IDENTIFYING FPGA IP-CORES BASED ON LOOKUP TABLE CONTENT ANALYSIS

Daniel Ziener, Stefan AfBmus, Jiirgen Teich

Department of Computer Science 12
University of Erlangen-Nuremberg
Am Weichselgarten 3; 91058 Erlangen
email: ziener@csfau.de, teich@cs.fau.de

ABSTRACT

In this paper we introduce a new method to identify IP cores
in an FPGA by analyzing the content of lookup tables. This
techniques can be used to identify registered cores for IP
protection against unlicensed usage. We show methods to
extract the content of the lookup tables in a design from a
binary bitfile of Xilinx Virtex-II and Virtex-II Pro FPGAs.
To identify a core, we compare the number of unique func-
tions from lookup tables of the core with the lookup tables
extracted from a product with an FPGA from an accused
company. Also placement information can be used for in-
creasing the reliability of the result. With these methods, no
additional sources or information must be inquired from the
accused company. These techniques can be used for netlist
and bitfile cores, so a wide spectrum of cores can be identi-
fied.

1. INTRODUCTION

In embedded systems, many cores are used and reused, which
have been written for other projects or were obtained from
other sources. The advantages of the reuse of IP cores (In-
tellectual Property cores) are enormous. They offer a mod-
ular concept, fast development-cycles, and excellent cores
are commercially available today from specialized core de-
velopers.

IP cores are licensed and distributed like software. One
problem of the distribution of IP cores is the lack of security
against unlicensed usage. As the cores are provided e.g. as
netlist data, they can easily be copied like software. There is
only little effort to get the unlicensed core to function. Some
core suppliers encrypt their cores and deliver special devel-
opment tools, which can handle these cores. The disadvan-
tage is that common tools usually cannot handle encrypted
cores and that the shipped tools can be cracked.

Another approach is to hide a signature into the core,
so called watermark, which can be used to proof the origi-
nal ownership. There exist many concepts and approaches
on the issue of implementing a watermark into a core. But
most of these concepts are not applicable due to the lack of
verification capabilities. A good verification strategy is that
the signature (watermark) can be read out only by using the

1-4244-0 312-X/06/$20.00 ©2006 IEEE.

purchased product. No extra files or information must be
obtained from the accused company.

In our approach, we use the content of the lookup ta-
bles from the FPGA-core which should be protected like the
signature. The main functionality of the core is represented
by the lookup table content, so these values identify a core
uniqely. If the owner of the core would find all lookup table
values in an FPGA-design of an accused company, he can
be almost sure that his core was used.

This work is organized as follows. In Section 1, an in-
troduction and motivation is given. In Section 2, a short
overview of related work for [IP-Watermarking is given, and
in Section 3 the concept of our approach is presented. Sec-
tion 4 shows how lookup table contents can be extracted
from a given product with a Xilinx FPGA. In Section 5, a
method which identifies a core by the lookup table values is
introduced. Section 6 shows experimental results and Sec-
tion 7 concludes the results.

2. RELATED WORK

Hiding a unique signature into user data, such as pictures,
video, audio, text, program code, or IP cores is called wa-
termarking. The watermarking of IP cores is different from
multimedia watermarking, because the user data, which rep-
resents the circuit, must not be altered, since functional cor-
rectness must be preserved. Todays watermarking proce-
dures can be categorized into two groups of methods: addi-
tive methods and constraint-based methods.

Additive methods have in common that the signature is
added to the functional core, for example, by using unused
lookup-tables in an FPGA [8]. The constraint-based meth-
ods were originally introduced in [4] and restrict the solu-
tion space of an optimization algorithm by setting additional
constraints which are used to encode the signature.

Some methods for constraint-based watermarking in FP-
GAs exploit the wire wrap of a scan-chain [7], preserve nets
during logic synthesis [6], place constraints for CLBs in
odd/even rows [5], or route constraints with unusual rout-
ing resources [5].

The major drawback of these approaches are the limi-
tations of the verification possibilities of the watermarked

core. With a good watermarking strategy, the verification
can be done only with the given product without additional
information from the developer of the core.

The introduced approaches at the HDL- and netlist-levels
turn out not to be applicable due to the lack of verification
possibilities. The problem of watermarking FPGAs is not
the coding and insertion of a watermark, rather than the ver-
ification with an FPGA embedded in a system.

3. CONCEPT

In our approach, we do not add any signature or watermark.
The core itself is remains unchanged, so the functional cor-
rectness is given and no additional resources are used. We
compare the content of the used lookup tables from the core
with the used lookup tables in the FPGA from the product
of the accused company. If a high percentage of consistency
is detected, the probability that the registered core is used is
very high.

The synthesis tool maps the combinatorial logic of an
FPGA-design into lookup tables and writes these values into
the netlist of the core. After the synthesis step the content
of the lookup tables of a core is known, so we can protect
cores which are delivered at the netlist level. The protection
of cores at the bitfile level is also possible.

After the core is purchased, the customer can combine
these cores with other bought or self developed cores. In
the following CLB mapping step, it is possible that lookup
tables were merged across the core boundaries or were re-
moved by an optimization step. This happens when different
cores share logic or when outputs of the core are not used.
These lookup tables cannot be found in the FPGA bitfile,
but experimental results (see Section 6) show that the per-
centage of these lookup tables compared to the number of
all lookup tables in the core is low.

If a company is accused to use unlicensed cores in a
product, the bitfile of the used FPGA can be extracted (see
Section 4). After reading out the content and the positions of
the lookup tables from the bitfile and comparing them with
the lookup table contents form the original core (see Section
5), the ownership of the core can be proven.

4. LOOKUP TABLE CONTENT EXTRACTION

In this section we discuss which possibilities exist to get in-
formation about the contents of lookup tables from a prod-
uct. First, we need to extract the configuration bitfile of the
FPGA in the product. On some devices, it is possible to
read back the bitfile. This is the easiest way, but it is not al-
ways possible, because not all FPGA devices support this or
the bitfile creator can disable this feature. In SRAM based
FPGAs, the bitfile is stored into a PROM, and during the
startup phase the FPGA is configured by loading this bit-
file. The communication between the FPGA and the PROM
can be recorded by wire tamping and so the bitfile can be
reconstructed.

The extraction of the content of the lookup table from
a configuration bitfile depends on the FPGA device and the
FPGA vendor. For Xilinx FPGAs, there exist two methods:
with the Xilinx tool JBits [11] and directly from the bitfile.

JBits can read and manipulate Xilinx bitfiles. With this
tool it is easy to extract all used lookup table contents with
the slice position. But only some devices, like Virtex, Virtex-
E or Virtex-II are supported by JBits.

The other way is to read out the LUT content directly
form the bitfile. Here, it must be known at which position in
the bitfile the lookup table content is stored. Also, the right
interpretation of the values must be known. This informa-
tion can be obtained by altering the lookup table contents
from a well known bitfile with the tool FPGA-Editor from
Xilinx and recognize the difference between the old and the
new created bitfile. With these informations, it is possible to
find the right positions and the right byte representation of
lookup table contents.

We have experimented with these observations for Xil-
inx Virtex-II and Virtex-II Pro bitfiles. These bitfiles are
structured in packets. A packet consist of one or more con-
figuration words for a certain configuration register, which
controls the configuration process [12]. One large packet
contains the configuration data for the circuit, which should
be instantiated into the FPGA. This packet is divided into
frames, which is the smallest configuration unit. The length
of one frame and the number of frames is device dependant.

There exist six frame types: 10B, I0I, CLB, BRAM,
BRAM Interconnect, and GCLK. On the left and on the right
side of the FPGA exists one column of IOB frames; each
IOB column consists of four frames. There are also 22 101
frames on each side of the FPGA. In the CLB frames, in-
formation about the CLBs, routing and the upper and lower
IOBs are stored. The FPGA consists of a regular pattern
of CLB columns. Each CLB column consists of 22 frames.
In two of these frames, the content of the lookup tables are
stored. More information can be found in [12].

To access the frames into the configuration memory in
the FPGA, each frame has an address. The major address
directs the columns, where the minor address directs the
frames in a column. If a FPGA is configured completely,
this is also the order in which the frames are stored in the
configuration packet in the bitfile.

A Xilinx Virtex-II CLB consists of four slices, two hor-
izontal and two vertical. Each slice has two lookup tables,
the G- and the F-LUT. The content of the lookup tables for
one slice column is stored in one frame, so two frames are
used for the lookup table content in a CLB column. In the
second frame of a CLB column the lookup table content of
the left slice column is stored, whereas in the third frame the
content of the right slice column is included.

16 bits are stored in a four input lookup table. These
bits are stored together in two bytes but with bit inverted
values. The F and G lookup table in a slice is separated by
one byte, which is not used for storing lookup table content

informations. So, the lookup table content packet for one
slice consists of 5 bytes. First, the G-LUT is stored, but in
reverse bit order. Then, the separate byte and the F-LUT is
stored. The bit order of the F-LUT is not reversed.

Slice X0Y1

| wTG WTF | TG LUTF | 10Bs
| 2Bytes [1Byte[2Bytes | 2Bytes [1Byte] 2Bytes | 12 Bytes

Slice X0Y0

3

Fig. 1. The positions of the lookup table content in a frame.

These packets which contain the lookup table content are
stored successively in the frame for the slices in one column,
beginning with the slice with the highest Y coordinate and
ending with the slice with the coordinate O (see Figure 1).
For the upper and lower input/output blocks, which are also
stored in the CLB frames, the first and the last 12 bytes in
the lookup table content frame is reserved. The frame length
FLis:

FL=CY -2 Slices-5 Bytes + 2 -12 IOB Bytes,

where C'Y is the number of CLB rows in the FPGA.
To calculate the frame address of the lookup table frames,
we can use the following formula:

Feyo=1-Fgerx +1-Frop+1- Fror,
fip(x) = Foyo + CFryeo + |2/2] - Forp + x mod 2,

where F.,o denotes the frame number of the first CLB frame
and Foork, Fros, Fror and Fo g identifies the number
of frames of a GCLK, IOB, IOI or CLB column. CFj,:
denotes the first lookup table content frame in a CLB. x and
y are the slice coordinate, and Y the number of slice rows
in the FPGA. f;¢(z) denotes the frame for lookup tables in
slice column x. All addresses begin with zero.

FGCLK» FIOBa FIOI7 FCLB and Cﬂuto are device in-
dependent and can be inserted:

Fao=1-4+1-4+1-22,
fig(x) = Foyo + 14 [2/2] - 22 + 2 mod 2,
fip(x) =31+ |2/2] - 22+ z mod 2,

To calculate the byte address of the lookup tables in the
configuration packet of the bitfile, we can use the following
formula:

Adrryra(z,y) = fig(x) - FL+12+ (Y —1) —y) - 5,
Adrryrr(z,y) = fis(x) - FL+124+ (Y -1)—y) -5+

Lookup tables in unused slices have the value 0x0000,
whereas unused lookup tables in used slices have the value
OxFFFF. With this information, we are able to extract and
decode the lookup table content and the position from used
lookup tables in a Xilinx Virtex-1I and Virtex-II Pro FPGA.

For other FPGA devices or vendors we expect that simi-
lar techniques can be used to find rules of how to extract the
lookup tables contents.

5. IDENTIFYING THE CORE

After the extraction of the content of lookup tables in a bit-
file, we can compare these values with the information in
the netlist. The content of the lookup table can easily be
read out from a netlist file. For example, in an EDIF netlist
for Xilinx FPGA devices the lookup table content is on the
INIT property for the lookup table instances. Unfortunately,
the mapping tools adopt these values not necessarily. The
mapping tool may merge lookup tables from different cores
together, converts one, two or three input lookup tables to a
four inputs lookup table and permutes the inputs to achieve
a better routing.

If the protected core is used with other cores or user
logic, it is possible that the mapping tool merges lookup ta-
bles form different cores together. This is done when com-
binatorial logic or registers can be shared by more than one
core. This allows the mapping tool to perform further opti-
mization steps. In these steps, lookup tables can be merged
together or lookup table inputs can be switched from one
lookup table to another. These lookup tables cannot be found
later in the bitfile. So it is possible that on the border of
the protected core we cannot find all lookup tables from the
netlist in the bitfile. But experimental results (see Section 6)
show that the percentage of merged lookup tables is low for
the used mapping tool (Xilinx map).

iZiliD
000
001
> | 010
011
100
101
110
111

LUT2 LUT3

L
00
01
10
11

=== Olo

R e =1)

Fig. 2. Converting a two input lookup table into a three input
lookup table with unused input io.

All lookup tables of an FPGA have n inputs. On most
FPGA architectures, lookup tables have four inputs. In a
core netlist also lookup tables with less than n inputs may
exist. These lookup tables must be mapped into n input
lookup tables. If one input is unused, only half of the mem-
ory is needed to store the function and the remaining space
must be filled. This also depends on the FPGA architecture,
but it makes sense to store the function so, that it is regard-
less if on the unused input a one or a zero is applied. This
can be done if the content of a n — 1 input lookup table is
copied into the unused region of the n input lookup table
(see Figure 2). This can also be applied if the lookup table
has more than one unused input.

The mapping tool can permute the inputs of the lookup
tables to achieve a better routing. In most FPGA architec-
tures, the routing resources for lookup table inputs are not
equal, and so a permutation of the lookup table inputs can
lower the amount of used routing resources. Permutation of
the inputs alter significantly the content of a lookup table.

Lookup

table . i
unique |compare:| unique

Bitfile | “°™e™s | MaP | functions | N js syb- | functions
M set of M? N

Lookup
table
map | contents

Netlist

yes/no

Fig. 3. Before the lookup table contents from the bitfile
and the netlist can be compared, they must be mapped into
unique functions.

For n inputs, n! permutations exist and up to n! different
lookup table values for one unique function. To compare the
contents of the lookup table from the netlist and the bitfile,
it must be checked if one of these possible different lookup
table values for one unique function is equal to the value of
the lookup table in the bitfile. This is done by creating a ta-
ble with all possible values of lookup tables for all unique
functions (see Figure 3).

For robustness analysis of our approach, it is necessary
to know how many different functions can be realized by an
n input lookup table, if it is allowed to permute the inputs.
This topic is related to the problems of Boolean matching
and equivalence classes [2] [3] [13] [1]. Boolean matching is
a technique to check if two Boolean function are equal with
respect to transformations (e.g., input permutations, input
negotiation, output negotiation). The functions which are
equal with respect to these transformations belong to one
equivalence class. Our interest is on the equivalence class P
which allows to permute the inputs of a function.

Inputs n || equivalence classes P | unique functions f
1 4 2
2 12 10
3 80 78
4 3984 3982
5 37333248 [2] 37333246

Table 1. The number of different equivalence classes P and
unique functions.

The number of different values which can be encoded in
a n-input lookup table is 22". The number of equivalence
classes P is lower. Table 1 shows the number of equiva-
lence classes of functions with different numbers of inputs.
These values were achieved by experimental results. Func-
tions which have a constant output do not appear in a netlist,
but the mapping tool can create such functions later to gen-
erate a VCC or GND signal. Nevertheless, we reduce the
number of unique functions by the two constant functions.

Now, in order to decide whether a certain core is used
in the FPGA, we define two tuples N and M, that contain
the numbers of each unique functions from the core (V) and
the whole design (/M) that can consist of multiple different
cores. Also, the number of different unique functions f is of
interest (see Table 1).

N = (n1,n2,n3,- -+ ,n§),

M = (my,mg,mg, -+ ,my),
n=n;+ne+ng+---+nyg
m=my+mg+mg+---+my,

The number of elements in the tuples is the number of dif-
ferent unique functions f. n; means that the function 1 is ny
times included in the core. n is the number of all functions
or lookup tables in the core, and m the number of lookup ta-
bles in the whole design. The tuple N can be achieved from
the different unique functions of the core netlist and the tu-
ple M can be created from the information of the lookup
table content extraction from the bitfile.

If the number of each different unique function in M is
higher or equal to NV, the core may be possibly included in
the design.

Vke{l,--, f}:

If a high percentage of unique functions of M is lower than
in N, the core is surely not included.

An important value is the probability pyy that a core is
found in a design but which has this core not included. This
value should be very low to obtain a high reliability of this
method. This value depends on m, n, f, the core N and the
probability distribution P, of the unique functions of the
whole design.

my 2> ng

Pm = (p1>p27p37'“ 7pf)7
p1+p2+ps+--+pr=1,

where p; is the appearance probability of the function 1 in
the design M.

First, we assume that m = n. This means that we calcu-
late the probability that the number of each unique function
of M and N is equal. All lookup tables of N must be in M
with the probability distribution P,,,. This can be calculated
with the multinomial distribution.

n
Pfa =
Ny, N2, N3y, Nf

If m > n, than the core IV is combined with other cores in
the design M. For each possible combination from N with
the other cores, the appearance probability must be calcu-
lated and summed. The first question is how much combi-
nations of other cores (s) exists. This can be calculated with
the formula of combination with repetitions:
(f+m—n-—1)!
T m—n)l-(f 1)

Now, all possible combinations of functions in these cores
are calculated and stored in a matrix A.

PPyt sty

ai; a2 ... aif
az1 Az ... Q2f
A= ,
Gs1 As2 ... QAsf
VEe{l,---,s}: aptap+--+agr=m-—n

For example, for f =2and m —n = 3:

0 3
1 2
A=1454
30

The probability that a core is detected in M with the proba-
bility distribution P,), is:

S
m
pfdiz (m + a;1,n2 + a2, - 7nf+aif>'

=1

ni1+ai1 na+ai2 ny+a;f

.pl .p2 pf R

If we assume that all unique functions in M are uniformly
distributed, we can simplify this formula:

S
m
4=
Ps ;(nl + a1, N2 + a2, -

1
>nf+az‘f> fm

Unfortunately, only for small values of m, n, and f, this
probability can be calculated (see Figure 4 and 5), because
of the exponentiated computation complexity. For values of
m, n, and f which can appear in realistic applications we
can only reference to the experimental results in Section 6.

e A e
f=5
107 .
o ——
e ok ' e i
i —————— f=10
10
10° T
ibaaeee 25 SIGGY N
’ f=15
10° .
107} ;
= f=20
10'5 L L i i I
20 40 80 80 100 120

m

Fig. 4. pyq for different f and m. n = 0.91 - m and N is
uniformly distributed.

In order to increase the robustness of our method and
lower the risk of a false detection of a core, the positions
of the lookup table in a FPGA can be used. The position
of a lookup table can be extracted from the bitfile as well
as the content (see Section 4). We assume that the lookup
tables of a core are placed close together. Elements with di-
rect connection are tried to placed together. The assumption
is that lookup tables of a core have more connections with
elements inside the core than with elements which do not
belong to the core.

If the mean distance between the found lookup tables in
the bitfile is low, than the probability that these lookup tables
are part of the searched core is higher than when the mean
distance is high. In order to calculate this mean distance,

10° e
* *’\\
15| . T
* TR _
- N 15

107t —
ks T

1070 ‘

-
10) \\f=10
107
=20
10’35 Il Il L i i
0 20 40 60 80 100 120

m

Fig. 5. pyq for different f and m. n = 0.91 - m and N is

distributed as follow: p,1 = % + # andVk € {2,---, f} :
1

Pnk = 2f:
we must know, however which lookup table in the bitfile
belongs to the core.

First, we search for functions which only appear in the
core, i.e.

Vk’E{l,---,f}: myg = ng.

Lookup tables which implement these functions are surely
inside the core. Form these lookup tables we can calculate
an estimate of the position of the core center. If the number
of these functions is zero, we take all lookup tables which
implement functions from the core to calculate the core cen-
ter. In this case, the core center is inaccurate because also
lookup tables which do not belong to the core are consid-
ered. For functions which appear in and outside the core,
ie.,

Vk‘E{L---,f}: myg > Ny,

we take the ny lookup tables which are nearest to the calcu-
lated core center. Now, the distance to the core center of all
lookup tables of the core can be calculated.

In the formula for py4, the difference between m and n
is important. If m — n is small, than also the probability
of a false detection pyq is low. We can decrease m — n if
we define a bounding box around the core and only consider
lookup tables inside the box. The dimensions of the box can
be calculated from the positions of the lookup tables from
the core inside the bitfile. But to this probability psq the
number of all possible opportunities of the position of this
bounding box in the design must be multiplied.

6. EXPERIMENTAL RESULTS

For experimental results, we used a keyboard controller as
an example design [10]. This design consists of four cores:
strober, producer, analyser, and fsm. For all of these cores,
the lookup table values and the corresponding unique func-
tions were extracted from the netlists of these cores. The
whole design was implemented on a Xilinx Virtex-II FPGA

using the Xilinx tool ISE 6.3i. From the resulting bitfile, all
lookup table values were extracted by the method described
in Section 4. Now, each core are identified with the methods
in Section 5 and the results are shown in Table 2.

Core n m f found n | distance d
producer || 40 | 450 | 3982 40 4.225
strober 93 | 450 | 3982 93 3.797
fsm 6 | 450 | 3982 5 0.883
analyser || 379 | 450 | 3982 217 5.946

Table 2. Results for identifying cores in a design where the
cores are included. The values for mean distance to the core
center d are in LUT positions.

The results show that all lookup tables for the core pro-
ducer and strober were found. During the implementation,
many lookup tables for the core analyser were removed and
are not found in the bitfile. This can result from unused out-
puts, or constant inputs. Which lookup tables are affected in
these cases can be evaluated by the core developer with ref-
erence designs, and so, the results of the identify process can
better be interpreted. The mean distance to the calculated
core center in all four cases is small, so this and the high
percentage of found lookup tables confirmed the assump-
tion that the core is included in the bitfile. To verify the

=fsm [=producer E=analyser || | [|

ci
Dis
i
i
kN
£
Hi
calculated
center
| | ‘producer’
B Slice (14,10)
calculated |B__
center a5
‘analyser' .
Slice (8,8) = calculated
B S|

D center
D

“fsm

lice (14,7)
b

T
I
pr
e

D

b
s
s
s
123

Fig. 6. The calculated core centers compared with the real
LUT placements.

/%‘/WW

B

T o
z

EEw
|
AR Ry B P
:—‘—“—A‘L‘L\j SHAREAAARN
a8 A e T A
\ i
| =
‘ -
=
[|

calculated core centers, we compare the core centers with
the real placement of the slices in the cores. Figure 6 shows
that is calculated core center positions correspond with the
real positions of the cores.

To evaluate the robustness, we try to find these four cores
in a bitfile were these cores are not included. For this case,
we implemented a Des56 design [9] in a Xilinx Virtex-1I
FPGA and extracted all lookup tables. Table 3 shows that
the percentage of the found lookup tables are low and the
mean distance to the calculated core center is high. These
values shows that these cores are not included in the design.

Core n m f found n | distance d
producer || 40 | 1574 | 3982 2 5.55
strober 93 | 1574 | 3982 44 15.97
fsm 6 | 1574 | 3982 3 12.597
analyser || 379 | 1574 | 3982 69 13.865

Table 3. Results for identifying cores in a design where the
cores are not included.

7. CONCLUSIONS

We have presented a new method to identify FPGA cores
in FPGA bitfiles. The extraction of lookup table contents
of a binary bitfile was demonstrated for Xilinx Virtex-II and
Virtex-II Pro devices. The extraction of the lookup table val-
ues from the netlist is also shown for Xilinx devices. Possi-
ble transformations of the mapping tools and the effect of the
robustness of the method were discussed. The experimental
results show that is possible to identify a core in the design
with a high probability. The identification process is based
on two parameters, namely the number of found lookup ta-
bles of the core in the design and the mean distance to the
core center. However, it must be taken into account that
lookup tables of the core are removed by optimization tools,
if part of the core are not used because outputs are open or
constant values apply to inputs.

8. REFERENCES

[1] D. Debnath and T. Sasao. Fast Boolean Matching Under Per-
mutation Using Representative, 1999.

[2] M. A. Harrison. Introduction to Switching and Automata The-
ory. McGraw-Hill, 1965.

[3] M. Hiitter. Logic Synthesis with Complex Gates. dissertation,
2003.

[4] Kahng, Lach, Mangione-Smith, Mantik, Markov, Potkonjak,
Tucker, Wang, and Wolfe. Constraint-Based Watermarking
Techniques for Design IP Protection. IEEETCAD, 20, 2001.

[5] A. B. Kahng, S. Mantik, I. L. Markov, M. Potkonjak,
P. Tucker, H. Wang, and G. Wolfe. Robust IP Watermarking
Methodologies for Physical Design. In Design Automation
Conference, pages 782-787, 1998.

[6] D. Kirovski, Y.-Y. Hwang, M. Potkonjak, and J. Cong. Intel-
lectual property protection by watermarking combinational
logic synthesis solutions. In proceedings of ICCAD, pages
194-198, 1998.

[7]1 D. Kirovski and M. Potkonjak. Intellectual Property Protec-
tion Using Watermarking Partial Scan Chains For Sequential
Logic Test Generation. In ICCAD, 1998.

[8] J. Lach, W. H. Mangione-Smith, and M. Potkonjak. Signa-
ture Hiding Techniques for FPGA Intellectual Property Pro-
tection. In proceedings of ICCAD, pages 186—189, 1998.

[9] Opencores.org. Basic DES Crypto Core. overview.

[10] Opencores.org. Keyboardcontroller. overview.

[11] Xilinx Inc. JBits SDK. www.xilinx.com/labs/projects/jbits/.
[12] Xilinx Inc. Virtex-II Platform FPGA User Guide (UG002).

2.0, pages 269-358. Mar. 2005.
[13] Z.Zilic and Z. G. Vranesic. Using BDDs to design ULMs for

FPGAs. In Proceedings of the 1996 ACM fourth international
symposium on Field-programmable gate arrays, pages 24—
30, New York, NY, USA, 1996. ACM Press.

