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Hardware Security through Design Obfuscation

Abstract

by

RAJAT SUBHRA CHAKRABORTY

Security of integrated circuits (ICs) has emerged as a major concern at different stages

of IC life-cycle, spanning design, test, fabrication and deployment. Modern ICs are

becoming increasingly vulnerable to various forms of security threats, such as: 1) ille-

gal use of hardware intellectual property (IP) or “IP Piracy”; 2) illegal manufacturing

of IC or “IC Piracy”; 3) insertion of malicious circuits, referred as “Hardware Trojan”,

in a design to cause in-field circuit malfunction, and 4) leakage of secret information

from an IC. These security threats are accentuated by current IC design practices,

such as the widespread use of hardware IP modules to design complex system-on-chips

(SoCs). In addition, the economics of electronic manufacturing dictates widespread

outsourcing of integrated circuit fabrication to off-shore facilities, which increases

the vulnerability to these attacks. In this research, we explore novel hardware de-

sign approaches that incorporate a key-based design obfuscation scheme to effectively

protect a design against various security threats, while incurring low hardware and

computational overheads. Obfuscation is a technique that makes comprehending and

reverse-engineering a design difficult. To the best of our knowledge, this is the first ef-

fort to develop a systematic and provably robust hardware obfuscation approach that

enables hardware protection at different stages of the IC life-cycle. Effectiveness of

these approaches for protection against IP reverse-engineering and piracy, hardware

Trojan and scan-based information leakage is evaluated with benchmark circuits and

open-source IP cores. The obfuscation approaches are developed for both firm (gate-

level) and soft (register transfer level) IPs. The principles of the obfuscation approach

have been extended to protection of embedded software against piracy and malicious

modification. An enhanced secure IC design flow with associated computer-aided

design (CAD) tools is also developed.
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1. INTRODUCTION

1.1 Background

The spectacular advancement of Electronics in the last half a century has revolu-

tionized the world. The all-pervasive nature of Electronics can be felt in every aspect

of human life in this “silicon age”. Starting from 1960 when commercial semicon-

ductor manufacturing became a viable business, the industry has grown to have a

worldwide revenue of $249 billion in 2008, with a prodigious average annual growth

rate of 16.1% between 1975 and 2000 [1, 2]. The key to this rapid advancement in

electronics is the aggressive reduction in device dimensions in integrated circuits (ICs)

over generations, along with scaling of supply voltage (VDD) and transistor “thresh-

old voltage” (Vth), a phenomenon known as “technology scaling”. Device integration

density (the number of devices per unit area in an IC) has roughly doubled every

two years over the last five decades, a trend first predicted in [3], and now famously

termed as “Moore’s Law”. This has enabled a corresponding exponential increase in

computing capabilities of ICs.

However, with increasing computing power and integration density, several issues

in design, performance and manufacturing of these ICs have cropped up. Increasing

power consumption (both due to higher integration density and increasing “leak-

age” power consumption in the “off-state”), increased cost of testing and verification,

and photolithographic complexities in manufacturing nanometer devices (with feature

sizes much smaller than the smallest wave-length of light that be used for patterning)

are the some of the major issues with IC design and manufacturing in the nanome-

ter regime. To make such design and manufacturing feasible, an IC design house is

commonly aided by the following external agencies:
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• Electronic design automation (EDA) companies supply the sophisticated soft-

ware tools that facilitates design, verification and testing of modern ICs.

• Intellectual property (IP) and standard cell library vendors, who supply pre-

verified, high performance, functional hardware IPs or library cells to the IC

design facilities. These help to reduce the design time drastically, improve

reliability and yield, and enable meeting hard time-to-market target.

• Semiconductor manufacturing companies, which provide the fabrication facili-

ties (“fabs”) where the design is actually manufactured and sometimes tested,

before being sent back to the design house. The cost of maintaining a cutting-

edge fab runs into billions of dollars every year, encouraging most IC vendors

(over 250 strong [4]) to follow a “fabless” business model where the design

database is outsourced to the fabs for manufacturing [5].

From the above description of prevalent industry practices, it is evident that the

control exercised by the IC vendors over the design and manufacturing of their own

products is decreasing. The increasing complexity and cost of modern nanometer-

scale ICs are the main drivers behind this trend. Reduced control on the IC life-cycle

accentuates various security issues associated with ICs. Hence, security of hardware

IPs and ICs has emerged as a major challenge in nanometer IC design and test. In

the following section, we describe different security threats associated with IC design

and test.

1.2 Security Threats

The active participation of various external agents in the design and manufactur-

ing flow has made the entire process highly vulnerable to various security threats.

Fig. 1.1 [6] shows the level of “trust” that can be assigned to the various stages of

a typical modern IC design flow. The main mechanisms behind these threats can be

broadly classified under the following heads:
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Fig. 1.1. Vulnerability of different stages in a modern IC life cycle with
respect to different forms of security attacks [6].

1. IP piracy: This is a scenario where the IP is illegally used and/or copied

without paying the lawful royalty to the IP vendor [7].

2. IC piracy: In this scenario, the manufacturing fab illegally copies and reverse-

engineers the design database of an IC sent for fabrication to manufacture illegal

copies (“clones”) of the IC [8].

3. Hardware Trojan insertion: The design can be modified in the design house

during the design phase or in the fab by malicious insertion, deletion or modifi-

cation of circuits, referred to as Hardware Trojans, which cause the IC to deviate

from its intended functional behavior during deployment [6,9]. Typically, these

Trojan circuits are stealthy by design, which makes it extremely challenging to

detect them by traditional post-manufacturing testing [10].

4. Secret information leakage: Although the “deploy and monitor” step of the

design flow has been shown to be completely trustable in Fig. 1.1, in reality, it

has been shown that secret information can be extracted by an adversary from

secure ICs with cryptographic functionality in this stage [11]. Such threats

increase with increasing controllability and observability of the internal nodes

of the circuit as a result of widespread adoption of “Design for Testability”

(DfT) techniques in modern ICs.
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Fig. 1.2. Security threats in a modern IC life-cycle, and corresponding
solutions as proposed in this research.

It is worth noting that the “design” stage itself is designated as one of the partially

insecure stages of the entire flow. This takes into consideration the possible presence of

untrusted personnel in the design house with access to the design, who might sabotage

the design to serve other interests. The mitigation of these security threats, with

minimal overhead on design, fabrication and testing of ICs, is the main motivation of

this research. Next, the proposed research is outlined.

1.3 Outline of Proposed Research

The main goal of the proposed research is:

To establish “Design for Security” (DfS) as a new paradigm of system design, through

the development of design techniques with low design and computational overhead,

that can effectively resist or mitigate the security threats at different stages of the

IC life-cycle. A secondary goal is the development of EDA tools to implement and
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automate the design methodology, and to integrate it with the traditional design

flow. Fig. 1.2 shows the security threats at different stages of the IC design life-

cycle (as described in the previous section), and the corresponding solutions proposed

in this research. Notice that the goal of this research is to have a comprehensive

solution spanning all stages of the design and manufacturing flow. The DfS techniques

proposed by this research are “key-based”, where the correct functionality of the

system is enabled only after the successful application of the “key”. In this respect,

it is similar to cryptographic principles, where the encrypted information is only

available in an intelligible form after it has been decrypted using a key. Similar to

modern cryptographic practices, this work is entirely in consensus with the widely

accepted “Kerckhoffs’ Principle” [12], which states that a cryptosystem should be

secure even if everything about the system, except the key, is public knowledge.

The unifying principle behind all the proposed techniques is Design Obfuscation.

In simple terms, Obfuscation is a technique that makes understanding or reverse-

engineering of a design difficult. The adversary usually knows how to try to reverse-

engineer the design, but the complexity of the problem of reverse-engineering is ex-

ponential or near exponential with respect to one or more design parameters. Tra-

ditionally, design obfuscation creates a design which is functionally identical to the

original design, while being difficult to reverse-engineer [13]. It has been mathemat-

ically proven that a successful obfuscation in the traditional sense does not exist, at

least for specific programs computing certain classes of functions [14]. However, the

proposed approach differs from the traditional approach in a sense that the function-

ality of the design is actually altered in a different mode of operation prevent piracy

and make it difficult to reverse-engineer. Hence, the above mathematical result does

not apply to this work. Throughout the work, the robustness of the proposed obfus-

cation scheme against several attack scenarios has been theoretically analyzed and

supported by appropriate simulation results.

In this thesis, software obfuscation for embedded applications inspired by the

techniques developed for hardware obfuscation has also been explored. The reason
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for focusing on embedded software is that traditional software security techniques

(both hardware and software), although extremely mature, often require hardware

and computational resources which are difficult to provide in resource-constrained

embedded systems [15]. Hence, obfuscation based software protection techniques

requiring modest computational overhead can be an attractive choice for embedded

systems.

1.4 Major Contribution of the Proposed Research

The novelty of the proposed research can be summarized as follows:

• To the best of our knowledge, this is the first research that studies the appli-

cation of a systematic design obfuscation method to achieve hardware security.

In particular, it applies key-based obfuscation to (a) develop a piracy-proof

SoC design and manufacturing flow; (b) provide protection against hardware

Trojans, and, (c) prevent leakage of secret information from a secure IC.

• It targets the development of a secure design methodology that benefits the

interests of all parties concerned with IC design and manufacturing, unlike prior

research, which addresses the rights of a single party (e.g. the IP vendor).

• The efficacy of the proposed design techniques is supported by accompanying

mathematical modeling and theoretical analysis. Hence, the techniques can

achieve provably robust performance unlike many previous works in this field

based on heuristics and somewhat ad-hoc design choices.

• This research successfully implements the proposed design techniques, with the

development of necessary EDA software tools. The techniques are also seam-

lessly integrated with a conventional IC design flow. The techniques are then

applied to benchmark circuits and open-source IPs to validate the theoretical

predictions, and to estimate the hardware and computational overheads.



7

• Finally, embedded software protection utilizing the same principle of key-based

functionality obfuscation has been explored and found to be capable of providing

high levels of security at moderate code size and performance overhead.

1.5 Organization of the Thesis

In Chapter 2, a piracy-proof system-on-chip (SoC) design methodology based on

obfuscation of hardware IPs at as gate-level netlists is presented. The technique is

extended to register transfer level (RTL) design descriptions in Chapter 3. Chapter

4 develops a design methodology based on obfuscation to provide protection against

hardware Trojans. In Chapter 5 we present a statistical test generation methodology

to detect hardware Trojans. In Chapter 6, a key-based secure scan design technique

to prevent leakage of secret information in an IC is presented. In Chapter 7, em-

bedded software protection by a key-based control-flow obfuscation technique has

been explored by extending the key-based hardware obfuscation technique. Finally,

in Chapter 8, the work is summarized and future research directions are explored.
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2. OBFUSCATION-BASED SECURE SOC DESIGN

2.1 Introduction

Reuse-based SoC design using hardware Intellectual Property (IP) cores has be-

come a pervasive practice in the industry. The IP cores usually come in the form

of synthesizable Register Transfer Level (RTL) descriptions (“Soft IP”), gate-level

designs directly implementable in hardware (“Firm IP”) or GDS-II design database

(“Hard IP”). The approach of designing complex systems by integrating tested, ver-

ified and reusable modules reduces the design time and cost dramatically [16].

Unfortunately, recent trends in IP-piracy and reverse-engineering efforts to pro-

duce counterfeit ICs have raised serious concerns in the IC design community [16,17].

IP piracy can take several forms, as illustrated by the following scenarios:

• A chip design house buys an IP core from an IP vendor, and makes an illegal

copy or “clone” of the IP. The IC design house then sells it to another chip

design house (after minor modifications) claiming the IP to be its own [18].

• An untrusted fabrication house makes an illegal copy of the GDS-II database

supplied by a chip design house, and then illegally sells them as hard IP.

• An untrusted foundry manufactures and sells counterfeit copies of the IC under

a different brand name [19].

• An adversary performs post-silicon reverse-engineering on an IC to manufacture

its illegal clone [17].

These scenarios demonstrate that all parties involved in the IC design flow are

vulnerable to different forms of IP infringement which can result in loss of revenue

and market share. Hence, there is critical need of a piracy-proof design flow that
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equally benefits the IP vendor, the chip designer as well as the system designer. A

desirable characteristic of such a secure design flow is that it should be transparent

to the end-user, i.e. it should not impose any constraint on the end user with regard

to its usage, cost or performance.

Existing approaches for hardware protection do not ensure comprehensive protec-

tion to IP vendors, chip designers, system designers and end-users [16–24]. They are

targeted towards preserving the rights of only a single party (mostly IP vendors).

In order to benefit all of them simultaneously, an anti-piracy design flow is required

in which IP vendors, designers and manufacturers take an active part in securing

their own rights and ensure that the customer gets an authentic and trustworthy

product. Furthermore, existing works in this field primarily focus on protecting the

hardware from illegal copy. They do not address the issue of achieving resistance

against reverse-engineering during fabrication, test and deployment.

As mentioned in Chapter 1, obfuscation is a technique that transforms an ap-

plication or a design into one that is functionally equivalent to the original but is

significantly more difficult to reverse-engineer [25]. In this chapter, we present HAR-

POON , a methodology for HARdware Protection through Obfuscation Of Netlist.

Such an approach can be used to protect gate-level IPs or ”firm IPs”. We show that

the proposed obfuscation approach can be easily combined with a low-overhead au-

thentication approach. We also present scalability of the approach to complex SoC

designs consisting of several IP blocks. In the next Chapter, we provide an extension

of the idea to RTL design descriptions. The proposed obfuscation based protection

scheme provides anti-piracy and tamper-proof qualities to the hardware at every stage

of the hardware design and manufacturing. The following are the major contributions

of this work:

• A low-overhead and low-complexity IP design methodology for gate-level IPs

aimed towards preventing IP piracy is presented. The proposed design method-

ology provides simultaneous obfuscation and authentication of a netlist, thus

protecting valuable hardware IPs. The key step to accomplish the obfuscation
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goal is to systematically modify the state transition function and internal cir-

cuit structure in such a way that the circuit operates in normal mode only upon

application of a pre-defined enabling sequence of patterns at primary inputs,

referred to as “key” for the circuit.

• A metric is provided to quantify the level of obfuscation and present theoretical

analysis to evaluate the effect of design modifications on resulting obfuscation.

Such an analysis is used to explore techniques for achieving maximum obfusca-

tion at minimal design overhead.

• we present a design flow for SoCs based on the proposed hardware IP obfuscation

technique. This is the first gate-level obfuscation-based design flow capable of

providing security at multiple stages of the IC life-cycle.

The rest of the chapter is organized as follows. In Section 2.2, previous work on

this topic and the motivation behind the work is discussed. In Section 2.3, a the-

oretical analysis to evaluate an obfuscation scheme and an obfuscation metric, are

presented. In Section 2.4, the proposed obfuscation scheme is described and a design

methodology to integrate it in the SoC design and manufacturing flow is developed.

In Section 2.5, simulation results for a set of benchmark circuits and the AES en-

cryption/decryption IP core are presented. Finally, conclusions are summarised in

Section 2.6.

2.2 Related Work

Hardware IP protection has been investigated earlier in diverse contexts, address-

ing licensed as well as the pre-license evaluation version of an IP. Previous work on IP

protection can be broadly classified into two main categories: (1) Obfuscation based

protection, and (2) Authentication based protection.

1) Obfuscation based IP Protection: In obfuscation based IP protection, the IP

vendor usually affects the human readability of the HDL code [20], or relies on crypto-

graphic techniques to encrypt the source code [21,24]. In [20], the code is reformatted
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by changing the internal net names and removing the comments, so that the circuit

description is no longer intelligible to the human reader. However, it does not modify

the functionality of the IP core, and thus cannot prevent it from being stolen by a

hacker and used as a “blackbox” module. In a more common practice widely adopted

in the industry [21,24], the HDL source code is encrypted and the IP vendor provides

the key to decrypt the source code only to its valid customers. A similar approach

has been proposed in [26], where an infrastructure for IP evaluation and delivery for

FPGA applications has been proposed based on Java applets. However, this tech-

nique may enforce the use of a particular design platform [22, 23], a situation that

might be unacceptable to many SoC designers who seek the flexibility of multiple

tools from diverse vendors in the design flow. Moreover, none of these techniques

prevent possible reverse-engineering effort at later stages of the design and manufac-

turing flow. Ultimately, the value of such techniques of making the circuit description

difficult to understand is somewhat questionable if one considers results such as [14]

which prove the theoretical impossibility of “black-box obfuscation”.

2) Authentication based IP Protection: To protect the rights of the IP vendor

through authentication, the approaches proposed are directed towards embedding a

Digital Watermark in the design [16, 18] which helps to authenticate the design at

a later stage. Typically this is inserted by design modifications which result in one

or multiple input-output response pair(s) which do not arise during the normal func-

tioning of the IP. Such digital signatures are known only to the IP vendor. Since

this digital watermark (or signature) cannot be removed from the IP, it helps to

prove an illegal use of such a component in litigation. However, the effectiveness of

authentication-based IP protection schemes is limited by the fact that these tech-

niques are passive and hence they cannot prevent the stolen IP from being used.

The approaches directed towards preventing the rights of the IC designer, on the

other hand, ensure that the design house has a knowledge of every IC instance manu-

factured and sold in the market. It is interesting to note that the need of obfuscation

to protect ICs against possible reverse-engineering and copy was investigated long
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back in the mid-1970s, coinciding with the commercial release of the first generation

microprocessors [27]. However, the scalability of the technique to larger designs by

adopting a systematic approach of hardware obfuscation was not explored. Usually,

this is implemented by including a locking mechanism in the IC [8, 28]. The fabri-

cation facility would require a unique bit sequence provided by the design house to

“unlock” the IC. This unique bit sequence is determined by a physically unclonable

function (PUF) block that is added to the design by the design house. However, such

approaches cannot prevent the possibility of reverse-engineering a design to expose its

functionality as well as the security scheme. Moreover, they do not address protecting

the right of an IP vendor.

2.3 Analysis of Netlist Obfuscation

In order to achieve comprehensive protection of hardware IPs, the proposed ap-

proach focuses on obfuscating the functionality and structure of an IP core by mod-

ifying the gate-level netlist, such that it both obfuscates the design and embeds au-

thentication features in it. The IC is protected from unauthorized manufacturing by

the fact that the system designer depends on input from the chip designer to use the

IC. Consequently, the manufacturing house cannot simply manufacture and sell un-

authorized copies of an IC without the knowledge of the design house. In addition,

by adopting a PUF-based activation scheme, the security can be increased further

since it ensures that the activation pattern is specific to each IC instance. In case

the IP along with the information required to de-obfuscate it is released in the public

domain by a malicious IC design house, the embedded authentication feature acts as

a second line of defense and helps in proving illegal usage of an IP during litigation.

Finally, the obfuscation remains transparent to the end user who has the assurance

of using a product that has gone through an anti-piracy secure design flow.

The obfuscation is carried out in a manner that, for a target design overhead,

it offers maximum resistance to any reverse-engineering effort, whether structural or
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functional. The possibility of a sophisticated adversary having access to superior

computational capabilities and powerful CAD tools cannot be ruled out. Hence, it

is important to mathematically analyze the level of obfuscation and ensure that it is

practically infeasible for an adversary to reverse-engineer an obfuscated design.

2.3.1 Hardware IP Piracy: the Hacker’s Perspective

A hacker trying to determine the functionality of an obfuscated gate-level IP

core can take resort to either (1) simulation-based reverse-engineering to determine

functionality of the design, or (2) structural analysis of the netlist to identify and

isolate the original design from the obfuscated design. The proposed obfuscation

approach targets to achieve simulation mismatch for the maximum possible input

vectors, as well as structural mismatch for maximum possible circuit nodes. To

achieve structural mismatch between the reference and the obfuscated design, both

the state transition function as well as the internal logic structure are modified.

Modification Scheme Employing Input logic-cone Expansion

Consider the simple example shown in Fig. 2.1(a). It shows a modified 2-input

AND gate. If en = 0, it works as an ordinary AND gate; however, if en = 1, the

original functionality of the AND gate is obfuscated because the output is inverted.

Simulation of the simple circuit of Fig. 2.1(a) against an ordinary 2-input AND gate

will report 4 possible input vectors with en = 1 as failing patterns. To increase the

number of failing patterns for this circuit, the input logic cone must be expanded,

while ensuring that it continues to function properly when en = 0. Fig. 2.1(b) shows

an alternative scheme, where the input logic cone has been expanded to include the

node c and d. A complete enumeration of the truth-table of the modified circuit will

show failures for 13 input patterns (out of the possible 32).

The modification scheme of Fig. 2.1(b) can be generalized to a form shown in

Fig. 2.1(c). Here, f is the Boolean function corresponding to an internal node and
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(a) Simple scheme using XOR gate (b) Scheme using expansion of logic cone

(c) Modification cell

Fig. 2.1. Schemes for boolean function modification and modification cell.

g is any arbitrary Boolean logic function. It is worthwhile to note that the simple

modification scheme of Fig. 2.1(a) is a special case with g = 1. As shown, the

modified logic function is of the form:

fmod = f ·en+ f ·g·en (2.1)

Let us call the function g as the Modification Kernel Function (MKF). It is clear

that for en = 1, if g = 1 for a given set of primary inputs and state element output

state, fmod = f and the test pattern is a failing test pattern. To increase the amount

of dissimilarity between the original and modified designs, g should evaluate to logic-1

as often as possible. At first glance, the trivial choice seems to be g = 1. However, in

that case the input logic cone is not expanded and thus the number of failing vectors

reported by a formal verification approach is limited. For any given set of inputs, this

is achieved by a logic function which is the logical-OR of the input variables.
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2.3.2 Obfuscation Metric

A metric to quantify the level of obfuscation is now derived. Let, f be a function

of the set P1 of primary inputs and state-element outputs and g be a function of a

set P2 of primary inputs and state element (SE) outputs. Let P1

⋂
P2 = P , |P1| = p1,

|P2| = p2, |P | = p, P1

⋃
P2 = Γ and |Γ| = γ = p1 + p2 − p. Further, let g be a

Boolean OR function with p2 inputs. Then, for (2p2 − 1) of its input combinations,

g is at logic-1. Consider en = 1. Then, for all these (2p2 − 1) input combinations

of P2 , fmod = f , causing a failing vector. Corresponding to each of these (2p2 − 1)

combinations of P2, there are (p1−p) other independent primary inputs to f . Hence,

the total number of failing vectors when g = 1 is:

Ng1 = 2(p1−p)·(2p2 − 1) (2.2)

For the other “all zero” input combination of P2, f = 0. Let the number of possible

cases where f = 1 at g = 0 be Ng0. Then, the total number of failing input patterns:

Nfailing = Ng1 +Ng0 = 2(p1−p)·(2p2 − 1) +Ng0 (2.3)

In the special case when P1

⋂
P2 = P = φ, Ng0 is given simply by the number of

possible logic-1 entries in the truth-table of f .

The total input space of the modified function has a size 2γ. The obfuscation

metric (M) is defined as:

M =
Nfailing

2γ+1 =
2(p1−p)·(2p2 − 1) +Ng0

2p1+p2−p+1 (2.4)

The “+1” factor in the denominator is due to the en signal. Note that 0 < M ≤ 1
2
.

As an example, for f = ab+ cd, with g = a+ b, M = 13
32

. As a special case, consider

p = p1 = p2, i.e. the signal g is derived from the same set of primary inputs of f .

Then,

M =
1

2

(
1 +

Ng0 − 1

2p1

)
=

1

2

(
1 +

Ng0 − 1

2p2

)
(2.5)

In this case, Ng0 is either 0 or 1; hence M = 1
2 if Ng0 = 1 and M = 1

2

(
1− 2−p1

)
if

Ng0 = 0. Note that M attains the maximum (ideal) value of 0.5 in this case when
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Ng0 = 1. The theoretical maximum, however, is not a very desirable option because

it keeps the input space limited to 2p1 possible vectors. Again, if p = 0, i.e., g is

generated by a completely different set of primary inputs which were not included in

f , then:

M =
1

2

(
1 +

Ng02−p1 − 1

2p2

)
(2.6)

Larger values of Ng0 and smaller values of p2 for a given p1 help to increase

M . Note that unlike the first case, Ng0 is guaranteed to be non-zero. This property

effectively increases the value of M in case (b) than that in case (a) for most functions.

However, in the second case, M < 1
2, i.e. M cannot attain the theoretical maximum

value.

Selection of the Modification Kernel Function (g): Although the above

analysis points to the selection of primary inputs or state element outputs to design

the MKF g satisfying the condition p = 0, in practice, this could incur a lot of

hardware overhead to generate the OR-functions corresponding to each modified node.

An alternative approach is to select an internal logic node of the netlist to provide

the Boolean function g. It should have the following characteristics:

1. The modifying node should have a very large fan-in cone, which in turn would

substantially expand the logic cone of the modified node.

2. It should not be in the fan-out cone of the modified node.

3. It should not have any node in its fan-in cone which is in the fan-out cone of

the modified node.

Conditions (2) and (3) are essential to prevent any combinational loop in the modified

netlist. Such a choice of g does not, however, guarantee it to be an OR-function and

is thus sub-optimal. The effectiveness of this MKF is explored in Section 2.5.

It should be noted that modifying the Boolean function in the form fmod = f ·en+

h ·g ·en where h is any arbitrary Boolean function not necessarily f also results in the

expansion in the input logic cone of the node representing fmod; however, the number
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Fig. 2.2. The proposed functional and structural obfuscation scheme by
modification of the state transition function and internal node structure.

of failing vectors is expected to be lesser than the modification scheme following eqn.

2.1. This is because if en = 1, g = 1, fmod = h, and fmod 6= f only if h 6= f . On

average, the number of failing vectors would probabilistically decrease by half for an

arbitrary choice of h 6= f .

2.4 System-level Obfuscation Methodology

In this section, the secure SoC design methodology for hardware protection (based

on the analysis of the previous section is presented.
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2.4.1 State Transition Function Modification

The first step of the obfuscation procedure is the modification of the state transi-

tion function of a sequential circuit by inserting a small Finite State Machine (FSM).

The inserted FSM has all or a subset of the primary inputs of the circuit as its in-

puts (including the clock and reset signals) and has multiple outputs. At the start of

operations, the FSM is reset to its initial state, forcing the circuit to be in the obfus-

cated mode. Depending on the applied input sequence, the FSM then goes through a

state transition sequence and only on receiving N specific input patterns in sequence,

goes to a state which lets the circuit operate in its normal mode. The initial state

and the states reached by the FSM before a successful initialization constitute the

“pre-initialization state space” of the FSM, while those reached after the circuit has

entered its normal mode of operation constitute the “post-initialization state space”.

Fig. 2.2 shows the state diagram of such a FSM, with P0→P1→P2 being the cor-

rect initialization sequence. The input sequence P0 through P2 is decided by the IP

designer.

The FSM controls the mode of circuit operation. It also modifies selected nodes

in the design using its outputs and the modification cell (e.g. M1 through M3). This

scheme is shown in Fig. 2.2 for a gate level design that incorporates modifications

of three nodes n1 through n3. The MKF can either be a high fan-in internal node

(avoiding combinational loops) in the unmodified design, or the OR-function of sev-

eral selected primary inputs. The other input (corresponding to the en port of the

modification cell) is a Boolean function of the inserted FSM state bits with the con-

straint that it is at logic-0 in the normal mode. This modification ensures that when

the FSM output is at logic-0, the logic values at the modified nodes are the same as

the original ones. On the other hand, in the obfuscated mode, for any FSM output

that is at logic-1, the logic values at the modified nodes are inverted if g = 1 and

logic-0 if g = 0. Provided the modified nodes are selected judiciously, modifications at

even a small number of nodes can greatly affect the behavior of the modified system.
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This happens even if the en signal is not always at logic-0. In the implementation,

the number of outputs of the inserted FSM was supplied by the user as an input

parameter. These outputs are generated as random Boolean functions of the state

element bits at design time with the added constraint that in the normal mode, they

are at logic-0. The randomness of the Boolean functions adds to the security of the

scheme. Such a node modification scheme can provide higher resistance to structural

reverse-engineering efforts than the scheme in [29].

2.4.2 Embedding Authentication Features

The proposed obfuscation scheme allows us to easily embed authentication sig-

nature into a gate-level design with negligible design overhead. Such a embedded

signature acts as a digital watermark and hence helps to prevent attack from trusted

parties in the design flow with knowledge of initialization sequence. Corresponding

to each state in the pre-initialization state space, a particular pattern is made to

appear at a sub-set of the primary outputs when a pre-defined input sequence is

applied. Even if a hacker arranges to by-pass the initialization stage by structural

modifications, the inserted FSM can be controlled to have the desired bit-patterns

corresponding to the states in the pre-initialization state space, thus revealing the

watermark. For post-silicon authentication, scan flip-flops can be used to bring the

design to the obfuscated mode. Fig. 2.3 illustrates the modification of the state

transition function for embedding authentication signature in the obfuscated mode of

operation.

To mask or disable the embedded signature, a hacker needs to perform the fol-

lowing steps, assuming a purely random approach:

1. Choose the correct inserted FSM state elements (np) from all the total state

elements (nt). This has
(
nt

np

)
possible choices.
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Fig. 2.3. Modification of the initialization state space to embed authenti-
cation signature.

2. Apply the correct input vector at the ni input ports where the vectors are to

be applied to get the signature at the selected no output ports. This is one out

of 2ni choices.

3. Choose the no primary outputs at which the signature appears from the total

set of primary outputs (npo). This has
(
npo

no

)
possibilities.

4. For each of these recognized no outputs, identify it to be one among the possible

22(ni+np)
Boolean functions (in the obfuscated mode) of the ni primary inputs

and np state elements, and change it without changing the normal functionality

of the IP.

Hence, in order to mask one signature, the attacker has to make exactly one

correct choice from among N =
(
nt

np

)
· 2ni ·

(
npo

no

)
· 22(ni+np)

possible choices, resulting

in a masking success probability of Pmasking ∼= 1
N

. To appreciate the scale of the

challenge, consider a case with nt = 30, np = 3, ni = 4, no = 4 and npo = 16. Then,

Pmasking ∼ 10−47. In actual IPs, the masking probability would be substantially lower

because of higher values of np and nt.
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2.4.3 Choice of Optimal Set of Nodes for Modification

To obfuscate a design, an optimal set of nodes need to be chosen to be modified,

so that maximum obfuscation is achieved under the given constraints. The practical

level of obfuscation is estimated by the amount of verification mismatch reported

by a Formal Verification based equivalence checker tool. Formal equivalence checker

tools essentially try to match the input logic cones at the state-elements and the

primary outputs of the reference and the implementation [30]. Hence, nodes with

larger fanout logic cone would be preferred for modification since that will in turn

affect the input logic of comparatively larger number of nodes. Also, large input logic

cone of a node is generally indicative of its higher logic depth; hence, any change at

such a node is likely to alter a large number of primary outputs. Thus, in determining

the suitability metric for a node as a candidate for modification, both these factors

need to be considered. The following metric is proposed as the suitability metric for

a node:

Mnode =
(w1·FO
FOmax

+
w2·FI
FImax

)
× FO·FI
FImax·FOmax

(2.7)

where FI and FO are the number of nodes in the fan-in and the fan-out cone of the

node, respectively. FImax and FOmax are the maximum number of fan-in and fan-

out nodes in the circuit netlist and are used to normalize the metric. w1 and w2 are

weights assigned to the two factors, with 0≤w1, w2≤1 and w1 + w2 = 1. The values

w1 = w2 = 0.5 were chosen because they gave the best results in terms of obfuscation,

as shown in the next section. Note that 0<Mnode≤1. Because of the widely differing

values of FOmax and FImax in some circuits, it is important to consider both the sum

and the product terms involving FO
FOmax

and FI
FImax

. Considering only the sum or the

product term results in an inferior metric that fails to capture the actual suitability

of a node, as observed in the simulations.
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Fig. 2.4. Hardware obfuscation design flow along with steps of the iterative
node ranking algorithm.

2.4.4 The HARPOON Design Methodology

The overall hardware obfuscation design flow is shown in Fig. 2.4. First, from the

synthesized gate-level HDL netlist of an IP core, the fan-in and fan-out cones of the

nodes are obtained. Then, an iterative ranking algorithm is applied to find the most

suitable Nmax modifiable nodes, where Nmax is the maximum number of nodes that

can be modified within the allowable overhead constraints. The ranking is a multi-

pass algorithm, with the metric for each node being dynamically modified based on

the selection of the node in the last iteration. The algorithm takes into account

the overlap of the fan-out cones of the nodes which have been already selected and

eliminates them from the fan-out cones of the remaining nodes. On the completion of

each iteration, the top ranking node among the remaining nodes is selected, so that

selection of Nmax nodes would take Nmax iterations. In this way, as the iterations

progress, the nodes with more non-overlapping fan-out cones are assigned higher

weight. The superiority of this iterative approach over a single-pass ranking approach

was observed for all the benchmark circuits considered.
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Fig. 2.5. SoC design modification to support hardware obfuscation. An
on-chip controller combines the input patterns with the output of a PUF
block to produce the activation patterns.

A “don’t touch” list of nodes can be optionally input to to direct the software

tool not to modify certain nodes, e.g. nodes which fall in the critical path. In

large benchmarks, it was observed that there were sufficient nodes with high fanouts,

such that skipping a few “don’t touch” nodes still maintains the effectiveness of node

modification algorithm in achieving functional and structural obfuscation. For each

node to be modified, proper MKF (g) is selected either on the basis of its fan-in

cone size, or by OR-ing several primary inputs which were originally not present in

its input logic cone. The FSM is then integrated with the gate-level netlist and the

selected nodes are modified. The modified design is re-synthesized and flattened to

generate a new gate-level netlist. The integrated FSM and the modification cells are

no longer visually identifiable in the resultant netlist. This re-synthesis is performed

under timing constraint, so that it maintains circuit performance.

The IP vendor applies the hardware obfuscation scheme to create a modified IP

and supplies it to the design house, along with the activating sequences. The design

house receives one or multiple IPs from the IP vendors and integrates them on chip.
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To activate the different IPs, the designer needs to include a low-overhead controller

in the SoC. This controller module can perform the initialization of the different IP

blocks in two different ways. In the first approach, it serially steers the different

initialization sequences to the different IP blocks from the primary inputs. This

controller module will include an integrated FSM which determines the steering of

the correct input sequences to a specific IP block. Multiplexors are used to steer

initialization sequences to the IP blocks, or the primary inputs and internal signals

during normal operation. The chip designer must modify the test-benches accordingly

to perform block-level or chip-level logic simulations.

In the second approach, the initialization sequences is stored permanently on-chip

in a ROM. In the beginning of operations, the controller module simply reads the

different input sequences in parallel and sends them to the different IP blocks for

initialization. The advantage of this approach is that the number of initialization

cycles can be limited. However, additional overhead is incurred for storing the input

sequences in an on-chip ROM. To increase the security of the scheme, the chip designer

can arrange an instance-specific initialization sequence to be stored in an one-time

programmable ROM. In that case, following the approach in [28], the activating

patterns can be simple logic function (e.g. and XOR) of the patterns read from

the ROM and the output of a Physically Unclonable Function (PUF) block. The

patterns are written to the ROM post-manufacturing after receiving instructions from

the chip designer, as suggested in [28]. Because the output of a PUF circuit is not

predictable before manufacturing, it is not possible to have the same bits written into

the programmable ROMs for each IC instance. Fig. 2.5 shows this scheme.

The manufacturing house manufactures the SoC from the design provided by the

design house and passes it on to the test facility. If a PUF block has been used in

the IC, the test engineer reports the output on the application of certain vectors back

to the chip designer. The chip designer then calculates the specific bits required to

be written in the one-time programmable ROM. The test engineer does so and blows

off an one-time programmable fuse, so that the output of the PUF block is no longer
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Fig. 2.6. Challenges and benefits of the HARPOON design methodology
at different stages of a hardware IP life cycle.

visible at the output. The test engineer then performs post-manufacturing testing,

using the set of test vectors provided by the design house. Ideally, all communication

between parties associated with the design flow should be carried out in an encrypted

form, using symmetric or asymmetric cryptographic algorithms such as Diffie-Hellman

[8]. The tested ICs are passed to the system designer along with initialization sequence

(again in an encrypted form) from the design house.

The system designer integrates the different ICs in the board-level design and

arranges to apply the initialization patterns during “booting” or similar other ini-

tialization phase. Thus, the initialization patterns for the different SoCs need to

be stored in Read Only Memory (ROM). In most ASICs composed of multiple IPs,

several initialization cycles are typically needed at start-up to get into the “steady-

stream” state, which requires accomplishing certain tasks such as initialization of

specific registers [31]. The system designer can easily utilize this inherent latency to

hide the additional cycles due to initialization sequences from the end user.
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Finally, this secure system is used in the product for which it is meant. It provides

the end-user with the assurance that the components have gone through a secure and

piracy-proof design flow. Fig. 2.6 shows the challenges and benefits of the design

flow from the perspectives of different parties associated with the flow. It is worth

noting that the proposed design methodology remains valid for a SoC design house

that uses custom logic blocks instead of reusable IPs. In this case, the designer can

synthesize the constituent logic blocks using the proposed obfuscation methodology

for protecting the SoC.

2.5 Results

In this section simulation results are presented to demonstrate the effectiveness

of the proposed hardware obfuscation methodology for a set of ISCAS-89 benchmark

circuits [32], as well as the AES encrypter/decrypter IP core [33].

2.5.1 Simulation Setup

All circuits were synthesized using Synopsys Design Compiler with optimization

parameters set for minimum area and mapped to a LEDA 250 nm standard cell library.

The flow was developed using the TCL scripting language and was directly integrated

in the Design Compiler environment. All formal verification was carried out using

Synopsys Formality. The verification nodes considered by Formality constituted of

the inputs of state elements (e.g. flip-flops) and primary outputs.

2.5.2 Results for ISCAS-89 Benchmark Circuits

Choice of Scheme

A simple four-state FSM was designed for each of the benchmarks to achieve

hardware and functional obfuscation. Initially, three choices were explored - the

simple node modification scheme using only XOR gates (scheme 1), the theoretically
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Table 2.1
Average Number of Failing Patterns for ISCAS-89 Benchmark Circuits
for Different Modification Schemes

Benchmark Scheme-1 Scheme-2 Scheme-3

s298 51 158 193

s344 215 1093 1233

s444 197 569 772

s526 146 485 1186

s641 598 2491 5135

s713 913 2928 3301

s838 382 1757 5106

s1196 2423 5382 9573

s1238 2552 5157 9511

s1423 6431 18120 28350

s1488 333 1816 1156

s5378 13311 29482 53066

s9234 13862 30385 53365

suggested modification scheme employing OR-ing of selected primary inputs (scheme

2) and lastly the low-overhead modification scheme employing random selection of

internal nodes avoiding combinational loops (scheme 3). Then, the maximum number

of modifiable nodes Nmax for each benchmark circuit was determined considering

four different area constraints (5%, 10%, 15% and 20%). For all the benchmarks,

the number of nodes modified was less than 5% of the total number of nodes in the

netlist. Table 2.1 shows the number of total failing patterns reported by Formality

for the benchmarks, averaged over the different area constraints. From these results,

it is clear that the random node selection algorithm (avoiding combinational loops)

achieves the highest number of failing vectors for a given area overhead constraint.

Hence, in the rest of this section, all the results presented would be for scheme-3.
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Table 2.2
Number of Failing Patterns for ISCAS-89 Benchmark Circuits

Benchmark Area Constraint

Circuit 5% 10% 15% 20%

s298 176 184 202 210

s344 1010 1290 1228 1402

s444 364 638 1004 1082

s526 416 1216 1270 1842

s641 3723 3185 6045 7585

s713 3084 3143 3210 3765

s838 1742 5118 5466 8096

s1196 9631 10321 8931 9408

s1238 8442 9876 9780 9944

s1423 11868 25263 29007 47262

s1488 760 1096 1344 1422

s5378 48799 52059 55961 56638

s9234 13862 30385 53365 56638

Fig. 2.7. Observed verification failures (with application of the HAR-
POON methodology) for ISCAS-89 circuits.

Obfuscation Effects

The benchmarks were then subjected to the hardware obfuscation design flow

(including the iterative ranking algorithm). Table 2.2 shows the number of failing
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(a) (b)

Fig. 2.8. Improvement with the iterative node ranking algorithm: (a)
verification failure percentage and (b) number of nodes to be modified at
iso-failure percentage.

patterns for the ISCAS-89 benchmark circuits for different projected area overheads.

The modified and re-synthesized benchmarks were then subjected to Formal verifica-

tion using Synopsys Formality. Fig. 2.7 shows the observed percentage of verification

nodes failing verification reported by Formality for the different benchmark circuits.

Effect of the Iterative Ranking Algorithm

The improvement in the obfuscation methodology was also noted by adopting the

multi-pass iterative ranking algorithm in place of a single-pass ranking algorithm. A

general trend noticeable was that the percentage of nodes failing verification “satu-

rated” with the increase in the number of modified nodes, irrespective of the ranking

algorithm used. The iterative ranking algorithm primarily had two effects. The first

effect (Fig. 2.8(a)) was the increase in the percentage of reported failures (at equal

area overheads) for the iterative ranking algorithm compared to the single-pass al-

gorithm. The second effect (Fig. 2.8(b)) was a decrease in the number of node

modifications required to achieve the same maximum (saturated) failure percentage,

so that one can identify the redundant node modifications and eliminate them, saving

area overhead in the process. For example, from Fig. 2.7 for the s1488 benchmark,
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Table 2.3
Design Overheads (%) for Different Area Constraints

Benchmark 5% area constraint 10% area constraint 15% area constraint 20% area constraint

Circuit Area Delay Power Area Delay Power Area Delay Power Area Delay Power

s298 3.91 0.00 5.26 8.64 0.00 14.04 14.74 0.50 16.67 19.29 0.00 18.42

s344 3.45 -2.98 5.38 8.83 -8.96 9.87 14.89 -6.20 14.35 18.59 -7.90 18.83

s444 4.63 0.00 9.62 9.50 0.00 18.27 14.15 0.00 20.19 18.26 0.00 23.08

s526 3.64 0.00 7.06 8.12 0.00 16.17 14.89 -1.60 21.87 19.30 -0.78 25.28

s641 4.96 -3.66 8.20 9.74 -3.66 13.90 14.02 -4.60 19.59 19.63 -4.20 23.01

s713 4.06 -3.66 7.34 9.07 -3.66 14.69 14.43 -2.60 20.34 19.26 -2.60 22.88

s838 2.20 -2.39 6.92 9.00 -8.57 9.76 14.17 -5.50 12.93 19.13 0.00 14.00

s1196 3.96 0.00 6.04 6.06 0.00 16.09 14.45 -1.76 19.14 18.10 0.00 20.55

s1238 4.52 -0.42 6.52 9.99 -0.42 9.97 14.87 0.00 18.26 18.23 -0.90 23.79

s1423 4.70 -0.78 8.02 9.61 -2.64 14.91 14.97 -1.08 22.43 19.99 -2.42 26.19

s1488 3.27 -2.79 3.13 8.65 -0.93 8.33 13.19 0.00 10.49 18.17 0.00 13.62

s5378 4.34 0.00 8.91 9.87 0.00 13.80 13.84 0.00 20.43 19.93 0.00 23.70

s9234 4.74 0.00 5.80 8.82 3.60 12.37 8.82 3.50 15.52 14.29 3.80 19.72

Average 4.03 -1.28 8.83 8.92 -1.94 13.31 14.38 -1.49 17.81 19.06 -1.15 20.91

it is evident that one does not need to consider area overheads above 10%, because

at higher area overheads, the same obfuscation level (in terms of the number of veri-

fication failures) is obtained.

Overheads Incurred

Table 2.3 shows the area, delay and power overheads of the re-synthesized bench-

mark circuits, following the application of the obfuscation scheme, for the projected

area overheads of 5%, 10%, 15% and 20% respectively. From the table, it is clear

that the actual area overheads were smaller than the imposed constraints in all cases,

while the timing overhead was negative, i.e. the timing constraint was met with pos-

itive slack in most cases. The power overheads in all cases were within acceptable

limits. The design overhead is caused both by the addition of combinational (in the

form of the modification cells) and few sequential elements to implement the inserted
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Fig. 2.9. Effect of weights w1 and w2 on verification failure percentage.

FSM. Although sequential memory elements do not scale as well as combinational

ones, the percentage overhead is expected to remain unchanged for more advanced

technology nodes because the combinational overhead forms the major fraction of the

total overhead.

Optimal Choice of Parameters w1 and w2 in eqn. (2.7)

Different combinations of the parameters w1 and w2 in eqn. 2.7, were tried under

the constraint w1 + w2 = 1. This was done to come up with a combination of

w1 and w2 that will generate an optimal ranking of the nodes leading to maximum

obfuscation. Fig. 2.9 shows the plot of the failure percentage for three benchmarks

against different combinations of w1 and w2. From this plot, it is clear that a choice

of w1 = w2 = 0.5 is optimal and leads to the maximum obfuscation. Such a trend

was observed in all the benchmark circuits that were dealt with.
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Table 2.4
Obfuscation Efficiency and Design Overheads (%) for the AES modules
(for 5% area constraint)

AES Obfuscation Efficiency Design Overhead

Modules Nodes Modified (%) Failing Verif. Points (%) Failing Vectors Area (%) Delay (%) Power (%)

Key Expand 0.95 78.3 4864 3.69 0.00 4.56

Sbox 0.95 100 236 3.62 2.42 5.31

Inverse Sbox 0.97 248 949 4.34 2.60 5.62

2.5.3 Results for the AES Encryption/Decryption Unit

Simulation results corresponding to the application of the HARPOON design

methodology on the Advanced Encryption Standard (AES) encryption/decryption

core are now presented. AES was chosen because it is widely deployed and is

widely available from IP vendors as a RTL or gate-level IP. The open-source Ver-

ilog RTL implementations of 128-bit AES encrypter and decrypter cores available

at [33] were used in the simulations. The cores were modified to integrate them

in a single encrypter/decrypter core, the mode of operation being controlled by a

MODE CONTROL signal. The three main sub-modules of the design: the Key Ex-

pand, the SBox and the Inverse SBox were separately subjected to the design flow

with an estimated area overhead of 5%.

The modules were designed with an integrated obfuscating finite state machine

having 4 states and controlled by 10 inputs each. The scheme of Fig. 2.5 was used,

with an integrated controller (which is itself a simple FSM) and a PUF module with

5 controlling inputs and 2 outputs. The controller is activated by a sequence of 3

inputs patterns applied at 10 selected primary inputs. On activation, the controller

starts reading the bits stored on an on-chip ROM in sequence. Simultaneously, it

applies a 5-bit pattern sequence to the on-chip PUF block. In response, the PUF

block produces the 2-bit sequences. In the HDL simulations, the PUF module was

modeled as a ROM. These output bits from the PUF are XOR-ed with the outputs
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of the ROM and then applied to the different modules in parallel to activate them

individually.

Design Overhead

Table 2.4 shows the performance and design overheads for the different modified

modules, at an estimated 5% area overhead. Again a very high rate of verification

failures was reported for the three modules, along with a large number of failing

vectors. The actual area overhead was less than the estimated area overhead (5%)

in all cases and the power and timing overheads were within acceptable limits. The

unmodified synthesized design had a operating clock frequency of 230 MHz and a

data rate of 2.45Gbit/s. The modified design after re-synthesis had a operating clock

frequency of 220.1MHz and a corresponding bit-rate of 2.34Gbit/s. The controller

FSM takes 3 clock cycles to get activated and then takes 3 clock cycles each to activate

the SBox modules, the Inverse SBox modules and the Key Expand module. Note

that all the SBox modules are activated in parallel and so are all the Inverse SBox

modules. Hence, the latency of the system for initialization is 9 clock cycles, i.e,

∼41ns. The startup latency increases to 22 cycles from 13 cycles (the time taken to

encrypt/decrypt one block of data) in the unmodified design. Note that this one-time

increase in latency is incurred only at system start-up, which can be easily masked to

the end-user. Table 2.5 shows the overall design overhead of the scheme. Again, all

the overheads are less than 5%, with the overall delay overhead slightly higher than

the individual module overheads.

2.5.4 Mode control through unreachable states

Addition of extra state elements to realize the mode-control FSM can be avoided

by utilizing the unreachable states of a circuit. Complex sequential circuits would

typically have a large number of unreachable states [34]. The state transition de-

scribed in Fig. 2.2 can be achieved if a few unreachable states are identified and the
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Table 2.5
Overall Design Overheads (%) for the AES core

Parameter Original Modified Overhead

Area(µm2) 2732060.0 2825636.6 3.43% increase

Power(mW) 565.0 586.6 3.82% increase

Start-up latency (cycles) 13 22 9 cycles increase

Op. Frequency(MHz) 230 220.1 4.30% decrease

Bit Rate(Gbps) 2.45 2.34 4.49% decrease

circuit is forced to go through these states during the initialization phase. By taking

advantage of the unused state space of the original SEs, one can effectively reduce

the design overhead and improve obfuscation level.

The required number of unreachable states would be equal to the number of pat-

terns in the initialization sequence (e.g. 3-4). In case sufficient number of unreachable

states are not identified, a combination of new states (due to extra state elements)

and unreachable states can be used to realize the scheme. The unreachable states

can be identified through simultaneous sequential justification of the state elements

in the circuit. However, this is typically computationally intensive process. To avoid

the difficulty of finding unreachable states for the entire set of state elements in the

circuit, note that random selection of a small subset of state elements from the cir-

cuit and their sequential justification is sufficient to identify unreachable states for

the circuit. It also reduces the computational complexity of the problem drastically.

Once the unreachable states are identified comprising of a set of SEs, a parallel state

machine (PSM) can be formed using these SEs to realize the state transitions during

the initialization process and then folding the PSM into the original one during re-

synthesis process. Additionally, the en signal is generated as an output of the PSM

and alters the behavior of the circuit in the obfuscated mode through modification

cells as described earlier. Upon successful initialization, all state elements hold values

corresponding to a valid state and the circuit enters normal mode.
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Table 2.6
Design Overheads (%) at iso-delay for ISCAS-89 Circuits with an Embed-
ded FSM Utilizing Unreachable States

Benchmark Overhead (%)

Circuit Area Power

s1196 18.44 15.88

s1238 16.31 15.83

s1423 6.11 9.65

s1488 12.81 6.22

s5378 14.45 23.84

s9234 6.53 9.04

Average 12.44 12.81

To check the effectiveness of using unreachable states, the technique was applied

to several ISCAS-89 circuits by choosing six SEs at random. The states unreachable

by these six state elements were found through sequential justification by Synopsys

TetraMax, and the RTL for a four state PSM was generated from these unreachable

states. The same number of modification cells as those used for the 10% area con-

straint were inserted. This RTL for the PSM and the modification cells was integrated

with the gate level netlist and the circuit was re-synthesized under delay constraint.

Table 2.6 shows the percentage area and power overheads at iso-delay for the bench-

mark circuits. The fraction of nodes failing verification and the number of failing

vectors were comparable with or better than the results presented in Table 2.2. The

overhead for some benchmarks such as s1196 is high because the specific choice of six

SEs and the state encoding using them resulted into large amount of extra logic in the

synthesized netlist. By performing multiple iterations of random selection of SEs, it

may be possible to find a different and/or smaller set of SEs which provides sufficient

number of unreachable states. For example, a set of 5 and 4 SEs was found which led

to an area overhead of 8.8% and 7.1%, respectively, both of which are considerably

less than that obtained with additional SEs.
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2.6 Summary

In this chapter, a netlist level hardware obfuscation based anti-piracy design flow

for SoCs has been presented. It involves active participation of the IP vendor, the IC

designer and the system designer and helps to preserve the rights of all of them. The

scheme is based on modification of the gate-level netlist of a pre-synthesized IP core,

followed by re-synthesis to obtain maximum functional and structural obfuscation at

low design overhead. While providing obfuscation and authentication capabilities to

the design at every stage of the design flow, the scheme does not affect the experience

of an end-user. Simulation results with a set of ISCAS-89 benchmark circuits and

the AES encryption/decryption core show that this scheme is capable of providing

high levels of design obfuscation at nominal area overhead under delay constraint.

The security of the design flow can be further enhanced by providing separate acti-

vation keys to each IP customer and using on-chip Physically Unclonable Function

circuits. In the next chapter, we extend this technique for the protection of RTL

design descriptions.
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3. RTL HARDWARE IP PROTECTION THROUGH OB-

FUSCATION

3.1 Introduction

Hardware IP protection for gate-level designs has been explored in the last chapter.

However, majority of the commercial hardware IPs come in the RTL (“soft”) format,

which offers better flexibility and portability by allowing design houses to use them in

different technology platforms [35]. Hence, an IP protection approach which targets

the security of RTL design descriptions, caters to a much larger section of the IP

market.

In this chapter, we extend the fundamental hardware obfuscation concept pre-

sented in Chapter 2 to provide two RTL IP obfuscation solutions, which differ in level

of protection and computational complexity. The first technique, referred to as the

“STG modification approach”, converts a RTL description to gate level; obfuscates

the gate level netlist; and then de-compiles it back to RTL. The second technique, re-

ferred to as the “CDFG modification approach”, avoids the forward compilation step

and applies obfuscation in the register transfer level by modifying its control and data

flow constructs, which is facilitated through generation of a CDFG of the RTL design.

The first approach can provide higher level of obfuscation, but has greater hardware

overhead and is computationally more expensive than the second one. We compare

the two approaches both qualitatively and quantitatively – we derive appropriate

metrics to quantify the obfuscation level for both the approaches. We show that the

level of protection can be improved with minimal hardware overhead by increasing

the length of the initialization key sequence. Finally, along with obfuscation, we show

that the proposed approaches can be extended to embed a hard-to-remove “digital

watermark” in the IP that can help to authenticate the IP in case of illegal usage.
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The authentication capability comes at very little additional hardware overhead and

thus helps to reduce the overall design overhead, while providing more security.

Although we focus on the protection of hardware IP modules primarily consisting

of logic blocks and state elements, external memory has become an integral component

of SoCs or embedded systems. The size of memory in a typical SoC or embedded

device is ever increasing, allowing the user to harness greater functionality [36]. It is

essential to ensure the security of both the memory interface hardware as well as the

memory contents in a SoC or an embedded device. Hence, we also analyze obfuscation

based solutions to these problems in this chapter.

The rest of the chapter is organized as follows. In Section 3.2, we describe the two

proposed IP obfuscation schemes, and their relative pros and cons. In Section 3.3,

we present theoretical analysis of the proposed obfuscation schemes to derive metrics

to quantify the level of obfuscation achievable. Section 3.4 presents the automated

design flows developed by us, and simulation results for several open-source IP cores,

and quantitative comparison of the relative scalability with respect to security of

the proposed schemes between themselves and with respect to the AES encryption

system. In Section 3.5, we describe a technique to decrease the overhead by utilizing

the normally unused states of the circuit; applicability of the proposed technique in

providing protection against hardware Trojans, and how the obfuscation technique can

be extended to the protection of memory interface hardware and memory contents.

We conclude in Section 3.6.

3.2 Obfuscation Methodology

In this section, we describe the two proposed obfuscation-based RTL IP protection

schemes, and compare their pros and cons. We also describe the enhanced design

flow that we have developed by integrating them with the traditional SoC design and

manufacturing flow described in Chapter 2. First, we describe the STG modification

and de-compilation based IP protection technique [37], followed by the technique
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based on CDFG modification [38]. We end the section with a comparison of the

relative advantages and disadvantages of the two approaches.

3.2.1 STG Modification Approach

Methodology

This technique has three main steps:

• Logic synthesis of the RTL to an unmapped, unoptimized gate-level netlist,

composed of generic Boolean gates.

• Functional obfuscation of the netlist by structural modifications following the

principle outlined in Chapter 2, and,

• Subsequent de-compilation of the obfuscated netlist back to an obfuscated ver-

sion of the original RTL.

The advantage of modifying the functionality at the gate-level is the relative in-

comprehensibility of such a circuit description compared to a RTL description. The

modified gate-level design is then decompiled to regenerate the RTL of the code, with-

out maintaining high level HDL constructs. Instead, the modified netlist is traversed

recursively to reconstruct the Boolean equations for the primary output nodes and

the state element inputs, expressed in terms of the primary inputs, the state-element

outputs and a few selected high fanout internal nodes. The redundant internal nodes

are then removed. This “partial flattening” effect hides all information about the

modifications performed in the netlist. The obfuscation tool maintains a list of ex-

pected instances of library datapath elements, and whenever these are encountered in

the netlist, their outputs are related through proper RTL constructs to their inputs.

This ensures regeneration of the same datapath cells on re-synthesis of the RTL.

As an example, consider the simple Verilog module “simple” which performs ad-

dition or subtraction of two bits depending on the value of a free running one-bit
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Fig. 3.1. Example of a Verilog RTL description and its obfuscated version
[37]: a) original RTL; b) technology independent, unoptimized gate-level
netlist obtained through RTL compilation; c) obfuscated gate-level netlist;
d) decompiled obfuscated RTL.

counter, as shown in Fig. 3.1(a). Fig. 3.1(b)-(d) shows the transformation of the de-

sign through the proposed obfuscation process. The decompiled RTL in Fig. 3.1(d)

shows that the modification cell and the extra state transition logic are effectively

hidden and isolation of the correct initialization sequence can be difficult even for

such a small design. Major semantic effect of obfuscation is the replacement of high

level RTL constructs (such as if...else, for, while, case, assign etc.) in the

original RTL with different such constructs and replacement of internal nodes and

registers. Furthermore, internal register, net and instance names are changed to ar-

bitrary identifiers to make the code less comprehensible.

After the gate-level modification, the modified netlist is de-compiled to produce

a description of the circuit, which although being technically a RTL and functionally

equivalent to the modified gate-level netlist, is extremely difficult to comprehend to

a human reader. In addition, the modifications made to the original circuit remain

well-hidden. A forward annotation file indicates relevant high-level HDL constructs

and macros to be preserved through this transformation. These are maintained dur-

ing the RTL compilation and de-compilation steps. From the unmapped gate-level



41

Fig. 3.2. Design transformation steps in course of the proposed RTL
obfuscation process [37].

netlist, we look for specific generic gates, that can be decompiled to an equivalent

RTL construct, e.g. multiplexor can be mapped to an equivalent if...then...else

construct or a case construct. The datapath modules or macros are transformed into

appropriate operands. The remaining netlist is traversed recursively to re-construct

the Boolean equations for the primary output nodes and the state element inputs,

expressed in terms of the primary inputs, the state element outputs and a few se-

lected high fanout internal nodes. The redundant internal nodes are then removed.

This “partial flattening” effect hides information about the modifications performed

in the netlist. Once the logic equations are formed, specific signature in the equa-

tion is searched to map it to a suitable higher level RTL construct. For example, an

equation n1 = s1·d1 + s2·d2 + s3·d3 can be mapped to a case construct. Fig. 3.2

shows the design transformation steps during the obfuscation process. We present an

analysis of the security of this scheme in Section 3.3.



42

Embedding Authentication Features

To prevent against attacks from trusted parties with knowledge of the initial-

ization sequence in the design flow, the designer can optionally embed a signature

within the design which acts as a digital watermark. This can be done by another

modification of the state transition function, as shown by the scheme of Fig. 2.3 of

Chapter 2. Finding unreachable states for a large circuit with many state elements is

computationally challenging; however as shown in Section 2.5.4 that by considering

small groups of state elements in a given circuit and performing sequential justifica-

tion using commercially available EDA tools such as Tetramax, it is feasible to derive

unreachable states for large circuits in reasonable time.

3.2.2 CDFG Modification Approach

Methodology

Similar to the STG modification based scheme, the main idea of this approach

is to efficiently integrate a key-enabled, mode control FSM into the design through

judicious modification of control and data flow structures derived from the RTL,

such that the design works in two different modes obfsucated and normal. The mode

control FSM is integrated inside the CDFG derived from the RTL in a way that

makes it extremely hard to isolate from the original IP. The FSM is realized in the

RTL by expanding a judiciously selected set of registers, which we refer to as host

registers and modifying their assignment conditions and values. Once the FSM has

been integrated, both control and data flow statements are conditioned based on

the mode control signals derived from this FSM. The proposed obfuscation scheme

comprises of four major steps described below.

Parsing the RTL and Building CDFG: In this step, the given RTL is parsed

and each concurrent block of RTL code is transformed into a CDFG data structure.

Fig. 3.3 shows the transformation of an “always @()” block of a Verilog code to its
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Fig. 3.3. Transformation of a block of RTL code into CDFG.

Fig. 3.4. Example of hosting the registers of the mode-control FSM.

corresponding CDFG. Next, small CDFGs are merged (whenever possible) to build

larger combined CDFGs. For example, all CDFGs corresponding to non-blocking

assignments to clocked registers can be combined together without any change of the

functionality. This procedure creates larger CDFGs with substantially more number

of nodes than the constituent CDFGs, which helps to obfuscate the hosted mode-

control FSM better.

“Hosting” the Mode Control FSM: Instead of having a stand-alone mode

control FSM as described in Chapter 2, the state elements of the mode-control FSM

can be hosted in existing registers in the design to increase the level of obfuscation.
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Fig. 3.5. Examples of control-flow obfuscation: (a) original RTL, CDFG;
(b) obfuscated RTL, CDFG.

This way, the FSM becomes an integral part of the design, instead of controlling the

circuit as a structurally isolated element. An example is shown in Fig. 3.4, where the

8-bit register reg1, referred as the “host register”, has been expanded to 12-bits to

host the mode-control FSM in its left 4-bits. When these 4-bits are set at values 4′h1

or 4′h2, the circuit is in its normal mode, while the circuit is in its obfuscated mode

when they are at 4′ha or 4′hb. Note that extra RTL statements have been added to

make the circuit functionally equivalent in the normal mode. The obfuscation level is

improved by distributing the mode-control FSM state elements in a non-contiguous

manner inside one or more registers, if possible.

Modifying CDFG Branches: After the FSM has been hosted in a set of selected

host registers, several CDFG nodes are modified using the control signals generated

from this FSM. The nodes with large fanout cones are preferentially selected for

modification, since this ensures maximum change in functional behavior at minimal

design overhead. Three example modifications of the CDFGs and the corresponding
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Fig. 3.6. Example of datapath obfuscation allowing resource sharing.

RTL statements are shown in Fig. 3.5. The registers reg1, reg2 and reg3 are the host

registers. Three “case()”, “if()” and “assign” statements in Fig. 3.5(a) are modified

by the mode-control signals cond1, cond2 and cond3, respectively. These signals eval-

uate to logic-1 only in the obfuscation mode because the conditions reg1 =20′habcde,

reg2 =12′haaa and reg3 =16′hb1ac correspond to states which are only reachable in

the obfuscation mode. Fig. 3.5(b) shows the modified CDFGs and the corresponding

CDFG statements.

Besides changing the control-flow of the circuit, functionality is also modified by

introducing additional datapath components. However, such changes are done in

a manner that ensures sharing of the additional resources during synthesis. This

is important since datapath components usually incur large hardware overhead. An

example is shown in Fig. 3.6, where the signal out originally computes (a+b)×(a−b).

However, after modification of the RTL, it computes (a + b) in the obfuscated mode,

allowing the adder to be shared in the two modes and the outputs of the multiplier

and the adder to be multiplexed.

Generating Obfuscated RTL: After the modifications have been preformed on

the CDFG, the obfuscated RTL is generated from the modified CDFGs, by travers-

ing each of them in a depth-first manner. Fig. 3.7(a) shows an example RTL code

and Fig. 3.7(b) shows its corresponding obfuscated versions. A 4-bit FSM has

been hosted in registers int reg1 and int reg2. The conditions int reg1 [13:12]=2′b00,

int reg1 [13:12]=2′b01, int reg2 [13:12]=2′b00 and int reg1 [13:12]=2′b10 occur only in

the obfuscated mode. The initialization sequence is in1 =12′h654 → in2 =12′h222
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Fig. 3.7. Example of RTL obfuscation by CDFG modification: (a) original
RTL; (b) obfuscated RTL.

→ in1 =12′h333 → in2 =12′hacc → in1 =12′h9ab. Note the presence of dummy state

transitions and out-of-order state transition RTL statements. The outputs res1 and

res2 have been modified by two different modification signals. Instead of allowing the

inputs to appear directly in the sensitivity list of the “if()” statements, it is possible to

derive internal signals (similar to the ones shown in Fig. 3.5(b)) with complex Boolean

expressions which are used to perform the modifications. The output res1 has been

modified following the datapath modification approach using resource sharing.
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Table 3.1
Comparison of De-compilation based and CDFG based Approaches

Approach Advantages Disadvantages

STG Modfication based Approach (a) Higher level of obfuscation (a) Loses major RTL constructs

(b) Greater hardware and computational overheads

CDFG Modification based Approach (a) Works directly on RTL descriptions (a) Hiding modifications is more challenging

(b) Preserves RTL constructs

Embedding Authentication Features

Authentication features might be embedded in the RTL by the same principle

as described in Section 3.2.1. RTL statements describing the state transitions of

the authentication FSM can be integrated with the existing RTL in the same way

the statements corresponding to the obfuscation FSM is hidden. In case the unused

states are difficult to derive from the original RTL, it can be synthesized to a gate-level

netlist and the same technique based on sequential justification as described in Section

3.2.1 might be applied. Note that authentication and obfuscation go hand-in-hand in

ensuring security. While authentication acts as a second line of defense, obfuscation,

through its defining characteristic of hiding the structure and functionality of the IP,

helps to hide the embedded authentication features efficiently.

3.2.3 Comparison between the Two Approaches

Table 3.1 compares the relative advantages and disadvantages of the two proposed

techniques. Although the de-compilation based approach potentially can hide the

modifications better than the direct RTL modification based approach (as shown by

our theoretical analysis of their obfuscation levels in Section 3.3 and by our simulation

results), it also loses major RTL constructs and creates a description of the circuit

which might result in an unoptimized implementation on re-synthesis. Hence, we

provide the IP designer with a choice where either of the techniques might be chosen

based on the designer’s priority. For example, if the IP is going to released to a
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untrustworthy SoC design houses with a prior record of practicing IP piracy, the

STG modification system might be used. On the other hand if the IP is to released

to a comparatively more trustable SoC design house where the design specifications

are very aggressive, the CDFG modification based approach might be used.

3.2.4 Obfuscation-based Secure SoC Design Flow

The proposed obfuscation based techniques can be utilized to develop a piracy-

proof SoC design and manufacturing flow, as described in Chapter 2. The SoC de-

signer receives different obfuscated IPs from the same or different vendors, and then

integrates them on the SoC. A special integrated controller module receives patterns

from the primary inputs and controls the systematic initialization of the IP modules

in the SoC. The system designer integrates several such SoCs on a board, and uses

initialization sequences from a ROM to enable all the SoCs. Typically, the latency in-

curred in the initialization can be easily masked in the latency inherent in a ”bootup”

or a similar process. Thus, the end user remains oblivious to the embedded security

measures in the SoCs. By supporting obfuscated IP cores in the design flow, all the

parties (the IP vendor, the SoC designer and the system designer) are benefitted by

being protected from piracy.

Next we derive theoretical quantitative metrics to estimate the security offered by

the proposed schemes.

3.3 Measure of Obfuscation Level

3.3.1 Manual Attacks by Visual Inspection

To estimate the obfuscation level against a manual mode of attack, we propose a

new metric called semantic obfuscation metric (Msem), which depicts how many of



49

the original high level RTL constructs have been replaced by new ones. We define

Msem by:

Msem =
abs(Nc,orig +Nw,orig +Ne,obfus −Nraw,obfus)

max({Nc,orig +Nw,orig +Ne,obfus}, Nraw,obfus)
(3.1)

where Nc,orig is the total number of high-level RTL constructs in the original RTL;

Ne,obfus is the number of extra state elements included in the obfuscated design; Nw,orig

is the total number of internal wire declarations in the original RTL and Nraw,obfus

is the number of reg, assign and wire declarations in the obfuscated RTL. Note

that 0≤Msem≤1, with a higher value implying better obfuscation. Msem represents a

measure of semantic difference between the obfuscated and the unobfuscated versions

of the RTL, by taking into consideration the constructs introduced in the obfuscated

code and the constructs removed from the original code. This is the weakest attack,

with the adversary having very little chance of figuring out the obfuscation scheme

for large RTLs which have undergone a complete change of the “look-and-feel”.

3.3.2 Simulation-based Attacks

This attack was described and analyzed in Chapter 2. For a logic simulation based

approach where random input vectors are sequentially applied to take the circuit to

the normal mode, the probability of discovering the initialization key sequence is

1
2M ·N

for a circuit with M primary input ports and a length-N initialization key

sequence. For example, in a circuit with M = 64 primary inputs and a length N = 4

initialization key sequence, this probability is ∼ 10−77. In practice, most IPs will have

larger number of primary inputs and the length N can be made larger, resulting in

smaller detection probability. Thus, we can claim that it is extremely challenging to

break the scheme using simulation based reverse-engineering.

3.3.3 Structural Analysis based Attack

For the structural analysis based attack, the two proposed obfuscation schemes

present different challenges to an adversary. For the STG modification scheme, the
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adversary has to analyze the circuit in terms of the Boolean logic structure of the

internal nodes, while in the CDFG modification based scheme, the adversary has to

analyze the high-level RTL structure of the code. This is the strongest attack, to be

acceptable, the proposed obfuscation approaches must provide adequate protection

against this attack. We describe the complexity of the two analyses below.

Structural Analysis against STG Modification

Analysis based on structure of the internal nodes is most conveniently done by

the construction and manipulation of Reduced Ordered Binary Decision Diagrams

(ROBDD) [39] corresponding to the internal circuit nodes. To detect the node modifi-

cation scheme, the adversary’s algorithm must be able to solve several sub-problems in

succession. We estimate the computational complexity of each of these sub-problems

below to derive an estimate of the computational complexity of the entire problem.

Let the total number of primary outputs of the circuit be P , the total number

of state elements in the original circuit be S and the total number of state elements

inserted in the modified circuit be T . Then, it is sufficient to analyze the structures

of these (P + S + T ) nodes between the original and the modified designs, out of

which (P + S) are also present in the original design. Suppose, the adversary finds

F nodes out of these (P + S + T ) nodes to have contrasting logic structures by a

ROBDD-based analysis. This dissimilarity is due to two reasons: (a) direct effect of

the node modification scheme described in Section 3.2 on some of these nodes, and (b)

indirect effect of these modified nodes on other nodes. Either way, from eqn. (2.1 in

Chapter 2), the affected nodes would have their values inverted only if simultaneously

en = 1 and g = 1. To isolate the inserted FSM, the adversary must detect this node

modification scheme for each dissimilar node.

Finding the correct ROBDD representation of the modified nodes: To

detect the effect of a particular en signal originating from the inserted state machine

on a modified node, the adversary’s algorithm should be able to represent the ROBDD
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Fig. 3.8. Binary Decision Diagram (BDD) of a modified node.

of the modified node with the en signal as the root node, as shown in Fig. 3.8.

Improving the variable ordering to minimize the size of a BDD is an NP-complete

problem [40]. Hence, it follows that the computational complexity to find a particular

representation of the ROBDD of the modified function which has en as the root node

is also NP-complete with respect to the number of variables in the Boolean logic

expression for the node. Hence, deciphering the modification scheme for a modified

node with fanin cone size fi has a computational complexity O(2fi).

Graph Isomorphism Comparison: After the ROBDD of the modified node

has been expressed in the form shown in Fig. 3.8, each sub-graph below the node en

should be compared with the ROBDD graph for f for isomorphism. Proving graph

isomorphism is a problem with computational complexity between P and NP , with

the best-known heuristic having complexity 2O(
√
n logn) for a graph with n vertices

[41]. Hence, establishing the equivalence for f through graph isomorphism has a

computational complexity 2O(
√
fi log fi) for a node with fanin cone size fi. Let fi be

the average fanin cone size of the failing verification nodes. Hence, overall this sub-

problem has a computational complexity O(2fi · 2O(
√
fi log fi)), which must be solved

for each of the F dissimilar nodes.

Compare Point Matching: So far we have assumed that the adversary would be

able to associate the dissimilar nodes in the obfuscated design with the corresponding

nodes in the original design and would then try to decipher the obfuscation scheme.
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This is expected to be relatively easy for the primary output ports of the IP because

the IP vendor must maintain a standard interface even for the obfuscated version of

the IP, and hence the adversary can take advantage of this name matching. However,

the names of the state elements can be changed arbitrarily by the IP vendor and

hence, finding the corresponding state elements to compare is a functional compare

point matching problem [42], which is extremely computationally challenging because

of the requirement to search through (SN)! combinations, where SN is the number

of dissimilar state elements. Hence, we propose the following metric to quantify the

level of protection of the proposed STG modification based obfuscation scheme in

providing protection against structural analysis:

Mstr = F · 2fi · 2O(
√
fi log fi) + (SN)! (3.2)

Observations from the Metric: From the above metric, the following can be

observed which act as a guide to the IP designer to design a well-obfuscated hardware

IP following the STG modification based scheme:

1. Those nodes which have larger fanin cones should be preferably modified be-

cause this would increase fi in eqn. (3.2), thus increasing Mstr.

2. An inserted FSM with larger number of flip-flops increases its obfuscation level

because SN increases. Also, as shown previously in this section, there is an

exponential dependance of the probability of breaking the scheme by simula-

tion based reverse-engineering on the length of the initialization key sequence.

Hence, it is evident that FSM design and insertion to attain high levels of ob-

fuscation incur greater design overhead. Thus the IP designer must trade-off

between design overhead and the level of security achievable through obfusca-

tion.

3. Modification of a larger number of nodes increases F , which in turn increases

the level of obfuscation.
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Structural Analysis Against CDFG Modification based Approach

The structural analysis of the CDFG modification based obfuscation scheme is

estimated by the degree of difficulty faced by an adversary in discovering the hosted

mode-control FSM and the modification signals. Consider a case where n mode-

control FSM state-transition statements have been hosted in a RTL withN blocking/non-

blocking assignment statements. However, the adversary does not know a-priori how

many registers host the mode-control FSM. Then, the adversary must correctly figure

out the hosted FSM state transition statements from one out of
n∑
k=1

(
N

k

)
possibilities.

Again, each of these choices for a given value of k has k! associated ways to arrange

the state transitions (so that the initialization key sequence is applied in the correct

order). Hence, the adversary must correctly identify one out of
n∑
k=1

((
N

k

)
· k!

)
pos-

sibilities. The other feature that needs to be deciphered to break the scheme are

the mode control signals. Let M be the total number of blocking, non-blocking and

dataflow assignments in the RTL, and let m be the size of the modification signal

pool. Then, the adversary must correctly choose m signals out of M , which is one out

of

(
M

m

)
choices. Combining these two security features, we propose the following

metric to estimate the complexity of the structural analysis problem for the CDFG

modification based design:

Mstr =
n∑
k=1

((
N

k

)
· k!

)
·
(
M

m

)
(3.3)

A higher value of Mstr indicates a greater obfuscation efficiency. As an example,

consider a RTL with values N = 30, M = 100, in which a FSM with parameter n = 3

is hosted, and let m = 20. Then, Mobf ≈ 1.35×1025. In other words, the probability

of the hacker reverse-engineering the complete scheme is about 1 in 1025. In practice,

the values of n and M would be much higher in most cases, making Mstr smaller and

thus tougher for the hacker to reverse-engineer the obfuscation scheme.
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3.3.4 Quantitative Comparison of the Two Proposed Approaches

The value ofMstr is expected to be better in the STG modification based approach,

because of the exponential dependance of this metric on the average fanin cone size

of the modified nodes (eqn. 3.2), compared to the combinatorial dependance on the

number of RTL statements for the CDFG modification based approach (eqn. 3.3).

The value of Msem is again expected to be superior in the STG modification based

approach because the changes in the appearance of the RTL is more drastic in this

case, whereas the CDFG modification based approach makes comparatively lesser

changes to the high-level RTL constructs, as it is based on intelligent utilization of

mostly existing RTL constructs. However, the run-time of the obfuscation algorithm

is expected to be higher in the STG modification based approach, because it performs

recursive backtracking to construct the logic equations of the internal nodes. All these

predicted trends were supported by our simulation results presented in Section 3.4.

3.4 Results

3.4.1 Design Flow Automation

Fig. 3.9 shows the entire STG modification based RTL obfuscation design flow.

The design flow starts with the compilation of RTL description of the IP core to

a unmapped, unoptimized gate-level Verilog netlist. The maximum allowable area

overhead is entered as a design constraint, from which the maximum number of mod-

ifiable nodes (Nmax) is estimated. Additionally, the tool has a list of user-mentioned

constructs and macros in a forward annotation file. These elements are preserved

during the RTL compilation and de-compilation processes by treating them as don’t

touch modules. The Nmax nodes to be modified are chosen based on the algorithm

described in Chapter 2, which ensures maximum perturbation of the design. The

modified netlist is re-synthesized and the resultant netlist is then decompiled to a
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Fig. 3.9. Flow diagram for the proposed STG modification based RTL
obfuscation methodology.

RTL code. The names of the internal nodes and instances are changed by a simple

string substitution scheme.

Fig. 3.10 shows the steps of the proposed CDFG modification based design obfus-

cation methodology. The input to the flow is the original RTL, the desired obfuscation

level represented by the obfuscation metrics (Msem and Mstr), and the maximum al-

lowable area overhead. It starts with the design of the mode-control FSM based on

the target Msem and Mstr. The output of this step are the specifications of the FSM

which include its state transition graph, the state encoding, the pool of modification

signals, and the initialization key sequence. Random state encoding and a random

initialization key sequence are generated to increase the security. Note that in the

STG modification based approach, we do not start with explicit target values of the

metrics, because these two parameters cannot be predicted a-priori in this technique.

However, the target area overhead is an indirect estimate of these parameters, and the

de-compilation process automatically ensures a high value of Msem, while an optimal

node modification algorithm ensures a high value of Mstr.
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Fig. 3.10. Flow diagram for the proposed CDFG modification based RTL
obfuscation methodology.

3.4.2 Simulation Verification

The above design flows were developed using C and the TCL scripting language

and was directly integrated in the Synopsys Design Compiler environment. The state

encoding of the inserted FSM was done using the state encoding tool STAMINA [43].

Synthesis was performed using Synopsys Design Compiler, using a LEDA 250 nm

library. All Formal Verification was performed using Synopsys Formality. All work

was performed on a Linux workstation with 2GB of main memory and a dual-core

1.5GHz processor
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Table 3.2
Functional and Semantic Obfuscation Efficiency and Overheads for IP
Cores for 10% area overhead target (CDFG Modification based Results at
iso-delay)

STG Modification based Approach

IP Sub- Nodes Obfuscation Efficiency Design Overhead

Cores Modules Modified (%) Failing Verif. Nodes (%) Msem log10 Mstr Area (%) Delay (%) Power (%) Run time (s)

key sel 0.93 100.00 0.98 51.56 6.65 1.39 4.85 32

DES crp 0.83 100.00 0.91 55.87 5.54 0.66 5.43 37

Key Expand 0.95 90.30 0.92 43.17 5.29 0.00 4.56 28

AES Sbox 0.95 100.00 0.96 45.78 4.95 2.42 5.31 29

Inverse Sbox 0.97 85.25 0.94 46.22 5.51 2.60 5.62 35

DCT 0.90 88.95 0.96 60.19 4.64 1.00 5.06 27

FDCT ZIGZAG 0.95 100.00 0.92 52.12 5.74 0.88 5.67 30

CDFG Modification based Approach

IP Sub- # of Obfuscation Efficiency Design Overhead

Cores Modules Modifications Failing Verif. Nodes (%) Msem log10 Mstr Area (%) Delay (%) Power (%) Run time (s)

post norm 20 98.16 0.69 36.81 8.22 0.00 9.14 27

pre norm 20 94.16 0.70 32.91 9.39 0.00 9.79 25

FPU pre norm fmul 20 90.00 0.77 23.13 8.30 0.00 9.69 20

except 10 100.00 0.73 23.16 7.56 0.00 8.73 14

control wopc 20 92.79 0.75 42.12 8.74 0.00 8.97 29

TCPU mem 10 97.62 0.71 19.69 8.29 0.00 9.76 15

alu 10 97.62 0.81 15.01 9.59 0.00 9.88 15

A FSM with a length-4 initialization key sequence was designed for mode-control

in both the schemes. In the STG modification based scheme, we chose high fan-in

internal nodes as MKFs, as described in Chapter 2. The STG modification scheme

was applied on three open-source Verilog IP cores, viz. “Data Encryption Standard”

(DES), “Advanced Encryption Standard” (AES) and “Discrete Cosine Transform”

(FDCT). The CDFG modification based obfuscation technique was applied for two

Verilog IP cores - a single precision IEEE-754 compliant floating-point unit (“FPU”),

and a 12-bit RISC CPU (“TCPU”), both collected from the public domain IP core

collection at http://www.opencores.org. For the STG modification based approach,

each gate-level modified design was verified using Formality with the corresponding

de-compiled RTL to verify the correctness of the procedure.
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Table 3.3
Overall Design Overheads for Obfuscated IP Cores (STG modification
based results at iso-delay)

STG Modification based Approach

IP Core Area (%) Delay (%) Power (%)

DES 6.09 1.10 5.05

AES 5.25 2.00 5.45

FDCT 5.22 0.95 5.55

Average 5.52 1.35 5.35

CDFG Modification based Approach

FDCT 8.48 9.36 0.00

TCPU 8.54 9.73 0.00

Average 8.51 9.55 0.00

Obfuscation Efficiency and Overheads

Table 3.2 shows the structural and semantic obfuscation metrics and design over-

heads for 10% target area overhead constraint for each module. Note that the value

of the Mstr metric is in a logarithmic scale. The potency and resilience of the schemes

were very high, with most of the designs considered achieving close to 100% formal

verification failure and having a very high value of the computational complexity

metric Mstr. However, the value of Mstr is orders of magnitude higher for the STG

modification based approach, as predicted in Section 3.3. The value of Msem was very

close to the ideal value of 1.0 for the STG modification based approach; however, it

is closer to 0.75 on average for the CDFG modification based approach. Again, this

is an expected trend as predicted in Section 3.3.

For all the individual circuit modules, the observed area overhead was less than

10%, the power and delay overheads were within acceptable limits (target delay over-

head was set at 0% for the CDFG modification based scheme). The maximum run-

times of the obfuscation programs for the individual modules was 29 seconds for
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the CDFG modification based approach, and 37 seconds for the STG modification

based approach. Table 3.3 shows the overall design overheads after re-synthesis of the

multi-module IP cores from the obfuscated RTL, which are again all within acceptable

limits.

3.4.3 Effect of Key Length

The security offered by the two proposed approaches increases with the increase in

the key length. Next, we investigate the following aspects of the proposed techniques

(a) design and performance overheads to support multiple-length keys, and (b) effect

of increasing key lengths on design and performance overheads. We compare the

proposed techniques with hardware implementations the AES encryption/decryption

algorithm, the global standard for secure information exchange.

Support for Multiple-length Keys

Most commercially available IP cores for AES can be operated in three different

modes with three different input key lengths - 128 bit, 192 bit and 256 bit [44, 45].

This flexibility allows the SoC designers to trade-off between the available security

(which increases with increase of key length) and performance (which decreases with

increase of key length). Usually, a “key length” input control signal determines the

input key length. The same feature can be implemented in our proposed techniques,

where the length of the initialization key sequence can be varied. Fig. 3.11 shows such

a system which supports initialization key sequences of length 3, 4 or 5. However, in

case of commercially available AES cores, this flexibility comes at a price - the multi-

key IP core versions usually have greater area than the baseline designs supporting

only a single key length [45].

Table 3.4 shows the area overhead effect of supporting multiple keys lengths on the

proposed schemes for the IP modules presented in Table 3.3, compared to two versions

of a commercially available AES core [45]. The key lengths for our proposed schemes
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Fig. 3.11. Scheme with initialization key sequences of varying length (3,
4 or 5).

Table 3.4
Area Overhead for Multi-length Key Support

Scheme Area Overhead (%)

STG Modification 2.26 (av.)

CDFG Modification 3.16 (av.)

Ref. [45] (AES 48-cycle core) 17.88

Ref. [45] (AES 96-cycle core) 24.59

were 4 (baseline), 6 (1.5X) and 8 (2X), while those for the AES implementations were

128 (baseline), 192 (1.5X) and 256 (2X). From this table, it is clearly evident that

the proposed approaches are more scalable than the AES hardware implementations

with respect to the increase in key length.

Effect of Increasing Key Length

For symmetric key cryptographic algorithms such as AES, in general the security

increases with the length of the key, as the complexity of breaking the encryption

is an exponential function of the key length. However, an increasing key length

usually results in lower throughput. Similar trends are expected for the two proposed

obfuscation schemes with respect to the length of the initialization key sequence. We
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Table 3.5
Comparison of Throughput Scalability with Increasing Key Length

Decrease in Throughput (%)

Scheme 1.5X key length 2X key length

STG Modification 2.70 (av.) 3.96 (av.)

CDFG Modification 3.07 (av.) 4.72 (av.)

Ref. [45] (AES 48-cycle core) 14.10 24.83

Ref. [45] (AES 96-cycle core) 14.04 24.56

investigated the scalability of the two proposed techniques with respect to the increase

in the length of the initialization key sequence for the proposed approaches vis-a-vis

that for commercially available hardware implementations of AES with respect to the

key length. Again, for the proposed obfuscation schemes we considered a a key length

of 4 to the baseline case, while a 128 bit key for AES was considered baseline. Table

3.5 shows the decrease in throughput with the increase of key length. Once again,

the simulation results showed that the proposed schemes had superior scalability

of throughput than the hardware implementations of AES when the key length is

increased.

3.5 Discussions

In this section, we describe a technique to decrease the hardware overhead by

utilizing the normally “unused states” (states which are not reachable during normal

operations). We also show how the proposed obfuscation techniques can provide

protection against hardware Trojans.
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Table 3.6
Design Overhead for ISCAS-89 Benchmarks Utilizing Unused States

Circuit # of Gates % Ar. Ov.1 % Ar. Ov.2 %Po. Ov.1 %Po.Ov.2

s1196 370 18.44 24.84 2.45 6.00

s1238 373 16.31 27.15 4.63 10.71

s1423 505 6.11 6.08 2.015 3.07

s1488 431 12.81 16.93 7.24 12.76

s5378 1102 14.45 18.69 8.76 25.78

s9234 5807 6.53 9.04 9.28 13.15

s13207 2488 7.93 8.17 7.54 16.28

s15850 2983 7.67 8.99 5.63 6.15

s35932 7966 1.34 1.955 6.93 9.49

s38417 8822 0.09 0.56 1.81 5.27

s38584 9019 0.85 3.03 5.10 10.77

3.5.1 Using Unreachable States during Initialization

Referring to Fig. 2.3, the states in the initialization FSM and the obfuscation

FSM can also be encoded by using states which are unreachable during normal oper-

ations. By doing this, it is automatically ensured that the circuit would not operate

in the correct mode prior to its initialization. This can help to eliminate the need to

introduce a separate FSM to control the mode of operation, potentially decreasing

the hardware overhead. We present simulation results for a method of obfuscation

based on finding unused states for a suite of gate-level sequential circuits, and two

open-source RTL IP cores.

Table 3.6 shows the design overhead in ISCAS-89 circuits following the de-compilation

based methodology where normally unused states of the circuit are used to encode

the states in the obfuscated mode. The unused states were found using sequential

justification by Synopsys Tetramax. The results were taken without integrating any
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Table 3.7
Design Overhead for IP Cores Utilizing Unused States

IP Module % Ar. Ov.1 % Ar. Ov.2 %Po. Ov.1 %Po.Ov.2

sbox 5.95 7.46 15.19 17.67

AES inv sbox 6.99 8.25 8.98 15.27

key expand 3.93 5.47 13.80 15.93

Overall 4.57 6.07 13.03 16.14

key sel 4.81 8.91 2.66 5.35

DES crp 4.75 6.77 1.75 4.79

Overall 4.77 7.69 2.03 4.97

mode-control FSM, considering 5-6 randomly chosen state-elements in the original

circuit, having an initialization state space with 4 states, and (for result set “1”) an

authentication state space consisting of 4 states. State encoding with 6 state elements

were required in cases where sufficient unused states are not available from 5 state

elements. All results are at iso-delay, i.e. zero timing overhead. Table 3.7 shows the

corresponding figures for two open-source IP cores.

3.5.2 Application of Obfuscation to Memory

As pointed out Section 3.1, protection of the memory module can serve two pur-

poses: (a) protection of the memory interface hardware from IP piracy and Trojan

infection, and (b) protection of the memory contents. Serving the second purpose is

particularly important for embedded applications, where the program and the data

are at the risk of unauthorized access and/or malicious alteration in unprotected

memory, as detailed in Chapter 7. Obfuscation can be applied to simultaneously

achieve the above two goals, as illustrated in Fig. 3.12. The memory control unit

(including the memory address decoder) can be obfuscated using the proposed proce-

dure. This protects the memory control unit from IP piracy and Trojan infection. In
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Fig. 3.12. Memory protection using hardware obfuscation and scrambling.

addition, data and address scrambling circuits are included in the obfuscated memory

control unit. The address scrambling circuit re-maps any address generated by the

SoC (or an embedded processor) to a different memory location, whereas the data

scrambling circuit scrambles any data to be written in memory. A provision for data

de-scrambling is also made to de-scramble any data read from memory before sending

it to the processing units.

These scrambling/de-scrambling circuits are controlled by the outputs of the mode

control FSM integrated in the memory control unit and they are operational in both

the normal and the obfuscated modes, such that in the obfuscated mode, corrupted

data is stored in or read from incorrect memory locations. For example, in the ob-

fuscated mode, the address scrambler might map all addresses ending with four to

a single memory location, thereby corrupting the memory content with high prob-

ability. It is important for the scrambling circuitry to have low hardware overhead

and be structurally unrecognizable. Different low-overhead scrambling circuitry has

been proposed for memory address and data obfuscation, including constant address

shifters using adders, random address shifters using the output of controlled linear

feedback shift registers (LFSRs), and controlled bit permuters which re-arrange the

bits of the address or data [46]. Because adders and LFSRs have recognizable regular-

ity in their structures (both at the gate-level and in RTL) which might be preserved
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even after obfuscation, hence, controlled bit permuters composed of irregular combi-

national logic can be the most suitable choice among the approaches described here.

The data de-scrambler should perform the reverse permutation to bring back the

scrambled data to its original form. The behavior of the bit permutation circuit can

be made arbitrarily complex, e.g. a scrambler that simultaneously permutes and shifts

the address/data, thereby potentially increasing the difficulty faced by an adversary.

However, because the data scrambler design requires a corresponding de-scrambler,

the total hardware overhead of the scrambler and the de-scrambler should be taken

into consideration before deciding on the scrambling algorithm.

In embedded processors with a simple load/store architecture, it can happen that

there is not much logic circuitry between the register file holding or receiving the

data and the memory (cache or external). In these scenarios, an inserted bit scram-

bling network between the data transfer path from the register file to the external

memory can become extremely recognizable. Once it is recognized, an adversary in

the fabrication facility can by-pass it or neutralize its effect. In such cases, a more

secure option is to have the scrambling network at the input of the register file, and

the processing unit has to be modified to have the ability to process scrambled data.

The corresponding de-scrambling network in this case has to be at the I/O interface

to the peripherals.

3.6 Summary

In this chapter, we have extended the role of key-based obfuscation in IP protection

by describing two techniques applicable to RTL descriptions of IPs. The two different

techniques provide the SoC designers with the to trade-off between attainable levels

of security and complexity of the obfuscation process. The first technique operates

by synthesizing the RTL to a gate-level netlist, modifying it and then de-compiling

it to re-generate an obfuscated version of the RTL. The second technique operates

on the RTL directly and makes the modification at judiciously chosen locations to
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effectively hide them. We integrate a small FSM of special structure into the design

to modify the STG (in the first technique) or the CDFG (in the second technique)

of the circuit. The scheme includes additional hard-to-detect authentication features

at low design overhead to increase the level of security. The proposed obfuscation

techniques provide active defence mechanisms that can prevent IP infringement at

different stages of SoC design and fabrication flow (similar to the scheme described in

Chapter 2), while incurring low design and computational overhead and no impact on

end user experience. The proposed technique is easily scalable in terms of increasing

level of security using longer key sequence. They can also be applied for protection of

memory content and memory interface hardware. Further improvement in hardware

overhead is attainable by utilizing the normally unused states of the circuit.

The next chapter will examine the applicability of obfuscation in providing protec-

tion against hardware Trojans. Note that the security features based on obfuscation

propagates through the down-stream stages of IC life-cycle and provides protection

against hardware Trojans. Design of a stealthy and effective hardware Trojan requires

detailed analysis of the circuit structure and functionality. However, if the circuit

functionality is obfuscated by an initialization key based scheme, then this task can

become significantly difficult for an adversary. This effect would be analyzed in detail

in Chapter 4.
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4. OBFUSCATION BASED PROTECTION AGAINST

HARDWARE TROJAN

4.1 Introduction

As mentioned earlier, the issue of Trust in Integrated Circuits has become promi-

nent recently due to widespread outsourcing of the IC manufacturing processes to

offshore locations in order to reduce cost [10, 47–49]. A design can be tampered in

an untrusted fabrication facility by the insertion of malicious circuitry that triggers

a malfunction conditionally. Such malicious circuitry, referred to as a hardware Tro-

jan, can activate during field operation condition and affect normal circuit operation,

potentially with catastrophic consequences in critical application areas and public

infrastructure. Such malicious circuitry can also be inserted by CAD automation

tools obtained from untrusted third party vendors [50]. Due to the stealthy nature

of hardware Trojan and inordinately large number of possible Trojan instances an

adversary can exploit, detection of hardware Trojan by post-manufacturing test has

emerged as an extremely challenging problem [10].

In this chapter [51], a novel application of design obfuscation is proposed to achieve

security against hardware Trojan. The technique is motivated by the key-based state

transition modification methodology for secure SoC design flow, as described in the

last two chapters. It is shown that obfuscation can be extremely effective in pro-

tecting designs from malicious modifications. Furthermore, it can facilitate detection

of inserted Trojan since it prevents an intelligent adversary from exploiting the true

rare events in a circuit to design hard-to-detect Trojans. As mentioned in Chapter

2, the obfuscation scheme enables circuit operation in two distinct modes - (a) the

obfuscated mode, when circuit functionality is different from normal one, and (b) the

normal mode, when its behavior is identical to its non-obfuscated version. The mode
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control is performed by the application of a specific sequence of input vectors on ini-

tialization, called an initialization key. Without the initialization key, an adversary

fails to comprehend the intended functional behavior of the circuit. It can be argued

that without proper knowledge of the circuit functionality, a Trojan inserted by an

adversary will have high probability of either becoming functionally benign, or eas-

ily detectable by conventional logic testing. This technique is analogous to software

obfuscation techniques which help in protecting against malicious modifications by

hiding the functional behavior of a program, as discussed in Chapter 7. In particular,

this work makes the following contributions:

• It analyzes the effectiveness of a key-based gate-level design obfuscation scheme

in achieving security against hardware Trojans. It provides mathematical anal-

ysis to derive the impact of different design and obfuscation parameters on the

degree of hardware protection achieved against Trojans. The security features

propagate through the IC design flow to lower levels of design abstraction (such

as GDS-II). The methodology ensures that no structural signature is introduced

while obfuscating the functionality of the circuit by modifying the state transi-

tion graph (STG), while the normal mode circuit functionality is kept unaltered.

• It proposes two important modifications of the obfuscation process that helps

in achieving high security against hardware Trojan at low design overhead.

In particular, it proposes: (1) addition of extra state elements to “blow up”

the state space exponentially and then use large number of these states in the

obfuscated mode of operation, and (2) use of functionally unreachable states of

the original state machine in the obfuscated mode. It develops an automated

design flow to incorporate the above modifications while incurring low design

overhead. It also proposes an integrated flow for evaluating the effectiveness of

the proposed approach for complex gate-level netlists.

• Malicious CAD tools and automation scripts in automated design flows are po-

tential sources of Trojan insertion [6,50]. This threat is relevant at all stages of
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the design flow, and is growing with increasing use of third-party CAD tools in

IC design. We have shown how the proposed obfuscation based design method-

ology can provide protection against such malicious CAD tools in both the SoC

and FPGA design flows. We also discuss how the proposed methodology can

be extended to protect against different types of Trojans such as information

leakage Trojans , which try to leak secret information from within an IC [52]. .

The rest of the chapter is organized as follows. In Section 4.2, we provide back-

ground on hardware Trojans and obfuscation for hardware security. In Section 4.3,

we present mathematical analysis to show how an obfuscation-based IP protection

technique can address the security threat posed by hardware Trojans. In Section 4.4,

an automated design flow that implements the proposed methodology is described.

Simulation results to validate the concept is presented in Section 4.5. In Section 4.6,

a technique to decrease the design overhead and the effectiveness of this scheme in

proving protection against malicious CAD tools and information leaking Trojans is

discussed. Conclusions are summarized in Section 4.7.

4.2 Background

4.2.1 Hardware Trojan: Models and Examples

A hardware Trojan instance can typically be associated with two sets of internal

nodes: the nodes which trigger malfunction by activating the Trojan (called the

trigger nodes), and the nodes which are affected by the Trojan (called the payload

nodes) [53]. Fig. 4.1(a) [10] shows a combinational Trojan where the payload node

S has been modified to the node S?, and malfunction is triggered whenever the

condition a = 0, b = 1, c = 1 is satisfied at the corresponding trigger nodes. The

sequential Trojan shown in Fig. 4.1 (b), on the other hand, is a 3-bit counter which

causes a malfunction at the payload node S on reaching a particular count, which is

incremented each time the condition a = 1, b = 0 is satisfied.
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(a) (b) (c)

(d)

Fig. 4.1. Examples of (a) combinational and (b) sequential hardware Tro-
jans that cause malfunction conditionally; Examples of Trojans leaking
information (c) through logic values and (d) through side-channel param-
eter [52].

A Trojan can also exhibit its malicious effect by leaking information through

covert communication channels [54]. An example Trojan that leaks logic information

conditionally is shown in Fig. 4.1(c). The system is design for a cryptographic appli-

cation with an integer unit and a cryto-core, which performs Advanced Encryption

Standard (AES) based cipher operations. The Trojan consists of a comparator and a

conditional data transmitter. The comparator compares the values at a few internal

nodes of the integer unit with a constant value, and the transmitter sends out the

contents of the data bus (which can be the key for the AES encryption) through the

RS-232 port if the comparison succeeds. Another example is shown in Fig. 4.1(d) [52],

where a bank of inserted capacitors is charged depending on the result of XOR-ing

the output of a pseudo-random number generator (PRNG) with the contents of a
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data bus connected to an AES module. Provided the adversary has a clock that is

synchronized with the PRNG clock, it is possible to extract the AES key from the

side-channel information consisting of supply current traces of the IC.

Note that an intelligent adversary is likely to choose rare conditions at internal

circuit nodes as Trojan triggering condition [6,53], which are unlikely to arise during

test but can occur during long hours of field operation. Moreover, the inserted Tro-

jan is likely to be designed such that its malicious effect at the payload is difficult

to observe at the output ports. A Trojan designed with rare activation condition

and/or rare observability of payloads would evade post-manufacturing test with high

probability. It is extremely challenging to detect Trojan insertion using conventional

test generation and application techniques due to the stealthy nature of the Trojan

circuits as well as the inordinately large Trojan population space. The number of

possible Trojan instances in a given circuit has a combinatorial dependence on the

number of circuit nodes. For example, with an assumption of maximum four trigger

nodes, a small ISCAS-85 circuit c880 with 451 gates can have ∼109 possible trigger

conditions and ∼1011 single payload Trojan instances, respectively. Hence, it is not

computationally feasible to enumerate all possible Trojan instances in a given circuit

and generate deterministic test patterns for them.

Many existing approaches of Trojan detection rely on the measurement of side-

channel parameters such as delay and power signature [47, 55–57]. However, these

techniques can be extremely susceptible to measurement and process-variation in-

duced noise. Moreover, they suffer from reduced detection sensitivity in detecting

ultra-small Trojans consisting of few logic gates [47]. Design techniques have also

been proposed that help to detect inserted Trojans [58,59]; however, they often result

in unacceptable design overhead. These short-comings of the existing approaches of

Trojan detection constitute the main motivation behind the present work.

In the simulation results, the class of the Trojans that can be functionally rep-

resented by the examples shown in Figs. 4.1(a) and 4.1(b) have been considered.

However, as shown in Section 4.6 that the proposed design methodology is also effec-
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tive in protecting ICs against information leakage Trojans which are triggered by a

specific set of digital values at selected circuit nodes (similar to the types shown in

Fig. 4.1(c) and 4.1(d)), regardless of whether the information leaked by them is logic

information or side-channel information.

4.2.2 Obfuscation for Hardware IP Protection

The approaches for obfuscation based hardware IP protection can be divided into

two main classes - (a) those that affect the comprehensibility of the description of IP

core (usually in a hardware description language such as Verilog or VHDL), but keep

the functionality unchanged [20, 60], and (b) those that obfuscate the functionality

of the IP core [7]. In [20, 60] software tools have been described that can affect the

human comprehensibility of a RTL by variable renaming, removal of comments, loop

unrolling, etc. However, they do not address obfuscating low-level design descriptions

(gate level or GDS-II) and hence cannot be used for preventing Trojan attack in

foundry.

Functional obfuscation based approaches such as those proposed in [7], on the

other hand, obfuscate the way the circuit operates and normal operation is enabled

only after the application of a correct initialization key sequence. Such approaches

work essentially by changing the state transition function of a design to define two

distinct modes of operation: the obfuscated mode and the normal mode. Such a

functional obfuscation approach is more promising with respect to security against

Trojan because it prevents the adversary from fully understanding the circuit opera-

tions, thereby making an intelligent Trojan insertion extremely difficult. The design

modifications become indistinguishable parts of the circuit structure, which makes

it infeasible to reverse-engineer the circuit and isolate the security features. Note

that key-based hardware protection techniques have earlier been investigated to pre-

vent illegal manufacturing and circulation of ICs [8]. However, they do not address



73

(a) Modified state transition graph

(b) Modified circuit structure

Fig. 4.2. The proposed obfuscation scheme for protection against hard-
ware Trojans.

obfuscating the functionality of the circuit or achieving protection against hardware

Trojan.
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4.3 Methodology

In this section, the design methodology based on obfuscation to protect designs

against the threat of hardware Trojans is described. The obfuscation in the proposed

scheme is achieved by two important modifications of the state transition graph (STG)

of the circuit:

• The size of the reachable state-space is “blown up” by a large (exponential)

factor using extra state elements.

• Certain states, which were unreachable in the original design are used and made

reachable only in the obfuscated mode of operation.

These two modifications make it difficult for an adversary to design a functionally

potent and well-hidden Trojan, as shown through the analysis presented in Sections

(4.3.1)-(4.3.3). Fig. 4.2(a) shows the proposed obfuscation scheme based on the

change in the STG of the circuit. On power-up, the circuit is initialized to a state

(SO0 ) in the obfuscated mode. On the application of an input sequence K1→K2→K3

in order, i.e. the initialization key sequence, the circuit reaches the state SN0 , which

is the reset state in the normal state space, allowing normal mode of operation. The

states SO0 , SO1 and SO2 constitute the initialization state space. The application of

even a single incorrect input vector during the initialization process takes the circuit

to states in the isolation state space, a near-closed set of states from which it is not

possible to come back to the initialization state space or enter the original state space.

The initialization state space and the isolation state space together constitute the

obfuscation state space. All state encodings in the obfuscation state space are done

using unreachable state bit combinations for selected state elements of the circuit.

This ensures that the circuit cannot perform its normal functionality until the correct

initialization key sequence has been applied. The initialization latency (typically < 10

clock cycles) can be easily hidden from the end-user by utilizing the inherent latency

of most ASICs during a “boot-up” or similar procedure on power-ON [7].
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To “blow up” the size of the obfuscation state space, a number of extra state

elements are added depending on the allowable hardware overhead. The size of the

obfuscation state space has an exponential dependence on the number of extra state

elements. An inserted parallel finite state machine (PSM) defines the state transitions

of the extra state elements. However, to hide possible structural signature formed

by the inserted PSM, the state transitions in both modified state machine in the

original circuit (MOSM) and the PSM depend on each other, as shown in Fig. 4.2(b).

Next, description of the PSM is folded into the MOSM to generate an integrated state

machine using a logic re-synthesis step. It requires considering the design constraints

in terms of delay, area or power during flattening of the state machines and logic

optimization. In effect, the circuit structures such as the input logic cones of the

original state elements change significantly compared to the unobfuscated circuit,

making reverse-engineering of the obfuscated design practically infeasible for a hacker.

This effect is illustrated in Section 4.3.4 through an example benchmark circuit.

To increase the level of structural difference between the obfuscated and the orig-

inal circuits, the designer can choose to insert modification cells as proposed in [7]

at selected internal nodes. Furthermore, the level of obfuscation can be increased by

using more states in the obfuscated state space. This can be achieved by: 1) adding

more state elements to the design and/or 2) using more unreachable states from the

original design. However, this can increase the design overhead substantially. In

Section 4.6, a technique is described to reduce the design overhead in such cases.

Selected states in the isolation state space can also serve the purpose of authen-

ticating the ownership of the design, as described in [7]. Authentication is usually

performed by embedding a digital watermark in the design. A digital watermark is a

unique characteristic of the design which is usually not part of the original specifica-

tion and is known only to the designer. Fig. 4.2 shows such a scheme where the states

SA0 , SA1 and SA2 in the isolation state space and the corresponding output values of

the circuit are used for the purposes of authenticating the design. The design goes

through the state transition sequence SO0 →SA0→SA1→SA2 on the application of the
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sequence A1→A2→A3. Because these states are unreachable in the normal mode of

operation, they and the corresponding circuit output values constitute a property that

was not part of the original design. As shown in [7], the probability of determining

such an embedded watermark and masking it is extremely small, thus establishing it

as a robust watermarking scheme.

4.3.1 Effect of obfuscation on Trojan Insertion

As mentioned before, to design a functionally catastrophic but hard-to-detect

Trojan, the hacker would try to select a “rare” event at selected internal “trigger

nodes” to activate the Trojan. To select a sufficiently rare trigger condition for the

Trojan to be inserted, the hacker would try to estimate the signal probability [61]

at the circuit nodes by simulations. To do so with a certain degree of confidence,

a minimum number of simulations with random starting states and random input

vectors must be performed [62]. However, the hacker has no way to know whether the

starting state of the simulations is in the normal state space or the obfuscation state

space. If the initial state of the simulations lie in the obfuscation state space, there is

a high probability that the simulations would remain confined in the obfuscation state

space. This is because the random test generation algorithm of the hacker most likely

would be unable to apply the correct input vector at the correct state to cause the state

transition to the normal state space. Essentially, the STG of the obfuscated circuit

has two near-closed (NC) set of states [63], which would make accurate estimation of

the signal probabilities through a series of random simulations extremely challenging.

An algorithm was proposed in [63] to detect the NC sets of a sequential circuit;

however, the algorithm requires: (a) knowledge of the state transition matrix of the

entire sequential circuit, which is not available to the hacker, and (b) a list of all

the reachable states of the circuit, which is extremely computationally challenging to

enumerate for a reasonably large sequential circuit. Hence, it can be assumed that
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the hacker would be compelled to resort to a random simulation based method to

estimate the signal probabilities at internal circuit nodes.

4.3.2 Effect of obfuscation on Trojan potency

To decrease the potency of the inserted Trojan, the designer of the obfuscated

circuit must ensure that if the hacker starts simulating the circuit in the obfuscation

state space, the probability of the circuit being driven to the normal state space

is minimal. Consider a sequential circuit originally with N state elements and M

used states, to which n state-elements are added to modify the STG to the form

shown in Fig. 4.2(a). Let the number of states in the obfuscation state space be

Si = f1·2n·
(
1 + 2N −M

)
, with f1 < 1 is a utilization factor reflecting the overhead

constraint.

Let I denote the set of states in the obfuscation state space, U denote the set

of states in the normal state space, and T denote the set of states actually attained

during the simulations by the hacker. Let, p be the number of primary inputs (other

than the clock and reset) where the initialization key sequence is applied, and let

the length of the initialization key sequence be k. Then, it takes k correct input

vectors in sequence to reach the normal state space from state SO0 , k−1 correct input

vectors from state SO1 , and so on. Then, the probability that the simulation started

in the initialization state space and was able to reach the normal state space by the

application of random input vectors:

P
(
T ⊆

{
I
⋃

U
})

=
k

Si +M
·
(

1

2p
+

1

22p
+ · · · 1

2pk

)
(4.1)

≈ k·2−p

(f1·2n· (1 + 2N −M) +M) (1− 2−p)
(4.2)

assuming 2−pk � 1. Similarly, the probability that the simulations started in the

initialization state space or the isolation state space and remained confined there:

P
(
T⊆
{
I
⋃
U
′})

=

[
1− k·2−p

(f1·2n·(1+2N−M)+M)(1−2−p)

]
·

f1·2
n·(1+2N−M)

f1·2n·(1+2N−M)+M
(4.3)
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where U
′

denotes the complement set of U . Again, the probability that the simula-

tions started in the normal state space, and remained confined there is:

P (T ⊆ U) =
M

f1·2n· (1 + 2N −M) +M
(4.4)

To maximize the probability of keeping the simulations confined in the obfuscation

state space, the designer should ensure:

P
(
T ⊆

{
I
⋃

U
′
})
� P (T ⊆ U) + P

(
T ⊆

{
I
⋃

U
})

(4.5)

Approximating M � k·2−p

1−2−p , and simplifying, this leads to:

f1·2n·
(
1 + 2N −M

)
�M (4.6)

This equation essentially implies the size of the obfuscation state space should be

much larger compared to the size of the normal state space, a result that is intuitively

expected. Two main observations are:

• The size of the obfuscation state space has an exponential dependence of the

number of extra state elements added.

• In a circuit where the size of the used state space is small compared to the size

of the unused state space, higher levels of obfuscation can be achieved at lower

hardware overhead.

As an example, consider the ISCAS-89 benchmark circuit s1423 with 74 state elements

(i.e. N = 74), and > 272 unused states (i.e., 2N − M > 272) [34]. Then, M <

1.42×1022, and considering 10 extra state elements added (i.e. n = 10), f1 > 0.0029

for eqn. (4.6) to hold. Thus, expanding the state space in the modified circuit by

about 3% of the available unused state space is sufficient in this case.

4.3.3 Effect of obfuscation on Trojan detectability

Consider a Trojan designed and inserted by the hacker with q trigger nodes, with

estimated rare signal probabilities p1, p2, . . .pq, obtained by simulating the obfuscated
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Fig. 4.3. Fractional change in average number of test vectors required to
trigger a Trojan, for different values of average fractional mis-estimation
of signal probability (f) and Trojan trigger nodes (q).

circuit. Then, assuming random input vectors, the hacker expects the Trojan to be

activated once (on average) by the application of

N =
1
q∏
i=1

pi

(4.7)

test vectors. However, let the actual rare logic value probabilities of these internal

nodes be pi + ∆pi, for the i-th trigger node. Then, the Trojan would be actually

activated once (on average) by:

N
′
=

1
q∏
i=1

(pi + ∆pi)

=
N

q∏
i=1

(1 +
∆pi
pi

)

(4.8)

test vectors. The difference between the estimated and the actual number of test

vectors before the Trojan is activated is ∆N = N −N ′ , which leads to a percentage

normalized difference:

∆N

N
(%) =

1− 1
q∏
i=1

(1 +
∆pi
pi

)

× 100% (4.9)
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(a)

(b)

Fig. 4.4. Comparison of input logic cones of a selected flip-flop in s15850:
(a) Original design and (b) obfuscated Design.

To appreciate the effect that ∆p and q has on this change on the average number

of vectors that can activate the Trojan, assume ∆pi

pi
= f ∀i = 1, 2. . .q; then Eqn.

(4.9) can be simplified to:

∆N

N
(%) =

(
1− 1

(1 + f)q

)
× 100% (4.10)

Fig. 4.3 shows this fractional change plotted vs. the number of trigger nodes (q)

for different values of the fractional mis-estimation of the signal probability (f). From

this plot and eqns. (4.9) and (4.10), it is evident that:

• The probability of the Trojan getting detected by logic testing increases as the

number of Trojan trigger nodes (q) increases. However, it is unlikely that the

hacker will have more than 10 trigger nodes, because otherwise as shown by

simulations, it becomes extremely difficult to trigger the Trojans at all.
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Fig. 4.5. Steps to find unreachable states for a given set of S state elements
in a circuit.

• For values 2≤q≤10, the number of random input patterns required to activate

the trojan decreases sharply with q. The improvement is more pronounced

at higher values of f . This observation validates the rationale behind an

obfuscation-based design approach that resists the hacker from correctly es-

timating the signal probabilities at the internal circuit nodes.

4.3.4 Effect of obfuscation on circuit structure

The re-synthesis of the circuit after its integration with the RTL describing the

obfuscation state space “flattens” the circuit into a single netlist, with drastic changes

to the input logic cones of the primary outputs and the state elements. To appreciate

this effect, consider the input logic cones (up to 4 levels) of a selected flip-flop in

the gate level netlist of the s15850 ISCAS-89 benchmark, and its obfuscated version,

shown in Fig. 4.4. As is evident from the difference in the structure of the logic cones

in these figures, it is very difficult to identify these two nodes to be corresponding

nodes by visual observation or automated structural analysis.
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4.3.5 Determination of unreachable states

The construction of the obfuscation state space requires the determination of un-

reachable states in a given circuit. Fig. 4.5 shows the steps of determining the set of

unreachable states for a selected set of S state elements in a given circuit. First, all

the possible 2S state bit combinations are generated for the S state elements. Then,

each state of these 2S states are subjected to full sequential justification at the inputs

of the selected S state elements, using Synopsys Tetramax. The justified states are

discarded, while the states which fail justification are collected to form the set U of

structurally unreachable states.

4.3.6 Test generation for Trojan detection

Since deterministic test pattern generation for the Trojan population is practi-

cally infeasible due to the inordinately large number of possible Trojans, a statistical

approach to sample and simulate a representative set of Trojan instances (10K-20K)

from the total population of Trojans is adopted. First, the signal probabilities at the

internal nodes of the circuit are estimated by the application of a large set of random

vectors to the circuit. From the signal probability (Sp) of the internal nodes, which

indicate the rareness of a logic-0 or logic-1 event in those nodes, a set of candidate

trigger nodes with Sp less than a specified trigger threshold (θ) are selected. Next,

starting from a large set of weighted random vectors, a smaller testset is generated to

excite each of these candidate trigger nodes to its rare value at least N times, where

N is a given parameter. This is done because excitation of each rare node individu-

ally to its corresponding rare value multiple times is likely to increase the probability

of the Trojans triggered by them to get activated, as shown by the analysis in [10]

and reproduced in Chapter 5. It was observed through extensive simulations on both

combinational (ISCAS-85) and sequential (ISCAS-89) benchmark circuits, that such a

statistical test generation methodology can achieve higher Trojan detection coverage

than weighted random vector set, with 85% reduction in test length on average [10].
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Note that for sequential circuits, a full-scan implementation is assumed. Sequen-

tial justification is applied to eliminate false Trojans, i.e. Trojans which cannot be

triggered during the operation of the circuit. The above algorithm, referred to as

Multiple Excitation of Rare Occurrence (MERO) test generation algorithm [10] is

presented in Chapter 5 as Algorithm-2.

4.3.7 Determination of effectiveness

To determine the decrease in potency of the Trojans by the proposed scheme, a

given vector set is reduced to eliminate those vectors with state values in the ob-

fuscation state space. The circuit is then re-simulated with the reduced test set to

determine the Trojan coverage. The decrease in the Trojan coverage obtained from

the reduced test set indicates the Trojans which are activated or effective only in the

obfuscation state space and, hence, become benign.

To determine the increase in detectability of the Trojans, the Sp values at the

Trojan trigger nodes are compared between two cases: 1) a large set of random vectors,

and 2) a modified set of random vectors which ensure operation of the obfuscated

design in only normal mode. The increase in Trojan detectability is estimated by the

percentage of circuit nodes for which the Sp values differ by a predefined threshold.

The difference in estimated Sp prevents an adversary from exploiting the true rare

events at the internal circuit nodes in order to design a hard-to-detect Trojan. On

the other hand, true non-rare nodes may appear as rare in the obfuscated design,

which potentially serve as decoy to the adversary. The above two effects are summed

up by the increase in Trojan detection coverage due to the obfuscation. The coverage

increase is estimated by comparing the respective coverage values obtained for the

obfuscated and the original design for the same number of test patterns.
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Algorithm 1 Procedure OBFUSCATE

Generate the obfuscated netlist from a given circuit netlist
Inputs: Circuit netlist, maximum area overhead (max area overhead), total number of states in the obfuscation

state space, length of initialization key sequence (k)

Outputs: Obfuscated circuit netlist, initialization key sequence

1: Guess number of extra state elements to be added (n)

2: Guess number of original state elements to be used for state encoding (S)

3: repeat

4: repeat

5: Select S state elements randomly from circuit netlist

6: Determine unreachable states for S state elements using sequential justification

7: until sufficient unreachable states found

8: Generate state encodings for the extra state elements

9: Generate random state transitions for the extra state elements

10: Generate random initialization key sequence of length k

11: Generate RTL for obfuscation state space

12: Integrate generated RTL with existing netlist

13: Re-synthesize modified circuit

14: Calculate area overhead

15: n⇐ n− 1, S ⇐ S − 1

16: until area overhead ≤ max area overhead

4.4 Integrated Framework for Obfuscation

Algorithm-1 shows the steps of the procedure OBFUSCATE, which performs

the obfuscation of a given gate-level circuit. The input arguments are the gate-level

synthesized Verilog netlist of the given circuit, the maximum allowable area overhead,

the total number of states in the obfuscation state space, and the length of the input

key sequence (k). From the given area overhead constraint, an initial guess is made

for the number (n) of extra state elements to be added and the number (S) of existing

state elements to be used for state-encoding in the initialization state space. These S

state-elements are randomly chosen for state-encoding in the initialization state space,

and their unreachable states are determined by the method described in Section 4.3.5.

If the number of unreachable states found is not sufficient for the required number of

states in the obfuscation state space, another random selection of S state elements is



85

Fig. 4.6. Framework to estimate the effectiveness of the obfuscation
scheme for protection against hardware Trojan attacks.

made and the process is continued until sufficient unreachable states are found. Once

this is done, state encoding for the extra state elements and random state transitions

for the 2n states of the n extra state elements is generated. Next, an initialization key

sequence of length k is selected randomly. The RTL of state transitions of the two

separate set of flip-flops for the initialization state space is generated. As mentioned

in Section 4.3, the RTL is constructed in a way that ensures that the chosen original

state elements and the extra state elements act together as parts of the same FSM

during the initialization phase. The RTL is then integrated with the original gate-level

netlist, with appropriate control signals to enable the operation in the two different

modes. The modified circuit is then re-synthesized under input design constraints

using Synopsys Design Compiler to generate the obfuscated version of the circuit. If

the area of the re-synthesized circuit is larger than the user-specified area overhead

constraint, S and n are reduced and the process is repeated until the area constraint

is satisfied for the obfuscated design.
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The Trojan model shown in Fig. 4.1(a). Three C programs were written to

estimate the effectiveness of the proposed obfuscation scheme for protection against

Trojans. The computation of signal probabilities at the internal nodes is done by the

program RO-Finder (Rare Occurrence Finder). The testset for Trojan detection

achieving multiple excitation of rare trigger conditions is performed by the program

ReTro (Reduced pattern generator for Trojans). The generation of the reduced

pattern set by the elimination of the patterns with states in the obfuscation state

space is performed by a TCL program. The decrease in the Trojan potency and the

increase in the Trojan detectability are then estimated by a cycle-accurate simulation

of the circuit by the simulator TrojanSim (Trojan Simulator). TetraMax is used

for sequential justification of the Trojan triggering conditions. Fig. 4.6 shows the

steps to estimate the effectiveness of the obfuscation scheme [10]. The entire flow was

integrated with the Synopsys design environment using TCL scripts. A LEDA 250nm

standard cell library was used for logic synthesis. All simulations, test generation and

logic synthesis were carried out on a Hewlett-Packard Linux workstation with a 2GHz

dual-core processor and 2GB RAM.

4.5 Results

To verify the trends predicted in Section 4.3.2, the effects of extra state elements

(n) and unreachable states derived from variable number of existing state elements

(S) on the level of protection against Trojans were investigated. Fig. 4.7 shows the

variation in the percentage of Trojans rendered benign, percentage of internal nodes

with false signal probability, and the percentage increase in detectability of Trojans

for the s1196 benchmark circuit. These plots clearly show the increasing level of

protection against Trojans with the increasing size of the obfuscation state space,

which matches the theoretical predictions in Section 4.3.2.

Table 4.1 and Table 4.2 show the effects of obfuscation on increasing the secu-

rity against hardware Trojans for a set of ISCAS-89 benchmark circuits with 20,000
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Fig. 4.7. Variation of protection against Trojans in s1196 as a function of
(a), (b) and (c): the number of added flip-flops in state encoding (S); (d),
(e) and (f): the number of original state elements used in state encoding
(n). For (a), (b) and (c), four original state elements were selected for
state encoding, while for (d), (e) and (f), four extra state elements were
added.

random instances of suspected Trojans, trigger threshold (θ) of 0.2, trigger nodes

(q) 2 and 4, respectively. Optimized vector set was generated using N=1000. The

same value of n + S applies to both sets of results. The length of the initialization

key sequence was 4 (k = 4) for all the benchmarks. The effect of obfuscation was

estimated by three metrics: (a) the fraction of the total population of structurally

justifiable Trojans becoming benign; (b) the difference between the signal probabili-

ties at internal nodes of the obfuscated and original circuit, and (c) the improvement

in the functional Trojan coverage, i.e. the increase in the percentage of valid Trojans

detected by logic testing. Note that the number of structurally justifiable Trojans as

determined by TetraMax decreases with the increase in the number of trigger nodes

of the Trojan, and increasing size of the benchmark circuits. From the tables it is

evident that the construction of the obfuscation state space with even a relatively

small number of state elements (i.e. a relatively small value of n + S) still makes

a significant fraction of the Trojans benign. Moreover, it obfuscates the true signal

probabilities of a large number of nodes. The obfuscation scheme is more effective for
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Table 4.1
Effect of Obfuscation on Security Against Trojans (100,000 random pat-
terns, 20,000 Trojan instances, q = 2, k = 4, θ = 0.2)

Obfuscation Effects

Benchmark Trojan Obfus. Benign False Prob. Func. Troj.

Circuit Instances Flops Trojans Nodes Cov. Incr.

(n + S) (%) (%) (%)

s1488 192 8 38.46 63.69 0.00

s5378 2641 9 40.13 85.05 1.02

s9234 747 9 29.41 65.62 1.09

s13207 1190 10 36.45 83.59 0.56

s15850 1452 10 40.35 68.95 2.65

s38584 342 12 33.88 81.83 0.45

Average 1094 ≈10 36.45 74.79 0.96

Table 4.2
Effect of Obfuscation on Security Against Trojans (100,000 random pat-
terns, 20,000 Trojan instances, q = 4. k = 4, θ = 0.2)

Obfuscation Effects

Benchmark Trojan Benign False Prob. Func. Troj.

Circuit Instances Trojans (%) Nodes (%) Cov. Incr. (%)

s1488 98 60.53 71.02 12.12

s5378 331 70.28 85.05 15.00

s9234 20 62.50 65.62 25.00

s13207 36 80.77 83.59 20.00

s15850 124 77.78 79.58 18.75

s38584 11 71.43 77.21 50.00

Average ≈103 70.55 77.01 23.48

4-trigger node Trojans. This is expected since a Trojan with larger q is more likely

to draw at least one trigger condition from the obfuscation state space.
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Fig. 4.8. Effect of obfuscation on Trojans: (a) 2-trigger node Trojans
(q = 2), and (b) 4-trigger node Trojans (q = 4).

Fig. 4.8 shows the two different effects by which Trojans are rendered benign (as

discussed in Section and 4.3.2) - i.e. some of them are triggered only in the obfuscation

state space, while the effect of some are propagated to the primary output only in

the obfuscation state space. In these plots, the greater effectiveness of the obfuscation

approach for 4-trigger node Trojans is again evident.

Fig. 4.9 shows the improvement in Trojan detection coverage in the obfuscated

design compared to the original design for the same number of random vectors. This

plot illustrates the net effect of the proposed obfuscation scheme in increasing the

level of protection against Trojans, with an average increase of 14.83% for for q = 2

and 20.24% for q = 4. The greater effectiveness for q = 4 agrees with the theoretical

observation in Section 4.3.3.
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Fig. 4.9. Improvement of Trojan coverage in obfuscated design compared
to the original design for (a) Trojans with 2 trigger nodes (q = 2) and (b)
Trojans with 4 trigger nodes (q = 4).

Table 4.3 shows the design overheads (at iso-delay) and the run-time for the

proposed obfuscation scheme. The proposed scheme incurs modest area and power

overheads, and the design overhead decreases with increasing size of the circuit. As

mentioned earlier, the level of protection against Trojan can be increased by choosing

a larger n + S value at the cost of greater design overhead. The run-time presented

in the table is dominated by TetraMax, which takes about 90% of the total time for

sequential justifications.
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Table 4.3
Design Overhead (at iso-delay) and
Run-time† for the Proposed Algo-
rithm

Benchmark Overhead (%) Run-time

Circuit Area Power (mins.)

s1488 20.09 12.58 31

s5378 13.13 17.66 186

s9234 11.84 15.11 1814

s13207 8.10 10.87 1041

s15850 7.04 9.22 1214

s38584 6.93 2.63 2769

Average 11.19 11.34 1175.83

†The run time includes the sequential justi-

fication time by Synopsys Tetramax.

4.6 Discussions

4.6.1 Protection against malicious CAD tools

Besides protecting a design in foundry, the proposed obfuscation methodology

can provide effective defense against malicious modifications (manual or automated)

during the IC design steps. As pointed out in Section 4.1, compromised CAD tools

and automation scripts can also insert Trojans in a design [6, 50]. Obfuscation can

prevent insertion of hard-to-detect Trojans by CAD tools due to similar reasons as

applicable in a foundry. It prevents an automatic analysis tool from finding the true

rare events, which can be potentially used as Trojan triggers or payloads. Moreover,

since large number of states belong to the obfuscation state space, an automation

tool is very likely to insert a Trojan randomly that is only effective in the obfuscation

mode. Note that since the gate-level netlist is obfuscated, protection against CAD

tools can be achieved during the design steps following logic synthesis (e.g. during

physical synthesis and layout).
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To increase the scope of protection by encompassing the logic synthesis step,

a small modification in the obfuscation-based design flow is proposed. Fig. 4.10

compares a conventional IP-based SoC design flow with the proposed modified design

flow. In the conventional design flow, the RTL is directly synthesized to a technology

mapped gate-level netlist, and obfuscation is applied on this netlist. However, in the

modified design flow, the RTL is first compiled to a technology independent (perhaps

unoptimized) gate-level description, and obfuscation is applied on this netlist. Such

a practice is quite common in the industry, and many commercial tools support such

a compilation as a preliminary step to logic synthesis [64]. The obfuscated netlist

is then optimized and technology mapped by a logic synthesis tool. Note that the

logic synthesis step now operates on the obfuscated design, which protects the design

from potential malicious operations during logic synthesis. Also, the RTL compilation

(without logic optimization) is a comparatively simpler computational step for which

the SoC design house can employ a trusted in-house tool. This option provides an

extra level of protection.

This proposed obfuscation methodology also provides protection against malicious

CAD tools in Field Programable Gate Array (FPGA) based design flows. As noted in

[6], the main threat of Trojan insertion in such a flow comes from the CAD tools which

convert the RTL description of a design to the FPGA device specific configuration

bitstream. Typically, the fabric itself can be assumed to be Trojan-free [6]. Similar

to the SoC design flow, a small modification is proposed to the FPGA design flow

that maximizes the scope of protection against FPGA CAD tools. Fig. 4.11 shows

the proposed design flow. The RTL corresponding to the circuit can be “compiled”

to a unoptimized, technology-independent gate-level netlist. This netlist can then

be obfuscated, and the obfuscated design can then be optimized and mapped by

either third-party CAD tools or vendor-specific tools to a netlist in an intermediate

format. This netlist is then converted to a vendor-specific bitstream format by the

FPGA mapping tool to map the circuit to the FPGA. Note that once the design is

obfuscated, the security against CAD tools flows down the design cycle.
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Fig. 4.10. Comparison of conventional and proposed SoC design flows.
In the proposed design flow, protection against malicious modification by
untrusted CAD tools can be achieved through obfuscation early in the
design cycle.

4.6.2 Improving protection and design overhead

Eqn. 4.6 suggests that for large designs with a significantly large original state

space, to attain satisfactory levels of design obfuscation, it is necessary to have the

obfuscation state space much larger than original state space. This can be achieved

by either: (a) addition of a large number of extra state elements, or (b) using a

large number of unreachable states in the obfuscation state space. However, finding

unreachable states through sequential justification for a large number of state elements

in a large design is very expensive computationally. Even then, the generated RTL

to describe the obfuscation state space would be complicated and not amenable to

efficient logic synthesis, resulting in potentially unacceptable design overhead. To

keep the problem computationally tractable and reduce the design overhead, the
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Fig. 4.11. Proposed FPGA design flow for protection against CAD tools.

scheme shown in Fig. 4.12 is proposed. The n extra state elements are grouped into

p different groups to form parallel FSMs PSM1 through PSMp, and RTL for each

of them is generated separately. Similarly, the S existing state elements used for

state encoding in the obfuscation state space are grouped in q different groups PSM
′
1

through PSM
′
q. Sequential justification for each group is performed separately, and

the RTL for each of the parallel FSMs PSM
′
1 through PSM

′
q is generated separately

based on the unreachable states. Such a scheme of having multiple parallel FSMs

to design the obfuscation state space achieves the same design obfuscation effects,

without the burden of high computational complexity and design overhead.

4.6.3 Application to other Trojan models

Although in the simulations the Trojans according to the model shown in Fig.

4.1(a) were considered, as pointed out in Section 4.2, the proposed methodology can

also help to protect against Trojan attacks that aim at leaking secret information
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Fig. 4.12. Obfuscation for large designs can be efficiently realized using
multiple parallel state machines which are constructed with new states
due to additional state elements as well as unreachable states of original
state machine.

about internal state of the circuit, either in the form of a data-stream (similar to Fig.

4.1(c)) or as side-channel signature (similar to Fig. 4.1(d)). Such a Trojan is shown

in Fig. 4.13, where it transmits out a secret cryptographic key through a covert

communication channel by “sniffing” the values on the communication bus. Bus

scrambling or bus re-ordering is a simple technique to resist against this kind of an

attack, so that the data transmitted out by the Trojan is also scrambled. To overcome

this defense mechanism, the hacker has to figure out the actual order of bits in the

scrambled bus to correctly interpret the collected data. Figuring out the actual order

of the bits in a n-bit bus by simulations will require a search among n! possibilities,

e.g. ∼ 2 × 1035 possibilities for a 32-bit data bus. However, since the attacker has

access to the design, he/she is likely to perform structural analysis of the design to

determine the order of bits in the bus. If the functional blocks are not obfuscated,

one can employ equivalence checking between a functional block in the design and a
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Fig. 4.13. Functional block diagram of a crypto-SoC showing possible Tro-
jan attack to leak secret key stored inside the chip. Obfuscation coupled
with bus scrambling can effectively prevent such attack.

corresponding reference design to identify the order of bits in both input/output bus

for a module. For example, an attacker can perform formal verification between the

integer unit in Fig. 4.13 and a functionally equivalent reference design to find the

port association.

However, if all the modules in the given SoC are obfuscated using the proposed

approach, it would be practically infeasible for a formal verification tool to establish

structural equivalence [7]. The other choice left to the attacker is to simulate the

circuit by applying input vectors. For simplicity, assume all modules in the SoC are

initialized simultaneously and by the same initialization key sequence. Then, to reach

the normal mode of operation, the hacker needs to first apply the correct unknown

initialization vectors in correct order to enable normal operating mode of the IC. Only

then the hacker would be able to establish the actual bus order through simulations,

the complexity of which has already been shown to be extremely high. The probability

of succeeding in reaching the normal mode by the application of random vectors to

the primary input of a SoC with M primary inputs and an initialization key sequence

length of N is 1
2M ·N

. Assuming the SoC shown in Fig. 4.13 has 32 inputs, and

assuming the length of the initialization key sequence to be 4, the probability of the

hacker taking the obfuscated SoC to the normal mode is ∼ 10−39. The width of the

data bus for the key is typically 128 or 256, which would increase the complexity
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exponentially. A similar argument can be presented for Trojans of the type shown in

Fig. 4.1(d).

4.7 Summary

Malicious modifications of integrated circuits in untrusted fabrication facilities

has emerged as a serious security threat. Conventional logic test generation and ap-

plication techniques cannot be readily extended to reliably detect hardware Trojans

during post-manufacturing test. In this work, a novel application of design obfus-

cation to achieve effective protection against hardware Trojan has been presented.

Obfuscation has earlier been employed to prevent hardware IP piracy and reverse en-

gineering. In this chapter, we show that obfuscation can provide effective protection

against Trojan attacks including defense against untrusted CAD tools, for both SoC

and FPGA. We also show that the proposed approach can achieve protection against

Trojans that tries to leak secret information from an IC. The level of obfuscation and

hence the protection can be increased by state-space blow-up and use of unreachable

states. The required design modifications can be easily automated and integrated

with conventional design flow. Simulation results for a set of benchmark circuits

show that a well-formulated obfuscation scheme can provide simultaneous protection

against hardware Trojan and IP piracy at low design overhead. In the next chapter,

we describe MERO, a statistical test generation approach to detect hardware Trojans.
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5. A STATISTICAL APPROACH FOR HARDWARE TRO-

JAN DETECTION

5.1 Introduction

In the previous chapters, we have proposed design techniques to achieve protection

against various security threats, including hardware Trojan attacks. In addition to

the obfuscation approach, we have explored another design methodology [59] where

special circuitry was embedded in an IC to improve the controllability and observ-

ability of internal nodes, thereby facilitating the detection of inserted Trojans by

logic testing. In this chapter, we propose a novel testing methodology, referred to as

MERO (Multiple Excitation of Rare Occurence) protection against hardware Tro-

jans. MERO comprises of a statistical test generation approach for Trojan detection

and a coverage determination approach for quantifying the level of trust. The main

objective of the proposed methodology is to derive a set of test patterns that is com-

pact (minimizing test time and cost), while maximizing the Trojan detection coverage.

The basic concept is to detect rare or low probability conditions at the internal nodes,

and then derive an optimal set of vectors than can trigger each of the selected low

probability nodes individually to their rare logic values multiple times (e.g. at least N

times, where N is a given parameter). As analyzed in Section 5.2.1, this increases the

probability of detection of an arbitrary Trojan instance. By increasing the toggling of

nodes that are random-pattern resistant, it improves the probability of activating an

unknown Trojan compared to purely random patterns. The proposed methodology is

conceptually similar to the N-detect test [65, 66] used in stuck-at ATPG (automatic

test pattern generation), where a test set is generated to detect each single stuck-at

fault in a circuit by at least N different patterns to improve test quality and defect

coverage [66]. In this chapter, we focus on digital Trojans [53], which can be inserted



99

into a design either in a design house (e.g. by untrusted CAD tool or IP) or in a

foundry. We do not consider the Trojans where the triggering mechanism and/or

effect are analog in nature (e.g. thermal fluctuations).

Since the proposed detection is based on functional validation using logic values,

it is robust with respect to parameter variations and can reliably detect very small

Trojans, e.g. the ones with few logic gates. Thus, the technique can be used as

complementary to the side-channel Trojan detection approaches [47, 55–57], which

are more effective in detecting large Trojans (e.g. ones with area > 0.1% of the total

circuit area). In side-channel approaches existence of a Trojan is determined by noting

its effect in a one or more physical side-channel parameters, such as current or delay.

Besides, the MERO approach can be used to increase the detection sensitivity of many

side-channel techniques such as the ones that monitor the power/current signature, by

increasing the activity in a Trojan circuit [56]. Using an integrated Trojan coverage

simulation and test generation flow, we validate the approach for a set of ISCAS

combinational and sequential benchmark circuits. Simulation results show that the

proposed test generation approach can be extremely effective for detecting arbitrary

Trojan instances of small size, both combinational and sequential.

The rest of the chapter is organized as follows. Section 5.2 describes the mathemat-

ical justification of the MERO methodology, the steps of the MERO test generation

algorithm and the Trojan detection coverage estimation. Section 5.3 describes the

simulation setup and presents results for a set of ISCAS benchmark circuits with

detailed analysis. Section 5.4 concludes the chapter.

5.2 Statistical Approach for Trojan Detection

As described in Section 5.1, the main concept of our test generation approach is

based on generating test vectors that can excite candidate trigger nodes individually

to their rare logic values multiple (at least N) times. In effect, the probability of

activation of a Trojan by the simultaneous occurrence of the rare conditions at its
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trigger nodes increases. As an example, consider the Trojan shown in Fig. 4.1(a).

Assume that the conditions a = 0, b = 1 and c = 1 are very rare. Hence, if we

can generate a set of test vectors that induce these rare conditions at these nodes

individually N times where N is sufficiently large, then a Trojan with triggering

condition composed jointly of these nodes is highly likely to be activated by the

application of this test set. The concept can be extended to sequential Trojans, as

shown in Fig. 4.1(b), where the inserted 3-bit counter is clocked on the simultaneous

occurrence of the condition ab′ = 1. If the test vectors can sensitize these nodes

such that the condition ab′ = 1 is satisfied at least 8 times (the maximum number of

states of a 3-bit counter), then the Trojan would be activated. Next, we present a

mathematical analysis to justify the concept.

5.2.1 Mathematical Analysis

Without loss of generality, assume that a Trojan is triggered by the rare logic

values at two nodes A and B, with corresponding probability of occurrence p1 and

p2. Assume T to be the total number of vectors applied to the circuit under test,

such that both A and B have been individually excited to their rare values at least

N times. Then, the expected number of occurrences of the rare logic values at nodes

A and B are given by EA = T ·p1≥N and EB = T ·p2≥N , which lead to:

T≥N
p1

and T≥N
p2

(5.1)

Now, let pj be the probability of simultaneous occurrence of the rare logic values at

nodes A and B, an event that acts as the trigger condition for the Trojan. Then, the

expected number of occurrences of this event when T vectors are applied is:

EAB = pj·T (5.2)

In the context of this problem, we can assume pj > 0, because an adversary is unlikely

to insert a Trojan which would never be triggered. Then, to ensure that the Trojan is
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triggered at least once when T test vectors are applied, the following condition must

be satisfied:

pj·T≥1 (5.3)

From inequality (5.1), let us assume T = c·N
p1

. where c≥1 is a constant depending on

the actual test set applied. Inequality (5.3) can then be generalized as:

S = c·pj
p1

·N (5.4)

where S denotes the number of times the trigger condition is satisfied during the test

procedure. From this equation, the following observations can be made about the

interdependence of S and N :

1. For given parameters c, p1 and pj, S is proportional to N , i.e. the expected

number of times the Trojan trigger condition is satisfied increases with the

number of times the trigger nodes have been individually excited to their rare

values. This observation forms the main motivation behind the MERO test

generation approach for Trojan detection.

2. If there are q trigger nodes and if they are assumed to be mutually independent,

then pj = p1·p2·p3· · ·pq, which leads to:

S = c·N ·
q∏
i=2

pi (5.5)

As pi < 1 ∀i = 1, 2, · · ·q, hence, with the increase in q, S decreases for a

given c and N . In other words, with the increase in the number of trigger

nodes, it becomes more difficult to satisfy the trigger condition of the inserted

Trojan for a given N . Even if the nodes are not mutually independent, a similar

dependence of S on q is expected.

3. The trigger nodes can be chosen such that pi≤θ ∀i = 1, 2, · · ·q, so that θ is

defined as a trigger threshold probability. Then as θ increases, the corresponding

selected rare node probabilities are also likely to increase. This will result in
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Algorithm 2 Procedure MERO

Generate reduced test pattern set for Trojan detection
Inputs: Circuit netlist, list of rare nodes (L) with associated rare values, list of random patterns (V ), number of

times a rare condition should be satisfied (N)

Outputs: Reduced pattern set (RV )

1: Read circuit and generate hypergraph

2: for all nodes in L do

3: set number of times node satisfies rare value (AR) to 0

4: end for

5: set RV = Φ

6: for all random pattern in V do

7: Propagate values

8: Count the # of nodes (CR) in L with their rare value satisfied

9: end for

10: Sort vectors in V in decreasing order of CR

11: for all vector vi in decreasing order of CR do

12: for all bit in vi do

13: Perturb the bit and re-compute # of satisfied rare values (C
′
R)

14: if (C
′
R > CR) then

15: Accept the perturbation and form v
′
i from vi

16: end if

17: end for

18: Update AR for all nodes in L due to vector vi

19: if v
′
i increases AR for at least one rare node then

20: Add the modified vector v
′
i to RV

21: end if

22: if (AR≥N) for all nodes in L then

23: break

24: end if

25: end for

an increase in S for a given T and N i.e. the probability of Trojan activation

would increase if the individual nodes are more likely to get triggered to their

rare values.

All of the above predicted trends were observed in our simulations, as shown in

Section 5.3.
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5.2.2 Test Generation

Algorithm 2 shows the major steps in the proposed reduced test set generation

process for Trojan detection. We start with the golden circuit netlist (without any

Trojan), a random pattern set (V ), list of rare nodes (L) and number of times to

activate each node to its rare value (N). First, the circuit netlist is read and mapped to

a hypergraph. For each node in L, we initialize the number of times a node encounters

a rare value (AR) to 0. Next, for each random pattern vi in V , we count the number

of nodes (CR) in L whose rare value is satisfied. We sort the random patterns in

decreasing order of CR. In the next step, we consider each vector in the sorted list

and modify it by perturbing one bit at a time. If a modified test pattern increases

the number of nodes satisfying their rare values, we accept the pattern in the reduced

pattern list. In this step we consider only those rare nodes with AR < N . The process

repeats until each node in L satisfies its rare value at least N times. The output of

the test generation process is a minimal test set that improves the coverage for both

combinational and sequential Trojans compared to random patterns.

5.2.3 Coverage Estimation

Once the reduced test vector set has been obtained, computation of Trigger and

Trojan coverage can be performed for a given trigger threshold (θ) (as defined in

Section 5.2.1) and a given number of trigger nodes (q) using a random sampling

approach. From the Trojan population, we randomly select a number of q-trigger

Trojans, where each trigger node has signal probability less than equal θ. We assume

that Trojans comprising of trigger nodes with higher signal probability than θ will be

detected by conventional test. From the set of sampled Trojans, Trojans with false

trigger conditions which cannot be justified with any input pattern are eliminated.

Then, the circuit is simulated for each vector in the given vector set and checked

whether the trigger condition is satisfied. For an activated Trojan, if its effect can

be observed at the primary output or scan flip-flop input, the Trojan is considered



104

(a) (b)

Fig. 5.1. Impact of sample size on trigger and Trojan coverage for bench-
marks c2670 and c3540, N = 1000 and q = 4: (a) deviation of trigger
coverage, and (b) deviation of Trojan coverage.

“covered”, i.e. detected. The percentages of Trojans activated and detected constitute

the trigger coverage and Trojan coverage, respectively.

5.2.4 Choice of Trojan Sample Size

In any random sampling process an important decision is to select the sample

size in a manner that represents the population reasonably well. In the context of

Trojan detection, it means further increase in sampled Trojans, renders negligible

change in the estimated converge. Fig. 5.1 shows a plot of percentage deviation of

Trigger and Trojan coverage (q = 4) from the asymptotic value for two benchmark

circuits with varying Trojan sample size. From the plots, we observe that the coverage

saturates with nearly 100,000 samples, as the percentage deviation tends to zero. To

compromise between accuracy of estimated coverage and simulation time, we have

selected a sample size of 100,000 in our simulations.
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(a) (b)

Fig. 5.2. Impact of N (number of times a rare point satisfies its rare value)
on the trigger/Trojan coverage and test length for benchmarks (a) c2670
and (b) c3540.

5.2.5 Choice of N

Fig. 5.2 shows the trigger and Trojan coverage for two ISCAS-85 benchmark

circuits with increasing values of N , along with the lengths of the corresponding

testset. From these plots it is clear that similar to N-detect tests for stuck-at fault

where defect coverage typically improves with increasing N , the trigger and Trojan

coverage obtained with the MERO approach also improves steadily with N , but then

both saturate around N = 200 and remain nearly constant for larger values of N . As

expected, the test size also increases with increasing N . We chose a value of N = 1000

for most of our experiments to reach a balance between coverage and test vector set

size.

5.2.6 Improving Trojan Detection Coverage

As noted in previous sections, Trojan detection using logic testing involves simul-

taneous triggering of the Trojan and the propagation of its effect to output nodes.

Although the proposed test generation algorithm increases the probability of Trojan
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activation, it does not explicitly target increasing the probability of a malicious ef-

fect at payload being observable. MERO test patterns, however, achieves significant

improvement in Trojan coverage compared to random patterns, as shown in Section

5.3. This is because the Trojan coverage has strong correlation with trigger cover-

age. To increase the Trojan coverage further, one can use the following low-overhead

approaches:

1. Improvement of test quality : We can consider number of nodes observed along

with number of nodes triggered for each vector during test generation. This

means, at step 13-14 of Algorithm 2, a perturbation is accepted if the sum of

triggered and observed nodes improves over previous value. This comes at extra

computational cost to determine the number of observable nodes for each vector.

We note that for a small ISCAS benchmark c432 (an interrupt controller), we

can improve the Trojan coverage by 6.5% with negligible reduction in trigger

coverage using this approach.

2. Observable test point insertion: We note that insertion of very few observable

test points can achieve significant improvement in Trojan coverage at the cost of

small design overhead. Existing algorithm for selecting observable test points for

stuck-at fault test [67] can be used here. Our simulation with c432 resulted in

about 4% improvement in Trojan coverage with 5 judiciously inserted observable

points.

3. Increasing N and/or increasing the controllability of the internal nodes : Internal

node controllability can be increased by judiciously inserting few controllable

test points or increasing N . It is well-known in the context of stuck-at ATPG,

that scan insertion improves both controllability and observability of internal

nodes. Hence, the proposed approach can take advantage of low-overhead design

modifications to increase the effectiveness of Trojan detection.
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Fig. 5.3. Integrated framework for rare occurrence determination, test
generation using MERO approach, and Trojan simulation.

5.3 Results

5.3.1 Simulation setup

We have implemented the test generation and the Trojan coverage determination

in three separate C programs. All the three programs can read a Verilog netlist

and create a hypergraph from the netlist description. The first program, named as

RO-Finder (Rare Occurence Finder), is capable of functionally simulating a netlist

for a given set of input patterns, computing the signal probability at each node and

identifying nodes with low signal probability as rare nodes. The second program

MERO implements algorithm-2 described in Section 5.2.2 to generate the reduced

pattern set for Trojan detection. The third program, TrojanSim (Trojan Simulator),

is capable of determining both Trigger and Trojan coverage for a given test set using

random sample of Trojan instances. A q-trigger random Trojan instance is created

by randomly selecting the trigger nodes from the list of rare nodes. We consider one
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Table 5.1
Comparison of Trigger and Trojan coverage among ATPG patterns [68],
Random (100K, input weights: 0.5), and MERO patterns for q = 2 and
q = 4, N = 1000, θ = 0.2

ATPG patterns Random (100K patterns) MERO Patterns

Nodes q = 2 q = 4 q = 2 q = 4 q = 2 q = 4

Circuit (Rare/ Trigger Trojan Trigger Trojan Trigger Trojan Trigger Trojan Trigger Trojan Trigger Trojan

Total) Cov. Cov. Cov. Cov. Cov. Cov. Cov. Cov. Cov. Cov. Cov. Cov.

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

c2670 297/1010 93.97 58.38 30.7 10.48 98.66 53.81 92.56 30.32 100.00 96.33 99.90 90.17

c3540 580/1184 77.87 52.09 16.07 8.78 99.61 86.5 90.46 69.48 99.81 86.14 87.34 64.88

c5315 817/2485 92.06 63.42 19.82 8.75 99.97 93.58 98.08 79.24 99.99 93.83 99.06 78.83

c6288 199/2448 55.16 50.32 3.28 2.92 100.00 98.95 99.91 97.81 100.00 98.94 92.50 89.88

c7552 1101/3720 82.92 66.59 20.14 11.72 98.25 94.69 91.83 83.45 99.38 96.01 95.01 84.47

s13207‡ 865/2504 82.41 73.84 27.78 27.78 100 95.37 88.89 83.33 100.00 94.68 94.44 88.89

s15850‡ 959/3004 25.06 20.46 3.80 2.53 94.20 88.75 48.10 37.98 95.91 92.41 79.75 68.35

s35932‡ 970/6500 87.06 79.99 35.9 33.97 100.00 93.56 100.00 96.80 100.00 93.56 100.00 96.80

Avg. 724/2857 74.56 58.14 19.69 13.37 98.84 88.15 88.73 72.30 99.39 93.99 93.50 82.78

‡These sequential benchmarks were run with 10,000 random Trojan instances to reduce run time of Tetramax

randomly selected payload node for each Trojan. Fig. 5.3 shows the flow-chart for the

MERO methodology. Synopsys TetraMAX was used to justify the trigger condition

for each Trojan and eliminate the false Trojans. All simulations and test generation

were carried out on a Hewlett-Packard Linux workstation with a 2GHz dual-core Intel

processor and 2GB RAM.

5.3.2 Comparison with Random and ATPG Patterns

Table 5.1 lists the trigger and Trojan coverage results for a set of combinational

(ISCAS-85) and sequential (ISCAS-89) benchmarks using stuck-at ATPG patterns

(generated using the algorithm in [68]), weighted random patterns and MERO test

patterns. It also lists the number of total nodes in the circuit and the number of rare

nodes identified by RO-Finder tool based on signal probability. The signal probabili-

ties were estimated through simulations with a set of 100,000 random vectors. For the

sequential circuits, we assume full-scan implementation. We consider 100,000 random
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Table 5.2
Reduction in test length with MERO
approach compared to 100K random
patterns along with runtime, q = 2,
N=1000, θ=0.2

Ckt. MERO test length % Reduction Run-time (s)

c2670 8254 91.75 30051.53

c3540 14947 85.05 9403.11

c5315 10276 89.72 80241.52

c6288 5014 94.99 15716.42

c7552 12603 87.40 160783.37

s13207† 26926 73.07 23432.04

s15850† 32775 67.23 39689.63

s35932† 5480 94.52 29810.49

Avg. 14534 85.47 48641.01

†These sequential benchmarks were run with 10,000 random Trojan

instances to reduce run time of Tetramax

instances of Trojans following the sampling policy described in Section 5.2.4, with one

randomly selected payload node for each Trojan. Coverage results are provided in

each case for two different trigger point count, q = 2 and q = 4, at N = 1000 and

θ = 0.2.

Table 5.2 compares reduction in the length of the testset generated by the MERO

test generation method with 100,000 random patterns, along with the corresponding

run-times for the test generation algorithm. This run-time includes the execution

time for Tetramax to validate 100,000 random Trojan instances, as well as time to

determine the coverage by logic simulation. We can make the following important

observations from these two tables:

1. The stuck-at ATPG patterns provide poor trigger and Trojan coverage com-

pared to MERO patterns. The increase in coverage between the ATPG and

MERO patterns is more significant in case of higher number of trigger points.
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(a) (b)

Fig. 5.4. Trigger and Trojan coverage with varying number of trigger
points (q) for benchmarks (a) c3540 and (b) c7552, at N = 1000, θ = 0.2.

2. From Table 5.2, it is evident that the reduced pattern with N=1000 and θ = 0.2

provides comparable trigger coverage with significant reduction in test length.

The average improvement in test length for the circuits considered is about

85%.

3. Trojan coverage is consistently smaller compared to trigger coverage. This

is because in order to detect a Trojan by applying an input pattern, besides

satisfying the trigger condition, one needs to propagate the logic error at the

payload node to one or more primary outputs. In many cases although the

trigger condition is satisfied, the malicious effect does not propagate to outputs.

Hence, the Trojan remains triggered but undetected.

5.3.3 Effect of Number of Trigger Points (q)

The impact of q on coverage is evident from the Fig. 5.4, which shows the de-

creasing trigger and Trojan coverage with the increasing number of trigger points

for two combinational benchmark circuits. This trend is expected from the analysis

of Section 5.2.1. Our use of TetraMAX for justification and elimination of the false

triggers helped to improve the Trojan coverage.
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(a) (b)

Fig. 5.5. Trigger and Trojan coverage with trigger threshold (θ) for bench-
marks (a) c3540 and (b) c7552, for N = 1000, q = 4.

5.3.4 Effect of Trigger Threshold (θ)

Fig. 5.5 plots the trigger and Trojan coverage with increasing θ for two ISCAS-85

benchmarks, at N = 1000 and q = 4. As we can observe, the coverage values improve

steadily with increasing θ while saturating at a value above 0.20 in both the cases.

The improvement in coverage with θ is again consistent with the conclusions from

the analysis of Section 5.2.1.

5.3.5 Sequential Trojan Detection

To investigate the effectiveness of the MERO test generation methodology in

detecting sequential Trojans, we designed and inserted sequential Trojans modeled

following Fig. 4.1(b), with 0, 2, 4, 8, 16 and 32 states, respectively (the case with

zero states refers to a combinational Trojan following the model of Fig. 4.1(a)). A

cycle-accurate simulation was performed by our simulator TrojanSim, and the Trojan

was considered detectable only when the output of the golden circuit and the infected

circuit did not match. Table 5.3 presents the trigger and Trojan coverage respectively

obtained by 100,000 randomly generated test vectors and the MERO approach for
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Table 5.3
Comparison of sequential Trojan coverage between random (100K) and
MERO patterns, N = 1000, θ = 0.2, q = 2

Trigger Cov. for 100K Random Vectors (%) Trigger Cov. for MERO Vectors (%)

Ckt. Trojan State Count Trojan State Count

0 2 4 8 16 32 0 2 4 8 16 32

s13207 100.00 100.00 99.77 99.31 99.07 98.38 100.00 100.00 99.54 99.54 98.84 97.92

s15850 94.20 91.99 86.79 76.64 61.13 48.59 95.91 95.31 94.03 91.90 87.72 79.80

s35932 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Avg. 98.07 97.33 95.52 91.98 86.73 82.32 98.64 98.44 97.86 97.15 95.52 92.57

Trojan Cov. for 100K Random Vectors (%) Trojan Cov. for MERO Vectors (%)

Ckt. Trojan State Count Trojan State Count

0 2 4 8 16 32 0 2 4 8 16 32

s13207 95.37 95.37 95.14 94.91 94.68 93.98 94.68 94.68 94.21 94.21 93.52 92.82

s15850 88.75 86.53 81.67 72.89 58.4 46.97 92.41 91.99 90.62 88.75 84.23 76.73

s35932 93.56 93.56 93.56 93.56 93.56 93.56 93.56 93.56 93.56 93.56 93.56 93.56

Avg. 92.56 91.82 90.12 87.12 82.21 78.17 93.55 93.41 92.80 92.17 90.44 87.70

Fig. 5.6. FSM model with no loop in state transition graph.

three large ISCAS-89 benchmark circuits. The superiority of the MERO approach

over the random test vector generation approach in detecting sequential Trojans is

evident from this table.

Although these results have been presented for a specific type of sequential Trojans

(counters which increase their count conditionally), they are representative of other

sequential Trojans whose state transition graph (STG) has no “loop”. The STG for

such a FSM has been shown in Fig. 5.6. This is a 8-state FSM which changes its

state only when a particular internal node condition Ci is satisfied at state Si, and
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the Trojan is triggered when the FSM reaches state S8. The example Trojan shown

in Fig. 4.1(b) is a special case of this model, where the conditions C1 through C8

are identical. If each of the conditions Ci is as rare as the condition a = 1, b = 0

required by the Trojan shown in Fig. 4.1(b), then there is no difference between these

two Trojans as far as their rareness of getting triggered is concerned. Hence, we can

expect similar coverage and test length results for other sequential Trojans of this

type. However, the coverage may change if the FSM structure is changed (as shown

with dotted line). In this case, the coverage can be controlled by changing N .

5.3.6 Application to Side-channel Analysis

As observed from the results presented in this section, the MERO approach can

achieve high trigger coverage for both combinational and sequential Trojans. This

essentially means that the MERO patterns will induce activity in the Trojan trigger-

ing circuitry with high probability. A minimal set of patterns that is highly likely

to cause activity in a Trojan is attractive in power or current signature based side-

channel approach to detect hardware Trojan. The detection sensitivity in these ap-

proaches depends on the induced activity in the Trojan circuit by applied test vector.

It is particularly important to enhance sensitivity for the Trojans where the leakage

contribution to power by the Trojan circuit can be easily masked by process or mea-

surement noise. Hence, MERO approach can be extended to generate test vectors for

side-channel analysis, which requires amplifying the Trojan impact on side-channel

parameter such as power or current.

5.4 Summary

Conventional logic test generation techniques cannot be readily extended to de-

tect hardware Trojans because of the inordinately large number of possible Trojan

instances. In this chapter, we have presented a statistical Trojan detection approach

using logic testing where the concept of multiple excitation of rare logic values at inter-
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nal nodes is used to generate test patterns. Simulation results show that the proposed

test generation approach achieves about 85% reduction in test length over random

patterns for comparable or better Trojan detection coverage. The proposed detection

approach can be extremely effective for small combinational and sequential Trojans

with small number of trigger nodes, for which side-channel analysis approaches cannot

work reliably. Hence, the proposed detection approach can be used as complementary

to side-channel analysis based detection schemes. Future work will involve improving

the test quality which will help in minimizing the test length and increasing Trojan

coverage further.



115

6. A KEY-BASED SECURE SCAN DESIGN APPROACH

6.1 Introduction

In the previous chapters we have presented approaches for protecting ICs or hard-

ware IPs against piracy, reverse-engineering and hardware Trojan attacks. In this

chapter we will consider a different attack model, where an attacker tries to extract

the secret key from a crypto-chip using scan chain. It is common to find crypto al-

gorithms implemented in hardware to meet high throughput requirements of modern

secure systems. This can be done by either implementing them as Application Spe-

cific Integrated Circuits (ASICs) [70] or as co-processors [71]. A common example

is the “Advanced Encryption Standard” (AES) [72], which after being accepted as a

standard by the National Institute of Standards and Technology (NIST) in 2001, is

widely employed in applications ranging from low-end small mobile consumer prod-

ucts to high-end internet servers. Scan-chain based “Design for Testability” (DFT)

is generally used in these secure chips to improve testability of the system at lower

overhead. Their utility is enhanced by the fact that the scan chains can be connected

to an external five-pin “Joint Test Action Group” (JTAG) interface to provide test

and debug capability in the field. Such in-field test and debug capability is very im-

portant for many applications, e.g. microprocessors, which eases the maintenances

and development of software.

However, the very nature of the scan-chain to provide improved test and debug

capability is due to the fact that scan chains make the internal nodes of a system more

controllable and observable [73]. Standard cryptographic algorithms such as “Data

Encryption Standard” (DES), AES, “Rivest-Shamir-Adleman” (RSA), and “Hash-

based Message Authentication Code” (HMAC) rely on a secret key built inside the

Work done in collaboration with Somnath Paul [69].
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crypto chips. The security is provided by the crypto chip as long as the information

regarding the secret key is inside the chip, both during normal mode as well as

test mode of operation. A hacker with proper resources can access and analyze

the scanned out information and thereby discover the secret key. The situation has

reached such severe proportions that information is commonly available in websites

on the internet which describe the step by step procedure to decrypt such “keys” for

supposedly “secure” systems [74]. Hence, the designer is faced with a dilemma while

designing the crypto system. On one hand, it must be ensured that the security of the

system is not sacrificed, while on the other hand, the testability of the system both

during manufacturing test and in the field cannot be compromised. Both security and

testability factors have to be properly balanced when a design solution is considered.

Thus, to protect the secret information while retaining the benefits of scan chain,

additional hardware safety measures must be incorporated in the crypto chips.

To address this issue, in this chapter, we propose a new scan design methodology

called VIm-Scan (Virtually Impervious Scan). In VIm-Scan, all the advantages and

simplicity of traditional scan-based testing is preserved, yet at the cost of small area

and power overheads, the security of the crypto chip is improved tremendously which

make the secure key virtually impervious to any unauthorized attempt to access them.

The basic idea is to use the test stimulus itself to embed an N -bit key and to enable

the scan-out process only when M different N -bit keys are matched in M successive

test cycles during the test initiation process. Compared to the existing techniques for

secure scan design [11,73], the proposed method has the following salient benefits:

• It provides high security, making scan-based attack virtually impossible.

• It incurs extremely low design overhead. Simulation results show that we can

achieve virtually infinite resistance to attack with only 68 logic gates, which is

about 5X lower compared to existing techniques.

• Unlike existing techniques, the proposed method does not impact the scan in-

sertion or test generation process. Moreover, except the first few test cycles,
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which is used to enable the scan-out process, the proposed method does not

affect the test application process.

• In cases, where a crypto system is vulnerable to scan-based controllability/observability

attack, the proposed method can be easily extended to prevent these attacks

by making the outputs of selected scan cells unavailable to combinational logic

before actual test begins.

The rest of the chapter is organized as follows. In Section 6.2, we discuss previous

work in this area on secure scan design in crypto chips. In Section 6.3, we present the

proposed technique. In Section 6.4, simulation results are presented to illustrate the

effectiveness of the proposed scheme. We extend the proposed method to enhance the

robustness of the crypto chip against scan based controllability/observability attacks

in Section 6.5. We conclude in Section 6.6.

6.2 Previous Work

Various methods have been proposed to prevent prospective hackers from accessing

the secure information in a crypto chip [73], [11, 75–80]. In [11], a simple solution

has been proposed based on use of the use of a second register, called a ”Mirror Key

Register (MKR)”, which prevents any important data from entering the scan chain

in the test mode. The MKR provides security to the secret key by isolating the data

path and the control path performing the crypto algorithm. The authors distinguish

between two distinct states of operation of the system under test: the ”insecure”

state and the “secure” state and the transitions between states are performed using

a finite state machine. Although this scheme is conceptually simple, it affects the

test application procedure considerably. It requires a two-step test procedure where

part of the system independent of the key is tested during insecure mode and the

rest (dependent on the key) is tested in secure mode, when scan is disabled. Since

in a crypto chip, typically, a large part of the circuit operation depends on the key,

testing this part with disabled scan chain adversely affects test time and/or coverage.
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Moreover, the proposed method does not work for systems where the key is hardwired

instead of being stored in a non-volatile memory (e.g. ROM). The secret key, that

is built in as a ROM or a combinational logic cannot be tested by the structural

scan-based test. Further, the method requires duplication of the entire key (typically

128 bit or more) and thus incurs a relatively high hardware overhead.

In [73], the authors propose a “low-cost secure scan” (LCSS) solution, where the

test pattern is modified to include a special “key”. These key bits are scanned into

“dummy flip-flops” in the scan chain (which are not connected to the combinational

circuits), and is matched by a “key checking logic” (KCL) block. If the key match,

a “secure” signal is generated, which allows scanning out of the data from the scan

chains; else, a randomly seeded LFSR “Random Bit Generator” (RBG) network

randomizes the response to be scanned out. Thus, it makes any reverse engineering

attempt based on the scan-out response very difficult. However, the scheme has

several shortfalls. 1) The method requires extra dummy flip flops in the scan chain,

which requires modification of the scan insertion process. 2) It adds the key to each

test stimulus, thus for an example scan chain length of 500, an 80-bit key a dds as

high as 16% overhead in test time. The overhead increases significantly for longer

key or with decrease in scan length. 3) Finally, the expression for the total number

of combinations reported in [11] is the maximum number of trials that the attacker

has to undertake on order to correlate the scan input and output. It does not reflect

the actual probability from the point of view of the hacker to be able to match the

key while scanning in the test vector. Considering that the attacker chooses to set

each scan-in bit randomly, the probability of matching any arbitrary k bits of the key

still remains 1
2k , irrespective of the size of scan chain (S) and how these k bits are

chosen from S positions in the scan chain. Thus, an 80-bit key renders a key-breaking

probability of 2−80, which might not be sufficiently low for practical purposes.

In [75], the proposed solution involves breaking the scan chain after the function-

ality of the chip has been validated. This is done by placing polysilicon fuses near the

pin connections and blowing them after manufacturing testing or completely cutting
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off the test interface with a wafer saw. However, this simple solution compromises the

maintenance and debug capabilities of the chip in field. In [76], the flips flops that

contain the secret key are isolated in a separate scan-chain, and this scan chain is

made inaccessible to the end-user. However, this approach again limits in-field debug

capability of the chips. This is also not too practical, as in stand-alone crypto chips,

almost all flip-flops could contain information that can potentially reveal the secret

key. In [77], the situation is circumvented by having “Built-In-Self-Test” (BIST)

structures to test the entire design, while in [78], a mixed approach has been taken

where BIST is used on sensitive portions and scan is used on the remainder. Although

these solutions help preventing accessibility of secret key by potential attacker, they

compromise fault coverage level with respect to scan and Automatic Test Pattern

Generation (ATPG).

In [79], a scan scrambling technique was introduced which splits up the scan

chain into sub-chains, and then uses logic circuits and random number generator to

randomly reconnect the sub-chains together again, and thus internally scrambling the

data. Although this method presents a high level of complexity to the prospective

hacker, it incorporates a significant timing and area overhead. Moreover, the method

is not foolproof, as statistical analysis of the data scanned out from the chip can still

determine the scan-chain structure and the secret information. In [80], a “Lock and

Key” technique has been proposed, in which the scan chain is divided into independent

sub-chains and using a randomly seeded Linear-Feedback-Shift-Register (LFSR), one

sub-chain at a time is randomly enabled to scan-in and scan-out, while the others

remain unaffected. This technique has the problem of a large overhead for complex

systems, where the number of subchains can be very large.

6.3 Proposed Methodology

In this section, we describe the proposed scan protection scheme, VIm-Scan, in

details. The proposed scheme has very low probability for extraction of useful infor-
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Fig. 6.1. Overall block diagram for VIm-Scan.

mation through the scan out process by an unintended user. The protection rests on

the fact that in order to initiate the testing procedure by conventional scan, the user

has to match M number of different keys of length N during a test initiation phase

prior to actual test procedure. The keys should be embedded in the test vectors itself

and they need to follow an order in the test vectors supplied. Only when all the keys

have been matched in a specific order during the test initiation phase, the scan out

process from the crypto chip is enabled.

The circuitry for detection of the keys from the test vector is built into the system.

The choice of key is random and is determined at the time of system design. The

approach is scalable in the sense that the designer can opt for a greater security (by

increasing either the length or the number of keys) at the cost of increased design

overhead. The approach also has the advantage that it seamlessly integrates with

the synthesized scan chain without addition of any extra flip-flops or gates to the

scan-chain itself.
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The proposed protection scheme is illustrated in Fig. 6.1. The figure depicts a

standard AES cipher core [72] along with the scan chain path. Let the scan path

chosen be of length L(> N). Since the key is N -bit long, during the design phase,

N scan flip-flops are chosen randomly and their output is fed to a block used for

matching the keys that is scanned-in during the test initiation phase. A mod-M

counter counts the number of keys that have been matched during this phase. A

count of M (indicated by the ”carry out” signal) is used to enable the “AND” gate

that provides the scan output. Until the scan-out is enabled the data available at

the scan-out port will be all zero. A test vector containing the incorrect key or an

incorrect number of mismatches does not allow any scan output and thus prevents

useful information being leaked out.

6.3.1 Probability of Breaking the Key

As mentioned earlier, the user is not able to scan out any secure information unless

M different N bit keywords are matched (from the vector loaded in the scan chain)

in a specific order. Assuming the attacker is supplying a completely random binary

pattern, the probability for each bit in the test vector (at any position) to be 1 or

0 is 1
2
. Thus the probability of N scan flip-flop outputs to match with a predefined

keyword of length N is 1
2N . But in order to enable the scan output process, this match

has to be performed M number of times, each time with a different keywords (each

of length N bits). Since each trial is independent of others, the overall probability

for a successful scan out enable is:

Pb =
1

2M ·N
(6.1)

A choice of even small values of M and N (e.g. M and N both 16) gives a very low

probability of matching the keywords ( 10−78). Hence, probabilistically, extremely

large number of trials is required to match the above criterion for a potential attacker.

The complexity of breaking the protection, obtained in the proposed scheme, provides

virtually infinite resistance to attack, since, in reality, it requires an amount of time
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more than the chip’s lifetime to break the security. It is worth noting that the

proposed scheme is scalable since the resistance to attack can be increased easily by

increasing N and/or M .

6.3.2 Overhead Analysis

The proposed methodology entails significantly less overhead in terms of area

and power. The extra hardware required are mainly due to two components: the

“Pattern Matching Network” and the “modulo-M counter”. The gating logic at the

scan output port contributes negligible hardware overhead. The area overhead for

the modulo-M counter is deterministic for a particular library and technology node,

for a particular value of M . The area of the pattern matching network is however, is

determined by the random keys that are to be matched. Thus, one can choose a set

of keys that allow for a better area and power overhead, since their choice in no way

compromises the security offered by the system as long as the length of each keyword

is fixed. In terms of test time and test vectors, the overhead is simply M . This is

because, in the proposed approach, we do not embed extra bits in the test stimulus

unlike the method in [11]. The only overhead in test time results from the M number

of additional vectors used in the test initiation phase to enable scan-out process. For

a smaller value of M , the increase in test time is negligible. The test power overhead

during the test initiation phase is only a small percentage of the total test power as

described in the Section 6.4.

6.3.3 Functionality

A Power-On Reset is used to initialize the state elements of the modulo-M counter

to start from a zero state. During the test initiation phase, the entire scan chain is

loaded with the test vector before the intermediate flip-flop outputs are matched

with pre-determined patterns. Note that the scan flip-flop outputs used in the Pat-

tern Matching Network for matching each N -bit keyword are chosen from the N
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Fig. 6.2. Timing diagram for initiation phase before actual test application
for M = 2.

predetermined positions. For the i-th match let the pattern to be matched is Ni.

The keyword Ni to be matched for a particular vector is determined by the present

state of the counter. If the scan flip-flop outputs match this N bit pattern, the

count is incremented by one, else the counter holds its state. When a count of M is

reached (indicating that M keys of N bits are matched), the scan output is enabled.

Once enabled, the user is free to perform normal scan-in and scan-out operations.

Fig. 6.2 shows the timing diagram for the operation of the protection scheme. As

observed from this figure, the pattern matching occurs after a vector is scanned in

and the scan output is enabled after the test initiation phase and before the actual

application starts.

6.3.4 Testing the Proposed Scheme

The Pattern Matching Network and the modulo-M counter in the proposed scheme

introduce additional hardware resources into the system and these resources need to
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Table 6.1
Area, Power and Test time Overhead for the VIm-Scan Scheme

M N

Proposed Scheme Cipher Core + Proposed Scheme Increase (%)

Area Gate Power Test Time Area Gate Power Test Time Area Gate Power Test Time

(µm2) Count µW (# of Vectors) (µm2) Count (µW) (# of Vectors) Count

256 1 11446 160 786 256 75581 11384 206.9 2078 1.77 1.67 0.87 14

128 2 9853 141 1179 128 75389 11359 207.2 1950 1.54 1.43 1.00 7

32 8 8617 119 1213 32 75344 11328 207.5 1854 1.46 1.16 1.16 1.7

16 16 8277 93 1601 16 75187 11305 207.8 1838 1.25 0.96 1.30 0.87

4 64 7340 102 1729 4 74944 11263 207.9 1826 0.93 0.58 1.35 0.21

1 256 7979 68 2879 1 74978 11255 208.2 1823 0.98 0.52 1.49 0.05

be tested as well for correct functionality during manufacturing test. The previous

works on secure scan deign [11,73] do not provide the overhead in test time for testing

the protection scheme inserted in the secure chip. In order to evaluate the additional

complexity of testing these hardware resources, we have compared the test time for

the stand alone cipher core with the core having the proposed security scheme. We

note that any fault in the scan protection logic will be exhibited in two ways: 1) it will

not enable scan out even if proper set of keys are scanned in and 2) scan out will be

enabled with wrong keys. Detection of the first scenario can be simply accomplished

by scanning in M vectors with N -bit keys embedded into it and checking if the scan

out is enabled. To account for the second scenario, we used an automatic test pattern

generation tool [81] to enumerate all possible faults and find out vectors to test them.

The number of tests required for the cipher core alone is 1822 whereas the core with

protection logic in VIm-Scan requires 1869 tests. Therefore, the increase in test time

due to testing the protection scheme is merely 2.58%.

6.4 Results

The proposed method was implemented for the standard AES core [72]. We have

only used the cipher block in our core, but the idea can be equally extended to the
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inverse cipher block as well. The keys chosen for our experiments were obtained using

a random number generator with identical seed.

In our experiments, we use the probability of breaking the protection (as described

in Section 6.3) as a measure of security. Different combinations of M and N were

tried such that M · N = 256, so that the probability of breaking the scheme by the

application of random vectors is 1
2256 . A higher value value of M · N will yield a

lower probability of detection. The core and the protection scheme were synthesized

using Synopsys Design Compiler with LEDA standard cell library using TSMC 250nm

technology. First, the core and the protection scheme were synthesized separately and

the area and power were noted. Finally, the designs were merged and re-synthesized.

Table 6.1 summarizes the area, power and test time overhead for different values of

M and N . The area, power and number of tests for the stand alone AES cipher core

were obtained as 742439µm2, 205.1mW and 1822, respectively for the same setup.

The percentage increase in each of these parameters was calculated and has been

listed in Table 6.1. Test time corresponds to the number of test stimuli required to

test the design. The proposed method adds an overhead of M tests corresponding

to the test initiation step. The power denoted is the dynamic power for the designs

assuming 50% transition probability at the inputs. The power overhead in column

5, contributes to additional power to both test and normal mode. Although the

overhead is very small (1.2% on average), we can eliminate any power overhead in

normal mode using power-gating techniques (e.g. supply gating). From Table 6.1, we

see that a minimum area overhead is obtained at a value of M = 4 and N = 64 with

only a 0.21% increase in test time. Column 4 lists the number of additional gates

required to implement the protection scheme. It can be noted that the additional gate

count is as low as 68, which shows about 5X improvement compared to the technique

in [11].

The proposed scheme has also been evaluated with a set of ISCAS-89 benchmarks.

The area and test time overhead results for the ISCAS-89 Benchmarks are given in

Table 6.2. The variation of the area and power of the merged design (AES cipher
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Table 6.2
Area, Power and Test time Overhead for the VIm-Scan Scheme

Circuit Area (µm2) Area Increase (%) Original Test Size (# of vectors) Test Time Increase (%)

s13207 197929 3.70 497 0.8

s15850 182476 4.00 603 0.6

s35932 623481 1.17 4084 0.1

s38417 569401 1.28 1880 0.2

s38584 537559 1.36 1309 0.3

(a) (b)

Fig. 6.3. Variation of (a) area and (b) power for different values of M and
N .

core + proposed scheme) with different values of M and N are shown in Fig. 6.3(a)

and 6.3(b). Tests were also carried out to see the impact of different seeds on the

design overhead for M = 4 and N = 64. Fig. 6.4(a) shows the impact of the seeds

on the protection scheme. The percentage variation of the cell count is large due

to the smaller number of cells. But after merging the protection scheme with the

cipher core, the percentage variation of the total cell count becomes negligible for the

different seeds, as observed in Fig. 6.4(b).
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(a)

(b)

Fig. 6.4. Variation of cell count in synthesized design for different seeds
for (a) original design and (b) merged design.

6.5 Improvement of Robustness against Attacks

The proposed method is resistant to both scan-based observability and scan-based

controllability/observability attacks [73]. In the scan-based observability attack, the

attacker applies a vector at the primary inputs and switches to the Test Mode in

order to extract useful information about the position and content of critical registers

on the scan chain. The proposed method prevents this possibility and only allows

an authorized user to extract critical information through the scan out process. In
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Fig. 6.5. Adaptation of scan chain to prevent scan-based controllabil-
ity/observability attack

the scan-based controllability/observability attack, on the other hand, the attacker

uses the scan-chain for loading the vector into the system (i.e. to control internal

node states) and observes the primary outputs. However, to accomplish this, the

attacker should accurately know the position of the critical registers in the scan-chain.

This can be achieved using the scan based observability attack. VIm-Scan provides

protection against scan-based observability attack and hence reduces the risk for scan-

based controllability/observability attacks. However, the proposed method does not

prevent any scan-in process by any unauthorized user and it is always possible to load

a vector in the scan-chain. In certain scenarios, the attacker might have knowledge

about the position of critical registers in the scan chain. For example, if the attacker

has a behavioral description of the crypto core that is being implemented and the

synthesis tool used for logic and test synthesis, it might be possible for one to know the

position of the critical registers in the scan chain. With this knowledge, the attacker

can load the critical registers of the design (using scan chain) with a “distinguishing

sequence” (which reflects the secure key on the primary output response) and observe

the response at the primary outputs to extract secret information.
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The type of scan-based attack described above can be prevented by extending the

proposed technique. This can be achieved by first identifying the critical registers in

the design which contribute to the care bits in a distinguishing sequence and then

bypassing them with a scan hold latch described as used in enhanced-scan-like delay

testing [82,83]. Fig. 6.5 shows a possible implementation of this bypassing mechanism

using the “Scan Output Enable” signal depicted in Figs. 6.1 and 6.2. “SL” denotes

the shadow latch to hold the scanned-in value during test initiation phase. During

the test initiation phase, the “Scan Output Enable” signal is used to bypass the

second scan flip-flop, as shown in Fig. 6.5. The output from the hold latch can

be used for matching the key in the initiation phase if the particular scan flip-flop

output is chosen for pattern matching. During the actual test application, the system

flip-flop is desirably in the scan path. The attacker is thus prevented from loading

the important scan flip-flops (which contribute to create distinguishing sequence) by

the scan-in operation during the test initiation phase. This prevents observing the

effect of scanned-in vector in the primary outputs, thus eliminating the possibility of

scan-based controllability/observability attack.

6.6 Summary

In this chapter, we have presented an effective and very low overhead scheme for

preventing scan-based attack in secure chips. The proposed method has similarity

with the key-based obfuscation approach in that it enables normal operation (i.e. scan

in/out process) on application of an initialization key. The method provides security

by utilizing the test stimulus to contain a keyword and then matching one/multiple

keyword(s) during the test initiation phase to enable scan-out process. The method is

capable of providing virtually infinite resistance to attack and can be easily integrated

with existing design/test flow without affecting the scan insertion, test generation and

test application steps. The proposed scheme comes with significantly lower overhead
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(in terms of area and power) compared to existing techniques and can be easily ex-

tended to improve robustness against scan-based controllability/observability attack.

This chapter ends the description of the techniques dedicated to hardware protec-

tion, as explored in this thesis. In the next chapter, we explore the role of obfuscation

in embedded software protection.
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7. EMBEDDED SOFTWARE SECURITY THROUGH KEY-

BASED OBFUSCATION

7.1 Introduction

The market share of embedded processors is ever-increasing, with more than 98%

of the market share (in terms of unit sold) already occupied by them [84]. They

can be found in almost every conceivable electronic application - from low-end house-

hold items such as microwave ovens to high-end 3G cell phones and PDAs. Combined

with this trend is the increase in computing capabilities of embedded processors (with

maximum operating frequencies of up to 2 GHz in 2010) rivalling that of mainstream

microprocessors [85], as they are expected to run more computation-intensive soft-

ware. An example is that cutting edge cellular devices are being increasingly used

to surf the internet, play online games and perform “mobile commerce”, function-

alities that were more traditionally associated with personal computers. Software

development for the mobile platform has advanced immensely, with users routinely

downloading, installing and using both free and commercial software for their devices.

However, this trend has increased the security concerns encompassing data con-

fidentiality and integrity, authentication, privacy, denial of service, nonrepudiation,

and digital content protection [15], which were again relevant earlier only in the do-

main of commercial and personal computing. The threat is a two-edged sword - on

one hand, malicious software installed in an embedded system harms the user; on the

other hand, reverse-engineering of software causes loss of millions of dollars of intellec-

tual property (IP) to the software vendors. Unfortunately, the traditional hardware

or software security measures targeting personal computers are not directly applica-

ble to embedded systems. The computational demands of secure processing often

Work done in collaboration with Seetharam Narasimhan.
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overwhelm the computing capabilities of embedded processors, and physically the

portable embedded systems are often severely constrained by form factor, resulting

in limited battery capacities and memory [15].

In this chapter, we propose a novel technique of protecting embedded software

by obfuscating its control-flow, based on a key validation mechanism that internally

generates and compares a sequence of keys with their expected values loaded from

memory. The keys are execution trace dependent, meaning thereby that for different

input parameters to the program, the sequence and values of keys involved in the

validation process are different. The normal functionality of the program is enabled

only after a successful validation process, otherwise, the program produces incorrect

output. We take advantage of existing instructions in the program to hide the in-

structions dedicated to program modifications that implement this validation process.

Such an obfuscation has a two-fold effect on the security of the software:

• The obfuscation prevents an adversary from stealing the software intellectual

property and using it as a “black-box” functional module, because without

figuring out the correct key sequence and values for each correct input key, it is

not possible to make the program function correctly.

• It also prevents malicious modification of the program, because to effectively

modify a program in order to cause functional failure in a way that evades the

existing protection mechanisms, an adversary (or an automated tool) needs to

interpret the actual functionality of the program.

In our work we assume an attack model where the adversary only has access to

the program, and does not have access to the hardware system which is successfully

running such an obfuscated software. Although techniques for program obfuscation

(in particular control-flow obfuscation) [86–88], program validation [89, 90], software

tamper-proofing [91,92], secure co-processors [93] and program monitoring for secure

execution [94,95] have been proposed before, most of these techniques are heavily de-

pendent on supporting hardware, especially computationally expensive cryptographic
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techniques. This makes them difficult to apply in severely resource-constrained em-

bedded systems. Also, many of them assume the presence of an unbreachable secure

memory acting as a “root-of-trust” where the secure keys are stored, a concept whose

feasibility is questionable for embedded devices with small form factors. The tech-

nique proposed in this chapter is not limited by these factors. In addition, it provides a

second level of defense (described in section 7.5) by which even if an adversary breaks

the security scheme, the ownership of the software can be proven by an authentication

mechanism based on a digital watermark. Although we have implemented the pro-

posed obfuscation technique to obfuscate assembly language programs, the technique

can be extended easily to handle binary programs, as shown in Section 7.5.

The rest of the chapter is organized as follows: in Section 7.2, we describe the

previous work on this topic. In Section 7.3, we describe the proposed key-based

control flow obfuscation methodology; derive a quantitative metric to estimate the

effectiveness of the scheme; estimate the computational overhead of implementing the

proposed scheme, and describe the automated flow to implement the methodology

for a given MIPS assembly language program [96]. We chose MIPS because while

being full-featured, the relative simplicity of the MIPS instruction set simplifies the

implementation of the proposed obfuscation algorithm. We present the simulation

results for a suite of MIPS programs in Section 7.4. In Section 7.5 we describe the

authentication capabilities that can be incorporated with obfuscation as a second level

of defense, extension of the technique to binary programs, and discuss the applicability

of the proposed approach in providing protection against software infection. Finally,

we draw conclusions and indicate future research directions in Section 7.6.

7.2 Previous Work

The issue of software security in general and the special features and requirements

of embedded software security in particular have been surveyed in [15, 97]. Purely

software based mechanisms of protection have been described in [87, 88, 90, 98]. In
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[90], “software guards” distributed throughout the program were proposed that were

essentially inter-linked small blocks of check-sum of the program binary to validate

and “repair” a program against illegitimate modifications. In [87, 88], several code

obfuscation and watermarking techniques that rely on insertion of dummy code, loop

unrolling and addition of bogus jump instructions. Similar techniques have been

proposed in [86] to hinder the static disassembly of executables, and in [98] control-

flow obfuscation of Java programs has been proposed. However, note that all these

techniques of software obfuscation conform to the definition of obfuscation as proposed

in [13, 88], where the obfuscated program and the original program have the same

“black-box functionality”. Such obfuscation techniques make it difficult to protect

against piracy attempts where the adversary simply uses the obfuscated software,

without bothering to modify or reverse-engineer its black-box functionality. Also,

the value of such techniques is the matter of debate because as mentioned before,

it has been theoretically proven that software obfuscation in this traditional sense

does not exist [14]. In contrast, we modify both the structure and the functionality

of the software under question. Other purely software-based approaches include self-

modifying code [99] (code that generates other code at run-time), self-decryption of

partially encrypted code at run-time [91, 100], and code redundancy and voting to

produce “tamper-tolerant software” (along similar lines of hardware redundancy for

fault tolerance) [92]. A general shortcoming of these approaches is that they do not

scale well in terms of memory footprint and performance as the size of the program

(or the part of the program to be protected) increases [90, 101]. We have addressed

the question of scalability for our technique in Section 7.3.4.

Hardware-assisted software protection techniques have also been widely researched.

Fully secure co-processor based techniques have been proposed [93] and are commer-

cially available [102] where sensitive data transfer between the processor and the mem-

ory is in encrypted form, and the cryptographic keys are stored in tamper-resistant

secure memory inside the co-processor. A special “Trusted Platform Module” (TPM)

IC to verify the validity of the system against malicious modifications has been com-
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mercially implemented in many computers [103]. Architectural support for software

security has been explored in [25, 89, 94, 95]. In [89], an “execute-only memory” was

proposed where besides support for encrypted code, the machine was separated into

compartments such that a process in one compartment is unable to read from the

other. Runtime execution monitoring to detect tampering was proposed in [94, 95]

where cryptographically hashed values of code-blocks were compared with the ex-

pected values during program execution, and execution was stalled on any mismatch.

Hardware-assisted control-flow obfuscation in conjunction with encrypted code was

proposed in [25] which performs memory-address re-mapping by having an extra level

of memory between the processor cache and the main memory. However, these tech-

niques all require extensive special hardware support which might not be cost-effective

for widespread use in embedded systems.

7.3 Methodology

7.3.1 Obfuscation Technique

In the case of hardware obfuscation as described in Chapters 2 and 3, we modify

the state transition function to enable normal operation based on a key. A software

program can be viewed as a set of state transition rules based on the Turing machine

representation [104]. This gives us the motivation to obfuscate software through

modification of the state transition rules by embedding a finite state machine into

the program code. The fundamental idea of the technique proposed in this chapter is

to validate the code during execution using a “challenge-response validation” protocol.

The correct execution of the program is achieved only after the correct application

of a set of input values, which constitute the validation key sequence. Such a key

sequence based validation protocol has been proposed by us in the context of hardware

intellectual property (IP) protection before [7, 38], where normal functionality of the

circuit is enabled only after the successful application of an initialization key sequence

on power-up. Essentially, the successful application of the initialization key sequence
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takes the circuit from an obfuscated mode to a normal mode. However, there are the

following significant differences between the approach proposed in this work and the

hardware obfuscation approaches:

• The validation procedure proposed in this work is not executed only at the start

of program execution. Instead, steps of the validation process are distributed

throughout the program and operates concurrently with the rest of the program

which implements the original functionality. The weakness of the validation

mechanism being concentrated at only a single point within the program has

been analyzed before, and is known as the “single point of failure” issue. With

sophisticated program debuggers, attackers might be able to trace targeted parts

of the program, pinpoint the code they need to compromise, and easily apply

changes to the program to bypass the defense mechanism [90]. The distribution

of the security mechanism to multiple locations within the program instead of

being “lumped” at a single location was suggested to be a desirable feature

in [90, 91]. Also, the technique of hiding important information in a program

by breaking up the information into smaller fragments, deriving the values of

the fragments through procedural execution, and then combining the results to

derive the main result was shown in [105] to have greater security.

• Unlike the hardware obfuscation technique, the technique proposed in this chap-

ter does not employ the same set of validation keys for each run of the program.

Instead, the validation key sequence depends on the input argument of the

program. This, in conjunction with the “distributed validation” mechanism,

increases the level of protection (as shown analytically later) by making it more

difficult for an adversary to identify the complete modification scheme for all

possible inputs.

The keys of the validation key sequence are fetched from pre-determined memory

locations and compared with the expected “golden” values. If all the values match,

the program execution follows the normal control flow. However, if even a single com-
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Algorithm 3 Procedure Enumerate Paths Depth First

Enumerate all possible control-flow paths of a given assembly language program.
Inputs: Directed Acyclic Graph G corresponding to given assembly language program, instr stack, current node,

last node

Outputs: Set of edges (E) with corresponding number of paths on which each edge lies

1: if curr node 6= Φ then

2: push on stack(instr stack, curr node)

3: if curr node == last node then

4: e.pathcount← (e.pathcount+ 1) ∀ edge e on current path

5: end if

6: Enumerate Paths Depth F irst(G, instr stack, curr node→ left child, last instruction)

7: Enumerate Paths Depth F irst(G, instr stack, curr node→ right child, last instruction)

8: pop from stack(instr stack)

9: else

10: return

11: end if

parison fails, the program executes incorrect instructions which produces an incorrect

result. The main challenge in implementing this technique is the hiding of the instruc-

tions dedicated to the validation procedure in the program. Although pre-determined

values are fetched from pre-determined memory locations, the key and memory lo-

cation values are not hard-coded in the program. Rather, they are derived during

program execution, and different sets of values are derived depending on the input

argument. This makes static analysis of the code and “program profiling” to discover

the validation mechanism extremely challenging, because each and every validation

step in the obfuscated program must be identified and neutralized to ensure that the

program operates properly in every situation. The requirement of the predicates and

variables involved in obfuscation to be opaque, i.e. difficult to be deduced by static

analysis was pointed out in [88].

The obfuscation algorithm proceeds by finding all possible control-flow paths in

the program depending on the input values, and then making modifications at optimal

locations in the program, such that with a given code-size (and run-time) overhead,

the modifications would have maximum overall effect. Algorithm-3 shows the pseudo-
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Algorithm 4 Procedure Find Optimal Modifications

Find the optimal modification locations for a set of given control-flow paths and given

number of modifications.
Inputs: Set of edges E, modification pool M, required number of modifications (M), minimum modification radius

(rmod)

Outputs: List of modification locations in the program

1: Sort E based on number of paths on which each edge e ∈ E lies (i.e. e.pathcount)

2: num mods← 0

3: for all edge e ∈ E do

4: e.modified← FALSE

5: end for

6: /*Iterate over the ordered edges and make modifications based on rmod constraint*/

7: for i = 1 to |E| and num mods < M do

8: Set Er = {ej ∈ E : |ei − ej | ≤ rmod} /* |ei − ej | stands for the physical separation of the two edges */

9: if e.modified == FALSE ∀e ∈ Er then

10: Choose previously unchosen m ∈ M

11: Insert m on ei

12: ej .modified← TRUE ∀ej ∈ Er

13: num mods← num mods+ 1 /*Update number of modifications*/

14: end if

15: end for

code for the algorithm to enumerate the paths of the program. The procedure as-

sumes that the given MIPS program has been modeled as a “Directed Acyclic Graph”

(DAG), with the edges forming loops removed. Each instruction of the program forms

a node of the graph, and each node has one child (the non-branch instructions) or two

children (the non-loop branch instructions). For each node, one among the children

is always the next instruction. Note that a return from a procedure call is not treated

as being part of a loop, because the “directed acyclic” nature of the graph is still

maintained even if the edge denoting the return from the procedure call is retained.

The procedure performs a depth-first search with a stack to keep track of the path

traversed, and updates the number of paths on which edges of the graph lie every time

the terminal node of the graph (i.e. the last instruction) has been reached. The last

information is essential in determining optimal locations to perform modifications in

the program, as described next.



139

Algorithm-4 shows the procedure to find the optimal locations to make M modifi-

cations for a given program. At first, the edges of the graph are ranked in descending

order in terms of the number of paths on which the edges lie. Then, M modifications

chosen greedily from the pool of modifications are inserted on the top-ranked edges,

with the constraint that the modified edges are situated at least a pre-defined “modifi-

cation radius” rmod distance away from each other. If any edge connects two vertices

which do not represent consecutive instructions in the program, jump instructions

are used to connect the modification code block to the two vertices on the edge. The

following points should be noted about this algorithm:

• Choosing the top-ranked edges ensures maximum effect of a single modification

on multiple paths, while the rmod constraint ensures that the modifications are

not inserted too close to each other.

• The constraint rmod determines the average number of modifications per path:

Mav =

|P|∑
i=1

Mi

|P|
(7.1)

where |P| denotes the total number of paths in the program, Mi denotes the

number of modifications lying on the i-th path, and 1 < Mav ≤M . An increase

in the value of Mav can be thought of to signify an increase in the security of the

system, because more successful validations are required on average per path to

make the program run successfully. Another metric that is determined by rmod

is the average distance between modifications. Let Emod be the list of modified

edges, ordered by their positions in the program, and M be the total number

of modifications inserted. Then the average distance between modifications is

given (for M > 1) by:

Dav =

M−1∑
i=1

|ei+1 − ei|

M − 1
(7.2)

for ei ∈ Emod, with rmod ≤ Dav <
N

M−1
, where N is the number of instructions

in the program. If rmod is small, say rmod = 1, the minimum value possible,
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the top M ranked edges would be chosen which would increase the value of

Mav. However, on the flip-side, the value of Dav might decrease, meaning that

the modifications would be placed too close to each other which puts them at

the risk of being more identifiable to an adversary. Also, a higher value of

Mav implies higher security; however it also implies an increase in the average

execution time of the obfuscated program with respect to the original program.

Hence, the parameter rmod provides a degree of freedom to balance between the

quantitative metrics Mav and Dav, and the performance of the program.

• This algorithm inserts the modifications at “preferred pseudo-random” loca-

tions, with preference being given to locations that would affect the maximum

possible number of paths, while being “pseudo-random” in the sense that the

modification locations are distributed throughout the program, through the ef-

fect of rmod.

• If a modification is inserted between two instructions which are part of a loop,

then the key-validation step would be repeated as many times as the loop re-

peated, even if the validation is successful. To avoid this, the modification

should be such that any successful validation is “remembered”, so that the next

time the loop is executed, the validation mechanism is not exercised. This can

be implemented easily by having a “flag” register and local jumps in the modifi-

cation. We have elucidated this point with an example in the next sub-section.

To increase the level of security, the operations dedicated to deriving and com-

paring the keys of a sequence do not not appear in the order in which the keys are

compared. For example, it might happen during the course of modifications that the

“load” instruction which fetches the 4th key of a sequence from memory appears be-

fore the instruction that fetches the 3rd key of the sequence from memory. In the next

sub-section, we give a complete example to elucidate the two algorithms described

above.
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Fig. 7.1. Example of application of the proposed algorithm on a MIPS
program to calculate the value of the n-th Fibonacci number for a given
non-negative integer n.

7.3.2 Obfuscation Example

Fig. 7.1(a) shows an example MIPS assembly language program to calculate and

display the value of the n-th Fibonacci number for a given non-negative integer n. The

main part of the program to be modified occurs between the markers #begin text

and #end text, and the instructions between these two markers have been numbered

for ease of understanding. Two types of branch instructions can be recognized - those

which are not part of any loop in the program (instructions #2 and #4), which we

term as the “non-loop branches”, and those which are part of a loop (instruction
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#13). The program is parsed between the two markers and transformed to a graph,

with each instruction constituting a node in the graph. Only the non-loop branch

instructions are recognized as true branch instructions, i.e. the loops are broken

during analysis of the code. This makes it possible to model the control flow graph

of the program as a directed acyclic graph, with each true branch instruction having

at most two child nodes (two children for the conditional branches and one child for

unconditional branches).

The feasible control paths of the program are then enumerated by analyzing the

graph using Algorithm-3. The feasible paths for this program (paths #1, #2 and #3)

are shown in Fig. 7.1(b), where each instruction has been represented by its serial

number. Note that the different paths are followed depending on the value of the

input argument n to the program - path-1 if n < 0, path-2 if 0 ≤ n < 2 and path-3

if n ≥ 2. When Algorithm-4 is applied to find the optimal modification locations for

M = 3 modifications and rmod = 5, the modifications are placed between instructions

1 and 2 (modification #1), between 14 and 15 (modification #2) and between 28

and 29 (modification #3). Modification #1 and #3 affect all three paths, while

modification #2 affects only paths 2 and 3. The average number of modifications is

per path is thus Mav = (3 + 3 + 2)/3 = 2.67, which is less than the ideal value of

Mav = M = 3.00. The average distance between modifications Dav = 9.00, while the

ideal value is N
2

= 29
2

= 14.50.

Note that Algorithm 4 implies that the first modification would always be inserted

on one of the edges connecting the “root” node to the node corresponding to the first

branch instruction in the program. This feature might make the first modification

identifiable to an adversary performing static analysis. This issue can be handled by

modifying the algorithm so that an exception is made about the position of the first

modification, so that no modification appears between the “root” node and the first

branch node.

An example modification has also been shown which is derived from the corre-

sponding modification pool after binding the generic register names reg0, reg1 etc.
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to actual resisters $t5, $t3, etc. As mentioned before, the register binding keeps the

original functionality of the program functionally correct by a lifespan analysis. In the

given case, registers $t0 and $t2 collect the input and golden values of the key from

memory locations 0x10000040 and 0x10000044 respectively, and normal operation is

allowed only if the fetched values match. In this particular case, incorrect operation

is due to the fact that the register $t0 contains an incorrect value (it should contain

zero when the label loop is reached). Instead of an incorrect jump instruction on the

failure of the comparison, incorrect dataflow operations followed by jumps might also

be employed (e.g. putting an incorrect value to a register used later with its value

not over-written in the original program). Dummy “register renaming” instructions

might be utilized for the registers involved in the validation mechanism. This makes

correct determination of the control flow dependent on analysis of the data flow, an

operation whose complexity is NP-hard [101]. Similarly, dummy branch instructions

based on opaque predicates might be added such that the branches always evaluate

unidirectionally, to increase the complexity of static analysis of the program. Also,

in case no registers are found free to be used bound to generic registers, the contents

of these registers can be stored in memory, the registers used for validation purposes

and after successful validation, the register contents can be restored. Note that as

pointed out earlier, if any modification location had been chosen between instructions

9 and 13 (which form a loop), we would have to modify the program in such a way

that after successful validation of the key, no further validation would be required till

the loop finishes execution.

Next we qualitatively and quantitatively analyze the effectiveness of the proposed

obfuscation scheme when applied to a given assembly language program.
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7.3.3 Obfuscation Efficiency

Qualitative analysis

Qualitatively, the proposed obfuscation technique should be capable of resisting

reverse-engineering attempts to discover the obfuscation scheme, thereby “filtering

out” the original code from its obfuscated version. Reverse-engineering attempts

are usually undertaken with the goal of discovering vulnerabilities, making unautho-

rized modifications, or stealing intellectual property [86]. Two main steps of reverse-

engineering a binary executable can be recognized [86]:

• disassembly which attempts to produce equivalent assembly code from machine

code, and,

• decompilation, which attempts to produce the equivalent high-level language

program from the assembly code.

Each of the above two techniques comes in two different flavors - static and dy-

namic. The static techniques analyze the program without actually executing it,

while dynamic techniques monitor and analyze the program during run-time. The

previous work in preventing reverse-engineering as described in Section 7.2 attempts

to increase the difficulty of either of these two steps. The novelty of the proposed tech-

nique is that it does not directly affect the difficulty of performing either of these two

steps; instead, the principle of “execution trace dependent control-flow modification”

ensures that even after successful disassembly and decompilation, the actual function-

ality of the program would be difficult to discover. The greater security of a variable

key-based challenge-response process over one which employs a set of constant keys

has been pointed out in [97].

Quantitative analysis

Although we have elucidated the qualitative effect of the proposed key-based ob-

fuscation scheme through the above description and example, a theoretical analysis
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to obtain a quantitative estimate of the security of the scheme is essential. We borrow

the following metrics which have been previously proposed to estimate the success of

a software obfuscation scheme [88]:

• Potency : the complexity in comprehending the obfuscated program compared

to the unobfuscated one.

• Resilience: difficulty faced by an automatic de-obfuscator in breaking the ob-

fuscation.

• Stealth: how well the obfuscated code blends in with the rest of the program,

and

• Cost : how much computational overhead it adds to the obfuscated program.

A potent software obfuscation technique should provide high levels of potency,

resilience and stealth, while incurring minimal cost. In particular, it should provide

sufficient protection against both dynamic (i.e. run-time) and static program analy-

ses. The technique automatically provides high levels of protection against dynamic

analysis because of the fact that the particulars of the basic “challenge-response”

mechanism of fetching the key from memory, comparing it with the golden key, and

modifying the control-flow based on the result of the comparison, vary depending

on the input arguments of the program. For example, it is highly unlikely that an

adversary covertly observing the execution of an obfuscated code would observe the

same control flow in two successive runs of the program. As a result, the number

of “challenge-response” operation pairs, the memory access location, as well as the

values against which the comparisons are made will vary from one run to the next. Be-

cause the input argument-space of most practical programs is larger beyond complete

enumeration, hence, breaking the obfuscation scheme simply by observing the exe-

cution of the obfuscated program is practically infeasible. Hence, we concentrate on

the protection provided by the proposed key-based obfuscation methodology against

static code analysis efforts of an adversary.



146

Consider an assembly language program containing N instructions, to which n

instructions are added to modify the control flow by the technique described above,

as a result of which the code size increases to (N + n). Let there be L “load”

instructions in the original program, to which l “key load” instructions are added

during modifications to increase the number of load instructions to (L+ l). Note that

as pointed out earlier, these load instructions need not occur in the same order as

the key comparison sequence. Similarly, let there be C “comparison-based branch”

instructions in the original program to which c are added to bring the total number

of branch instructions to (C + c). To identify the modifications that have been made

to the original program by static analysis of the obfuscated code, an adversary must

perform the following steps:

• Identify the n instructions dedicated in modifying the original program, out

of a total (N + n) instructions in the obfuscated program. This is one out of(
N + n

n

)
possibilities.

• Identify the l “load” instructions dedicated to the obfuscation scheme out of

the total (L + l) “load” instructions, and from them determine the correct

order in which the keys are collected from memory and compared to modify the

control flow. Note that the adversary does not know a-priori the number of key

comparisons for a given feasible control-flow path of a given program. Let Mav

be the average number of modifications performed among all the feasible control-

flow paths of the given program. Then, to break the scheme, the adversary has

to make exactly one out of

dMave∑
i=1

(
L+ l

i

)
× i!

 choices to determine the correct

number and sequence of keys to be applied.

• Identify the c “comparison-based branch instructions” dedicated in control-flow

modification, from a total of (C+c) such instructions in the obfuscated program.

• Identify the (n − l − c) dataflow operations dedicated to obfuscate the code,

from among the total (N + n− L− C − l − c) in the obfuscated code.
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Combining the three above factors, we propose the following quantitative metric

to estimate the effectiveness of the proposed key-based obfuscation scheme:

Mobf =
1dMave∑

i=1

(
L+ l

i

)
× i!

× (C + c

c

)
×
(
N + n− L− C − l − c

n− l − c

) (7.3)

Lower values of this metric implies higher levels of potency, resilience and stealth.

To get an idea of the numerical order of this metric, consider the example shown

in Fig. 7.1 and the portion of the code between the two markers #begin text and

#end text. Assuming the length of all modifications to be similar to the one shown,

we have the values dMave = 3, rmod = 5, N = 29, n = 3 × 13 = 39, C = 3,

c = 3 × 2 = 6, L = 1 and l = 3 × 2. This gives the value Mobf ≈ 9.63 × 10−20. In

real-life applications, the value of this metric would be much smaller because of larger

values of N and L, which in turn would allow larger values of n and l. Next we derive

the computational overhead of implementing the proposed obfuscation scheme, which

would estimate the cost aspect.

7.3.4 Computational Overhead of the Obfuscation Technique

Time complexity

The time complexity of the path enumeration step is essentially the time com-

plexity of the dept-first traversal, which is O (|V|+ |E|), where |V| and |E| are the

number of vertices and edges respectively in the graph [106]. However, note than in

our particular case, N − 1 ≤ |E| ≤ 2N , where N = |V| is the number of instructions

in the block of the program to be obfuscated. The lower limit occurs when there is

no non-loop branch instructions in the program, while the upper limit is because of

the fact that no node in the graph has more than two children. However, note that

an upper limit of 2N is overly pessimistic for real programs, because (approximately)

only one in every seven instructions in real-life programs are branch instructions.

Hence, the time complexity of the depth-first traversal step is O(N). For the pro-
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gram modification step, the time complexity is O(|E|), which because of the argument

presented just now is O(N). The time complexity of ranking the instructions based

on the number of paths on which they lie is O(N logN), assuming an efficient sorting

algorithms such as “Heapsort”. Hence, the overall time-complexity of the obfuscation

procedure is O(N logN).

To estimate the value of the average number of modifications made per path (Mav),

it is essential to find the number of modifications made on every path individually,

as well as the total number of paths. The total number of paths can be found

during the first depth-first search. However, finding the number of modifications

made individually on each path will require O

 |P|∑
i=1

|pi|

 steps, where |P| stands for

the total number of paths, and |pi| is the length of the i-th path in the set of paths P.

If the total number of paths in a given program is unmanageably large, the program

should be partitioned into smaller segments. Please note that this inconvenience is

not part of the original algorithm - it is relevant only if somebody wishes to evaluate

the parameter Mav.

Space complexity

The space complexity of the entire procedure is O(N), the space required to store

the information about edges in the program.

Next we describe the automated flow to obfuscate a given complete MIPS program

by the application of the obfuscation methodology discussed above.

7.3.5 Automation of the Obfuscation Technique

The program obfuscation methodology described in Section 7.3 was implemented

through an automated flow. The flow consists of the following components:

1. A Tool Command Language (TCL) script format code that formats the input

MIPS program to a form more amenable to the control-flow analysis.
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Fig. 7.2. Automation of the proposed obfuscation technique.

2. A C program mobfus that performs the control-flow analysis.

3. A TCL script modify code that produces the modified MIPS program.

4. A top-level shell scripts sobfus that integrates all of the above programs.

Fig. 7.2 shows the automated flow. The top-level script sobfus accepts as input

arguments the un-obfuscated MIPS program in a single file (let it be “file.mips”), the

number of modifications (M) to be made and the modification radius (rmod). M is

estimated a-priori from the size of the modification code blocks in the modification

pool, the size of the program, and the maximum code size overhead acceptable. sob-

fus invokes the TCL script format code which formats the input code by removing

all comments and blank lines and replacing all labels for branch instructions in the

program by the corresponding destination line numbers. It produces a formatted

version of the program in the file “file formatted.mips”, and a hash of the program

labels and the corresponding line numbers in the file “label indices array.tcl”. sob-

fus then calls the C program mobfus which enumerates all the possible control-flow

paths in the program using Algorithm-3, and finds the optimal modification loca-



150

Table 7.1
Functionality of the Programs listed in Table 7.2

Program Functionality

TokenQuest.mips One player adventure game

hanoi.mips Recursive solution of the “Tower of Hanoi” problem

MD5.mips MD5 hashing of a given ASCII text file

connect4.mips Two player “Four in a Line” game

DES.mips Digital Encryption Standard (DES) encrypter/decypter (for ASCII text files)

sudoku.mips Sudoku puzzle

ID3Ediror.mips Reading and editing of ID3 tag information in MP3 music files

string.mips MIPS implementation of the functions of the C standard header “string.h”

cipher.txt Various cipher techniques for ASCII text

decoder.mips MP3 music format decoder

tions using Algorithm-4. It reports the enumerated paths in the file “paths.txt”

and the modification locations in the file “mods.txt”. sobfus then invokes the

TCL script modify code which finally produces the obfuscated program in the

file “file obfuscated.mips” by using the modification code blocks provided in the file

“mod pool.txt”, and binds the register mnemonics to registers available at a given

point in the program (as described in Section 7.3.1 and elucidated in Section 7.3.2).

It also produces an estimate of the obfuscation metric Mobf according to eqn. 7.3,

and values for the metrics Mav and Dav.

In the next section, we present simulation results for the application of the above

technique to a set of MIPS assembly language programs.
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7.4 Results

7.4.1 Setup

The MIPS programs were collected from different MIPS programming projects

performed by undergraduate students taking the EECS-314 course in the Electrical

Engineering and Computer Science Department of Case Western Reserve University.

The size of the programs varied 109 to 21024 MIPS assembly language instructions,

and the programs were all interactive in nature. The functionality of the programs

are listed in table 7.1. The functionality of the original and the obfuscated versions

of all the two programs were verified using the SPIM simulator [107]. The program

obfuscation methodology described in Section 7.3.5 was implemented and the pro-

grams were simulated on a Linux workstation with 4GB of main memory and a 2GHz

quad-core processor.

7.4.2 Effect of Variation of the Modification Radius (rmod)

We investigated the effect of variation of the modification radius (rmod) on the av-

erage modifications per path (Mav) and the average distance between modifications

(Dav) for the N = 270 instruction program connect4.mips. The number of modifica-

tions (M) was set at 3, and rmod was varied between 1 and 80. Fig. 7.3 shows the

plots of Mav and Dav vs. rmod. The values for Mav were normalized with respect to its

value at rmod = 1 (the minimum possible value of rmod). The trends are as expected,

with Mav decreasing with rmod and Dav increasing with rmod. Note that the metrics

Mav and Dav satisfy the constraints 1 < Mav ≤M and rmod ≤ Dav <
N

M−1
, as stated

in Section 7.3.1.

7.4.3 Obfuscation Results

Table 7.2 shows the effects of applying the proposed application technique on the

MIPS program suite, at a modification radius (rmod = 50), with a 10% target code-
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Fig. 7.3. Variation of (a) average modification per path (Mav) and (b) the
average distance between modifications (Dav) vs. the modification radius
(rmod), in the program connect4.mips, for M = 3 modifications.

size overhead. For the largest program decoder.mips, only 1000 paths were considered

to keep the memory requirement manageable, and rmod was set to 500. As is evident

from the obtained Mobf values, the proposed technique can provide high levels of

protection at a nominal code-size overhead of 10%. Note that in larger programs and

in programs with higher number of “load” and “branch” instructions, the effectiveness

of the technique increases.

7.4.4 Overhead Results

Table 7.3 shows the code-size overhead of the obfuscated program (with respect

to the original program), the CPU time and average increase in execution cycles to

implement algorithms 3 and 4. The average increase in execution time was estimated

by calculating the average increase in execution cycles per modification, and then

multiplying the quantity with the average number of modifications per path. The

CPU time has a strong correlation to the number of paths in the program, and a

weaker correlation to the program size. These trends are consistent with the analysis

of overhead requirements in Section 7.3.4.
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Table 7.2
Program Obfuscation Efficiency for a Targeted 10% Code-size Overhead at a Modifica-
tion Radius rmod = 50

Program Parameters† Obfuscation Efficiency

Program N C L |P| M n c l Mobf Mav Dav

TokenQuest.mips 109 19 14 11 2 18 3 3 1.09e-20 1.55 95.0

hanoi.mips 132 20 40 169 2 16 3 3 1.43e-19 1.91 67.0

MD5.mips 250 41 35 114 4 26 5 5 6.33e-33 3.67 65.33

connect4.mips 270 72 37 4146 4 26 5 5 1.30e-33 3.47 89.33

DES.mips 372 43 64 5241 6 34 7 9 1.54e-40 5.31 68.00

sudoku.mips 436 110 43 111113 8 41 9 11 2.66e-49 6.76 58.29

ID3Editor.mips 878 160 134 98724 12 89 16 19 1.71e-106 5.66 79.45

string.mips 876 156 224 111075 12 89 16 19 4.42e-103 10.90 60.55

cipher.mips 1956 231 218 150129 27 188 35 43 1.65e-222 26.23 75.12

decoder.mips‡ 21024 174 231 1000‡ 27 188 35 43 <10−400 13.50 502.00‡

†The meaning and significance of these parameters are as described in Sections 7.3.3 and 7.3.4.

‡Only 1000 paths were enumerated, and rmod was set to 500.

7.5 Discussions

7.5.1 Authentication Capabilities

The proposed technique also has the capability of providing authentication capa-

bilities as a second line of defense. This second life of defense becomes valuable if an

adversary has been able to break the key-comparison based validation scheme. The

original owner of the software might decide on the snapshot of the processor state for

a particular input parameter and a particular mix of correct and incorrect keys as the

digital watermark [87] to establish the original ownership of the program in the court

of law. It is extremely difficult for an adversary to detect such a digital watermark
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Table 7.3
Overheads for the Obfuscation Technique (with parameters of Table 7.2)

Overheads

Program Code-size (%) CPU time (s) Average Increase in Execution Cycles

TokenQuest.mips 18.85 0.10 17.83

hanoi.mips 12.12 0.40 20.06

MD5.mips 10.40 0.90 31.20

connect4.mips 9.63 1.00 29.50

DES.mips 9.14 2.00 41.60

sudoku.mips 9.40 66.00 48.17

ID3Editor.mips 10.14 112.00 54.71

string.mips 10.16 217.00 105.37

cipher.txt 10.61 1474.00 241.90

decoder.mips 0.89% 1840.00 124.50

and change it, without the knowledge of exactly which processor state was chosen by

the software owner as the watermark.

7.5.2 Application to Obfuscation of Program Binaries

Although our implementation of the obfuscation scheme is for MIPS assembly

language programs, the technique can be easily extended to handle binary executables.

To apply the obfuscation technique, one would need to disassemble the equivalent

assembly language program from a given binary, apply the proposed obfuscation

technique, and then again convert it back to the binary form. The details of the

implementation would vary slightly depending on the instruction set of the processor

for which the program was compiled; however, the algorithms would not change.

Disassembly and de-compilation of binary code to assembly language code or to high-

level programming language code is not very difficult, and free tools are available

online [108] to serve the purpose.
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7.5.3 Application of Software Protection in Protection against Malicious

Modifications

Obfuscation can potentially play a major role in protecting software from mali-

cious non-self-replicating modifications (“software Trojan horses”) [101]. Any effec-

tive malicious code injection evading detection requires in-depth understanding of

the behavior of the victim program. However, if the program to be infected is ob-

fuscated, an effective virus insertion might be resisted. [101] explored the possible

applicability of the “memory re-mapping” technique in providing protection against

software Trojan horses. Similarly, the execution trace dependent control-flow obfus-

cation technique proposed in this chapter might also help to resist software Trojan

horses. It might happen that failing to understand the actual control-flow of the pro-

gram, the malicious code is inserted in a part of the program that is never executed

if the key-sequence validation step is successful. In this case, the Trojan horse would

be rendered “benign” in a legal copy of the program run with the proper validation

keys, i.e. it would be unable to express its malicious effect during program execution

in spite of being physically present.

7.5.4 Intelligent Attack Scenarios

The obfuscation metric (Mobf ) described by eqn. (7.3) shows that it is extremely

difficult for an adversary to reverse-engineer the program based on a “random-choice”

based analysis. However, in reality, the adversary can perform input dependent con-

trol flow analysis of the obfuscated program similar to the technique that was used

for to obfuscate the program in the first place. Implementing suitable defense mech-

anisms against these types of intelligent attacks is a major future work. One way by

which the attacker’s task can be made more difficult is to insert modification code

blocks so that they result in numerous forward branches to increase the number of

paths in the program. Similarly, having many dummy and “honey pot” type of in-

structions which will attract the adversarys attention would prove to be helpful. Note
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that the dummy and “honey pot” instructions will only result in the increase of the

program size; on successful key matching, they would never be executed and hence

they would never adversely affect the performance of the program.

7.5.5 Automatic Generation of Modification Code

In this work, the modification code to be inserted have been chosen randomly from

a given pre-designed pool of such blocks of code, and after the modifications have been

made, the value of Mobf has been calculated. Instead, the technique can be made more

sophisticated by having a mechanism, where, based on a target value of a suitable

Mobf and the allowable code size overhead, the modification code would be generated

automatically. The code generation mechanism should analyze the unobfuscated

program structure to generate effective modification code that can be well-hidden in

the program.

7.6 Summary

Increasing functionality of embedded systems is enabled by greater complexity

of software that runs on them. However, embedded software are becoming increas-

ingly vulnerable to piracy and malicious modifications. Severe hardware and energy

resource constraints of embedded devices often limit the applicability of complex

hardware and software protection approaches. We have proposed an “execution trace

dependent control-flow obfuscation” technique which requires the application of an

input-dependent set of validation keys to make the software function properly. The

validation mechanism is implemented by distributing the validation code all over the

program using an algorithm that balances the code overhead and proximity of the

modifications. We have theoretically analyzed the level of security obtainable from

this scheme, and the associated computational overhead. Application of the algorithm

on a suite of randomly selected MIPS programs resulted in high levels of security at

nominal code-size and acceptable computational overhead. The technique is highly
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scalable and can be applied to arbitrarily large programs by appropriate program

partitioning.
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8. CONCLUSION

Economic reasons as well as the complexity of modern IC design process, dictate the

participation of several external agents in modern IC design and manufacturing. IC

design houses are becoming increasingly dependent on hardware IP modules and CAD

software tools licensed from external vendors. Due to the spiralling cost of maintaining

a fabrication facility, most semiconductor companies follow a “fabless” business model

where the design is “taped-out” and the IC is manufactured in off-shore fabrication

facilities by companies specializing in semiconductor manufacturing. These practices

have reduced the level of control that IC design houses used to exercise over the

ICs they design and manufacture. An IC can be maliciously modified at different

stages of the design and manufacturing flow by the insertion of so-called “hardware

Trojans”. In addition, “clones” of an IC might be manufactured illegally in off-shore

fabs resulting in loss of market share for the IC design house. Also, “Design for

Testability” practices provide new opportunities for the adversaries to discover secret

information from secure ICs. On the other hand, release of IPs to unscrupulous IC

design houses makes the IP vendors vulnerable to IP piracy through illegal copying.

Obfuscation is a technique that makes comprehending and reverse-engineering a

design difficult. In this research, we have developed novel hardware design techniques

implementing key-based design obfuscation that effectively counter these threats. Side

by side, an enhanced IC design methodology is developed where the security aspect

is seamlessly integrated with the traditional design steps through EDA software tool

support. Design obfuscation for both gate-level and RTL design descriptions has been

applied successfully to develop a piracy-proof SoC design methodology. These obfus-

cation techniques have then been applied to resist Trojan insertion and to facilitate

Trojan detection. A key-based secure scan chain design technique to prevent the leak-

age of secret information from secure ICs has also been proposed. Moreover, we have
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presented possible extension of the proposed approach to embedded software obfusca-

tion, thus providing an integrated low-cost security solutions to resource-constrained

embedded systems.

We have shown that the proposed obfuscation procedure can also be used to realize

a low-cost and robust authentication feature by introducing appropriate modification

in the state transition function. Obfuscation and authentication go hand in hand;

thus, effectiveness of an authentication technique can be substantially increased in

presence of obfuscation. Obfuscation can also be used in combination with existing

“design for security” approaches to enhance the overall security. However, obfuscation

involves additional design overhead as well as modification of the existing design flow

and requires application of an enabling key for normal operation. It is important

to minimize the impact of obfuscation on designer, test engineer as well as end-

user, while adopting the proposed approach for a target application. We have shown

through simulation results that the obfuscation based techniques proposed in this

research can be implemented at low hardware and/or computational overheads, with

minimal impact on the end-user experience. To make the approach scalable, we have

considered the issues associated with application of the proposed obfuscation process

to complex SoCs.

Future work would explore the applicability of obfuscation techniques to higher

levels of design abstraction such as “Electronic System Level” (ESL) and SystemC ;

protection of memory contents through possible obfuscation of address and data lines;

design of hardware infrastructure to implement the “challenge-response” protocol for

embedded software security, and ways to increase the security against insider’s attack,

i.e. attacks where an associate of the design house itself is the adversary. Analysis of

the effect of design obfuscation on circuit and system testability and reliability can

also be investigated.
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