# Machine Learning assisted exploration for affine Deligne-Lusztig varieties

Felix Schremmer

#### Joint work with: Bin Dong, Xuhua He, Pengfei Jin and Qingchao Yu

University of Hong Kong

December 14, 2023

- 2 ML for pure math
- Our case study

#### What is math about?

#### What is math about?

#### **Employer's expectation**

8:00: Arrive at desk.8:00–16:00: Sit at desk. Solve math.16:00: Leave desk. Stop doing math.

#### What is math about?

Chinese language



number / science / to count to learn

#### Things I do when doing math

- Try to find interesting questions
- Read relevant literature
- Compute examples and search patterns

#### Things I do when doing math

- Try to find interesting questions
- Read relevant literature
- Compute examples and search patterns
- Find good conjectures and prove them
- Write papers
- Give talks

#### Things I do when doing math What can AI do for me?

- Try to find interesting questions
- Read relevant literature  $\rightarrow$  Large Language Models
- Compute examples and search patterns
- Find good conjectures and prove them
- $\bullet \ \ \mathsf{Write \ papers} \quad \to \mathsf{Large \ Language \ Models}$
- Give talks

#### Things I do when doing math What can AI do for me?

- Try to find interesting questions
- Read relevant literature  $\rightarrow$  Large Language Models
- Compute examples and search patterns
- Find good conjectures and prove them  $\rightarrow$  Proof Assistants
- $\bullet \ \ Write \ \ \mathsf{papers} \quad \to \mathsf{Large} \ \ \mathsf{Language} \ \ \mathsf{Models}$
- Give talks

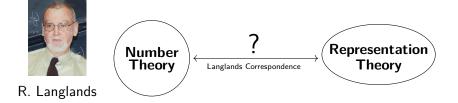
#### Things I do when doing math What can AI do for me?

- Try to find interesting questions
- Read relevant literature  $\rightarrow$  Large Language Models
- $\bullet~\mbox{Compute examples and search patterns} \rightarrow \mbox{Today's talk}$
- $\bullet\,$  Find good conjectures and prove them  $\to$  Proof Assistants
- $\bullet \ \ Write \ \ \mathsf{papers} \quad \to \ \mathsf{Large} \ \ \mathsf{Language} \ \ \mathsf{Models}$
- Give talks



ML for pure math 0000000

#### Langlands program

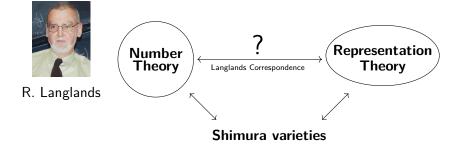


(Wikimedia)



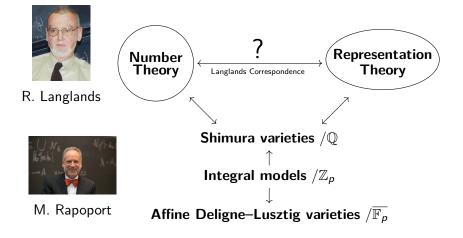
ML for pure math

#### Langlands program



(Wikimedia)

#### Langlands program



(Wikimedia) (Uni. Bonn)

Our case study

## Ingredients for ADLV

Take:

- A (certain) group. For today,  ${f G}=SL_5.$
- An element. For today,  $b = \mathbf{1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$ .

Our case study

.

.

# Ingredients for ADLV

Take:

• A (certain) group. For today,  $\boldsymbol{G}=SL_5.$ 

• An element. For today, 
$$b = \mathbf{1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

• An element w of the affine Weyl group, e.g.

$$w = \begin{pmatrix} 0 & 0 & t^{-2} & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & t & 0 \\ 0 & 0 & 0 & 0 & t^{-3} \\ 0 & t^4 & 0 & 0 & 0 \end{pmatrix}$$

(*t*: a formal variable)

# Affine Deligne–Lusztig varieties

To this given **G**, *w*, *b*, we associate an *affine Deligne–Lusztig variety*:

$$X_w(\mathbf{1}) = \{g \in \mathsf{SL}_5 \, / I \mid g^{-1}\mathbf{1}\sigma(g) \in IwI\}.$$

( $\sigma$ : Frobenius automorphism. *I*: Iwahori subgroup). This is a scheme over  $\overline{\mathbb{F}_q}$ .

**Key question:** Compute dim  $X_w(b)$ .

## Affine Deligne–Lusztig varieties

To this given **G**, *w*, *b*, we associate an *affine Deligne–Lusztig variety*:

$$X_w(\mathbf{1}) = \{g \in \mathsf{SL}_5 \, / I \mid g^{-1}\mathbf{1}\sigma(g) \in \mathit{IwI}\}.$$

( $\sigma$ : Frobenius automorphism. *I*: Iwahori subgroup). This is a scheme over  $\overline{\mathbb{F}_q}$ .

**Key question:** Compute dim  $X_w(b)$ .

Known: Recursive algorithm (exponential complexity)

Expected: Closed formula.



- 2 ML for pure math
- 3 Our case study

## Step 0: Getting started

We model our problem as a functional relationship

$$f \colon \{w \text{ such that } X_w(\mathbf{1}) 
eq \emptyset\} o \mathbb{Z}_{\geq 0}$$
  
 $w \mapsto \dim X_w(\mathbf{1})$ 

## Step 0: Getting started

We model our problem as a functional relationship

$$f \colon \{w \text{ such that } X_w(\mathbf{1}) 
eq \emptyset\} o \mathbb{Z}_{\geq 0}$$
  
 $w \mapsto \dim X_w(\mathbf{1})$ 

**Goal:** Find a closed formula to evaluate *f* (mathematical conjecture)

# Step 1: Data generation

• Choose a *computer representation* of domain and target of the function, e.g.

$$\begin{pmatrix} 0 & 0 & t^{-2} & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & t & 0 \\ 0 & 0 & 0 & 0 & t^{-3} \\ 0 & t^4 & 0 & 0 & 0 \end{pmatrix} \leftrightarrow (2,5,1,3,4, 0,4,-2,1,-3).$$

(target is  $\mathbb{Z}_{\geq 0}$ , needs no further representation)

# Step 1: Data generation

• Choose a *computer representation* of domain and target of the function, e.g.

$$\begin{pmatrix} 0 & 0 & t^{-2} & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & t & 0 \\ 0 & 0 & 0 & 0 & t^{-3} \\ 0 & t^4 & 0 & 0 & 0 \end{pmatrix} \leftrightarrow (2,5,1,3,4, 0,4,-2,1,-3).$$

(target is  $\mathbb{Z}_{\geq 0}$ , needs no further representation)

- Choose a suitable subset of the domain (e.g. 1000 randomly chosen elements)
- Evaluate the function *f* on these examples

# Step 2: Model selection

• Choose a hypothesis class, i.e. a family of functions

$$\hat{f}_m, \qquad m \in \mathcal{M}$$

hoping that one of these can approximate our target function  $f\, ``{\sf well}"$ 

Typical choices: Neural network, linear model, decision tree...

# Step 2: Model selection

• Choose a hypothesis class, i.e. a family of functions

$$\hat{f}_m, \qquad m \in \mathcal{M}$$

hoping that one of these can approximate our target function f "well"

Typical choices: Neural network, linear model, decision tree...

• Choose a loss function, which evaluates how good the approximation  $\hat{f}_m$  is

Typical choices:  $\ell_1$  or  $\ell_2$  norm with regularization

# Step 3: Training

- Split the dataset  $\mathbb D$  into a training and test part  $\mathbb D=\mathbb D_{\text{train}}\sqcup\mathbb D_{\text{test}}$
- Find a model  $m \in \mathcal{M}$  such that  $\hat{f}_m$  approximates f on  $\mathbb{D}_{\text{train}}$  as good as possible (loss function)

# Step 3: Training

- Split the dataset  $\mathbb D$  into a training and test part  $\mathbb D=\mathbb D_{train}\sqcup\mathbb D_{test}$
- Find a model  $m \in \mathcal{M}$  such that  $\hat{f}_m$  approximates f on  $\mathbb{D}_{\text{train}}$  as good as possible (loss function)
- Optimization method depends on chosen hypothesis class
- Avoid overfitting: Compare test error vs. training error

## Step 4: Evaluation

- Study the approximation function  $\hat{f}_m$ :
  - $\bullet\,$  Accuracy on training / test set
  - Accuracy on different parts of the dataset

## Step 4: Evaluation

- Study the approximation function  $\hat{f}_m$ :
  - $\bullet\,$  Accuracy on training / test set
  - Accuracy on different parts of the dataset
- Study the model *m*:
  - Importance/Influence of different input variables
  - Compare with prior subject knowledge

## Step 5: Refinement

Do we have a simple, robust approximation  $\hat{f}_m$  that models our target function f very well (according to theory&evidence)?

- Yes: New mathematical conjecture found!
- No: Consider all choices made in Steps 1-4 and repeat

- 2 ML for pure math
- Our case study

## Problem and complexity

• Recall: Our target function f computes dimensions of ADLV

$$w = \begin{pmatrix} \begin{smallmatrix} 0 & 0 & t^{-2} & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & t & 0 \\ 0 & 0 & 0 & 0 & t^{-3} \\ 0 & t^4 & 0 & 0 & 0 \end{pmatrix} \mapsto \dim X_w(1) = 23.$$

• Dataset: 5000 randomly sampled elements w.

## Problem and complexity

• Recall: Our target function f computes dimensions of ADLV

$$w = \begin{pmatrix} \begin{smallmatrix} 0 & 0 & t^{-2} & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & t & 0 \\ 0 & 0 & 0 & 0 & t^{-3} \\ 0 & t^4 & 0 & 0 & 0 \end{pmatrix} \mapsto \dim X_w(1) = 23.$$

- Dataset: 5000 randomly sampled elements w.
- Model: Let's try neural networks!

|        |   | Neurons / Layer |      |      |  |
|--------|---|-----------------|------|------|--|
|        |   | 10              | 20   | 40   |  |
| Layers | 1 | 0.53            | 0.53 | 0.52 |  |
|        | 2 | 0.53            | 0.53 | 0.51 |  |
|        | 3 | 0.52            | 0.51 | 0.51 |  |
|        |   | Avg. test error |      |      |  |

## Problem and complexity

• Recall: Our target function f computes dimensions of ADLV

$$w = \begin{pmatrix} \begin{smallmatrix} 0 & 0 & t^{-2} & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & t & 0 \\ 0 & 0 & 0 & 0 & t^{-3} \\ 0 & t^4 & 0 & 0 & 0 \end{pmatrix} \mapsto \dim X_w(1) = 23.$$

- Dataset: 5000 randomly sampled elements w.
- Model: Let's try neural networks!

|        |   | Neurons / Layer |                      |      |  |
|--------|---|-----------------|----------------------|------|--|
|        |   | 10              | 20                   | 40   |  |
| Layers | 1 | 0.53            | 0.53                 | 0.52 |  |
|        | 2 | 0.53            | 0.53                 | 0.51 |  |
| Ľ      | 3 | 0.52            | 0.53<br>0.53<br>0.51 | 0.51 |  |
|        |   | Avg. test error |                      |      |  |

 $\rightsquigarrow$  Linear model is probably fine

### A first linear model

- Represent an element *w* by 12 numbers:
  - Five to signify the positions of the  $t^{\bullet}$ 's in the matrix
  - Five to signify the *t*-exponents
  - Two more of Lie-theoretic relevance

## A first linear model

- Represent an element *w* by 12 numbers:
  - Five to signify the positions of the  $t^{\bullet}$ 's in the matrix
  - Five to signify the *t*-exponents
  - Two more of Lie-theoretic relevance
- Same dataset as before
- Test error: 0.65
- Model interpretation: hard

## A first linear model

- Represent an element *w* by 12 numbers:
  - Five to signify the positions of the  $t^{\bullet}$ 's in the matrix
  - Five to signify the *t*-exponents
  - Two more of Lie-theoretic relevance
- Same dataset as before
- Test error: 0.65
- Model interpretation: hard
- If all *t*-exponents are pairwise distinct: Error 0.62. Interpretation: still hard

#### Better features

- Focus on those *w*'s with pairwise distinct *t*-exponents.
- Associate *two* permutations to each *w*: Position of *t*'s in the matrix, and order of *t*-exponents

$$\begin{pmatrix} 0 & 0 & t^{-2} & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & t & 0 \\ 0 & 0 & 0 & 0 & t^{-3} \\ 0 & t^4 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{array}{c} xy = (2, 5, 1, 3, 4) \\ y = (2, 4, 1, 3, 5) \end{array}$$

- Represent each permutation x, y by their inversion set (10 numbers) and length (1 number).
- ~> Test error: 0.65. Model Interpretability: Better!

### Model coefficients

Inversions for x0.12, -0.04, -0.05, -0.24, 0.14, ...Inversions for ysimilar picture $\ell(x), \ell(y)$ 0.1, 0.1t-coefficients0.13, -0.09, -0.02, 0.08, -0.10Length of w0.52

## Model coefficients

Inversions for x0.12, -0.04, -0.05, -0.24, 0.14, ...Inversions for ysimilar picture $\ell(x), \ell(y)$ 0.1, 0.1t-coefficients0.13, -0.09, -0.02, 0.08, -0.10Length of w0.52

- Leading term:  $\frac{1}{2}\ell(w)$
- Besides, no significant contribution of  $\ell(w)$ , or *t*-coefficients
- Contribution of *x*, *y* needs further investigation

### Restricting the dataset further

• Consider only those w's with x = (1, 2, 3, 4, 5). E.g.

$$w = \begin{pmatrix} 0 & 0 & t^5 & 0 & 0 \\ t^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & t^{-3} \\ 0 & t^{-4} & 0 & 0 & 0 \end{pmatrix}$$

- Generate 5000 of those.
- Input features: Everything related to y.
- Target function:  $g(w) = \dim X_w(1) \frac{1}{2}\ell(w)$ .

### Restricting the dataset further

• Consider only those w's with x = (1, 2, 3, 4, 5). E.g.

$$w = \begin{pmatrix} 0 & 0 & t^5 & 0 & 0 \\ t^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & t^{-3} \\ 0 & t^{-4} & 0 & 0 & 0 \end{pmatrix}$$

- Generate 5000 of those.
- Input features: Everything related to y.
- Target function:  $g(w) = \dim X_w(1) \frac{1}{2}\ell(w)$ .
- Use  $\ell_2$ -loss function: Avg. error: **0.30**. Model interpretability: **Tricky**.

### Restricting the dataset further

• Consider only those w's with x = (1, 2, 3, 4, 5). E.g.

$$w = \begin{pmatrix} 0 & 0 & t^5 & 0 & 0 \\ t^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & t^{-3} \\ 0 & t^{-4} & 0 & 0 & 0 \end{pmatrix}$$

- Generate 5000 of those.
- Input features: Everything related to y.
- Target function:  $g(w) = \dim X_w(1) \frac{1}{2}\ell(w)$ .
- Use  $\ell_2$ -loss function: Avg. error: **0.30**. Model interpretability: **Tricky**.
- Use  $\ell_1$ -loss function: Avg. error **0.18**. Model interpretability: **Trivial**. Explicitly,  $\hat{g} = \frac{1}{2}\ell(y)$ .

#### Generalization

Return to the second data set. Our target function is

$$g: w \mapsto \dim X_w(1) - \frac{1}{2}\ell(w).$$

Approximation should simplify to  $\frac{1}{2}\ell(y)$  whenever x = (1, 2, 3, 4, 5).

#### Generalization

Return to the second data set. Our target function is

$$g: w \mapsto \dim X_w(1) - \frac{1}{2}\ell(w).$$

Approximation should simplify to  $\frac{1}{2}\ell(y)$  whenever x = (1, 2, 3, 4, 5).

| Feature | $\ell(x)$ | $\ell(y)$ | $\ell(xy)$ | $\ell(yx)$ | $\ell(y * x)$ | $\ell(y \triangleleft x)$ |
|---------|-----------|-----------|------------|------------|---------------|---------------------------|
| Coeff.  | 0.02      | -0.05     | -0.02      | 0.46       | 0.04          | 0.04                      |

#### Generalization

Return to the second data set. Our target function is

$$g: w \mapsto \dim X_w(1) - \frac{1}{2}\ell(w).$$

Approximation should simplify to  $\frac{1}{2}\ell(y)$  whenever x = (1, 2, 3, 4, 5).

Feature 
$$\ell(x) \quad \ell(y) \quad \ell(xy) \quad \ell(yx) \quad \ell(y * x) \quad \ell(y \triangleleft x)$$
  
Coeff. 0.02 -0.05 -0.02 0.46 0.04 0.04

We got a winner!  $\hat{g} \approx \frac{1}{2}\ell(yx)$ .

### Story time

Virtual dimension  $d_w(\mathbf{1}) = \frac{1}{2} \left[ \ell(w) + \ell(yx) \right]$  approximates dim  $X_w(\mathbf{1})$ .

- Discovery of virtual dimension formula was a great breakthrough 10–20 years ago
- Our ML method can find the formula (today: the most tricky part)
- Analyse the data more carefully → obtain precise mathematical conjectures

### Story time

Virtual dimension  $d_w(\mathbf{1}) = \frac{1}{2} [\ell(w) + \ell(yx)]$  approximates dim  $X_w(\mathbf{1})$ .

- Discovery of virtual dimension formula was a great breakthrough 10–20 years ago
- Our ML method can find the formula (today: the most tricky part)
- Analyse the data more carefully → obtain precise mathematical conjectures
- He 2014: Dimension  $\leq$  virtual dimension. Equality holds for b = 1 and "most" w.
- He 2022: Dimension = virtual dimension for "most" (w, b)

### Story time

Virtual dimension  $d_w(\mathbf{1}) = \frac{1}{2} \left[ \ell(w) + \ell(yx) \right]$  approximates dim  $X_w(\mathbf{1})$ .

- Discovery of virtual dimension formula was a great breakthrough 10–20 years ago
- Our ML method can find the formula (today: the most tricky part)
- Analyse the data more carefully → obtain precise mathematical conjectures
- He 2014: Dimension  $\leq$  virtual dimension. Equality holds for b = 1 and "most" w.
- He 2022: Dimension = virtual dimension for "most" (w, b)
- Our paper: ML suggests that (virtual dim. *minus* dim.) is bounded. We then give a proof!

# The bigger picture

- Al4MATH works! We find old and new conjectures very fast (also works for more tricky patterns related to ADLV that require neural networks)
- Even "atypical" problems can be solved, by revising the full pipeline

# The bigger picture

- Al4MATH works! We find old and new conjectures very fast (also works for more tricky patterns related to ADLV that require neural networks)
- Even "atypical" problems can be solved, by revising the full pipeline
- Interdisciplinary collaboration and modern technology lead us to a new way of researching pure mathematics