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Abstract. In this paper we analyze the robustness of watermarking
techniques for FPGA IP cores against attacks. Unlike most existing wa-
termarking techniques, the focus of our techniques lies on ease of verifica-
tion, even if the protected cores are embedded into a product. Moreover,
we have concentrated on higher abstraction levels for embedding the wa-
termark, particularly at the logic level, where IP cores are distributed
as netlist cores. With the presented watermarking methods, it is possi-
ble to watermark IP cores at the logic level and identify them with a
high likelihood and in a reproducible way in a purchased product from
a company that is suspected to have committed IP fraud. For robust-
ness analysis we enhanced a theoretical watermarking model, originally
introduced for multimedia watermarking. Finally, two exemplary water-
marking techniques for netlist cores using different verification strategies
are described and the robustness against attacks is analyzed.

1 Introduction

The ongoing miniaturization of on-chip structures allows us to implement very
complex designs which require very careful engineering and an enormous effort
for debugging and verification. Indeed, complexity has risen to such enormous
measures that it is no longer possible to keep up with productivity constraints if
all parts of a design must be developed from scratch. In addition, the very lively
market for embedded systems with its demand for very short product cycles
intensifies this problem significantly. A popular solution to close this so called
productivity gap is to reuse design components that are available in-house or
that have been acquired from other companies. The constantly growing demand
for ready to use design components, also known as IP cores, has created a very
lucrative and flourishing market which will continue its current path not only
into the near future.
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One problem of IP cores is the lack of protection mechanisms against un-
licensed usage. A possible solution is to hide a unique signature (watermark)
inside the core by which the original author can be identified and an unlicensed
usage can be proven. Our vision is that it should be possible to detect the unli-
censed usage of an IP core solely using the product in which the IP core may be
embedded and the watermark information of the original author. It should not
be necessary to request any additional information from the manufacturer of sus-
picious product. Such concepts of course need advanced verification techniques
in order for a signature or certain characteristics to be detectable in one of pos-
sibly many IP cores inside a system. Another aspect to be considered is the fact
that IP cores will undergo several sophisticated optimization steps during the
course of synthesis. It is of utmost importance that a watermark is transparent
towards design and synthesis tools, that is, the embedded identification must be
preserved in all possible scenarios. Whilst on the one hand, we must deal with
the problem that automated design tools might remove an embedded signature
all by themselves, a totally different aspect is that embedded signatures must
also be protected against the removal by illegitimate parties whose intention is
to keep the IP core from being identifiable. The latter is not to be taken lightly
because if a sufficiently funded company decides to use unlicensed cores to, for
example, lower design costs, there are usually have very high skilled employees
assigned with the task to remove or bypass the embedded watermark.

Figure 1 depicts a possible watermarking flow. An IP core developer embeds
a signature inside his IP core using a watermark embedder and publishes the
protected IP core. The intention of this procedure is that companies interested
into using the developer’s core would obtain a licensed copy. However, a third-
party company may also obtain an unlicensed copy of the protected IP core and
use it in one of their products. If the IP core developer becomes suspicious that
his core might have been used in a certain product without proper licensing, he
can simply acquire the product and check for the presence of his signature. If
this attempt is successful and his signature presents a strong enough proof of
authorship, the developer may decide to accuse the product manufacturer of IP
fraud and press legal charges.

IP cores exist for all design flow levels, from plain text HDL cores on the
register-transfer level (RTL) to bitfile cores for FPGAs or layout cores for ASIC
designs on the device level. In the future, IP core companies will concentrate
more and more on the versatile HDL and netlist cores due to their flexibility.
One reason for this development is that these cores can be easily adapted to new
technologies and different FPGA devices. This work focuses on watermarking
methods for IP cores implemented for FPGAs. These have a huge market seg-
ment and the inhibition threshold for using unlicensed cores is lower than in the
ASIC market where products are produced in high volumes and vast amounts
of funds are spent for mask production. Moreover, we concentrate on flexible IP
cores which are delivered on the logic level in a netlist format. The advantage
of this form of distribution is that these cores can be used for different families
FPGA devices and can be combined with other cores to obtain a complete SoC



Robustness Analysis of Watermark Verification Techniques for IP Cores 3

Signature

IP Core developer 

=

IP Core

A Watermark 
Embedder

Watermarked
IP Core A

Product developer 

Watermarked
IP Core

Product
Implementation

Watermarked
IP Core A

IP Core

ProductProduct

Watermark 
Extractor

Signature

ASignature

B

?

Buy Product

e.g., 
Copy 
Attack

B

Sell IP Cores

Obtain unlicensed Core

Fig. 1. An IP core developer embeds a watermark inside his core. If a company uses
this core in one of their product without proper licensing, the IP core developer can
obtain the product and check it for the presence of his watermark.

solution. Our work differs from most other existing watermarking techniques,
which do not cover the area of HDL and netlist cores, or are not able to easily
extract an embedded watermark from a heterogeneous SoC implemented in a
given product.

The remaining work is organized as follows: In Section 2, a short overview
of related work for IP watermarking is provided. Afterwards, Section 3 presents
a theoretical model for watermarking IP cores. Section 4 deals with different
strategies to extract a watermark from an FPGA embedded into a product. We
proceed by describing two methods for extracting a watermark. The first method
explains the extraction of a watermark from an FPGA bitfile in Section 5. An-
alyzing the power consumption of the FPGA in order to verify the presence of
a watermark is the second method and will be discussed in Section 6. Addition-
ally, the robustness against typical attacks will be analyzed for both methods.
In conclusion, the contributions will be summarized.

2 Related Work

IP cores are often distributed like software and can therefore be used without
proper legitimacy, which ranges from over-provisioning agreed on amounts of
licensed uses to simply not licensing an IP core at all. Some core suppliers use
encryption to protect their cores. The downside of such approaches is that en-
crypted cores can only be used in conjunction with special tools and that the
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encryption will eventually be broken by individuals with high criminal energy.
A different approach is to hide a signature in the core, a so-called watermark,
which can be used as a reactive proof of the original ownership enabling IP core
developers to identify and react upon IP fraud. There exist many concepts and
approaches on the issue of integrating a watermark into a core, several of which
will be reviewed in this section.

In general, hiding a signature into data, such as a multimedia file, some text,
program code, or even an IP core by steganographic methods is called water-
marking. For multimedia data, it is possible to exploit the imperfection of human
eyes or ears to enforce variations on the data that represent a certain signature,
but for which the difference between the original and the watermarked work
cannot be recognized. Images, for example, can be watermarked by changing the
least significant bit positions of the pixel tonal values to match the bit sequence
of the original authors signature. For music, it is a common practice to water-
mark the data by altering certain frequencies, the ear cannot perceive and thus
not interfering with the quality of the work [5]. In contrast, watermarking IP
cores is entirely different from multimedia watermarking, because the user data,
which represents the circuit, must not be altered since functional correctness
must be preserved.

Most methods for watermarking IP cores focus on either introducing addi-
tional constraints on certain parts of the solution space of synthesis and opti-
mization algorithms, or adding redundancies to the design.

Additive methods add a signature to the functional core, for example, by
using unused lookup-tables in an FPGA [15, 19] or by sending the signature as
a preamble of the output of the test mode [8]. Constraint-based methods were
originally introduced by [9] and restrict the solution space of an optimization
algorithm by setting additional constraints which are used to encode the signa-
ture. Methods for constraint-based watermarking in FPGAs exploit the scan-
chain [13], preserve nets during logic synthesis [12], place constraints for CLBs
in odd/even rows [10], alter the transistor width [4] or route constraints with
unusual routing resources [10].

A common problem of many watermarking approaches is that for verification
of the presence of the marks, the existence and the characteristic of a watermark
must be disclosed, which enables possible attackers to remove the watermark.
To overcome this obstacle, Adelsbach [2] and Li [16] have presented so-called
zero-knowledge watermark schemes which enable the detection of the watermark
without disclosing relevant information.

A survey and analysis of watermarking techniques in the context of IP cores
is provided by Abdel-Hamid and others [1]. Further, we refer to our own survey
of watermarking techniques for FPGA designs [25]. Moreover, a general survey
of security topics for FPGAs is given by Drimer [7].
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3 Theoretical Watermark Model for Robustness Analysis
against Attacks

In this section, we propose a theoretical model for IP core watermarking. With
this model, different threats and attack scenarios can be described and evalu-
ated. In general, watermarking techniques must deal with an uncontrolled area,
where the watermarked work is further processed. This is true for multimedia
watermarking, where, for example, watermarked images are processed to en-
hance the image quality by filters or for IP core watermarking where the core
is combined with other cores and traverses other design flow steps. However,
the watermarked work may be exposed to further attacks in this uncontrolled
area that may destroy the watermark and thus the proof of authorship as well.
This uncontrolled area is difficult to describe in a precise way and therefore, the
security goals and issues for watermarking are often given in natural language
which results in an imprecise description. This natural description makes an as-
sessment of the security very difficult, particularly if the attackers are intelligent
and creative.

Introducing a defined theoretical watermarking model with attackers and
threats allows us to assess the security of IP core watermarking techniques. How-
ever, it should be noted that the model has to cover all possible attack scenarios
and represent all aspects of the real world behavior to allow for a meaningful as-
sessment of the security. In this section, we present a general watermark model
introduced by Li et. al. [17] which will be enhanced with aspects of IP core
watermarking.

Watermarking intellectual property can be specified precisely by characteriz-
ing the involved actions using a security model. We use the standard definitions
from security theory, which defines security goals, threats and attacks. Security
goals represent certain abilities of a scheme, which are important to protect in
order to keep its functionality in tact. These abilities may be violated by threats
which are realized by attacks. Regarding watermarking, the overall security goal
is to be able to present a proof of authorship that is strong enough to hold in
front of a court. The security goal of a watermark scheme is violated if the origi-
nal author cannot produce a strong enough proof of authorship, so that a dispute
with another party will lead to an ownership deadlock, but also in the occasion,
where another party is able to present a more convincing proof of authorship
than the original author, resulting in counterfeit ownership. Another violation
of the proof of authorship occurs if the watermark of a credible author is forged
by another author and is used to convince a third party, that a work was created
by someone who did not.

An attacker can realize an ownership deadlock, if he can present a watermark
in the work, that is at least as convincing as the original authors watermark. If
such an ambiguity attack is successful, the real ownership cannot be decided and
the original author cannot prove his authorship. If, in addition, the ambiguity
attack results in the pirate being able to present an even more convincing proof of
authorship than the creator of the work, the pirate can counterfeit the ownership.
Another way to take over the ownership of a piece of IP is to be able to remove the
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Fig. 2. An overview of threats, attacks and the watermarking security goal of the proof
of authorship. The different threats are realized by attacks which violate the security
goal.

original authors watermark by means of a removal attack. Forged authorship can
be achieved by a key copy attack which simply duplicates the means of creating
a credible authors watermark. One last violation of the security goal does not
directly involve the author, but requires him to not take part in a dispute over
theft. The theft of a work resulting in counterfeit ownership can be realized by
a copy attack. The realized threat is only successful until the original author
realizes the violation. An overview of the introduced terms can be observed in
Figure 2.

Watermarking IP cores in electronic design automation is in some aspects
different from multimedia watermarking (image, audio, etc.). An essential differ-
ence is that watermarking should preserve the functionality of the core. Another
difference is that IP cores can be distributed at several abstraction levels which
have completely different properties for the watermark security against attacks.
We define different design steps as different technology or abstraction levels a
work or IP core can be specified on. On higher abstraction levels, as for example
on the architecture or register-transfer level, the functionality is described by an
algorithm. At these levels, mainly the behavior is described and the representa-
tion is optimized for easy reading and understanding the algorithm. During the
course of the design flow, more and more information is added. For example,
placement information is included at the device level representation of the core.
Extracting only the relevant information about the behavior of the algorithm
is much harder than at higher abstraction levels. Furthermore, the information
at lower abstraction levels is usually interpreted by tools rather than humans.
The representation of this information is therefore optimized for machine and
not human readability. For example, consider an FPGA design flow. Here, three
different abstraction levels exist: RTL, logic, and device level. An algorithm,
specified on the register-transfer-level (RTL) in an HDL core is easier to under-
stand than a synthesized algorithm on the logic level, represented by a netlist. In
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summary, we can say that the behavior of an algorithm is easier to understand
on higher abstraction levels than it is on the lower ones.

Transformations from a higher to a lower abstraction level are usually done
by design tools. For example, a synthesis tool is able to transform an HDL
core specified on the register-transfer level (RTL) into its representation on the
logic level. Transformations from a lower to a higher level can be achieved by
reverse engineering. Here, usually no common tools are available. One exception
is the Java library JBits from Xilinx [21] which is able to interpret the bitfiles of
Virtex-II device types. Thus, it is possible to transfer a bitfile core into a netlist
at the logic level by using JBits. However, in general, reverse engineering must
be considered as very challenging task which may cause high costs.

A watermark can be embedded at every abstraction level. Furthermore, the
watermarked core can be published and distributed also at every abstraction
level which must not necessarily be the same level at which the watermark was
embedded. However, the extraction of the watermark is usually done on the
lowest abstraction level, because this is the representation of the design which
is implemented into the end product.

Hiding a watermark at a lower abstraction level is easier, because first, there
are more possibilities of how and where to hide the watermark and second, the
information stored at these abstraction levels is usually outside the reception
area of the human developer.

To explain all threats and attacks in detail, some definitions have to be made
first [17, 20].

3.1 Definitions

Our definitions for the IP core watermarking model [20] are derived from the
general watermarking model introduced by Li et al. [17]. A work or IP core that
is specified at abstraction level Y is denoted by IY = (xY1 , xY2 , . . . , xYm

), where
each xYi

∈ IY is an element of the work, and IY is a universe, inherent to
the abstraction level Y . For example, an FPGA design at the device abstraction
level might be represented by a bitfile which can be characterized as a work IB =
(xB1 , . . . , xBm

), whose elements reside in the universe Bit (IB). Hence, a bitfile
IB with |IB | = m can also be considered as a binary sequence IB = {0, 1}m.

Let T (·) be a transformation, which transforms a work on a specific abstrac-
tion level into a work of another abstraction level. A transformation from the
higher level Y to the lower abstraction level Z is denoted TY→Z(·), whereas a
transformation from a lower to a higher level is denoted TY←Z(·).

Let DistY (·, ·) be a distance function which is able to measure the differences
of two works of the same abstraction level. If the distance of two IP cores IY
and I ′Y of the same abstraction level Y is smaller than a threshold value tI
(DistY (IY , I ′Y ) < tI), the two works may be considered similar.

A watermark WY is a vector WY = (wY 1, wY 2, . . . , wY l), where each element
wY i ∈ WY . The universe WY is dependent on the universe of the work IY

and the watermark generation process. A key K is a sequence of m binary bits
(K = {0, 1}m).
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In the watermark model, there exist three algorithms: the watermark gener-
ator G, the watermark embedder E , and the watermark detector D. In detail, a
specific watermark generator GX(·) is able to generate a watermark WX for the
abstraction level X from a key K: WX = GX(K). The input of the watermark
embedder or detector must be in the same abstraction level. For example, to
watermark an IP core IX at abstraction level X, also the watermark WX must
be generated for this abstraction level. So to obtain a watermarked work on the
abstraction level X, it is necessary to also use a watermarked and an embed-
ding algorithm suitable for the same abstraction level, i.e., ĨX = EX(IX ,WX).
The watermark in ĨX should obviously not be visible. Therefore, the difference
between IX and ĨX should be small. With the distance function, this can be
expressed as DistX(IX , ĨX) < tI , where tI is a threshold value upon the dif-
ference is noticeable. Using the watermark detector DX , the existence of the
watermark WX in the work ĨX can be proven, if DX(ĨX ,WX) = true or negated
if DX(ĨX ,WX) = false.

In order to achieve full transparency of the watermarking process towards de-
sign tools, it is an essential requirement that a work, marked on any abstraction
level, will retain the watermark if transformed to a lower abstraction level. Hence,
if DY (ĨY ,WY ) = true, so should also D(ĨZ ,WZ) = true, if ĨZ = TY→Z(ĨY ), and
WZ is a representation of WY on abstraction level Z.

However, considering reverse engineering, the watermark information may
be removed by the reverse engineering transformation TY←Z(·), or the detec-
tion and removal of the watermark may be greatly simplified on the higher
abstraction level. For example, consider an FPGA bitfile IP core watermark-
ing technique for which the watermark is stored in some placement information
inside the bitfile. The watermark is generated for bitfiles on the device level:
WB = GB(K) and is embedded in a bitfile core IB to create the watermarked
bitfile: ĨB = EB(IB ,WB). If an attacker is able to reverse engineer the bit-
file and reconstruct a netlist on the logic level, the placement information will
get lost, since there is no representation for this information on the logic level.
This implies, of course, that the watermark is lost, as well: ĨL = TL←B(ĨB),
DL(ĨL,WL) = false. Another problem of reverse engineering may be that an
embedded watermark might become obviously readable at the higher abstraction
level and can be removed easily.

Figure 3 shows an example of the IP core watermark model considering
different abstraction levels.

3.2 Threat Model

In the general multimedia watermarking model introduced by Li et al. [17], it
should be computationally infeasible to remove the watermark without changing
the properties of the work. For the introduced IP core watermarking model, this
requirement does not necessarily hold. Sometimes, it might be easier for an
attacker to redevelop an IP core than to remove a watermark. The question to
purchase or to redevelop a core is a pure matter of cost. An uprising economical
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ĨA = E(IA, WA)

Watermark Embedder

ĨA

Marked IP Core

DA(IA, WA) = true

Watermark Detector

ĨB
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Fig. 3. An example of a watermarking procedure characterized in the IP core water-
mark model with different abstraction levels. At abstraction level A, the watermark
is generated and embedded. A transformation to the abstraction level B retains the
watermark [20].

question is whether the development of an attack is an option. For many cases,
the redevelopment from scratch might be cheaper than obtaining an unlicensed
core and develop an attack in order to remove the watermark. On the other
hand, there are designs involving such cunning cleverness and creativity that
trying to redevelop a work of equivalent economic value would exceed the costs
of developing an appropriate attack by several orders of magnitude.

We may consider a watermarking technique secure, if the cost for obtaining
an unlicensed IP core and developing a removal attack is higher than to purchase
the IP core.

Let AY be an algorithm which is able to transform a watermarked IP core ĨY
at the abstraction level Y into an IP core with removed or disabled watermark
I ′Y = AY (ĨY ). Let C(·) be a cost function. Furthermore, denote CD(·) as the
development cost of a specified IP core or attack and CP (·) the purchase cost
of an IP core. Let CO(·) denote the cost to obtain an (unlicensed) IP core.
Note that this cost may vary between the costs for copying the core from an
arbitrary source and those for purchasing it. We define a watermarked core ĨY
to be secure against attacks if attacks produce higher costs than the legal use of
the core. Instead of requiring computational infeasibility, it is enough to fulfill:

CP (ĨY ) < CD(IY ) ≤ (CO(ĨY ) + CD(AY )). (1)

Furthermore, a reverse engineering step to a higher abstraction level and the
development of an attacker algorithm on this level might be cheaper than the
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development of an attacker algorithm on the lower abstraction level. Therefore,
we must also consider the usage of reverse engineering:

CP (ĨY ) < CD(IY ) ≤ (CO(ĨY ) +C(TX←Y (ĨY )) +CD(AX(ĨX)) +C(TX→Y (I ′X)).
(2)

Definition 1. An IP core watermarking scheme is called tI-resistant to removal
attacks if for any attacker A and any IP core ĨY of a given abstraction level
Y and watermarked by WY , it is either computationally infeasible to compute
I ′Y = A(ĨY ) with DistY (ĨY , I ′Y ) < tI and DY (I ′Y ,WY ) = false or produces
higher costs than its legal use.

The term tI-resistant means that the watermark scheme is resistant against
removal attacks with respect to the threshold value tI . If the distance exceeds
tI , the works cannot be counted as identical. For example, if the attacker creates
a completely new work, the watermark is also removed, but the works are not
the same. The phrase computationally infeasible follows the standard definition
from cryptography. Something is computationally infeasible if the cost (e.g.,
memory, runtime, area) is finite but impossibly large [6]. Here, this is true if the
probability Pr[AY (ĨY ) = I ′Y ] is negligible with respect to the problem size n. A
quantity X is negligible with respect to n if and only if for all sufficiently large
n and any fixed polynomial q(·) (the attacker AY is defined as an algorithm of
polynomial complexity), we have X < 1/q(n) [17].

In other words, with a sufficiently large problem size of watermarked work ĨY ,
resistance against removal attacks means that the attacker is unable to remove
the watermark as the problem size is beyond the computational capability of
the attacker, unless the resulting work is perceptually different from the original
work.

For ambiguity attacks where an attacker tries to counterfeit the ownership
or to achieve an ownership deadlock, the attacker searches for a fake watermark
inside the IP core. This can be done by analyzing the IP core and searching for
a structural or statistical feature which might be suitable to be interpreted as
a fake watermark. However, the published IP core may be delivered in different
target technology versions, for example, for an ASIC design flow or for different
FPGA target devices. This fake watermark must of course be present in any
other distributed version of the IP core in order to guarantee the attacker’s
authentic evidence of ownership. Furthermore, the attacker must present a fake
original work and the evidence of a comprehensible watermark generation from
a unique key, which clearly identifies the attacker. These are all reasons why
ambiguity attacks are very difficult in the area of IP core watermarking.

Definition 2. An IP core watermarking scheme is called resistant to ambiguity
attacks if for any attacker A and any given IP core ĨY of a certain abstrac-
tion level Y and watermarked by WY , it is either computationally infeasible to
compute a valid watermark W ′Y such that DY (ĨY ,W ′Y ) = true or produces more
costs than its legal use.
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In case of key copy attacks, the key of a credible author is used to watermark
a work with lower quality. In general, it should be impossible for an attacker
to create a work I ′Y which is distinguishable from any work of another author
where the key or watermark of a credible author can be found.

Definition 3. A watermarking scheme is tI-resistant to key copy attacks if for
any attacker AY and any work ĨY = EY (IY ,WY ) for some original IY and the
watermark WY , it is computationally infeasible for AY to compute a work I ′Y
such that Dist(IY , I ′Y ) > tI , yet DY (I ′Y ,WY ) = true [17].

To prevent key copy attacks, a private/public key algorithm, like RSA [18]
can be used. RSA is an asymmetrical cryptography method that is based on
factorization of a number into prime numbers. The author encrypts a message
which clearly identifies the author and the work with his private key. The work
can be identified by a hash value over the original work. This encrypted message
is now used for generating the watermark and embedded inside the work. Stealing
this watermark is useless, because everyone can decrypt the message with the
public key, whereas no one can alter this message.

4 Watermark Verification Strategies for Embedded
FPGAs

The problem of applying watermarking techniques to FPGA designs is not the
coding and insertion of a watermark, rather it is the verification with an FPGA
embedded in a system that poses the real challenge. Hence, our methods concen-
trate in particular on the verification of watermarks. When considering finished
products, there are five potential sources of information that can be used for
extracting a watermark: The configuration bitfile, the ports, the power con-
sumption, electromagnetic (EM) radiation, and the temperature.

If the developer of an FPGA design has disabled the possibility to simply read
back the bitfile from the chip, it can be extracted by wire tapping the communi-
cation between the PROM and the FPGA. Some FPGA manufactures provide
an option to encrypt the bitstream which will be decrypted only during config-
uration inside the FPGA. Monitoring the communication between PROM and
FPGA in this case is useless, because only the encrypted file will be transmitted.
Configuration bitfiles mostly use a proprietary format which is not documented
by the FPGA manufacturers. However, it seems to be possible to read out some
parts of the bitfile, such as information stored in RAMs or lookup tables. In Sec-
tion 5, we introduce a procedure in which the watermarks are inserted into an
IP core specified on the logic level in form of a netlist and can then be extracted
from the configuration bitstream.

Another popular approach for retrieving a signature from an FPGA is to
employ unused ports. Although this method is applicable to top-level designs,
it is impractical for IP cores, since these are mostly used as components that
will be combined with other resources and embedded into a design so that the
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ports will not be directly accessible any more. Due to these restrictions, we do
not discuss the extraction of watermarks over output ports.

Furthermore, it is possible to force patterns on the power consumption of an
FPGA, which can be used as a covert channel to transmit data to the outside
of the FPGA. We have shown in [27] and [24] that the clock frequency and
toggling logic can be used to control such a power spectrum covert channel.
The basic idea to use these techniques for watermarking is to force a signature
dependent toggle pattern and extract the resulting change in power consumption
as a signature from the FPGA’s power spectrum. We refer to this method as
“Power Watermarking” in Section 6

With almost the same strategy it is also possible to extract signatures from
the electro magnetic (EM) radiation of an FPGA. A further advantage of this
technique is that a raster scan of an FPGA surface with an EM sensor can also
use the location information to extract and verify the watermark. Unfortunately,
more and more FPGAs are delivered in a metal chip package which absorbs
the EM radiation. Nevertheless, this is an interesting alternative technique for
extracting watermarks and invites for future research.

Finally, a watermark might be read out by monitoring the temperature radia-
tion. The concept is similar to the power and EM-field watermarking approaches,
however, the transmission speed is drastically reduced. Interestingly, this is the
only watermarking approach which is commercially available [11]. Here, reading
the watermark from an FPGA may take up to 10 minutes.

5 Watermark Verification using the FPGA Bitfile

In this section we present a method where an embedded signature is extracted
from an FPGA bitfile. We start out by discussing how the contents of the lookup
tables may be extracted from the FPGA bitfile. Following, a watermarking
method for netlist cores is proposed (see also [20]).

5.1 Lookup Table Content Extraction

In order to harden the watermark against removal it is very important to in-
tegrate the watermark into the functional parts of the IP core, so that simply
removing the mark carrying components would damage the core. For FPGA de-
signs, the functional lookup tables are an ideally suited component for carrying
watermarks. From a finished product, it is possible to obtain the configuration
bitstream of the FPGA. The extraction of the lookup table contents from the
configuration bitfile depends on the FPGA device and the FPGA vendor. To
read out the LUT content directly from the bitfile, it must be known at which
position in the bitfile the lookup table content is stored and how these values
must be interpreted. In [22], for example, a standard black-box reverse engineer-
ing procedure is applied to interpret Xilinx Virtex-II and Virtex-II Pro bitfiles.
To generalize this approach, we define a lookup table extractor function LX(·)
for the abstraction level X. The extractor function is able to extract the lookup
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table content of a work IX as follows: LX(IX) = {xX1 , xX2 , . . . , xXm}, whereas
xXi

is a lookup table content element of the abstraction level X, and m is the
number of used lookup tables. The extraction function can be applied to extract
the lookup table contents of a design IB of the bitfile on abstraction level B:
LB(IB) = {xB1 , xB2 , . . . , xBq

}. Each element xBi
consists of the lookup table

content as well as the (xS , yS) coordinates of the corresponding lookup table.

5.2 Watermarks in Functional LUTs for Netlist Cores

Since we want to keep the IP core as versatile as possible, we watermark the
design in the form of a netlist representation, which, although technology depen-
dent to a certain degree, can still be used for a large number of different devices.
Netlist designs will almost certainly undergo the typical design flow for silicon
implementations. This also includes very sophisticated optimization algorithms,
which will eliminate any redundancy that can be found in the design in order to
make improvements. As a consequence it is necessary to embed the watermarks
in the netlist in such a way, that the optimization tools will not remove the
watermarks from the design. In Xilinx FPGAs, for example, lookup tables are
essentially RAM cells, with the inputs specifying which of the stored bits to de-
liver to the output of the RAM. Naturally, these cells can therefore also be used
as storage, but also as shift-register cells (see Figure 4). Interesting, however, is
the fact that if the cell is configured as a lookup table, Xilinx optimization tools
will try to optimize the contained logic function. If the cell is in contrast con-
figured as a shift-register or distributed RAM, the optimization tools will leave
the contents alone, but the logic function is still carried out. This means, that
if we want to add redundancy to a netlist, that is not removed by automized
tools, all we have to do is to take the corresponding cells out of the scope of the
tools. FPGAs usually consist of the same type of lookup tables with respect to
the number of inputs. For example, the Xilinx Virtex-II uses lookup tables with
four inputs whereas the Virtex-5 has lookup tables with six inputs. However, in
common netlist cores many logical lookup tables exist, which have less inputs
than the type used on the FPGA. These lookup tables are mapped to the phys-
ical lookup tables of the FPGA during synthesis. If the logical lookup table of
the netlist core has fewer inputs than the physical representation, the memory
space which was not present in the logical representation remains unused. Using
the unused memory space of functional lookup tables for watermarking with-
out converting the lookup table either to a shift register or distributed memory
turns out to be not applicable, because design flow tools identify the watermark
as redundant and remove the content due to optimization. Converting the wa-
termarked functional lookup table into a shift register or a memory cell prevents
the watermark from deletion due to optimization.

Embedding the Watermark The first step of embedding a watermark is to
extract all lookup tables from a given netlist core IL: LL(IL) = {lutL1 , lutL2 , . . . ,
lutLr

}, where L denotes the logic abstraction level used for netlist cores (see Fig-
ure 5). Each element lutLi

denotes a lookup table primitive cell in the netlist
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Fig. 4. In the Xilinx Virtex architecture, a lookup table (LUT4) can also be configured
as a 16-bit shift-register lookup table(SRL16).

(e.g. for Virtex-II devices, LUT1, LUT2, LUT3, or LUT4). A watermark genera-
tor GL(·, ·) must know the different lookup table cells with the functional content
as well as the unique key K to generate the watermarks: GL(K,LL(IL)) = WL.

From the unique key K a secure pseudo random sequence is generated. Some
or all of the extracted lookup table primitive cells are chosen to carry a water-
mark. Note that only lookup tables from the netlist core can be chosen which use
less inputs than the physical lookup tables on the FPGA. Usually a core which
is worth to be watermarked consists of many markable lookup tables. Now, the
lookup tables are transformed to shift registers, ordered, and the first 4 bits of
the free space are used for a counter value. The other bits are initialized ac-
cording to the position with values from the pseudo random stream, generated
from the key K. Note that the number of bits which can be used for the random
stream depends on the original functional lookup table type.

The generated watermark WL consists of the transformed shift registers:
WL = {srlL1 , srlL2 , . . . , srlLk

} with k ≤ r. The watermark embedder EL inserts
the watermarks into the netlist core IL by replacing the corresponding original
functional lookup tables with the shift registers: EL(IL,WL) = ĨL. The water-
marked work ĨL can now be published and sold.

Extraction of the Watermark The purchased core ĨL can now be combined
by a product developer with other purchased or self developed cores and imple-
mented into an FPGA bitfile: ÎB = TL→B(ĨL ◦ I ′L1

◦ I ′L2
◦ . . .) (see Figure 5).

An FPGA which is programmed with this bitfile ÎB may be part of a product.
If the product developer is accused of using an unlicensed core, the product can
be purchased and the bitfile can be read out, e.g., by wire tapping. The lookup
table content and the content of the shift registers can be extracted from the
bitfile: LB(ÎB) = {x̂B1 , x̂B2 , . . . , x̂Bq}.

The lookup table or shift register elements xBi
belong to the device abstrac-

tion level B. The representation can differ from the representation of the same
content in the logic abstraction level L. For example, in Xilinx Virtex-II FP-
GAs the encoding of the shift register differs from the encoding of lookup tables.
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Fig. 5. The netlist core watermarking system. The embedding system is responsible
for extracting the lookup tables from the netlist core, selecting suitable locations and
embedding the watermarks in those LUTs that were converted into shift-registers. A
product developer may obtain such a watermarked netlist core and combine it with
other cores into a product. The lookup tables from the product can be extracted and
transformed so that the detector can decide if the watermark is present or not.

For shift registers the bit order is reversed compared to the lookup table en-
codings. Therefore, the bitfile elements must be transferred to the logic level by
the corresponding decoding. This can be done by the reverse engineering opera-
tor : TL←B(LB(ÎB)) = {x̂L1 , x̂L2 , . . . , x̂Lq

}. Reverse engineering lookup table or
shift register content is however very simple compared to reverse engineering the
whole bitfile. Now, the lookup table or shift register content can be used for the
watermark detector DL which can decide if the watermark WL is embedded in
the work or not: DL(WL, {x̂L1 , x̂L2 , . . . , x̂Lq}) = true/false.

Robustness Analysis To recall Section 3, the most important attacks are
removal, ambiguity, key copy, and copy attacks. As stated before, a possible
protection against copy attacks does not exists and key copy attacks can be
prevented by using an asymmetric cryptographic method, like RSA.

Removal attacks most likely occur on the logic level, after obtaining the un-
licensed core and before the integration with other cores. The first step of a
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removal attack is the detection of the watermarks. The appearance of the shift
register primitive cells (here SRL16) in a netlist core is not suspicious because
shift registers appear also in unwatermarked cores. However, the cumulative ap-
pearance may be suspicious, which may alert an attacker. In contrast to bitfiles,
the signal nets can be easily read out from a netlist core. An attacker may ana-
lyze the net structures of shift registers in order to detect the watermarked cells.
This might be successful, however, we can better hide the watermark if we alter
the encoding of the watermark and, therefore, the connections to the watermark
cell. The reachable functional part of the shift register can be shifted to other
positions by using other functional inputs and clamping the remaining inputs to
different values. If a watermark cell is detected by an attacker, he cannot eas-
ily remove the cell, because the cell also has a functional part. By removing the
cell, the functional part is removed and the core is damaged. Therefore, after the
detection of the watermark, the attacker must either decode the content of the
watermarked shift register to extract the functional part and insert a new lookup
table, or overwrite the watermarked part of the cell with other values, so the
watermark is not detectable any more. The different encodings of the functional
part of the shift register content complicates the analysis and the extraction of
it. Furthermore, even if some watermarks are removed, the establishment of the
right ownership of the core is still possible, because we need not all watermarked
cells for a successful detection of the signature.

In case of ambiguity attacks, an attacker analyzes the bitfile or the netlist to
find shift register or lookup table contents which may be suitable to build a fake
watermark. However, the attacker must also present the insertion procedure to
achieve a meaningful result. Due to the usage of secure one way cryptographic
functions for generating the watermark, the probability of a success is very low.
Furthermore, the attacker can use a self-written netlist core which he water-
marked with his signatures and combine it with the obtained unlicensed core.
The result is, that the watermarks of the authors of both cores are found in the
bitfile, which are both trustful. Inside the unique key K, not only the author
information should be included but also information of the core, e.g., a hash
value over the netlist core file without the watermark. Of course, the attacker
can use the identification of the obtained unlicensed core for watermarking his
core. However, to generate a hash value of the obtained core without watermarks,
he must first remove the marks. In general, attacks against this approach are
possible, but they need a high amount of effort. To increase the security against
ambiguity attacks, the core may be registered at a trusted third party.

6 Power Watermarking

This section describes watermarking techniques introduced in [27] and [24],
where a signature is verified over the power consumption pattern of an FPGA.
The presented idea is new and differs from [14] and [3] where the goal of using
power analysis techniques is the detection of cryptographic keys and other secu-
rity issues. For power watermarking methods, the term signature refers to the
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Fig. 6. Watermark verification using power signature analysis: From a signature (wa-
termark), a power pattern inside the core will be generated that can be probed at the
voltage supply pins of the FPGA. From the trace, a detection algorithm verifies the
existence of the watermark.

part of the watermark which can be extracted and is needed for the detection
and verification of the watermark. The signature is usually a bit sequence which
is derived from the unique key for author and core identification.

There is no way to measure the relative power consumption of an FPGA
directly. Only by measuring the relative supply voltage or current the actual
power consumtion can be inferred. We have decided to measure the voltage of
the core as close as possible to the voltage supply pins such that the smoothing
from the plane and block capacities are minimal and no shunt is required. Most
FPGAs have ball grid array (BGA) packages and the majority of them have
vias to the back of the PCB for the supply voltage pins. So, the voltage can
be measured on the rear side of the PCB using an oscilloscope. The voltage
can be sampled using a standard oscilloscope, and analyzed and decoded using
a program developed to run on a PC. The decoded signature can be compared
with the original signature and thus, the watermark can be verified. This method
has the advantage of being non-destructive and requires no further information
or aids than the given product (see Figure 6).

In the power watermarking approach described in [26] and [27], the amplitude
of the interferences in the core voltage is altered. The basic idea is to add a
power pattern generator (e.g., a set of shift registers) and clock it either with



18 Daniel Ziener, Moritz Schmid, and Jürgen Teich

the operational clock or an integer division thereof. This power pattern generator
is controlled according to the encoding of the signature sequence which should
be sent.

The mapping of a signature sequence s = {0, 1}n onto a sequence of symbols
{σ0, σ1}n [24] is called encoding: {0, 1}n → Zn, n ≥ 0 with the alphabet Z =
{σ0, σ1}. Here, each signature bit {0, 1} is assigned to a symbol. Each symbol σi

is a triple (ei, δi, ωi), with the event ei ∈ {γ, γ̄}, the period length δi > 0, and the
number of repetitions ωi > 0. The event γ is power consumption through a shift
operation and the inverse event γ̄ is no power consumption. The period length
is given in terms of number of clock cycles. For example, the encoding through
32 shifts with the period length 1 (one shift operation per cycle) if the data bit
’1’ should be sent, and 32 cycles without a shift operation for the data bit ’0’ is
defined by the alphabet Z = {(γ, 1, 32), (γ̄, 1, 32)}.

Different power watermarking encoding schemes were introduced and ana-
lyzed in [27] and [24]. This includes the basic method with encoding scheme: Z =
{(γ, 1, 1), (γ̄, 1, 1)}, the enhanced robustness encoding: Z = {(γ, 1, 32), (γ̄, 1, 32)},
the BPSK approach: Z = {(γ, 1, ω), (γ̄, 1, ω)}, and the correlation method with
encoding Z = {(γ, 25, 1), (γ̄, 25, 1)}. To avoid interference from the operational
logic in the measured voltage, the signature is only generated during the reset
phase of the core.

The power pattern generator consists of several shift registers, causing a
recognizable signature- and encoding-dependent power consumption pattern. As
mentioned before in Section 5.2, a shift register can also be used as a lookup
table and vice versa in many FPGA architectures (see Figure 4 in Section 5.2).
A conversion of functional lookup tables into shift registers does not affect the
functionality if the new inputs are set correctly. This allows us to use functional
logic for implementing the power pattern generator. The core operates in two
modes, the functional mode and the reset mode. In the functional mode, the shift
is disabled and the shift register operates as a normal lookup table. In the reset
mode, the content is shifted according to the signature bits and consumes power
which can be measured outside of the FPGA. To prevent the loss of the content
of the lookup table, the output of the shift register is fed back to the input, such
that the content is shifted circularly. When the core changes to the functional
mode, the content have to be shifted to the proper position to get a functional
lookup table for the core.

To increase the robustness against removal and ambiguity attacks, the con-
tent of the power consumption shift register which is also part of the functional
logic can be initialized shifted. Only during the reset state, when the signa-
ture is transmitted, the content of the functional lookup table can be positioned
correctly. So, normal core operation cannot start before the signature was trans-
mitted completely. The advantage is that the core is only able to work after
sending the signature. Furthermore, to avoid a too short reset time in which
the watermark cannot be detected exactly, the right functionality will only be
established if the reset state is longer than a predefined time. This prevents the
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user from leaving out or shorten the reset state with the result that the signature
cannot be detected properly.

The signature itself can be implemented as a part of the functional logic
in the same way. Some lookup tables are connected together and the content,
the function of the LUTs, represents the signature. Furthermore, techniques
described in Section 5.2 can be used to combine an additional watermark and
the functional part in a single lookup table if not all lookup table inputs are used
for the function. For example, LUT2 primitives in Xilinx Virtex-II devices can
be used to carry an additional 12-bit watermark by restricting the reachability of
the functional lookup table through clamping certain signals to constant values.
Therefore, the final sending sequence consists of the functional part and the
additional watermark. This principle makes it almost impossible for an attacker
to change the content of the signature shift register. Altering the signature would
also affect the functional core and thus result in a corrupt core.

The advantages of using the functional logic of the core as a shift register
are the reduced resource overhead for watermarking and the robustness of this
method. It is hard, if not impossible, to remove shift registers without destroying
the functional core, because they are embedded in the functional design. The
watermark embedder EL(IL,WL) = ĨL consists of two steps. First, the core IL
must be embedded in a wrapper which contains the control logic for emitting the
signature. This step is done at the register-transfer level before synthesis. The
second step is at the logic level after the synthesis. A program converts suitable
lookup tables (for example LUT4 for Virtex-II FPGAs) into shift registers for the
generation of the power pattern and attaches the corresponding control signal
from the control logic in the wrapper. The wrapper contains the control logic for
emitting the watermark and a register that contains the signature. The ports of
the wrapper are identical to the core, so we can easily integrate this wrapper into
the hierarchy. The control logic enables the signature register while the core is in
reset state. Also, the power pattern shift registers are shifted in correspondence
to the current signature bit. If the reset input of the wrapper is deasserted, the
core function cannot start immediately, but only as soon as the content in the
shift registers has been shifted back to the correct position. Then the control logic
deasserts the internal reset signal to enter normal function mode. The translation
of four input lookup tables (LUT4) of the functional logic into 16 Bit shift
registers (SRL16) is done at the netlist level. The watermarked core ĨL is now
ready for purchase or publication. A company may obtain an unlicensed version
of the core ÎL and embeds this core in a product: ÎP = TL→B(ÎL ◦I ′L1

◦I ′L2
◦ . . .).

If the core developer has a suspicious fact, he can buy the product and verify
that his signature is inside the core using a detection function DP (ÎP ,WL) =
true/false. The detecting function depends on the encoding scheme. In [27] and
[24], the detecting functions of all introduced encoding schemes are described in
detail.

The advantage of power watermarking is that the signature can easily be
read out from a given device. Only the core voltage of the FPGA must be mea-
sured and recorded. No bitfile is required which needs to be reverse-engineered.



20 Daniel Ziener, Moritz Schmid, and Jürgen Teich

Also, these methods work for encrypted bitfiles where methods extracting the
signature from the bitfile fail. Moreover, we are able to sign netlist cores, because
our watermarking algorithm does not need any placement information. However,
many watermarked netlist cores can be integrated into on design. The results are
superpositions and interferences which complicate or even prohibit the correct
decoding of the signatures. To achieve the correct decoding of all signatures, we
proposed multiplexing methods in [23].

Robustness Analysis The most common attacks against watermarking men-
tioned in Section 3 are removal, ambiguity, key copy, and copy attacks. Once
again, key copy attacks can be prevented by asymmetric cryptographic meth-
ods, and there is no protection against copy attacks.

Removal attacks most likely take place on the logic level instead of the device
level where it is really hard to alter the design. The signature and power shift
registers as well as the watermark sending control logic in the wrapper are mixed
with functional elements in the netlist. Therefore, they are not easy to detect.
Even if an attacker is able to identify the sending logic, a deactivation is useless
if the content of the power shift register is only shifted into correct positions
after sending the signature. By preventing the sending of the watermark, the
core is unable to start. Another possibility is to alter the signature inside the
shift register. The attacker may analyze the netlist to find the place were the
signature is stored. This attack is only successful if there is no functional logic
part mixed with the signature. By mixing the random bits with functional bits,
it is hard to alter the signature without destroying the correct functionality of
the core. Therefore, this watermark technique can be considered as resistant
against removal attacks.

In case of ambiguity attacks, an attacker analyses the power consumption
of the FPGA in order to find a fake watermark, or to implement a core whose
power pattern disturbs the detection of the watermark. In order to trustfully fake
watermarks inside the power consumption signal, the attacker must present the
insertion and sending procedure which should be impossible without using an
additional core. Another possibility for the attacker is to implement a disturbance
core which needs a lot of power and makes the detection of the watermark
impossible. In [27] and [24], enhanced robustness encoding methods are presented
which increase the possibility to decode the signature, even if other cores are
operating during the sending of the signature. Although a disturbance core might
be successful, this core needs area and most notably power which increases the
costs for the product. The presence of a disturbance core in a product is also
suspicious and might lead to further investigation if a copyright infringement has
occurred. Finally, the attacker may watermark another core with his watermark
and claim that all cores belong to him. This can be prevented by adding a
hash value of the original core without the watermark to the signature like in
the bitfile watermarking method for netlist cores. The sending of watermarks of
multiple cores at the same time is addressed in [23].
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7 Conclusions

In this paper, we have presented exemplary two different approaches for water-
marking of IP cores. Our methods follow the strategy of an easy verification
of the watermark or the identification of the core in a bought product from an
accused company without any further information. Netlist cores, which have a
high trade potential for embedded systems developers, are in the focus of our
analysis. To establish the authorship in a bought product by watermarking or
core identification, we have discovered different new techniques, how information
can be transmitted from the embedded core to the outer world. In this paper,
we concatenated on methods using the FPGA bitfile which can be extracted
from the product and on methods where the signature is transmitted over the
power pins of the FPGA. In Section 3, we adapt the theoretical general water-
mark approach from Li et al. [17] for IP core watermarking and show possible
threats and attacks. Section 5 deals with IP core watermarking methods where
the authorship is established by analysis of the extracted bitfile. In Section 6,
we have described watermark techniques for IP cores where the signature can
be extracted easily over the power pins of the chip. The main idea is that during
a reset phase of a chip, a watermark circuit is responsible to emit a character-
istic power pattern sequence that may be measured by voltage fluctuations on
power pins. With these techniques, it is possible to decide with high confidence,
whether an IP core of a certain vendor is present on the FPGA or not. For
all methods, we analyzed the strengths and weaknesses in case of removal of
ambiguity attacks.
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