Summary 0

IP Watermark Verification Based on Power Consumption Analysis

Cédric Marchand

Laboratoire Hubert Curien, UMR CNRS 5516 University of Lyon Saint-Etienne France

cedric.marchand@univ-st-etienne.fr

June 17, 2014

Cédric Marchand

IP Watermark Verification Based on Power Consumption Analysis

Outline

IP Watermarking

- Concept
- Application to IP Protection
- Side Channel Verification of IP Watermark
 - Side Channel Verification
 - Correlation Computation Flow
 - Experimental results

Outline

1	Context	

IC Threats Model

Consequences

Example of Consequences of these threats

IP theft, Mask theft, Overbuilding chips: Loss of money

Competitor clone devices: Loss of money

Untested devices: Loss of money and reputation

Discarded devices: Loss of money and reputation

Old devices reuse: Loss of money and reputation

In the worst case

In the case of security critical systems, use a counterfeit device could lead to very serious consequences.

Fight these threats by designing SALWARES

SALutary hardWARES: SALWARES

SALWARES use the same strategies and means as malwares but bring protection to the devices instead of malicious effect.

Example of well-known SALWARES

- Physical Unclonable Function for authentication
- Memory encryption, Logic encryption
- Hardware metering, IC metering
- Remote activation
- IP Watermarking

Outline

IP Watermarking

Side Channel Verification of IP Watermark

Summary O

Concept

Watermarking In General Embedding Process

IP Watermarking

Side Channel Verification of IP Watermark

Summary 0

Concept

Watermarking In General

Verification Process

IP Watermarking ○●○○○ Side Channel Verification of IP Waterman

Summary 0

Application to IP Protection

IP Watermarking

It possible to insert a watermark at different level ¹

Example of Watermarking techniques for IPs

- Physical-level: Constraints based watermarking (map and fitter)
- Structural level: Constraints based watermarking (synthesis)
- Algorithm-level: Extract properties by design
- Behavioral-level : FSM Watermarking

¹NIE, Tingyuan. Performance Evaluation for IP Protection Watermarking Techniques.

IP Watermarking

Side Channel Verification of IP Watermar

Summary 0

Application to IP Protection

FSM Watermarking

It is the method the most studied to insert a watermark inside digital and synchronous IPs because :

- Most of these kind of IPs contain a FSM,
- One of an IP is difficult to modify without damage the IP.

IP Watermarking ○○○●○ Side Channel Verification of IP Watermark

Summary

Application to IP Protection

Example of techniques

IP Watermarking

Side Channel Verification of IP Watermark

Summary O

Application to IP Protection

Example of techniques

FSM watermarking techniques

Add new nodes to the FSM

IP Watermarking

Side Channel Verification of IP Watermark

Summary O

Application to IP Protection

Example of techniques

FSM watermarking techniques

- Add new nodes to the FSM
- Add new transitions to the FSM

LABORATOIRE

IP Watermarking

Side Channel Verification of IP Watermark

Summary 0

Application to IP Protection

Example of techniques

FSM watermarking techniques

- Add new nodes to the FSM
- Add new transitions to the FSM
- Design the FSM to extract a specific property

IP Watermarking

Side Channel Verification of IP Watermark

Summary 0

Application to IP Protection

Verification of the Watermark ?

In the case of FSM watermarking, the verification can be difficult and may need:

- An access to a state register
- To reveal explicitly the watermark sequence

IP Watermarking

Side Channel Verification of IP Watermark

Summary 0

Application to IP Protection

Verification of the Watermark ?

In the case of FSM watermarking, the verification can be difficult and may need:

- An access to a state register
- To reveal explicitly the watermark sequence

Challenge

• Find a general way to extract FSM watermark without reveal information about the original IP.

Outline

IP Watermarking

- Concept
- Application to IP Protection

Side Channel Verification of IP Watermark

- Side Channel Verification
- Correlation Computation Flow
- Experimental results

P Watermarking

Side Channel Verification of IP Watermark

Summary 0

Side Channel Verification

Scenario of Watermark Verifcation

Requirements

- One device containing the original watermarked IP (Golden Device)
- A set of Device Under Test (DUT)

Objectives

 Find which are the devices which contain the watermark IP among the DUTs

P Watermarking

Correlation Computation Flow

Verification flow

Side Channel Verification of IP Watermark

A correlation computation process is defined with 3 functions for the verification flow of the Watermark of the IP.

P Watermarking

Correlation Computation Flow

Verification flow

Side Channel Verification of IP Watermark

A correlation computation process is defined with 3 functions for the verification flow of the Watermark of the IP.

P Watermarking

Correlation Computation Flow

Verification flow

Side Channel Verification of IP Watermark

A correlation computation process is defined with 3 functions for the verification flow of the Watermark of the IP.

P Watermarking

Side Channel Verification of IP Watermark

Summary O

Correlation Computation Flow

Parameters and Choice

Correlation process parameters

- n₁ : the number of power traces taken over the Golden Device
- n₂: the number of power traces taken over the DUT
- k : the number of averaged traces
- m: the number of correlation coefficient computed

Requirements for these parameters

• $n_1 \ge k$ • $n_2 \ge k \times m$

Computation time increases with mMeasurement time with k

Summary O

Experimental results

Designed IPs

IP Watermark Verification Based on Power Consumption Analysis

Watermarking

Side Channel Verification of IP Watermark

Summary 0

Experimental results

Experimental Setup

- Implement the four IPs in four Altera Cyclone 3 FPGAs gives the four Golden Devices (*IP_A*, *IP_B*, *IP_C*, *IP_D*)
- Implement the four IPs in four other Cyclone 3 FPGAs creates four DUTs(DUT_{#1}, DUT_{#2}, DUT_{#3}, DUT_{#4})

Correlation computation parameters

- *k* = 50
- *m* = 20
- *n*₁ = 400
- *n*₂ = 10000

С		

P Watermarking

Side Channel Verification of IP Watermark

Summary 0

Experimental results

Result of the Correlation Computation

P Watermarkin

Side Channel Verification of IP Watermark

Summary 0

Experimental results

Analysis (1/2) Choice of the Distinguishers and Definition

Two Distinguishers

- The Means of the correlation : $\overline{C_{X,y,k,m}}$
- The Variance of the correlation : $v(C_{X,y,k,m})$

Confidence distance: Δ_{mean} and Δ_{v}

Indicates the effectiveness of each distiguisher in percentage. 2 functions are defined to create these indicators:

- $max_2(E)$ give the second highest value of a set E
- min₂(E) give the second lowest value of a set E

$$\Delta_{mean}(X) = 100 \times \left[1 - \frac{max_2(\{\overline{C_{X,y,k,m}}, y \in \{1,2,3,4\}\})}{max(\{\overline{C_{X,y,k,m}}, y \in \{1,2,3,4\}\})}\right]$$

P Watermarking

Side Channel Verification of IP Watermark

Summary O

Experimental results

Analysis (1/2) Choice of the Distinguishers and Definition

Two Distinguishers

- The Means of the correlation : $\overline{C_{X,y,k,m}}$
- The Variance of the correlation : $v(C_{X,y,k,m})$

Confidence distance: Δ_{mean} and Δ_{v}

Indicates the effectiveness of each distiguisher in percentage.

- 2 functions are defined to create these indicators:
 - max₂(E) give the second highest value of a set E
 - min₂(E) give the second lowest value of a set E

P Watermarkin

Side Channel Verification of IP Watermark

Summary 0

Experimental results

Analysis (2/2) Results

Variance of the correlation

Cédric Marchand

Summary O

Experimental results

Analysis (2/2) Results

Mean of the correlation

Conclusion

Verification Algorithm

- Can be applied to verify FSM watermarked IPs
- Insensitive to the Cmos process variations
- The variance of the correlation is a better distinguisher than the mean for the decision

IP Watermarking

Side Channel Verification of IP Watermark

Thank you for your attention

Questions?

Work accepted to the conference socc2014, to reference it: C. Marchand, L. Bossuet, and E. Jung, "Ip watermark verification based on power consumption analysis", in SoCC. IEEE, 2014.

Cédric Marchand

IP Watermark Verification Based on Power Consumption Analysis