Structural Transformation for Best-Possible Obfuscation of
Sequential Circuits

Li Li and Hai Zhou
Department of Electrical Engineering and Computer Science
Northwestern University

Abstract—Obfuscation is a technique that makes comprehending a
design difficult and hides the secrets in the design. An obfuscation is called
best-possible if the obfuscated design leaks no more information than
any other design of the same function. In this paper, we prove that any
best-possible obfuscation of a sequential circuit can be accomplished by a
sequence of four operations: retiming, resynthesis, sweep, and conditional
stuttering. Based on this fundamental result, we also develop a key-based
obfuscation scheme to protect design Intellectual Properties (IPs) against
piracy. The novel obfuscation method embeds a secret key in the power-
up state of IC, which is only known by the IP rights owner. Without the
key, the IC still functions but its efficiency will be much degraded. Unlike
existing IC metering techniques, the secret key in our approach is implicit
thus it can also be used as a hidden watermark. Potential attacks and
the countermeasures are thoroughly examined, and experimental results
demonstrate the effectiveness of the method.

I. INTRODUCTION

The business model of semiconductor industry has changed sig-
nificantly in last decade. With increasing complexity and cost of
modern ICs, a design house has to seek the aid from various external
agencies, such as EDA companies, IP vendors, library providers, and
fabrication foundries. The active participation of external entities in
the design and manufacturing flow has produced numerous hardware
security issues. Among all the hardware security problems, piracy is
likely to be the most ubiquitous and expensive one. Most leading
edge design houses have outsourced their fabrication to the offshore
foundries for the sake of lower labor and manufacturing cost. How-
ever, many offshore foundries are hard to be trusted since they are in
country without consummate enforcement law for IP protection [1].

A variety of techniques has been proposed for fighting against
hardware piracy. There are two main classes of approaches. One
approach is hardware metering [2], which enables design houses to
have post-fabrication control on the produced ICs. By metering, the
designer can count the number of fabricated ICs, monitor their usage,
and even remotely lock/unlock the ICs. Hardware watermarking [3],
as another popular approach to IP protection, is inspired by the
traditional digital watermarking technique. It inserts certain identity
information into behavioral specification or sequential structure of
the design. Watermarking is more passive compared with metering.
But since watermarking has a unified signature for all ICs and does
not involve any designer-manufacturer interaction, it will usually be
less expensive.

Both hardware metering and watermarking techniques are inti-
mately related to program/circuit obfuscation. Informally speaking,
an obfuscator is a probabilistic compiler O that transforms a source
program/circuit F' into a new program/circuit O (F’) that has the same
functionality as F’ but less intelligible in some sense. The technique of
obfuscation is often used to protect the secrets in programs by making
them harder to comprehend. However, circuit (hardware) obfuscation
is radically different from program (software) obfuscation. Unlike that
the functionality of a program can be kept secret, the functionality
of commercial IC may be completely or partially known by parties
other than the designer. The value of standard IC/IP is determined

by their efficiency of implementation in terms of performance, power
consumption, reliability, etc. Thus, instead of hiding the information
within the original circuit, circuit obfuscation usually tries to hide
extra secret information (e.g. watermarking) that is intentionally
added to the circuit in order to prevent illegal use of the IC.

In this paper, we discuss two popular notions of obfuscation: black-
box obfuscation [4] and best-possible obfuscation [5]. We believe that
best-possible obfuscation is the appropriate definition in the context
of hardware IP protection. Based on this definition, we show that any
best-possible obfuscation of a sequential circuit can be accomplished
by structural transformation composed of four types of operations:
retiming, resynthesis, sweep, and conditional stuttering. Based on it,
we propose a technique to obfuscate sequential circuits by structural
transformation. The design will be embedded a secret key. It has
two different work modes: normal mode and slow mode, depending
on whether the initial state matches the key. In slow mode, the IC
still functions but becomes much slower compared to normal mode.
Since the normal mode contains an extremely small portion of all
power-up states, any pirate who starts at a random state will most
often end up using the degraded IC, without even suspecting the
existence of the key. The hidden key can also be used as a proof of
design authorship like watermarking while imposing extra penalty on
piracy. Our contributions in this paper are listed as follows:

« We prove that retiming, resynthesis, sweep, and conditional
stuttering are complete for any best-possible obfuscation of
sequential circuits.

« We propose a key-based obfuscation scheme to hide the efficient
implementation of the design and present the degraded design
to the pirate.

« A number of potential attacks and the security of our method
against them are discussed.

« Experimental results show the low overhead of timing, power,
and area of our method.

The rest of the paper is organized as follows. The related works are
discussed in Section II. The completeness proof of structural trans-
formation for best-possible obfuscation is presented in Section III. A
novel and practical obfuscation method is developed in Section IV.
Attack resiliency is discussed in Section V. We show the experimental
results in Section VI and conclude in Section VIIL.

II. RELATED WORK

Program/circuit obfuscation is a fundamental problem in computer
security. Barak et al. [4] initiated the theoretical study of obfuscation
and demonstrated that generic “virtual black-box” program obfuscator
does not exist. Later Lynn et al. [6] proved the first positive result
about obfuscation, that the family of point and multi-point functions
can be perfectly obfuscated under random oracle model. Goldwasser
and Rothblum [5] argued that the black-box model be too strong
for many real applications. They proposed a new notion of “best-
possible” obfuscation under relaxed requirements and studied its

properties. Yet there is still lack of common agreement on the
definition of obfuscation.

The concept of hardware metering is first introduced by Koushanfar
and Qu in 2001 [2]. The idea was to assign an unique signature
to the IC’s functionality by making a small part of the design pro-
grammable. There followed some works that exploit manufacturing
variability to generate unique random ID for each IC to achieve
metering [7], [8], [9], [10]. These methods are all passive. Alkabani
and Koushanfar [11], [12], [13] proposed the first active hardware
metering scheme. The method utilized Physically Unclonable Func-
tion (PUF) [10] to generate the unique initial FF values (power-up
state) for each IC. The power-up state will have very high probability
to be in the non-functional part of an augmented FSM structure
thus the IC will be locked. Only the designers who have knowledge
about the augmented FSM structure would be able to send the key
(transitions to legitimate reset state) to unlock the IC. According
to a comprehensive survey about piracy avoidance [14], the methods
based on embedding locks in the behavioral description of the design
is also called internal active IC metering. In contrast, external active
IC metering [15], [16], [17] usually embeds locks in the physical level
of the design, which are further controlled by external cryptography
function. The latter set of methods tend to have larger power and area
overhead due to the complexity of cryptographic modules interfaced
with the locks.

Oliveira first proposed to hide a secret watermark in a sequential
circuit [3], [18]. The watermarking was performed by modifying the
State Transition Graph (STG) to go through a chosen path of state
transitions with certain set of inputs (secret keys). The insertion of
watermark will not have any effect on the IC’s functionality. The
proof of authorship is ensured by the fact that the displayed input-
transition behavior would be extremely rare in non-watermarked
circuit. Later Koushanfar and Alkabani [19] proposed to add multiple
watermarks to further enhance security, and they showed that hiding
multiple watermarks in the STG is an instance of obfuscating a multi-
point function with a general output. Yuan and Qu proposed the idea
of hiding information in the unused transitions of FSM [20]. They
developed a SAT-based algorithm to find the maximal set of redundant
transitions for a given minimized FSM and took advantage of this
redundancy to hide the information in the FSM without changing
the given minimized FSM. Hardware watermarking looks similar as
passive hardware metering but they have some critical differences.
The watermarking signatures are uniform in all ICs of the same
product in contrast to that metering will assign a specific signature
for each IC. For this reason, watermarking can not track the number
of fabricated copies from one mask.

III. STRUCTURAL TRANSFORMATION FOR BEST-POSSIBLE
OBFUSCATION

A. Best-Possible Obfuscation

The definition of obfuscation has been controversial for long since
its theoretical study was initiated by Barak et al. [4]. Originally,
obfuscation is defined in very strong requests that 1) the obfus-
cated circuit computes the same function as the original circuit
with at most polynomial-time slow-down, 2) the obfuscated circuit
should leak no information except for its black-box (input-output)
functionality. Formally, black-box obfuscation requires that anything
that can be efficiently computed from the obfuscated circuit, can
also be computed efficiently from input-output access to the circuit.
Barak et al. [4] showed that the general black-box obfuscator does
not exist, indicating that the definition may be too strong. In fact,
it is indeed too strong in the context of circuit obfuscation for IP

protection. Since the obfuscated netlist is visible to the parties and its
functionality may be publicly known, it is impossible to be treated
as a black-box. Therefore, it is justified to use the notion of best-
possible obfuscation proposed by Goldwasser and Rothblum [5]. The
best-possible obfuscation relaxes the second requirement to that the
obfuscated circuit leaks no more information than any circuit of
the same functionality. Best-possible obfuscation guarantees that any
information that is not hidden by the obfuscated circuit is also not
hidden by any other circuit computing the same functionality. While
this relaxed notion of obfuscation gives no absolute guarantee about
what information is hidden in the obfuscated circuit, it does guarantee
that the obfuscation is literally the best possible.

B. Functional Equivalence of Finite State Machines

Based on the definition, any obfuscated circuit must have the
equivalent function as the original circuit. In this section, we will
formally define functional equivalence between two circuits/FSMs.

Finite State Machine (FSM): FSM specifies how the system
changes its states and produces outputs responding to inputs.

Definition 1: A FSM is quintuple (Q,I,0,\,d) where Q is a
finite set referred to as the states, I and O are finite sets referred to
as the set of inputs and outputs respectively, ¢ : Q@ x I — @ is the
next-state function and A : Q x I — O is the output function.

Functional Equivalence: 1f we view a circuit as a black-box system,
then its visible behavior can be described as its possible sequences
of inputs and outputs. A circuit may exhibit an externally visible
behavior like a sequence

{(Eo = (10,00), Er = (I1,01), E2 = (I2,02), ...))

Note that in our specification every step in the sequence corresponds
to a clock cycle in the sequential circuit. Traditionally, the equivalence
of two FSMs [21] requires that their visible behavior should be
precisely the same in every single clock cycle. In this paper, we will
define this strict form of equivalence as cycle-accurate equivalence
to avoid ambiguity.

Definition 2: Two FSMs C and C' are cycle-accurate-equivalent
if any sequence of external behavior { Eo, E1, E2, ...)) that is allowed
by C will be also allowed by C".

Nevertheless, the relation of two FSMs computing the same
function may not be restricted to cycle-accurate equivalence. If there
exists internal states for the circuit, we can also have the complete
behavior

(<(E0>SU)7 (E17sl)7 (E27S2)a >>

Where S is the internal state (register values). In practice, sometimes
only the internal state changes for example

<<(E07 SD)7 (Elv Sl)7 (Eh 51)7 (Eh S)7 (E27 52)7 >>
Since the internal states are invisible to the users, the sequence
of external behavior (Ey, E1, Ev, E1, Es, ...)) and (Eo, E1, Eo, ...))
compute the same function. Accordingly, we define the equivalence
of two behavior sequences and derive the definition for equivalence
of circuit behavior.

Definition 3: Two sequence of external behavior { Eo, E1, Ea, ...))
and (Eg, BT, B3, ...) are stuttering-equivalent if one can be obtained
from the other by repeating states or deleting repeated states (by
adding or removing finite amount of stuttering).

Definition 4: Two FSMs C and C’ are functional-equivalent if for
any sequence of external behavior { Eo, E1, E2, ...) that is allowed by
C, there exists a stuttering-equivalent sequence of external behavior
(E;, EY,E5,...) that is allowed by C".

C. Structural Transformation

Previous approaches to circuit obfuscation usually operate on
behavioral level of the design and require substantial modification on
the STG of the design. The cost is potentially high since the STG will
usually have exponential size in terms of the netlist. In this paper,
we will focus on operating on structural level of the design. Our
approach has lower cost since we do not need complete information
of STG. We introduce four structural operations applied on sequential
circuits: retiming, resynthesis, sweep, and conditional stuttering.

Retiming [22], [23] moves the registers in a sequential circuits
while preserving its logic functionality. Two elementary operations
can be applied: deleting a register from each input of a combinational
node while adding a register to all outputs, and conversely adding a
register to each input of a combinational node and deleting a register
from all outputs.

Resynthesis restructures the netlist within the register boundaries
without changing its logic functionality. Retiming becomes more
powerful when combined with resynthesis due to the flexibility of
changing register boundaries.

Sweep adds or removes registers affecting no output. Since syn-
thesis normally simplifies the circuit structure, sweep is usually met
as an operation removing redundant registers and logic.

Conditional stuttering is a newly defined structural operation in this
paper. It adds control logic to the circuit to stutter the registers, i.e.
copy the register values in the current cycle to the next cycle, under
a given logic condition. The simplest implementation is to add a mux
before the input of registers with two selections, the current register
value and the next register value. Accordingly, inverse conditional
stuttering can be defined as removing certain control logic.

D. Completeness Proof

Now we will show how to achieve any best-possible obfuscation
of a sequential circuit by structural transformation. In [21], Zhou
has demonstrated how to do cycle-accurate-equivalent transformation
between two sequential circuits.

Lemma 1: If two circuits are cycle-accurate-equivalent, then one
of them can be transformed to the other by a sequence of sweep
(inverse), resynthesis, retiming, resynthesis, and sweep, given that the
second resynthesis operation is allowed to use one-cycle reachability.

We will further extend the result in [21] and show that we
can accomplish any functional-equivalent transformation by adding
conditional stuttering.

Lemma 2: If two circuits C7 and C> are functional-equivalent,
then one can transform C; into a new circuit C] by conditional
stuttering, and transform C> into a new circuit C% by conditional
stuttering, such that C; and Cj are cycle-accurate-equivalent.

With Lemma 1 and Lemma 2, it is not hard to draw the following
conclusion.

Theorem 1: Retiming, resynthesis, sweep, and conditional stutter-
ing are complete for structural transformation between any functional-
equivalent circuits.

Corollary 1: Any best-possible obfuscation of a sequential circuit
can be accomplished by a sequence of retiming, resynthesis, sweep,
and conditional stuttering.

E. A Realistic Example

To better illustrate structural transformation for functional equiv-
alence, we will use two small circuits that compute the Greatest
Common Divisor (GCD) of two natural number as an example. The
two original circuits (black lines) as shown in Figure 1 have the same
functionality but different netlists due to different resource allocation.

Circuit GCD_A is only assigned one subtracter while GCD_B is
assigned two subtracters. Both have two registers. We omit the output
part of both circuits, which outputs the value in either register when
two register values are equal. The data flow description of two circuits
are as shown in Figure 2.
GCD_B_COND_STUTTER

GCD_A

l

Fig. 1. Example of behavior-equivalent GCD circuits.
GCD_B(x.y) GCD_A(a,b) N\
while x!=y while al=b
if x>y if a>b
X:=X-Y; a:=a-b;
Y=Y, b:=b;
else else
X:=X; a:=b;
Yi=y-X; b:=a;
endif endif
endwhile endwhile
return y; return b;
Fig. 2. Data flows of GCD circuits with different resources.

Our first observation is that GCD_A will use more cycles than
GCD_B for the same computation because it needs extra cycles
to swap the values in two registers when the subtraction result
is negative. Thus GCD_A and GCD_B are functional-equivalent
but not cycle-accurate-equivalent. However, if we apply conditional
stuttering on GC'D_B (red lines), the two resulted circuits will be
cycle-accurate-equivalent. We can further apply sweep on GCD_A
(red lines) such that we can find an onto state re-encoding between
the two circuits.

a=(c=1%:zx
b=(c==1)7z:y < F ' =

Ss=cC

x=(s==1)?:a
y=(s==1)%a:b

cC=3S

F=

The same-length state re-encoding can be accomplished by re-
timing and resynthesis. Therefore, we can transform GCD_B to
GCD_A by a sequence of conditional stuttering, resynthesis, retim-
ing, resynthesis, and (inverse) sweep.

IV. KEY-BASED OBFUSCATION METHODOLOGY

In last section, we showed the existence of structural transformation
for any best-possible obfuscation of a sequential circuit. However, not
any transformation will have realistic impact in terms of hardware IP
protection. In this section, we will present a practical obfuscation
scheme which is accomplished by a sequence of conditional stutter-
ing, resynthesis, retiming, and resynthesis. The obfuscation hides a
secret key to ensure that any pirate will only be able to use a degraded

design.

Among all structural operations, conditional stuttering makes the
most difference for practice because it will significantly impact
the effective performance (throughput) of the design. As we have
mentioned, the functionality of a design, partially or as a whole,
may not be secret in the context of hardware IP protection. The
efficiency of implementation, i.e. performance, power, and reliability,
then becomes the critical factor for evaluating the commercial value
of the design. Based on this observation, we propose a key-based
obfuscation scheme that makes the IC mimic another functional-
equivalent IC whose throughput is much worse when the correct key
is not provided. The behavioral similarity between the obfuscated
IC with and without correct key is referred as bi-simulation. Our
technique is mainly focus on those real-time applications that are
very sensitive to throughput. We can see that there is a design trade-
off for the performance difference in bi-simulation. On one hand,
we hope the performance difference will be large enough so that
the penalty for piracy will be substantial. On the other hand, the
performance difference cannot be too apparent that the pirate would
easily figure out the design is abnormal. The trade-off should be
carefully considered in reality according to the features of specific
applications.

A. Fundamental Framework

The IC can work in two different modes: normal mode and slow
mode, depending on whether the circuit is initialized in the given
key state. It can be guaranteed that there is only very slim possibility
that an IC will work in normal mode if initialized randomly. Ideally,
the existence of the secret key and different work modes should be
only known to the IP owner. During initial power-up, the FFs will
be initialized to a fixed state stored in non-volatile memory. When
the design is sent for fabrication, the fab will only be informed of
an initial state that is in slow mode. Thus if a malicious fab tries to
illegally copy the IC, they will always end up using the bad design.
After the IP owner receive the fabricated chips from the fab, the
power-up state will be reset to the key state before the chips are
sold.

o
/

B Ru
S B Rk

@

Insertion of conditional stuttering circuit.

Fig. 3.

The first step of structural transformation of the design is an
operation of conditional stuttering as shown in Figure 3. The blue
components R, and C, are the registers and combinational logic
of the original design, respectively. The red components are the
stuttering control logic, which is composed of the key indicator (R,
Ck) and the stuttering indicator (Rs, Cs). The key indicator will
output an one-bit signal K, which will be 1 when the key is correct

(the FF values of Ry, is equal to the given key) and O otherwise. The
stuttering indicator outputs a one-bit signal S. The final stuttering
control signal is K + K S. Thus the circuit will stutter if and only if
K =S =0, otherwise the circuit will work as normal. Note that the
security strength of obfuscation is directly determined by the number
of FFs in Ry. Assume there are k FFs in Ry and there only exists
one set of FF values that will render K = 1, then a random power-up
state will have a possibility of 1/ 2" to fall in the normal mode.

B. Stuttering Control Logic

If the key indicator is utterly independent of the original design,
then the only connection between the original design and the stut-
tering control logic will be an one-bit control signal. In this way the
transformation may be more vulnerable to malicious attacks such as
circuit partition. In order to enhance the security, we introduce some
logic in C, as the input of the key indicator to mix it up with the
original design. In addition, we design the STG of the key indicator
in such a way that the R, will stay at the same state if and only if it
is initialized to the correct key, otherwise it will be trapped in those
non-key states (black hole states), as shown in Figure 4.

&

black hole states key state

Fig. 4. STG construction for key indicator.

The stuttering indicator is used to control the average “frequency”
of stuttering. Straightforwardly, the stuttering indicator can be de-
signed as a simple counter that R, = (R, + 1)%2°, where s is
the number of bits in Rs. Accordingly, the rule of stuttering can
be set as S = (Rs%t == 0)?71:0, where 1 -1/t is the frequency of
stuttering. In other words, the normal mode will be approximately ¢
times faster than the slow mode to finish the same computation. The
stuttering indicator can also be implemented in a non-deterministic
way. For example, we can produce a random signal S to be 1 with
1/16 possibility by using four random-bit gates with equal possibility
to output O or 1. If we assume that the random-bit gates are hard to
distinguish from normal gates, the non-deterministic implementation
may be more favorable.

C. Secure Retiming and Resynthesis

The obfuscation prototype in Figure 3 has two practical flaws. First,
the addition of stuttering control logic will result in extra delay, area,
and power overhead. Since the control logic for all original FFs are
changed, the total overhead can not be neglected. On the other hand,
a smart adversary can possibly remove the stuttering control logic
by logic dependency analysis. By carefully re-encoding the states,
we can manipulate the dependency between the input and output
of flip-flops thus make it harder to extract useful information from
the netlist.' It is well known that any re-encoding of a sequential
circuit can be done by a sequence of retiming and resynthesis as
shown in Figure 5. The identity function at the register outputs is
resynthesized to '+ F~', where F is the one-to-one mapping from
states of C' to the target states of circuit C’. Then retiming moves
the registers forward over F'. The last step resynthesizes F'~* % C' x F

ISee Section V for detailed discussion.

into C". Note that retiming and resynthesis will also help to reduce
the overhead caused by adding stuttering control logic. Different re-
encoding functions may be evaluated and the one resulting in the
least overhead will be chosen as the final re-encoding function. The
valid initial state (final key state) can be calculated from re-encoding
function F'(R,, Rk, Rs), where R, is the valid reset state of original
design, Ry is the selected key, and R, is the initial counter value.

| | TN g
A
) ™o Ve
CrJ | Cx
Sy To
Resynthesis ° Retiming EResynthesis

Fig. 5.

Re-encoding of sequential circuits by retiming and resynthesis.

We choose linear transformation as our re-encoding function.
An elementary linear transformation transforms the set of vari-
ables X = {z1,...,@4,...,xj,...,xn} into the set of variables X =
{1, ..., Tiy .o, Ti®Tj, ..., Ty }. An arbitrary linear transformation can
be obtained by a series of elementary linear transformations, each one
of them implementable by two xor gates, one gate in the transcoder
before the registers (F') and one gate in the transcoder after the
registers (F™.

V. ATTACK RESILIENCY

In this section, we enumerate possible attacks on our obfuscation
scheme and discuss how the proposed method is secured against
them.

o Brute force attack. The adversary attempts at randomly gen-
erating the power-up state until the throughput of tested IC
is obviously better. Under the construction of our obfuscation,
probability of finding the correct power-up state is extremely
low. When the key indicator contains k FFs, the possibility of
successful random guessing will only be 1/2'“. Therefore, this
class of attacks would not be able to break the security.

o Stuttering control logic removal. If the adversary is aware of
the existence of the stuttering (though this cannot be observed
through FF values), it may attempt to remove the stuttering
control logic to regain a normal design. For the obfuscation
prototype in Figure 3, the adversary can systematically analyze
the logic dependency between all FFs and attempt to find out
the added flip-flops for stuttering control. Let us denote the input
and output of flip-flop ¢ as D; and @Q;, respectively. Then each
D; can be expressed as the combinational logic of a set of FF
outputs Q; and primary inputs. It is not hard to see that the
majority of Q; (original FFs) share a common subset of the
outputs @ of stuttering control FFs. This characteristics can be
exploited to find out all the FFs that belong to stuttering control
logic, i.e., the set of stuttering control FFs can be obtained by
the intersection of the inputs FFs Q; for all FFs. However, re-
encoding the states by linear transformation will be an effective
countermeasure for the described attack. Linear transformation
will help to decouple and rebind the logic dependencies. Here
we give an example of two FFs A and B that share a common
control signal S that

Qa=DaS+XasS
QB = DBS+ YA,BE

Where X and Y are t’he next logic ,of Qa4 and Qp. After linear
transformation that A = A® B, B = B, we have

Q4 =(Dy®Dp)Yy o+ DXy
Qp=DpS+Yy S
It can be seen that FF A does not rely on control signal S any
more. Though the actual combinational logic in our problem
will be much more complicated, the decoupling effect of linear
transformation is similar. Thus the attack by analyzing logic will
be ineffective after linear re-encoding.

o Inverse structural transformation. The adversary may attempt
to inversely transform the obfuscated IC into the original IC
via structural transformation. However, without comprehensive
knowledge about the design, the adversary can only randomly
guess the re-encoding function and test if the function is possibly
correct by stuttering control logic removal attack. In reality, this
approach will be too expensive and time consuming for the
purpose of piracy.

VI. EXPERIMENTAL RESULTS

In this section, we report the overhead in terms of area, power,
and timing of the synthesized circuits from the ISCAS89 benchmark
suite. We first generate the original BLIF netlist of the benchmark
circuits by ABC synthesis tool [24], which will be used as the
baseline for obfuscated circuits. Then we will generate the BLIF
netlist of the stuttering control logic. Finally the original circuit and
stuttering control logic will be merged and obfuscated by resynthesis
and retiming. All benchmark circuits are mapped to a standard cell
library. In the experiments, we use 8 bits for the stuttering indicator
and 24 bits for the key indicator.

Table I demonstrates comprehensive performance overhead eval-
uations on the ISCAS benchmark suite. The first column denotes
the benchmark circuit name. The next three columns (Columns 2-
4) show the original design statistics: the number of primary inputs,
the number of primary outputs, and the number of FFs. Columns
5-7 demonstrate the design maximum delay in the following order:
the original synthesized delay, the added delay post obfuscation, and
the percentage of increase. The original designs power postsynthesis,
the added power post obfuscation, and the ratio between the two
are reported in Columns 8-10. The postsynthesis area of the original
design, and the added area post obfuscation and the ratio between
are shown in the last three columns, respectively.

We first analyze the impact of obfuscation on the circuit timing.
From Figure 3, we can see that the critical path may be affected
by newly added control signal, and the ratio of the added critical
path delay overhead compared to the original delay seems to be
independent of the circuit size. However, this overhead can be
alleviated by the followed retiming and resynthesis optimization.
Therefore, the actual overhead in the critical path delay introduced
by our obfuscation is rather low, especially for large designs that
have much flexiblity for retiming and resynthesis to leverage. For the
tested cases with small or modest design size, on averge the delay
overhead is 3.35 %.

The area and power overhead is very related in our method. In
addition, they are not indepedent of the design size in the worst case
since the control signal for all original FFs are changed. The area

TABLE I
EXPERIMENT RESULTS

Cases Stats Delay (ns) Power (uW) Area (literal)
P[[PO | FF Ori [Incr [% Ori [Tner | % Ori [Incr | %
s382 3 6 21 0.463 | 0.032 | 6.9 161.1 1183 | 735 255 195 | 76.3
s400 3 6 21 0.493 | 0.016 | 3.2 167.2 106.0 | 63.3 264 174 | 65.9
$526 3 6 21 0.434 | 0.042 | 9.6 190.4 1369 | 72.2 338 225 | 66.7
s838 34 1 32 1.227 | 0.019 1.6 341.0 149.1 | 438 531 253 | 47.6
$953 16 | 23 29 0911 | 0.046 | 5.0 391.8 156.6 | 40.0 595 263 | 442
$5378 35 | 49 179 | 0.736 | 0.021 2.8 1411.0 | 256.3 18.2 | 2248 512 | 22.8
$9234 36 | 39 211 1.755 | 0.034 1.9 | 2157.1 267.0 124 | 3492 543 15.5
s13207 | 62 | 152 638 1.86 0.028 1.5 4110.2 501.0 12.2 6339 1114 | 17.6
s15850 | 77 | 150 | 534 278 | 0.031 1.1 4565.7 | 590.9 13.0 | 7104 1316 | 18.5
835932 | 35 | 320 | 1728 1.18 | 0.042 | 3.6 17787 | 1271.3 | 7.2 | 24934 | 2998 | 12.0
s38417 | 28 | 106 | 1636 1.46 0.021 1.5 11731 1242.7 10.6 | 18417 | 2923 15.8
$38584 | 38 | 304 | 1426 1.90 | 0.029 1.5 12458 929.3 7.5 | 20920 | 2179 | 104
average - - - - - 3.35 - - 31.2 - - 34.4

and power overhead can be reduced by retiming and resythnesis,
but not as much as in terms of delay. The overhead for area and
power in our testcases are 31.2 % and 34.4 % on average. It can be
seen that the overhead of our obfuscation scheme decreases as the
size of the original design increases. Since our testcases are typically
much smaller than current industrial designs, it can be estimate that
the overhead for area and power will not exceed 10 % for realistic
designs.

VII. CONCLUSION

This paper proved that any best-possible obfuscation of a sequential
circuit can be accomplished by a sequence of retiming, resynthesis,
sweep, and conditional stuttering. Furthermore, a novel obfuscation
method for sequential circuits was presented to hide the efficient
implementation of a design. Only when the IC is powered up in
a secret key initial state that the IC will work normally otherwise
it will become much slower. We showed how to construct the
obfuscated circuits using the structural operations and improve the
security of obufscation. We also discussed the possible attacks and
the countermeasures. The efficiency of the method was demonstrated
by evaluations on ISCAS89 benchmarks.

ACKNOWLEDGEMENT

This work is partially supported by NSF under CCF-1115550 and
by NSFC under 61228401.

REFERENCES

[1] S. Trimberger, “Trusted design in FPGAs,” in Proceedings of the 44th
annual Design Automation Conference, 2007, pp. 5-8.

F. Koushanfar and G. Qu, “Hardware metering,” in Proceedings of the
38th annual Design Automation Conference, 2001, pp. 490—493.

A. L. Oliveira, “Robust techniques for watermarking sequential circuit
designs,” in Proceedings of the 36th annual ACM/IEEE Design Automa-
tion Conference, 1999, pp. 837-842.

B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P.
Vadhan, and K. Yang, “On the (im)possibility of obfuscating programs,”
in Proceedings of the 21st Annual International Cryptology Conference
on Advances in Cryptology, 2001, pp. 1-18.

S. Goldwasser and G. N. Rothblum, “On best-possible obfuscation,” in
Proceedings of the 4th conference on Theory of cryptography, 2007, pp.
194-213.

B. Lynn, M. Prabhakaran, and A. Sahai, “Positive results and techniques
for obfuscation,” in In EUROCRYPT 04, 2004.

K. Lofstrom, W. Daasch, and D. Taylor, “IC identification circuit
using device mismatch,” in [EEE International Solid-State Circuits
Conference, 2000, pp. 372 -373.

[2]
[3]

[4]

[5]

[6]

[7

—

[8] Y. Su, J. Holleman, and B. Otis, “A 1.6pj/bit 96% stable chip-ID
generating circuit using process variations,” in /[EEE International Solid-
State Circuits Conference, 2007, pp. 406 —611.

F. Koushanfar, G. Qu, and M. Potkonjak, “Intellectual property meter-
ing,” in Inform. Hiding, 2001, pp. 81-95.

G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in Proceedings of the 44th
annual Design Automation Conference, 2007, pp. 9-14.

Y. Alkabani and F. Koushanfar, “Active hardware metering for intellec-
tual property protection and security,” in Proceedings of 16th USENIX
Security Symposium on USENIX Security Symposium, 2007, pp. 20:1—
20:16.

F. Koushanfar, “Provably secure active IC metering techniques for piracy
avoidance and digital rights management,” Information Forensics and
Security, IEEE Transactions on, vol. 7, no. 1, pp. 51 —63, feb. 2012.
Y. Alkabani, F. Koushanfar, and M. Potkonjak, “Remote activation of
ICs for piracy prevention and digital right management,” in Proceedings
of the 2007 IEEE/ACM international conference on Computer-aided
design, 2007, pp. 674-677.

F. Koushanfar, “Integrated circuits metering for piracy protection and
digital rights management: an overview,” in Great lakes symposium on
VLSI, ser. GLSVLSI ’11, 2011, pp. 449-454.

J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: ending piracy
of integrated circuits,” in Proceedings of the conference on Design,
automation and test in Europe, 2008, pp. 1069-1074.

, “Protecting bus-based hardware IP by secret sharing,” in Pro-
ceedings of the 45th annual Design Automation Conference, 2008, pp.
846-851.

J. Huang and J. Lach, “IC activation and user authentication for security-
sensitive systems,” in Proceedings of the 2008 IEEE International
Workshop on Hardware-Oriented Security and Trust, 2008, pp. 76-80.
A. Oliveira, “Techniques for the creation of digital watermarks in se-
quential circuit designs,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 20, no. 9, pp. 1101 —1117, sep
2001.

F. Koushanfar and Y. Alkabani, “Provably secure obfuscation of diverse
watermarks for sequential circuits,” in 2010 IEEE International Sym-
posium on Hardware-Oriented Security and Trust (HOST), 2010, pp.
42-47.

L. Yuan and G. Qu, “Information hiding in finite state machine,” in
Proceedings of the 6th international conference on Information Hiding,
2004, pp. 340-354.

H. Zhou, “Retiming and resynthesis with sweep are complete for sequen-
tial transformation,” in Proceedings of 9th International Conference on
Formal Methods in Computer-Aided Design, 2009, pp. 192-197.

C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,”
Algorithmica, vol. 6, no. 1, pp. 5-35, 1991.

Y. Lu and H. Zhou, “Retiming for soft error minimization under error-
latching window constraints,” in Design Automation and Test in Europe
Conference, 2013.

R. Brayton and A. Mishchenko, “ABC: an academic industrial-strength
verification tool,” in Proceedings of the 22nd international conference
on Computer Aided Verification, 2010, pp. 24-40.

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

