fidence. Significantly better results were obtained using another set of
structurally different instances, where among 100 solution instances
no overlap in the value of property w1 was detected for Rel_SAT, and
WalkSAT.

We have focused our forensic exploration of graph-coloring
solutions on two sets of instances: random (1000 nodes and uniform
0.5 edge existence probability) and register allocation graphs. The
graphs in Fig. 7 depict the histograms of property value distribution
for the following pairs of algorithms and properties: DSATUR with
backtracking versus maxis for w3, DSATUR with backtracking versus
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tabu search for 77, iterative greedy versus maxis for 7 and w4, and
maxis versus tabu for 7y .

In order to evaluate the effectiveness of the GC properties, we com-
pare the two histograms shown in the center row of the diagram. In
this cases, the maxis algorithm is compared with the iterative greedy
approach and tabu using the standard deviation of property ;. In both
graphs, the maxis algorithm (with identical property values) is shown
in white. From these two histograms we can conclude that if a given
solution has a my property value less than 1.8, the solution most likely
was not produced by the maxis algorithm. However, if this property has
value between 1.8 and 2.1, it is highly unlikely the solution is gener-
ated using the tabu algorithm. Therefore, by combining this property
with the other properties, we can classify the algorithms with higher
accuracy.

Each of the diagrams can be used to associate a particular solution
with one of the two algorithms A; or Ay with 1% accuracy (100 in-
stances attempted for statistics collection). For a given property value
w; g x,j = 1,2 (x axis), a test instance can be associated to algo-
rithm A 1 with likelihood equal to the ratio of the pdf values (y axis)
z(A1, Az). For the complete set of instances and algorithms that we
have explored, as it can be observed from the diagrams, on the av-
erage, we have succeeded to associate 99% of solution instances with
their corresponding algorithms with probability greater than 0.95. In
one half of the cases, we have achieved association likelihood better
than 1-107°.

Even better classification can be obtained using statistical method
discussed in Section V, from which we obtained Tables I and II. A thou-
sand test cases were classified using the developed forensic engineering
technique. The rows of the tables indicate the solver used to produce
the thousand test cases. The columns indicate the classification of the
solution using the forensic engineering technique. In all cases, more
than 99% of the solutions were classified according to their original
solvers with probability higher than 0.95. We see that the graph col-
oring algorithms differ in many of the features, which resulted in very
little overlap in the statistics. In the case of Boolean satisfiability, both
WalkSAT and Rel_SAT_rand are based on the GSAT algorithm which
accounts for the slightly higher misclassification rate between the two
algorithms.

VII. CONCLUSION

Copyright enforcement has become one of the major obstacles to in-
tellectual property (hardware and software) e-commerce. We propose
a forensic-engineering technique that addresses the generic copyright
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Fig. 7. Histograms of property value distribution for algorithm a (black) versus algorithm b (white) and properties: DSATUR with backtracking versus maxis
for 73, DSATUR with backtracking versus tabu search for 7, iterative greedy versus maxis for 7v; and 74, and maxis versus tabu for 7.

TABLE 1
EXPERIMENTAL RESULTS: GRAPH COLORING

GC Solvers [[ bktdsat | maxis | tabu [ itrgrdy

bkdsat 998 2 0 0
maxis 3 993 0 4
tabu 1 0 995 4

itrgrdy 1 2 0 997

enforcement scenario. Specifically, given a solution Sp to a particular
optimization problem instance P and a finite set of algorithms A4 ap-

TABLE 1I
EXPERIMENTAL RESULTS: BOOLEAN SATISFIABILITY

SAT Solvers || WalkSAT | RelSATR | NTAB

WalkSAT 992 5 3
RelSATR 6 990 4
NTAB 0 2 998

plicable to P, the goal is to identify with certain degree of confidence
the algorithm A; which has been applied to P in order to obtain Sp.
The application of the forensic analysis principles to graph coloring
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and Boolean satisfiability has demonstrated that solutions produced
by strategically different algorithms can be associated with their cor-
responding algorithms with high accuracy. Since both graph coloring
and Boolean satisfiability are common steps in hardware synthesis and
software compilation, we implicitly demonstrated the effectiveness of
forensic engineering for authorship identification of IP.
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