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Abstract. We describe a solution for physically obfuscating the rep-
resentation of a cipher, to augment chips resistance against physical
threats, by combining ideas from masking techniques and Physical Ob-
fuscated Keys (POKs). With embedded chips — like RFID tags — as main
motivation, we apply this strategy to the representation of a Linear Feed-
back Shift Register (LFSR).

The application of this technique to LFSR-based stream ciphers, such
as the Self Shrinking Generator, enables to share key materials between
several chips within a system while increasing the resistance of the sys-
tem against compromise of chips. An extension of our ideas to non-linear
ciphers is also presented with an illustration onto Trivium.
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1 Introduction

Physical Obfuscated Keys (POK) [14] are a means to store keys inside an Inte-
grated Circuit (Section [). Their use is based on the paradigm that an unau-
thorized access to a value represented by a POK will affect the behavior of this
POK and make it non-operational. This way, when an adversary compromises a
chip to read a key, he will not be able to use the same POK again. In particular,
when different values are represented by the same POK, a compromise at some
time will render activation of further values impossible. This type of situation
has been considered in [I4] with a general line of defense for POKs: split the
computations with a key K in two steps, one related to a random key K’ and
the other one to another key K’ where the pair (K’, K”') depends solely on the
chip implementing the POK. Doing that, when a chip is tampered with, this will
not allow an adversary to recover the key K or to interfere on the value of K
contained in another chip. Here the difficulty is to find a way to split the cryp-
tographic computations. This is illustrated with public key encryption schemes
based on exponentiation by the key in [I4]. [7] describes the modification of an
existing protocol relying on an XOR with a key to incorporate POKs’ trick.
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In the paper, we extend this idea by combining physical obfuscated keys and
classical masking techniques, similar to that used to counter Side Channel Anal-
ysis (SCA) attacks, to construct physically obfuscated ciphers. Indeed splitting
the computation in several steps is essentially the goal of masking techniques or
masked logic to thwart SCA attacks (see for instance [29,3] for masked AND
and XOR applied to the AES). And we illustrate here how this strategy can be
employed successfully via POKs for obfuscating the secret material of a cipher.
Some other related techniques are secret sharing techniques [31].

As a proof-of-concept, we apply this strategy to the general case of linear
feedback shift registers (LFSR). LFSRs are easy to design and to implement
with low hardware requirements. The operations of a LFSR are deterministic,
which means that a polynomial and a state completely determine the next output
values. For a system with shared materials between several tags, the use of the
same LFSR and initial value, for instance to generate a key stream, would thus
face the problem of resistance of tags against compromise: the opening of one
tag gives the possibility to know the key stream of other tags. We explain here
how to hide the value of the state and the polynomial during the execution by
implementing the operations with POKs.

Our main achievement is to show that it is possible to hide their content and
their connections by making use of POKs (Section B]). As an immediate applica-
tion of our proposal, we introduce an implementation of LFSR-based hashing for
message authentication [23] (Section []). As LFSR is a very popular primitive
in the design of stream-ciphers, we also give examples in this context and ex-
plain how POKs can be adapted to handle some small non-linear operations. As
a relevant example, we give details of an obfuscated version of the Self-Shrinking
Generator [27] (Section {2)). Finally, we modify further our techniques to be able
to protect the Trivium stream-cipher [8] with POKs (Section f.3]). Moreover our
strategy is quite general and can be applied to other ciphers.

To conclude, we want to stress the fact that POKs do not make use of mem-
ories to store keys and need only few hardware resources to be implemented.
They are well-suited for very constrained chips or those only allowing a small
amount of their capacity to cryptographic computations. Our constructions show
that they can also provide some inherent resistance against tampering. We thus
think that RFID tags are targets of choice for implementing the results of our

paper.

2 Physically Obfuscated Key

In [T4], it is shown how to implement a key with a Physical Unclonable Function
(PUF) by applying a fixed hard-wired challenge to the PUF (cf. Appendix [A]
for description of the notion of PUF); this implementation is called a Physically
Obfuscated Key (POK). In fact, using different challenges, several POKs can be
obtained from one PUF. In the sequel, we refer to a POK as a value, stored in a
tag, which is accessible only after the underlying PUF is stimulated; once erased
from volatile memory, the value of the key is no longer available.
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Fig. 1. Example of POK

To be able to set a POK to a chosen value, the output of the PUF — which
cannot be chosen — can be combined to some fuse (or any data stored in the
EEPROM) via an exclusive-or operation (Figure [[). In the sequel, we assume
that any implemented POK is obtained via an I-PUF (cf. Appendix [A]), which
gives us the following property.

Property 1. Any corruption of or intrusion into the chip leads to the end-of-life
of the chip: an adversary could not continue to use the chip, particularly he can
only obtain information on the content of the memory at this time and could
not access the others POKs (if any) implemented in it.

More generally, inside a chip, we say that a primitive is physically obfuscated
when it is implemented via some POKs so that an adversary could not learn any
secret information from an intermediate result obtained by opening the chip.

3 Physically Obfuscated Linear Feedback Shift Register

A linear feedback shift register (LFSR) is a binary shift register where the up-
date of the input bits are made via a linear function of the previous ones. The
initial value of a LFSR is called the seed, the current input bits in the register
are the current state and the update of the state is the result of the evaluation
of a feedback function — represented by a so-called feedback polynomial — corre-
sponding to exclusive-or of some bits at given positions (the connecting taps) of
the state.

We consider here a linear feedback shift register (LFSR) of length L with
a feedback polynomial P € GF(2)[X] of degree L. The polynomial is often
chosen to be primitive to obtain a LFSR of maximal period 2 — 1. This avoids
the occurrence of repeating cycle after a short delay. Let P = Zf:o apX”, let
SY = (sg,...,5r_1) be the initial state of the LFSR. Then the next state is
St = (s1,...,81-1,51) where sy, is the value agso ® --- ® ar_155_1, and sq is
outputted. More generally, S™ denotes the n-th state.

3.1 Obfuscation of Basic Operations

Let I > 1. For i € {1,2,3}, let K[i] be a [-bit vector, implemented by two POKs
K|[i)', K[i]” such that K[i] = K[i]' © K[i]". Let x and y be two [-bit vectors.

Definition 1. A physically obfuscated XOR, denoted by poXOR, corresponds to
the computation of a masked XOR of two masked inputs. poXOR;(z & K[1],y &
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Table 1. poXOR,;(z @ K[1],y @ K[2], K[1], K[2], K[3]) implementation

LSetz=(za K1) (yaK[2)=(xay) e (K[1]e K[2])
2. Fort =1 to 3 do

activate K[i]’, update z <+ z @ K[i]’, erase K[i]' from memory
End For
3. Fort=1to 3 do

activate K[i]”, update z «— z @ K[i]"”, erase K[i]” from memory
End For
4. Output z

K|[2], K[1], K[2], K[3]) is the computation of x®y® K |[3] with the inputs x® K[1]
and y @ K[2] and is implemented as in Table [l

It is straightforward to check that poXOR;(z & K[1],y & K[2], K[1], K[2], K[3])
outputs the desired value, x @ y @ K[3]. Moreover, thanks to the POKs Property
[ (see page[@0), we ensure the physical obfuscation of the XOR.

Lemma 1. poXOR is a physically obfuscated primitive.

Proof. (sketch) The implementation of poXOR does not leak information to an
adversary on z,y,x @ y, K[1], K[2] or K[3]. Indeed, recall that an adversary A
can eavesdrop on the memory only once before destroying the chip. We assume
that A already knows the inputs z @ K[1] and y ® K[2] and the output = &
y @ K3]. If he corrupted the chip in step 1, he would learn nothing more. If he
corrupted the chip during the step 2, say when ¢ = 2, he would learn K[2]" and
(xdy)® (K[1])" @ K[2]"”). If he corrupted the chip during the step 3, say whence
i = 1, he would learn K[1]” and (x @ y) @ K[2]” @ K[3]). In any case, A does
not gain information on the un-masked result & y or on the un-masked inputs
z,y. O

From poXOR, we deduce another interesting physically obfuscated operation,
poConvert, which converts the mask of a physically masked value into another
mask. poConvert;(z @ K[1], K[1], K[3]) takes as input = @ K[1] and outputs = @®
K |[3]; it is implemented via poXOR;(z ® K[1],0, K[1],0, K[3]). And the property
of lemma [] holds.

Let now K[3] be restricted to a 1-bit vector.

Definition 2. We define the function semipoScalar as the masked scalar product
of a first non-masked input with a second masked input (the term Semi underlines
this asymmetry). semipoScalar;(z,y ® K[2], K[2], K[3]) is the computation of (z -
y) ® K[3] with the inputs x and y ® K[2] (cf. Table[d).

As for poXOR, this implementation with sequential activation of the POKs im-
plies that semipoScalar is physically obfuscated: no information on y, K[2], K[3]
or (z-y) are leaked.

Lemma 2. semipoScalar is a physically obfuscated primitive.
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Table 2. semipoScalar;(z,y ® K[2], K[2], K[3]) implementation

1.Set z =2 - (y ® K[2])

2. Activate K[2]', update z < 2z @ (z - K[2]'), erase K[2]' from memory
3. Activate K[3]', update z «— z @ K[3]’, erase K[3]' from memory

4. Activate K[2]”, update z « z @ (z - K[2]"), erase K[2]” from memory
5. Activate K[3]"”, update z « z @ K|3]", erase K|[3]"” from memory

6. Output z

For | = 1, semipoScalar corresponds to a AND operator. Here only one input can
be masked; for both inputs to be masked, i.e. for a general obfuscated scalar
product, we need a slightly more complex implementation as the operations
related to the POKs are not linear anymore. This is illustrated on the AND
operator in section 3]

For all above primitives, note that no mask (K.S[3]) needs to be applied to
the output whence the latter does not need to be protected. In that case, it does
not alter the physical obfuscation of the others values (un-masked inputs, K[1]
and K2]).

3.2 Obfuscating the Taps

We now represent the operation of the feedback polynomial P = Zizo ar X" as
a scalar product by its coefficients, s, = S™ - KF, with KF = (ag,...,a5-1)
and S™ = (sp,...,8n+1—1). KF can be seen as a feedback key and for some
cryptographic primitives (cf. section @) we want to thwart an adversary to recover
it by opening a tag.

Let KF’ be a random L-bit vector and KF” = KF @& KF'; we also assume
that KF', KF" are implementing as physically obfuscated keys (POKs). The
computation of s, is thus seen as

Sn+1 = semipoScalary (S™,0, K F,0).

In contrast to the general use of semipoScalar in section Bl the output is not
masked here; only K F is to be kept obfuscated during execution. In addition to
the value of s,4r, an adversary who opens a tag during execution only learns
information either on K F’ or KF”, but not both at the same time, thanks to
the POKSs property [l As the separation of KF into KF’ & KF” can be made
different for each tag, he cannot recover K F from this information.

However from the knowledge of the value of s, 1, he gains some information
on K F if he also knows the value of . And from about L values S™ and s,
obtained by opening as many tags sharing the same KF', it is easy to recover
K F by solving a linear system. This issue is addressed in the sequel.

3.3 Towards Obfuscating the Taps and the State Simultaneously

To hide the state during execution of the register, we introduce another key K5,
called key state, with the intended goal to manage the state S masked by the
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key KS = (KSy,...,KS;_1) without letting the state appearing in clear. Here
the key KS can be different from one tag to another. It is the state S which
may be shared and consequently has to be protected, in particular if the initial
state corresponds to a shared key for a set of tags within the system.

Rather than the state S™, we store the value M™ = S™ & KS and want
to update the register directly via the masked state M"™ and the feedback key
KF. We think again of the sempoScalar solution, but as explained in section
BTl it is not straightforward to apply it when both inputs are masked. Here, we
choose K S such that KS- KF = 0 which leads to the simplification M" - KF =
(8" @ KS)- KF = S™- KF. To enable the update of the masked register, we
split the key K S into two POKs as in the previous section for KF. Let KS’ be
a random L-bit vector and KS” = KS & KS’. The operations of the previous
section are completed as follows.

After the computation of s,17, = semipoScalary (M™,0, KF,0), the register
outputs m,, = s, ® KSy and the state becomes

temp = ((Sn+1 O KS1, ... Snyrrp—1DKSp_1, 5n+L))«

Then, poConverty, (temp, K[1], K[3]) is run to update temp where K[3] = KS
and K[1] = (KS1..1-1]/0) the vector resulting from the concatenation of the
bits K Sy, ..., KSr_1 and the bit 0. Subsequently, the register state is updated
as M™ 1 = temp which is equal to S"T1 @ KS.

This doing and thanks to the splitting of the operations with two POKs, the
state is not available in clear for an adversary in the second step. Note that the
value s+ is not hidden in the first step. In the next section, we fuse the two
previous process to enable obfuscation of this value too.

3.4 Fill in the Gap

Given 2L consecutive bits of an outputted stream from an LFSR, it is known
that one can reconstruct an LFSR by using the Berlekamp-Massey [26] algorithm
which will produce the same stream. It emphasizes the interest to mask any bit
of the state whence the tags share the same feedback function and the same
initial state. We describe now the whole process which achieves obfuscation of
the feedback key and the state, including the new input bits s,.r and the
outputted bits.

We assume below that within a tag the LFSR is used as a key stream generator
to encrypt a message by xoring it. In the sequel, let x be the current bit to be
encrypted and assume that the current masked state is M"™ = S™ ¢ KS =
(sn ® KSo,8n41 ® KS1,... 80411 @ KSr_1). Note that all bits K5; of KS
can be seen as well as a combination of two 1-bit POKs, KS; = KS, & KS/.
The algorithm is split in consecutive steps as detailed in Table

Lemma 3. The LFSR implementation of Table [3 leads to a physically obfus-
cated primitive.

Proof. (sketch) Assume that = is unknown by the adversary then all bit values
of the state are always masked along the different steps, either by z, or a bit of
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Table 3. A physically obfuscated LFSR implementation

1. Set z = 5emipoScaIarL(M”, 0,KF, KSLfl).

2. The register outputs m, = s, & KSo and the state becomes temp =
($n+1 D KS1,...,8n40-1® KSp_1,2) with z = spy1 ® KSp_1.

3. Then set y = x & my, = x B s, ® KSo, erase x from memory, and output
poConvert, (y, KSo, 0).

4. Finally, temp «— poConverty (temp, K[1], K[3]) is run to update the reg-
ister with M"™*' = temp where K[1] = (KSi..r—1]|0) and K[3] =
(K So...L—2]|0).

KS, KS" or KS”. The important point now is that all these values are different
from one tag to another one, this means that even if an adversary succeeds in
obtaining N consecutive masked values, say sg+1 ® Qgy1,--.,Sk+N D apen of
the state by opening several tags (at least N, as opening a tag implementing
a POK implies its end-of-life prematurely), he cannot recover the value of the
state thanks to the bitwise independence of the bits agy1,..., k4N O

Corollary 1. The implementation above without the exrecution of the step 3
remains physically obfuscated, i.e. the state and the feedback key stay hidden;
which implementation we denote by poLFSRupdate.

4 Applications

4.1 Krawczyk’s MACs and LFSR-Based Hashing

[23] describes an efficient construction for Message Authentication Codes relying
on traditional hashing techniques. The basic idea is to use a family H of linear
hash functions which map {0,1}™ to {0,1}* in a balanced way. Interestingly,
such hashing family can be constructed as LFSR-based hashing. See Appendix
for a quick description of the MAC mechanism and the related notions.

An efficient solution using multiplication by matrices provided in [23] is to use
specific Toeplitz matrices which can be described by a LFSR. Let the LFSR be
represented by its feedback polynomial P, a primitive polynomial over GF'(2) of
degree L, and an initial state SY = (so,...,sz—1) # 0. Then hp go € H is defined
by the linear combinations hp4(X) = @?:01 z;.57 where X = (z0,...,Tm—1)
and S7 is the j-th state of the LFSR. This leads to an e-balanced family H (see
Definition @ in Appendix [B]) for at least e < /", as proved by [23]. Moreover,
a hash function hp go is easily implemented as the message authentication can
be computed progressively with an accumulator register which is updated after
each message bit: the implementation does not depend on the size m of X.

Let X = (x0,...,2Zm—1) be the message to be authenticated. We can man-
age the computation of hp go(x) in an obfuscated way thanks to the previous
algorithm for LFSR obfuscation. All updates of the LFSR are made thanks
to poLFSRupdate (modification of the method of section B4 where the step 3
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Table 4. A physically obfuscated LFSR-based hashing implementation

counter «— 0
result < (0,...,0)
Forn=0tom—1do
If (x; ==1) then
result «— result ® M"
counter «— counter & 1
End If
execute poLFSRupdate() to obtain M™T!
n«—n-+1
End For
If (counter == 0) then Output result
Else Output poConverty (result, K.S,0)
End If

is skipped). Let result be the variable which will correspond to the value of
hpso(z) at the end of the execution. Starting from the initial masked state
M" = S°¢ K S, we update the register m — 1 times and before each clocking, we
update the value of result. The execution is summarized in Table @ All compu-
tations to obtain hp go are made directly on the masked states and if necessary
(when the weight of z is odd) KS is used at the end to unmask the result.
Thanks to lemma [Tl and corollary [Il, we have the following results.

Lemma 4. The LFSR-based hashing implementation in Table[]) is a physically
obfuscated primitive.

Remark 1. This obfuscation can be for instance applied to the implementation
of an authentication protocol which makes use of LFSR-based hashing. It would
be a way to answer the possible weakness of use of LFSR in RFID tags as
underlined in [I3] where the LFSR feedback polynomial is assumed to be known
as soon it is the same in all tags. With our obfuscation technique this is not
anymore the case.

4.2 Self-shrinking Generator

The self-shrinking generator (SSG) [27] consists of one LFSR combined with
a so-called shrinking function. Let KF' be the feedback function of the LFSR
and SY = (s, ...,sz_1) be its initial state. The shrinking function f : GF(2) x
GF(2) — GF(2)U{e} is defined as follows: for (z,y) € GF(2)xGF(2), f(z,y) =
yif x =1, f(z,y) = € if x = 0, which could be interpreted as f(0,y) outputs
nothing. Hence a given output stream sy, ..., son of length 2N from the LFSR
is split in N couples and the shrinking function acts on each of them to output
at the end the bitstream f(so,s1)...f(san—1,s2n) of length < N. As empty
output may appear, the exact length is in fact hard to know in advance.
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The solutions described in section Bl can be applied to the LFSR. of the self-
shrinking generator, thus protecting the state and the feedback functiorl] against
an intrusive adversary. Nevertheless, one constraint arises with the use of the
shrinking function on the output bits: the value of the output bit in the algorithm
of section [3.4] can not be masked anymore by z in order to be able to compare it
with 0 or 1, which leads to a potential source of leakage. We have to distinguish
two situations:

— The tags share at most one of the following data — feedback key or (exclusive)
initial state, which means that the opening of different tags will not give
enough information to recover the shared data.

— The tags share both data, feedback key and initial state, and in that case,
the leakage of the output bit can afford to an adversary the possibility to
reconstruct the LFSR via Berlekamp-Massey, by opening many tags. To
avoid this, we suggest below a small modification of the SSG.

Masked SSG. We consider the algorithm poLFSRupdate of section B4 for the
execution of the LFSR assuming that it outputs the value m,, = s,, ® KSy. We
operate two bits by two bits for the shrinking function. I.e. we use the output
bits m,, = s, ® KSy and m,,+1 = sp+1 ® K.Sp.

Let x be the current bit to be encrypted, i.e. to be xored with the keystream
generated by the SSG. In our modification the shrinking check s, == 1 is
replaced by the check s, ® KSy == 1 (cf. TableHl). Note that this modification
does not change the standard analysis of SSG as K5y is a constant.

Table 5. A physically obfuscated SSG implementation

While m,, # 1
execute poLFSRupdate() twice to output two new bits (1M, mn4+1) (where
n <« n-+2)
End While
Set y = @ mpt1
Output poConvert, (y, KS0,0) (i.e. @ Spt1)-

Lemma 5. The above implementation of our modification of the SSG is physi-
cally obfuscated.

Remark 2. All LFSR-based stream ciphers are possible targets for our obfusca-
tion method as soon as operations remain linear. For instance, it can be adapted
for the shrinking generator [I0] or for some generalizations of the self-shrinking
generator [24,25]. LFSR-based stream ciphers with irregular clocking are also
good targets. These include as examples the Alternating Step Generator [I§],

! Note that for analysis of the SSG security, it is generally assumed that the feedback
polynomial is known; here we consider the case where the system may try to hide it
too.
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A5/1 [], or W7 [33]. To activate the clocking of some registers, clocking bits at
fixed position are used. If all initial data (states and feedback polynomials) are
not shared between several tags then those bits may be managed unmasked (in
some cases) to check whether a register might clock (e.g. for A5/1 this check is
made by a majority vote between the values of 3 bits coming from the 3 registers
of the cipher). If all data are shared, then to avoid the risk of compromise we
can modify slightly the scheme by checking the clocking condition directly on
the masked bits.

4.3 Trivium

Trivium [8,9] is a stream cipher which has been elected as one of the three
hardware oriented stream ciphers of the eStream project portfolio (http://www.
ecrypt.eu.org/stream/). This is thus natural to consider it as a possible cipher
for implementation into tags. Technically, it is not a linear LFSR-based stream
cipher, but its structure remains quite simple and the small number of non-linear
operations enables us to adapt our obfuscation technique.

Trivium is roughly a concatenation of 3 registers which are updated via
quadratic feedback functions. It contains a 288-bit internal state (so, ..., Sas7)
and once initialized, the key stream generation of a bit y and the update of the
state follow the algorithm in Table [f] (where ® stands for a product of bits, i.e.
a AND). Here, the feedback function is fixed, so we do not need to mask the
feedback key KF' in the same way as in section but to simplify the analy-
sis we can keep the method described in section B.4] as a baseline. The method
is similar for handling all the linear computations above. The only specificity
concerns the steps (@), (@), () where a general obfuscated AND is needed.

AND obfuscation. Here we focus on an AND of two bits (this is easily general-
izable to I-bit vectors). For ¢ € {1,2, 3}, let K[i] be a binary value, implemented
by two POKs K[i]’, K[i]” such that K[i] = K[i]' ® K[i]”. Compare to the XOR,

Table 6. Trivium key stream generation

t1 < Se5 D S92 (1)

t2 < s161 D Si76 (2)

3 + S242 D S287 (3)

y—t1 D2 Dt (4)

t1 — t1 D (890 ® S91) D s170 (5)

to — to @ (S174 ® S175) D S2646)

t3 «— t3 D (S285 @ S286) D 68 (7)
(80,81, 802) « (t3,50,...,891) (8)
(863, 504, - - -, S176) «— (t1,893,...,8175) (9)
(si77, 8178, -+ S287) = (t2, 8177, ..., 5286)  (10)


http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/
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we also introduce a couple of POKs K[4]’, K[4]". Also let  and y be two binary
values.

Definition 3. A physically obfuscated AND, denoted by poAND, corresponds to
the computation of a masked AND of two masked bits. poAND(z @ KI[1],y &
K|[2], K[1], K[2], K[3], K[4]) is the computation of (x @y) ® K[3] with the inputs
z® K[1] and y ® K[2] and is implemented as in Table[7]

The implementation is based on the following relation:
roy=(eeKl)eyeKp))e (KeyeK2))

o( (oK) e K@) o (K@ K[2)

Table 7. poAND(z @ K[1],y ® K|[2], K[1], K[2], K[3], K[4]) implementation

.Set z = ((x @ K[1]) ® (y ® K[2]))

2 < z® semipoScalary (x ® K[1], 0, K[2],0) @ semipoScalar; (y ® K[2], 0, K[1],0)
z < poConvert, (z,0, K[3])

. Activate K[1]" and K[2)', update z — 2 & (K[1) ® K[2]')

. Erase K[1]" and K[2] from memory

. Activate K[1]” and K[2]”, update z « z & (K[1]" ® K[2]")

. Activate K[4]', K[4]", set temp1 = K[4]'®K[1]"” and temps = K[4]" ® K[2]"”
. Erase K[1]", K[2]", K[4]" and K[4]” from memory

. Activate K[1]', K[2], update tempi « temp1 @ K[2]', tempa +— temps @
K1)

10. Update z <« z & temp1 & temps, erase tempi, temps from memory

11. Activate K[4)', K[4]"”, update z +— 2 & (K[4] @ K[2]") ® (K[4]" ® K[1]")
12. Erase K[4]', K[4]", K[1]' and K[2]" from memory

13. Output z

© 00N DU W N

The steps 4 to 12 are used to compute K[1] ® K[2] as the XOR of K[1]' ® K[2]’,
K1) ® K[2]", K[1]" ® K[2]' and K[1]" @ K[2]".

Lemma 6. poAND is a physically obfuscated primitive.

With this additional physically obfuscated primitive, it becomes possible to ob-
fuscate non linear stream-ciphers such as Trivium.

Whole Description of Trivium Obfuscation. As in section [3.4] we assume
that the current masked state is M = (sq, ..., s287) ® (KSo, ..., KSag7) where
the key state KS is computed thanks to the two POKs KS" and KS”.

Let x be the current bit to be encrypted, the obfuscated key stream generation
is made as follows.

— Set tll = M65 S5 Mgg,
— ty «— Mig1 & Mire,
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— th — Mayo @ Mogr,
—sety=t) ®thdth, y — ydax and erase x from memory.
— Output poConvert; (y, KSgs5 & K So2 & K S161 ® KS176 ® K S242 & K Sog7,0).

At this stage the encrypted version of x has been obtained correctly.

— Update t7 = 7 © Mo, ty =ty © Maes, 5 = t3 © Mes.

- Update tll = tll (S5 POAND(MQ(), Mgl, KSg(),KSgl,KSgg, K[4])

- Update t/2 = t/2 D |:>0AND(.Z\41747 M175, KS174, KS175, .K'S1777 K[4])
- Update té = té D |:>0AND(.Z\42857 Mggﬁ, K5285, KSQgG, .K'S()7 K[4])

where K Sg3, KS177 and K.Sy corresponds to the bits of KS whose indexes
are the future positions of t|, t}, ¢4 for the register updating) and with K[4]
corresponding to a couple of two POKs as in Table [7

— Update t; = poConvert; (], K S170 ® K S5 ® K Sga @ K So3, K So3)
— Update t5 = poConvert; (t, KS177 ® K Sag3 ® K S161 © K S176, K S177)
— Update t5 = poConvert, (5, KSo ® K Sgs @ K S240 ® K Sag7, KSp)

At this stage, this leads to the equality between ¢ and sg5 & S92 & $170 D (890 ®
891) @ K Sos, i.e. the value of ¢; at the original step (@) xored with K Sg3 (similar
for t}, t§ with the values to@® K S177 and t3@® K .Sp). To finish the register updating,
we run these last operations.

— Compute M’ as
(Mg, My, ..., Mgy) « (t5, Mo, ..., Mo1),
(Mé:}v Mé47 LI} M{?ﬁ) — (tllu M937 ) M175)7
(Mi77, Mizs, .., M3g7) < (t5, Marz,. .., Mass)
— Then update M’ with
|:>oCOI'WeI"C<J\4'/7 (0, .K'S()7 ey KSQhO, KSgg, ey KS17570, .K'S1777 ey KS286)7

(0, KS1,...,KS92,0, KSg4,...,KSi76,0, KSy7s, . .. 7KS287))
This leads to the update version of the state register obfuscated by KS.

Lemma 7. This implementation of the key stream generation of Trivium is
physically obfuscated.

5 Conclusion

We describe in this paper physical obfuscation of binary operations (XOR, AND,
Scalar Product) with a study of their applications to stream ciphers. As these
binary operations enable any boolean operations to be computed, our ideas are
useful for other kind of cryptographic primitives which use basic operations and
where increasing resistance of tags against compromise is required. For instance,
the HB-related RFID protocols (HB [21], HB* [22] and modified version [6,[12]
[16,28,[30L5]) are good targets for our obfuscation techniques which can be seen
as a enhancement of [20,[19] where PUF are introduced. Other RFID protocols
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based on binary operations can be improved as well, e.g. the scheme [IT]. Efficient
hash functions such as [2l[I] are also of interest.

Further works would include the analysis of the implementation overhead
to achieve such physical resistance. In many settings, one chooses connection
polynomials for LFSRs such that their Hamming weight is small. This lowers
the cost of computing the state change. But the obfuscation technique essentially
randomizes the state change. The expected Hamming weight of the masked
connection polynomial is then half the length of the LFSR.

Acknowledgements. The authors thank the referees for their helpful com-
ments.
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A Physical Unclonable Function

Gassend in [I4] introduces the concept of Physical Unclonable Function (PUF):
a function that maps challenges (stimuli) to responses, that is embodied by a
physical device, and that has the following properties:

1. easy to evaluate,

2. hard to characterize, from physical observation or from chosen challenge-
response pairs,

3. hard to reproduce.

For a given challenge, a PUF always gives the same answer. The hardness of
characterization and reproduction means that it is impossible to reproduce or to
characterize the PUF thanks to a reasonable amount of resources (time, money,
...). PUF can thus be viewed as pseudo-random function (note however that they
can be limited in the number of possible challenge-response pairs as explained
in [I7]) where the randomness is insured thanks to physical properties.

[34] defines an Integrated Physical Unclonable Function (I-PUF) as a PUF
with the additional interesting properties listed below:

1. The I-PUF is inseparably bound to a chip. This means that any attempt to
remove the PUF from the chip leads to the destruction of the PUF and of
the chip.

2. Tt is impossible to tamper with the communication (measurement data) be-
tween the chip and the PUF.

3. The output of the PUF is inaccessible to an attacker.

These properties ensure the impossibility to analyze physically a PUF without
changing its output. Hence, physical attacks corrupt the PUF and the chip leav-
ing the attacker without any information about the PUF. Particularly, volatile
memory cannot be read out without destroying the I-PUF. Silicon PUF have been
already described in [I5] and can be taken as relevant examples of I-PUF, they
are based on delay comparison among signals running through random wires.
Moreover, they only require a few resources to be implemented. A practical ex-
ample of implementation is described in [32]. The final output of a PUF should
not contain any errors, whatever the external conditions are. This problem is
generally handle thanks to error correcting techniques (cf. [34]).

B Krawczyk’s MACs

The MAC mechanism described by [23] works as follows.

If two parties share a common key consisting of a particular function h € H
and a random pad e of length L, then the MAC of a message X is computed as
t = h(X) @ e. To break the authentication, an adversary should find X’ and ¢
such that ¢ = h(X) @ e. For this, h and e must remain secret.

Definition 4. A family H of hash functions is said e-balanced (or e-almost uni-
versal) if: VX € {0,1}™, X #0, c € {0,1}F, Pr[h € H,h(X) =] <.

[23] proves the property below.
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Proposition 1. If H is a family of linear hash functions and if H is e-balanced
then the probability of success of an adversary is lower than €.
The scheme is then said e-secure.

Following the principle of a one-time pad, the same h can be reused but e must
be a random pad different each time.
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