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ABSTRACT

Due to globalization of Integrated Circuit (IC) design flow,
rogue elements in the supply chain can pirate ICs, overbuild
ICs, and insert hardware trojans. EPIC [1] obfuscates the
design by randomly inserting additional gates; only a cor-
rect key makes the design to produce correct outputs. We
demonstrate that an attacker can decipher the obfuscated
netlist, in a time linear to the number of keys, by sensitizing
the key values to the output. We then develop techniques to
fix this vulnerability and make obfuscation truly exponen-
tial in the number of inserted keys.
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1. INTRODUCTION

1.1 Motivation — Preventing IP Piracy

Globalization of Integrated Circuit (IC) design is mak-
ing IC/Intellectual Property (IP) designers and users re-
evaluate their trust in hardware [2]. As the IC design flow
is distributed worldwide, hardware is prone to new kinds of
attacks such as reverse engineering and IP piracy [1]. An
attacker, anywhere in this design flow, can reverse engineer
the functionality of an IC/IP. One can then steal and claim
ownership of the IP. An untrusted IC foundry may over-
build ICs and sell them illegally. Finally, rogue elements
in the foundry may insert malicious circuits (hardware tro-
jans) into the design without the designer’s knowledge [3].
Because of these attacks, the semiconductor industry loses
$4 billion annually [4].

If a designer can hide the functionality of an IC while
it passes through the different, potentially untrustworthy
phases of the design flow, these attacks can be thwarted [1].

1.2 Logic obfuscation

Logic obfuscation hides the functionality and the imple-
mentation of a design by inserting additional gates into the
original design. In order for the design to exhibit its correct
functionality (i.e., produces correct outputs), a valid key has
to be supplied to the obfuscated design. The gates inserted
for obfuscation are the key-gates. Upon applying a wrong
key, the obfuscated design will exhibit a wrong functionality
(i.e., produce wrong outputs).

Consider the circuit shown in Figure 1 which is obfus-
cated using key-gates K1 and K2. The inputs I1 — I6 are
the functional inputs and K1 and K2 are the key inputs
connected to the key-gates. On applying the correct key
values (K1=0 and K2=1) the design will produce a correct
output; otherwise, it will produce a wrong output.

EPIC [1] incorporates logic obfuscation into the IC design
flow, as shown in Figure 2. In the untrusted design phases,
the IC is obfuscated and its functionality is not revealed.
Post-fabrication, the IP vendor activates the obfuscated de-
sign by applying the valid key. The keys are stored in a
tamper-evident memory inside the design to prevent access
to an attacker, rendering thes key inputs unaccessible by an
attacker.
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Figure 1: A circuit obfuscated using two key-gates K1 and K2
based on the technique proposed in [1]. By applying the input
pattern 100000, an attacker can sensitize key bits K1 and K2 to
the outputs O1 and O2, and observe their values.

1.3 Attacks against logic obfuscation

The purpose of logic obfuscation is defeated if an attacker
can determine the secret keys used for obfuscation. By de-
termining the keys, one can decipher the functional netlist,
and make pirated copies and sell them illegally.

We propose an attack where the attacker applies specific
input patterns, observes the outputs for these pattern, and
deciphers the secret key. To perform this attack, one needs
the obfuscated netlist and a functional IC. An attacker can
obtain the obfuscated netlist from (1) the IC design, or by
reverse engineering the (2) layout, (3) mask, or (4) a manu-
factured IC as shown in Figure 2. The functional IC, (5) in
Figure 2, is bought in the open market.

The value of an unknown key can be determined if it can
be sensitized' to an output without being masked/corrupted
by the other key-bits and inputs. By observing the output,
the sensitized key bit can be determined, given that other
key-bits (similar to unknown X-sources?) do not interfere
with the sensitized path.

Once an attacker determines an input pattern that prop-
agates the key-bit value to an output without any interfer-
ence, it is applied to the functional IC i.e., the IC with the
correct keys. Now, this pattern will propagate the correct
key value to an output. An attacker can observe this output
and resolve the value of that key-bit.

Motivational example 1 (attack): Consider the key
input K1 in Figure 1. It will be sensitized to output O1 if
the value at the other input of gate G6 is 0 (non-controlling
value for an OR gate). This can be achieved by setting [1=1,
12=0 and 13=0. As the attacker has access to the functional
IC, one can apply this pattern and determine the value of
K1 on O1. For example, if the value of O1 is 0 for that input
pattern, then K1 = 0, otherwise K1=1.

This problem is analogous to the fault sensitization prob-
lem in the presence of unknown-X values that can possible
block/mask the fault propagation [5]. The key-bits K1 and
K2 are equivalent to X-sources X; and X in Figure 1.
Similarities and differences between fault detection
and key-propagation: Both objectives require an input
pattern that sensitizes the fault effect/key bit by

e blocking the effect of some or all of the X-sources/other
key bits, and preventing their interference.

1Qensitization of an internal line ! to an output O refers
to the condition (values applied from the primary inputs to
justify the side input of gates on the path from [ to O to the
non-controllable values of the gates) which bijectively maps
[ to O and thus renders any change on [ observable on O.
2X-sources: Uninitialized memory units, bus contentions or
multi-cycle paths are the source of unknown response bits,
i.e., unknown-Xs in testing. They are non-controllable.
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Figure 2: The top blue box represents the EPIC design flow [1]. The design is in the obfuscated form in the untrusted design regime.
In the untrusted regime, an attacker can obtain the obfuscated netlist from (1) the IC design, or by reverse engineering the (2) layout,
(3) mask, or (4) a fabricated IC, and (5) the functional IC from the market. Using this attack, the attacker can get a deciphered netlist

and make pirated copies.
e justifying the side input of all the gates on the sensitiza-
tion path to non-controlling values of the gates

The two problems differ slightly:

e fault detection also involves fault activation by justifying
the fault site to the fault value; key propagation requires
only sensitization

e fault detection aims at blocking/avoiding unknown X’s;
key propagation aims identifying unknowns one at a time
resulting in an iterative and dynamic process

While an Automatic Test Pattern Generation tool [5] ca-
pable of handling X’s during test generation can be readily
used by the attacker to identify the patterns that decipher
key bits, we take a closer look at various interference scenar-
ios for the key bits (unknown sources) with the ultimate goal
of building a strong defense, i.e., a smart logic obfuscation
technique.

1.4 Smart logic obfuscation

To prevent such attacks, key-sensitization has to be ham-
pered by inserting key-gates in such a way that propagation
of a key value will be possible only if certain conditions are
forced on other key inputs. As these key inputs are not
accessible by the attacker, one cannot force the values nec-
essary to propagate the effect of a key. Thus, brute force
has to be employed.

Cannot be
propagated
O wio controlling

Figure 3: The attacker cannot propagate the effect of key bits
K1 and K2 individually to the outputs. Hence, the attacker has
to brute force to determine the values of K1 and K2.

Motivational example 2 (defense):  Consider the
circuit shown in Figure 3 which is the same functional circuit
shown in Figure 1 but the two key-gates K1 and K2 are at
different locations. Here, if the attacker has to propagate
the effect of either of the keys, then one has to force a ‘0’
(non-controlling value of NOR gates) on the other input of
G4. In order to force this value, one has to control the key
inputs, which are inaccessible. Thus one cannot propagate
the effect of a key to an output, failing to determine the
values of the key.

Depending upon the location of key-gates, different tech-
niques have to employed to propagate the effect of a key. In
Section 2, we describe the different types of key-gates based
on their locations and also the strategies that an attacker
may follow to decipher the key bits. In section 3, we intro-
duce a graph notation to capture the interference between
key bits, enabling algorithmic development for smarter logic
obfuscation. Section 4 compares the obfuscation strength
and performance results between the random insertion and
the proposed logic obfuscation technique.

1.5 Contributions

The contributions of this paper are

e an attack on logic obfuscation based on IC testing con-
cepts

e strategies used by an attacker to decipher keys based on
their interference

e a logic obfuscation algorithm based on key-gates interfer-
ence graph

2. ATTACK STRATEGIES

A logic obfuscation technique can insert the key-gates any-
where in the circuit. Depending upon their location, the at-
tacker develops different strategies to determine the key bits.
In this section, we will classify key-gates based on their type
of interference with other key-gates and the corresponding
strategy used by the attacker.

2.1 Runs of key-gates

A set of key-gates connected in a back-to-back fashion
forms a run of key-gates.
Example 3: In Figure 4(a), the key-gates K1 and K2 form
a run as they are connected back-to-back.
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Figure 4: (a) A run of two key-gates K1 and K2. (b) K3 replaces
K1 and K2.

Runs of key-gates reduce the effort of an attacker as they

increase the valid key space. If N key-gates form a run, then
the valid key space increases from the ideal, 1 valid key, to
2N-1 valid keys. In the above example, 01 and 10 are valid
keys, one of which suffices for the attacker.
Attack strategy: An attacker can replace a run of key-
gates by a single key-gate, thereby reducing the number of
key bits. Once the value of that key-gate is determined, one
can find the entire valid key space. For example, in Figure
4(b), the attacker replaces K1 and K2 with a key-gate K3.
After the value of K3 is resolved as 1, one determines that
the valid key space is 01 and 10.

2.2 Isolated key-gates

If there is no path from a key-gate to all the other key-
gates and vice-versa, then such a gate is called an isolated
key-gate.

Example 4: Consider the gate K1 in Figure 1. As there
is no path between K1 and K2, K1 and K2 are isolated gates.
Attack strategy: An attacker prefers isolated key-gates as
there is no interference with other key-gates. An attacker
identifies a pattern that uniquely propagates the effect of an
isolated key-gate’s key to an output. One then applies the
pattern to the functional IC and determines its value.

As mentioned before, in Figure 1, the pattern 100XXX
propagates the value of K1 to output O1. An attacker, upon
observing this output, can identify that the value of K1 is 0.

2.3 Dominating key-gates



If there are two key-gates K1 and K2 such that K2 lies on
every path between K1 and the outputs, then K2 is called a
dominating key-gate.

Example 5: The gate K2 in Figure 5 is a dominating key-

gate.
Som)Ps )@)g:

Figure 5: K2 is a dominating key-gate whose key bit value can
be determined only after muting the effect of K1. Patterns that
make either C = 0 and A=1 or C=0 and B =1 will mute the effect
of K1. However, only if A = 1, the effect of K2 can reach O1.

Attack strategy: An attacker can determine the value
of K2’s key bit only if the effect of K1’s key bit is prevented
(muted) from reaching key-gate K2 while simultaneously
sensitizing K2’s key bit to an output. An input pattern
that can perform muting as well as sensitization is called
the golden pattern. On applying this golden pattern, the
attacker can determine the value of K2. If muting of K1
and propagation of K2 cannot be performed simultaneously,
then the attacker cannot determine value of K2. In such
cases, the golden pattern does not exist, forcing an attacker
to employ brute force.

The effect of a key can be muted before it reaches the
other key, by using patterns that force controlling values in
any of the gates on the path between K1 and K2. If there
are multiple paths from key-gates K1 and K2, then the effect
of key-input K1 has to be muted on every path.

Example 6: Consider the circuit shown in Figure 5. K2
can be determined only if the effect of K1 is muted. If there
is a pattern that justifies the output of G5 to 1, then the
effect of K1 will be muted. Patterns that make either C
= 0, or A=1 and B =1 will assure this condition, thereby
muting the effect of K1. However, the attacker should select
the pattern that propagates the effect of K2 to an output.
If C =0, G7 blocks the propagation of K2 as its output will
always be 0. The condition A = 1, allows K2 to propagate
through G6. Hence, an attacker will select the pattern that
makes A=1 and C =0, so that one can mute the effect of K1
as well as propagate the effect of K2 to an output.

2.4 Convergent key-gates

Even if there are no paths between two key-gates, the
sensitization paths might interfere. Such scenarios happen
if these two or more key-gates converge. Depending upon
the type of convergence, key-gates can be classified into 1)
concurrently mutable, 2) sequentially mutable, and 3) non-
mutable key-gates.

2.4.1 Concurrently mutable convergent key-gates

If two key-gates K1 and K2 converge at some other gate,
such that K1’s key bit can be determined by muting K2, and
K2’s key bit can be determined by muting K1, then K1 and
K2 are called concurrently mutable key-gates.
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Figure 6: (a) Concurrently mutable key-gates: K1 and K2 con-

verge at G5 and can be muted. (b) Sequentially mutable key-
gates: K1 and K2 converge at G4, but only K1 can be muted.

Example 7: Consider the circuit shown in Figure 6(a).
The key-gates K1 and K2 converge at the gate G5. The
value of K1 can be determined by applying a pattern that
mutes K2 (B=0). Similarly, the value of K2 can be deter-
mined by applying a pattern that mutes K1 (A=1).
Attack strategy: The attacker determines the golden pat-
tern that mutes one key and simultaneously sensitizes the
other key to an output, or vice-versa. If a golden pattern

does not exist, then the attacker has to perform brute force
only on that set of concurrently mutable key-gates.

2.4.2  Sequentially mutable convergent key-gates

If two gates K1 and K2 converge at some other gate, such
that K2’s key bit can be determined by muting K1’s key
while K2’s key cannot be muted to determine K1’s key, then
K1 and K2 are called sequentially mutable convergent key-
gates, as they can be deciphered only in a particular order.

Example 8: Consider the circuit shown in Figure 6(b).

The value of K2 can be determined by applying a pattern
that mutes K1 (A=1), while K2 cannot be muted as it di-
rectly feeds the gate where K1 and K2 converge.
Attack strategy: An attacker will first determine K2’s
value by muting K1 using the golden pattern. One then
updates the netlist by replacing K1 with a buffer or an in-
verter based on the value of K2. Then K1 is targeted. If
the golden pattern does not exist, then the attacker has to
perform brute force only on that set of sequentially mutable
key-gates.

2.4.3 Non-mutable convergent key-gates

If two key-gates K1 and K2 converge at some other gate,
such that neither of the key bits can be muted, then K1 and
K2 are called non-mutable convergent key-gates.

Example 9: Consider the circuit shown in Figure 3. The
key-gates K1 and K2 are connected to the same gate G4.
Attack strategy: To propagate either of the key bits the
other one has to be muted. However, as an attacker cannot
access key inputs, one cannot force those values. Hence, one
is forced to perform brute force attacks.

Input : Obfuscated netlist, Functional IC, Key Inputs

Output: Original netlist

Determine Runs of Keys;

Replace them with XOR gates;

Update Netlist;

for the remaining keys do
For each Isolated Key do

Compute and apply propagation pattern;
Determine KeyBits and update Netlist;
end
For each Consecutive|| Concurrent||Sequential key do
if there exists a golden pattern then
Apply the golden pattern;
Determine KeyBits, Update Netlist, Break;
else
| ApplyBruteForce(), Break;
end
end
For each Non-mutable Key do
| ApplyBruteForce(), Break;
en
end

ApplyBruteForce();
For each possible key combination do
Generate random input patterns;
Simulate the patterns and obtain the outputs O Pgim;
Apply the patterns on IC and obtain the outputs O Pege;
if OPy;;, ==0OP.,¢ then
Valid Key = current key combination;
Update netlist;
end
end

Algorithm 1: Attack on logic obfuscation.

2.5 An attacker’s action plan

By considering all the different types of interference be-
tween key-gates, an attacker uses Algorithm 1 to determine
the secret key. The attacker first removes the runs of key-
gates and targets the isolated key-gates. Each isolated gate
can be removed by one test patterns. After that, one targets
consecutively mutable, concurrently mutable, and sequen-
tially mutable key-gates. Only if one is able to generate
a golden pattern that simultaneously mutes effects of the
other keys and sensitizes the effect of the target key, the
value of the target key can be determined. Finally, the non-



mutable keys are identified via brute force. As the key bits
are identified gradually in every iteration, the corresponding
key-gates can be replaced by a buffer or an inverter, possi-
bly changing the type of other key-gates. Thus, in every
iteration, the key-gate types need to be re-computed.

3. STRONG LOGIC OBFUSCATION

Strong logic obfuscation hinges on inserting key-gates with
complex interferences among them. Next, we relate types of
key-gates to the kind of interference they introduce using a
graph-based notation.

3.1 Interference graph

Figure 7: (a) An example circuit with three key-gates. (b) Inter-
ference graph of the key-gates. Non-mutable keys are connected
by solid edges. (c) If the new key-gate is inserted at the out-
put G10, it creates mutable edges (dotted lines) with the other
key-gates (d) If the new key-gate is inserted at the output G5, it
creates non-mutable edges (solid lines) with the other key-gates.

To insert key-gates, we form an interference graph of key-
gates. In this graph, each node represents a key-gate and
an edge connects two nodes, if two gates interfere. Isolated
key-gates are represented with isolated nodes. A run of key-
gates is denoted by a single node. Non-mutable key-gates are
represented are connected with non-mutable edges, concur-
rently mutable key-gates are connected with mutable edges.
Sequentially mutable key gates are connected by two edges;
a non-mutable edge arises from the key-gate that is non-
mutable and a mutable edges arises from the key-gate that
is mutable.

Example 10: Consider the circuit with three key-gates
shown in 7(a). They interfere with each other as follows

e K1 and K2 are non-mutable and so they are connected by
non-mutable edges as shown in Figure 7(b).

e The key-gates K1 and K3 converge at the gate G6, hence
they are converging key-gates. Specifically, they are se-
quentially convergent; K3’s effect cannot be muted while
K1’s effect can be muted by applying I5=0. However if
15 is 0, then both key bits are blocked at G8. Hence, K1
and K3 are non-mutable and so they are connected by
non-mutable edges as shown in Figure 7(b).

e K2 and K3 converge at the gate G9, through G5 and
G7, respectively. However, neither of the key bits can be
muted and sensitized individually. For instance, making
16=1, mutes K2 but also blocks the sensitization of K3 at
G10. Making I7=1, mutes K3 but also blocks the sensiti-
zation of K2 at G10. Hence, K2 and K3 are non-mutable
as shown in Figure 7(b).

For a stronger logic obfuscation, the number of non-mutable
edges in the interference graph should be maximized, as
they force an attacker to perform brute force. On the other
hand, if there are more mutable edges, then the attacker
can mute the effect of keys and can easily determine their
values. Hence, a defender prefers non-mutable edges to mu-
table edges.

Example 11: Consider the circuit shown in Fig 7(a). If
a new key-gate, K4, is inserted at the output of G10, then

it creates mutable edges with all the other key-gates. By
setting 16=1 or 17=1, the attacker can mute the effects of
K1, K2, and K3, and can decipher easily. Hence, G10 is
connected with mutable edges with the other key-gates as
shown in Figure 7(c).

If the new key-gate, K4, is inserted at the output of G5,
then it creates non-mutable edges with the other key-gates
as shown in Figure 7(d). Thus, it is better to insert the new
key-gates at the output of G5.

Input : Original netlist, KeySize

Output: Obfuscated netlist

KeyGateLocations = {};

Randomly insert 10% key-gates;

Add that location to KeyGateLocations;

Construct KeyGraph;

for i + 2 to KeySize do
For each Gate; in Netlist do

if Gate; € KeyGateLocations then
Cum. Weight = ) weight of edges in KeyGraph,;
For each Key-gate;, in KeyGateLocations do
Cum. Weight; += FindMetric(Gate;,
Key-gatey );
end
end
end
Select the Gate with the highest Hardness Metric;
Add the selected gate to KeyGateLocations;
Insert a key-gate at the output of the selected gate;
Update KeyGraph;
end

FindMetric(K1, K2);

if K1 and K2 are isolated then Return 0;

if K1 and K2 are consecutive||concurrent||sequential then
if a golden pattern exists then

Return weight of mutable edge;

else Return weight of non-mutable edge;

end

if K1 and K2 are non-mutable then

Return weight of non-mutable edge;

Algorithm 2: Insertion of key-gates

3.2 Insertion of key-gates

A defender can use the interference graph to insert key-
gates. Algorithm 2 is used to insert key-gates. At every
iteration, a key-gate is inserted at a location such that the
number of non-mutable edges in the graph is maximized.

Initially, 10% of the total key-gates are inserted at ran-
dom locations in the circuit. Such random distribution will
insert key-gates in different parts of the circuit thereby af-
fecting multiple outputs. Here, we considered 10% for initial
distribution (one also can chose a different amount of initial
distribution and the impact of this amount on obfuscation
is beyond the scope of this paper). Then the graph of key-
gates is constructed. Then, the remaining key-gates are in-
troduced iteratively. In every iteration, for each gate in the
netlist, we determine the type of edge with the previously in-
serted key-gate. Depending upon the type of edge, we assign
weights; non-mutable edges are given a higher weight than
the mutable edges. We then calculate the sum of weights of
edges in the graph for that gate. The gate that maximizes
the sum of weight of edges in the graph is selected, and a
key-gate is inserted at its output. The graph is then updated
by including the new key-gate. This procedure is repeated
for inserting all the key-gates.

In every iteration, the defender has to check for the pres-
ence of golden patterns which might increase the computa-
tional complexity of the algorithm. Hence, a defender can
assume that there always exists a golden pattern and skip
the search for the golden pattern. This is a pessimistic sce-
nario for a defender because some golden patterns might not
exist,.
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4. RESULTS

4.1 Experimental Setup

The proposed technique is analyzed using ISCAS-85 com-
binational benchmarks. We used the Atalanta testing tool
[6] to determine the input patterns for muting and prop-
agation the effects of keys. To obfuscate a circuit with a
reasonable performance overhead, we selected the key size
as 5% of number of gates in that circuit. While obfuscat-
ing a circuit, we assumed that there always exists a golden
pattern. While attacking the circuit, we used the techniques
proposed in Section 2 where we search for the presence of a
golden pattern. For every brute force attempt, we applied
1000 random patterns to determine the value of a key. The
area, power, and delay overheads were obtained using the
Cadence RTL compiler.

We compared the effectiveness of four types of insertions:
random-insertion [1], random insertion with no runs of gates,
unweighted insertion where both mutable and non-mutable
edges are given the same weight of 1, and weighted insertion
where non-mutable edges are given a higher weight (weight
= 2) than the mutable edges (weight = 1).

=]
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Figure 8: Types of key-gates inserted by different logic
obfuscation techniques. Effective key size from an at-
tacker’s perspective (top) and from a defender’s perspec-
tive (bottom) are shown as numbers on top the bars.

4.2 Types of keys and effective key-size

Figure 8 shows the number of types of keys in different
benchmarks for different types of insertions. In the random
insertion method, most of the keys are concurrently muta-
ble. Some number of keys are inserted in runs benefiting
the attacker. Omly 30% of keys are non-mutable and se-
quentially mutable which require brute force approach. In
the ‘Random + No Runs’ method, keys are not inserted in
runs thereby increasing the effort of the attacker.

In the unweighted and weighted insertions, around 90%
of keys are of non-mutable and sequentially mutable types.
Most of the keys in weighted insertion is either non-mutable
or sequentially mutable because they are given a higher
weight. There are no isolated keys in either of the inser-
tion techniques, as they are not given any weights.

Effective key size: Due to random insertion of the first
10% of key-gates, multiple disconnected graphs might ex-
ist within a key-interference graph. The keys in a graph
can be either isolated, dominant, or convergent. Since a de-
fender pessimistically assumes that the golden patterns al-
ways exist, the effective key size from his perspective is the
maximum number of non-mutable keys in a connected key-
interference graph. If there are N non-mutable key gates
(effective key-size), the number of brute force attempts is
2N-1 " However, when an attacker tries to attack, not all

the golden patterns will exist. For those keys, he has to
try for all possible combinations. Hence, from an attacker’s
perspective, the effective key size is the largest key size on
which brute force is attempted. If the number of brute force
attempts is 2™, then the effective key size for an attacker is
M.

In Figure 8, the effective key-sizes for a defender and an
attacker are shown as numbers on top of the bars. For both
the attacker and defender, the effective key sizes of random
insertions are less than that of the unweighted and weighted
insertions. Therefore, the number of brute force attempts
required to decipher the keys inserted using random inser-
tions is exponentially smaller than that of the unweighted
and weighted insertions. The attacker’s effective key size is
always greater than that of the defender’s because of the ab-
sence of golden patterns which forces the attacker to perform
brute force. For example, consider the benchmark C7552,
the attacker needs 2'4% brute force attempts and hence the
effective key size is 146. On the other hand, for a defender,
the largest number of non-mutable key-gates in a connected
graph is 51 and hence the effective key size is 51.

4.3 Number of test patterns
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Figure 9: Number of test patterns required by the at-
tacker to determine the keys inserted using random and
weighted insertion from an attacker and a defender’s per-
spectives. The time scales are drawn assuming that one
billion input patterns can be applied per second.

Figure 9 shows the number of test patterns required to
decipher the key from a defender and an attacker’s perspec-
tives for the random and weighted insertion method. The
time scales are calculated assuming that an attacker can
apply a billion patterns per second. On one hand, from a
defender’s perspective, the number of test patterns are cal-
culated assuming that golden patterns exist. On other hand,
from an attacker’s perspective, the number of test patterns
are more realistic as they are determined using the attack
methodology proposed in Section 2. It can be seen that the
defender’s perspective on timescale is several orders of mag-
nitude smaller than the realistic scenario. For example, in
C7552 circuit, a defender thinks that it will take 46 days to
decipher the netlist while the attacker will take more than
a thousand years. However, from both attacker’s and de-
fender’s perspectives, a few thousand test patterns are suffi-
cient to figure out the keys when they are inserted randomly.
On the other hand, when the weighted key insertion method
is used, the number of test patterns required to recover the
keys increases by several orders of magnitude. For example,
in case of C7552 to about 10'® which will take several years
to figure out the key bits.

4.4 Effect of the weight of a non-mutable edge
Table 1: No. of non-mutable keys out of the total 176 keys in
the benchmark C7552 for different weights of non-mutable edges.

[ Weight of non-mutableedge [ T [ 2

10 [ 100 ] 1000 |

| # of non-mutable key-gates | 115 | 138 [ 149 [ 156 |

163 |

By increasing the weight of the non-mutable edges, the
algorithm will create a design that has a large number of



non-mutable key-gates. Table 1 shows the number of non-
mutable key-gates for different weights of non-mutable edges
in one of the ISCAS-85 benchmark circuit, C7552. This
circuit was obfuscated with 176 key-gates. While increasing
the weight of the non-mutable edges increases the number
of non-mutable key-gates in the design, the rate of increase
is not the same rate. Increasing the weight from 1 to 2
increases the number of non-mutable key-gates from 115 to
138. But increasing the weight from 2 to 10, increases the
number of non-mutable key-gates from 138 to 149.

4.5 Area overhead
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Figure 10: Area overhead for different insertion algo-
rithms.

Figure 10 shows the area overhead for different key-gate
obfuscation algorithms. Even though the number of key-
gates inserted is 5% of the number of gates in the origi-
nal design, the area overhead is high as the key-gates are
XOR/XNOR gates that consists of a large number of tran-
sistors. Unweighted and weighted insertion techniques entail
less overhead than random insertion techniques.

4.6 Power-delay product
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Figure 11: Power delay product overhead for different
insertion algorithms.

Figure 11 shows the power-delay product overhead for dif-
ferent insertions. Random insertion yields an average over-
head of 25% while weighted and unweighted insertion yields
an average overhead of 21%. To minimize this overhead, one
can pursue a power and delay constrained obfuscation.

4.7 Logic obfuscation with PUFs

Physical Unclonable Functions (PUFs) are circuits that
leverage process variations in IC manufacturing, to produce
secret keys. In [1], PUFs are used to give unique keys for
each IC even though they are all obfuscated with the same
key. The design is first obfuscated with a key and a PUF
circuit is attached to it. Upon applying the user key (chal-
lenge) to the PUF, the PUF’s response will be the key used
for obfuscation. In the proposed attack, the attacker is try-
ing to figure out this response i.e., the key used for obfusca-
tion. On getting this response, the attacker can remove the
PUF circuit from the netlist and apply the correct keys di-
rectly to the original design. To break the influence of PUF's

or any cryptographic algorithms, an attacker can determine
the wires that carry these signals and disconnect them.

S. RELATED WORK

Logic obfuscation techniques can be broadly classified into
two types—sequential and combinational. In sequential logic
obfuscation, additional logic (black) states are introduced in
the state transition graph [7,8]. The state transition graph is
modified in such a way that the design reaches a valid state
only on applying a correct sequence of key bits. If the key is
withdrawn, the design, once again, ends up in a black state.
However, the effectiveness of these methods in producing a
wrong output has not been demonstrated. In combinational
logic obfuscation, as mentioned before, XOR/XNOR gates
are introduced to conceal the functionality of a design [1].

Obfuscation is also performed by inserting memory ele-
ments [9]. The circuit will function correctly only when these
elements are programmed correctly. However, using mem-
ory elements will incur significant performance overhead.

6. CONCLUSION

Logic obfuscation is weak when the inserted key-gates are
isolated or their effect can be muted. If mutable gates are
employed, then the attacker is able to determine the key
bits within a second. However, it can be strengthened by
inserting key-gates such that their effects are not mutable.
In such insertions when the key size is greater than 100, it
will take several years for an attacker to determine the key
bits. Our analysis reveal that even though a defender pes-
simistically assumes a smaller effective key size, the actual
key size encountered by the attacker is much higher.

IC testing techniques allow designers and testers to peek
into the design, by controlling only the inputs and observ-
ing the outputs. On one hand, an attacker can use such
capability to subvert logic obfuscation. On the other hand,
a defender can perform better logic obfuscation by making
such process infeasible using the lessons learnt from testing.
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APPENDIX

(The intuition behind key interference based logic

obfuscation)

We will analyze the key-interference graphs of a circuit ob-
fuscated using random and weighted insertion methods both
from a defender and an attacker’s perspectives. As men-
tioned in Section 3, the defender always assumes that the
golden pattern, that mutes and sensitizes the effect of key-
gates simultaneously, does not exist, and constructs his key
interference graph accordingly. However, an attacker tries
to find the golden patterns to mute key-gates to decipher
the value of keys, and constructs his key interference graph
accordingly.

A. RANDOM INSERTION

Dominant Sequentially mutable

Consecutively mutable Non-mutable

Figure 12: Key-interference graphs of C499, an ISCAS-85
benchmark circuit, obfuscated with 11 key-gates. Dotted lines
represent mutable edges and solid lines represent non-mutable
edges. (a) Key-interference graph from a defender’s perspective
with an assumption that the edge K11—K3 is mutable. (b) Key-
interference graph from an attacker’s perspective. The golden
pattern to mute the edge K11—K3 does not exist.

Defender’s perspective: Figure 12 shows the key in-
terference graph of one of the ISCAS-85 benchmark circuit,
C499, which is obfuscated by inserting 11 key-gates. Key-
gates K5, K8, and K9 are classified as dominant key-gates®.
Key-gates K3 and K11 are classified as consecutively muta-
ble key-gates. Key-gates K1, K2, K7, and K10 are classified
as sequentially mutable key-gates. Key-gates K4 and K6
are classified as non-mutable key-gates. From a defender’s
perspective, since there two non-mutable key-gates, the ef-
fective key size is two.

Attacker’s perspective: Consider the scenario where
an attacker tries to search for the golden pattern for the edge
K11—K3 that simultaneously mutes K11 and sensitizes K3.
He concludes that such a pattern does not exist. Thus, from
an attacker’s perspective, the edge from K11—K3 is non-
mutable as shown in Figure 12(b). Hence, the key-gates K3
and K11 are classified as sequentially mutable key-gates. As
the largest key size on which brute force is attempted is two,
the effective key size is two. Notice that even though eleven
key-gates are inserted, the effective key size is only two.

3Please refer Section 2 for the definitions of different types
of key-gates.

Sequentially mutable Non-mutable

Figure 13: Key-interference graph of C499 from a defender’s
perspective with an assumption that the edges K1-K2, K1—-K5,
K1—K10, and K1—K11 are mutable. Dotted lines represent mu-
table edges and solid lines represent non-mutable edges. Effective
key size is 10.

Non-mutable

Figure 14: Realistic Key-interference graph of C499 from an
attacker’s perspective. The golden patterns to mute the edges
K1—-K2, K1—-K5, K1—-K10, and K1—-K11 do not exist. Hence,
K1 is non-mutable increasing the effective key size to 11.

B. WEIGHTED INSERTION

Defender’s perspective: As shown in Figure 12(a), the
edges K1—-K2, K1-K5, K1-K10, and K1—+K11 are mu-
table. Hence, the key-gate K1 is classified as a sequentially
mutable key-gate and all the other gates are classified as
non-mutable key-gates. From a defender’s perspective, since
there are ten non-mutable key-gates, the effective key size is
ten.

Attacker’s perspective: The attacker searches for the
golden pattern that mutes the key-gate K1. As such a pat-
tern does not exist, he classifies the edges K1-K2, K1-K5,
K1—K10, and K1—+K11 as non-mutable. Therefore, the
key-gate K1 also becomes non-mutable. As the attacker has
to try all combinations of the keys, K1 to K11, the effective
key size is eleven. While the effective key size in random
insertion is two, the proposed method has an effective key
size of eleven.



