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Introduction and motivation

First we consider in a bounded domain Ω in R3 with boundary Γ,
possibly not connected, of class C1,1, the following Stokes equations

−∆u +∇π = f , div u = 0 in Ω

where the unknowns u and π stand respectively for the velocity field
and the pressure of the fluid occupying a domain Ω. Given data is the
external force f . To study the Stokes equations it is necessary to add
some suitable boundary conditions.
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Concerning these equations, the first thought goes to the
classical no-slip Dirichlet boundary condition which is not always
appropriate. For example it shows the absence of collisions of
rigid bodies immersed in a linearly viscous fluid.

In some applications, in particular in the electromagnetism
problems, it is possible to find problems where it is necessary to
consider other boundary conditions (BC). These BC are also
used to simulate flows near rough walls, such as in aerodynamics,
in weather forecasts and in hemodynamics, as well as perforated
walls. BC involving the pressure, such as in cases of pipes,
hydraulic gears using pomps, containers, etc ...
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An alternative to the no-slip BC was suggested by H. Navier in 1823.
Navier proposed a slip-with-friction boundary condition and claimed
that the component of the fluid velocity tangent to the surface should
be proportional to the rate of strain at the surface

u · n = 0, 2 [D(u)n]τ + α uτ = h on Γ

where D(u) = 1
2
(
∇u + (∇u)T

)
denotes the deformation tensor

associated to the velocity field u and α is the friction coefficient which
is a scalar function.
Observe that if α tends to infinity, we get formally

u = 0 on Γ.

The Navier boundary conditions are often used to simulate flows near
rough walls as well as perforated walls.
Such slip boundary conditions are used in the Large Eddy Simulations
(LES) of turbulent flows.
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Our aim is to study the system{
−∆u +∇π = f , div u = 0 in Ω
u · n = 0, 2 [D(u)n]τ + α uτ = h on Γ (S)

considering α not regular.

We first briefly review some existing or related works.
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Basic properties and useful inequalities
To study the problem, we consider the following assumptions on α:
α ∈ Lt(p)(Γ) with

t(p) =


2
3p
′ + ε if 1 < p < 3

2
2 + ε if 3

2 ≤ p ≤ 3, p 6= 2
2 if p = 2
2
3 p+ ε if p > 3

(0.1)

where ε > 0 is an arbitrary number, sufficiently small. Also, ∃ α∗ such
that

α ≥ α∗ ≥ 0 (0.2)
with

α∗ ≥ 0 if Ω is not axisymmetric (0.3a)
or

α∗ > 0 on Γ0 ( Γ if Ω is axisymmetric (0.3b)
or

α∗ = 0 on Γ if Ω is axisymmetric . (0.3c)
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Note that the kernel of the system (S) corresponding to α = 0 is:

T (Ω) =
{
v ∈W1,p(Ω) : D(v) = 0 in Ω and v · n = 0 on Γ

}
=
{
{0} if Ω is not axisymmetric
span{b× x} if Ω is axisymmetric

But the kernel of the system (S) corresponding to α 6= 0 is:

I(Ω) =
{
v ∈W1,p(Ω) : −∆u +∇π = 0, div u = 0 in Ω, v · n = 0,

2 [D(u)n]τ + αuτ = 0 on Γ}
= {0}.
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Let us first discuss some Korn-type inequalities which will be used to
prove the equivalence of norms and the existence of solution.

Proposition

Let Ω ⊂ R3 be a bounded domain, Lipschitz. For all u ∈ H1(Ω) with
u · n = 0 on Γ, the following equivalence of norms hold:

‖u‖H1(Ω) ' ‖D(u)‖L2(Ω) if Ω is not axisymmetric ,

and

‖u‖H1(Ω) ' ‖D(u)‖L2(Ω) + ‖uτ‖L2(Γ0) if Ω is axisymmetric .
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We also deduce the following inequalities:

Proposition
Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary Γ. If Ω is
axisymmetric with respect to a constant vector b ∈ R3 and
β(x) = b× x for x ∈ Ω, then we have the following inequalities: for
all u ∈ H1(Ω) with u · n = 0 on Γ,

‖u‖2L2(Ω) ≤ C

[
‖D(u)‖2L2(Ω) +

(∫
Ω

u · β dx
)2
]

and

‖u‖2L2(Ω) ≤ C

[
‖D(u)‖2L2(Ω) +

(∫
Γ

u · β ds
)2
]
.

These results can be proved by the method of contradiction.
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Now consider f ∈ Lr(p)(Ω), h ∈W− 1
p ,p(Γ) s.t. h ·n = 0 on Γ where

r(p) =
{

3p
p+3 if p > 3

2
1 if 1 < p ≤ 3

2 .

We call (u, π) ∈W1,p(Ω)× Lp(Ω) is a weak solution of the problem
(S) iff for all ϕ ∈ Vp′

σ,τ (Ω),

2
∫

Ω
D(u) : D(ϕ) dx+

∫
Γ
αuτ · ϕτ ds =

∫
Ω

f · ϕ dx+ 〈h, ϕ〉Γ. (0.4)

It is easy to see from the above weak formulation that if α = 0 and Ω
is axisymmetric, ∫

Ω
f · β dx+ 〈h, β〉Γ = 0

is a necessary condition for the existence of a solution.
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Note that the boundary term in the left hand side of the weak
formulation (0.4) is actually a well-defined integral which can be seen
from the following argument.

Since ϕ ∈W1,p′(Ω), we have ϕτ ∈W1− 1
p′ ,p

′
(Γ) ↪→ Lm(Γ) where

1
m

=


1− 3

2p if p > 3
2 ,

any positive real number < 1 if p = 3
2 ,

0 if p < 3
2 .

Similarly, for u ∈W1,p(Ω), uτ ∈W1− 1
p ,p(Γ) ↪→ Ls(Γ) with

1
s

=


3
2p −

1
2 if p < 3,

any positive real number < 1 if p = 3,
0 if p > 3.

Thus for α ∈ Lt(p)(Γ), it can be easily seen that αuτ ∈ Lm′(Γ).
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L2-Theory
The first theorem gives us the existence, uniqueness and estimates of
the solution of (S).

Theorem

Let f ∈ L 6
5 (Ω),h ∈ H− 1

2 (Γ) and α ∈ L2(Γ) satisfying (0.2)-(0.3).
Then the Stokes problem (S) has a unique solution
(u, π) ∈ H1(Ω)× L2

0(Ω) with the following estimates,

(I) if Ω is not axisymmetric, then

‖u‖H1(Ω) + ‖π‖L2(Ω) ≤ C(Ω)
(
‖f‖

L
6
5 (Ω)

+ ‖h‖
H−

1
2 (Γ)

)

(II) if Ω is axisymmetric and

α ≥ α∗ > 0 on Γ0 ⊆ Γ, then

‖u‖H1(Ω) + ‖π‖L2(Ω) ≤
C(Ω)

min{2, α∗}

(
‖f‖

L
6
5 (Ω)

+ ‖h‖
H−

1
2 (Γ)

)
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f ,h satisfy the condition:∫
Ω

f · β dx+ 〈h, β〉Γ = 0

then, the solution u satisfies
∫

Γ αu · β ds = 0 and

‖D(u)‖2L2(Ω) +
∫

Γ
α|uτ |2 ds ≤ C(Ω)

(
‖f‖

L
6
5 (Ω)

+ ‖h‖
H−

1
2 (Γ)

)2
.

Moreover, if α is a constant, then

‖u‖H1(Ω) + ‖π‖L2(Ω) ≤ C(Ω)
(
‖f‖

L
6
5 (Ω)

+ ‖h‖
H−

1
2 (Γ)

)
.

Proof. The existence and uniqueness follows from the Lax-Milgram
Lemma (where the coercivity of the bilinear form is obvious) and also
the estimate. But note that the continuity constant we get from
Lax-Milgram Lemma depends on α. So we prove independently the
different estimates, independent of α for that we use the previously
stated Korn-type inequalities and equivalence of norms.
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Next we prove the existence of strong solution and the corresponding
estimate independent of α.

Theorem

Let Ω be C2,1, f ∈ L2(Ω), h ∈ H 1
2 (Γ) and α is a constant, satisfying

(0.2)-(0.3). Then the solution of (S) belongs to H2(Ω)×H1(Ω),
satisfying the following estimate,

‖u‖H2(Ω) + ‖π‖H1(Ω) ≤ C(Ω)
(
‖f‖L2(Ω) + ‖h‖

H
1
2 (Γ)

)
. (0.5)

Remark. Later we will prove the existence result of strong solution
for more general α, not necessarily a constant.
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Proof.

Method I : If α is a constant and f ∈ L2(Ω) and h ∈ H 1
2 (Γ), then

u ∈ H1(Ω) and therefore αuτ ∈ H 1
2 (Γ) also. So using the regularity

result as in the paper Amrouche-Rejaiba, we get that u ∈ H2(Ω).
But concerning the estimate, with this method, we can not obtain the
bound on u, independent of α. Thus we need to consider the more
fundamental but long method, explained below.

Method II : The proof is based on the method of difference
quotient as in the book of L.C. Evans. Without loss of generality, we
consider h = 0. Also, let denote the difference quotient by,

Dh
ku(x) = u(x+ hek)− u(x)

h
, k = 1, 2, 3, h ∈ R.
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1 Interior regularity. Showing that (u, π) belongs to
H2
loc(Ω)×H1

loc(Ω) with the estimate (0.5), is very classical, with
the help of H1-estimate, since the method does not depend on
the boundary condition.

2 Boundary regularity.
The solution (u, π) satisfies the variational formulation, for all
ϕ ∈ H1

τ (Ω),

2
∫

Ω
D(u) : D(ϕ) dx+

∫
Γ
αuτ ·ϕτ ds−

∫
Ω
π divϕ dx =

∫
Ω

f ·ϕ dx.

(0.6)
Case 1 : Ω is a half-ball i.e. Ω = B(0, 1) ∩ R3

+.
Set V := B(0, 1

2 )∩R3
+. Then choose a cut-off function ζ ∈ D(R3)

such that {
ζ ≡ 1 on B(0, 1

2 ), ζ ≡ 0 on R3 \B(0, 1),
0 ≤ ζ ≤ 1.

So ζ ≡ 1 on V and vanishes on the curved part of Γ.
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tangential regularity of u :

Let h > 0 be small and ϕ = −D−hk (ζ2Dh
ku), k = 1, 2. Clearly,

ϕ ∈ H1
τ (Ω). Therefore, we can substitute ϕ into the identity (0.6) and

obtain,

2
∫

Ω
ζ2|Dh

kD(u)|2 dx+ 2
∫

Ω
Dh
kD(u) : 2ζ∇ζDh

ku dx

+
∫

Γ
αζ2|Dh

kuτ |2 ds−
∫

Ω
π div(−D−hk (ζ2Dh

ku)) dx

=
∫

Ω
f · (−D−hk (ζ2Dh

ku)) dx.

(0.7)

Now we estimate the different terms. For the second term in the left
hand side, using Cauchy’s inequality with ε, we get

|
∫

Ω
Dh
kD(u) : 2ζ∇ζDh

ku dx|

≤ C
∫

Ω
2ζ|Dh

kD(u)||Dh
ku| dx

≤ C
[
ε

∫
Ω
ζ2|Dh

kD(u)|2 dx+ 1
ε

∫
Ω
|Dh

ku|2 dx
]
.
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Similarly we can estimate the fourth term in the left hand side and
the term in the right hand side which gives us altogether

2
∫

Ω
ζ2|Dh

kD(u|)2 dx+
∫

Γ
α ζ2|Dh

kuτ |2 ds

≤ ε

∫
Ω
ζ2|∇Dh

ku|2 dx+ C1

ε

(∫
Ω
|f |2 dx+

∫
Ω
|π|2 dx

)
+ C2

∫
Ω
|Dh

ku|2 dx.

From here, we deduce

‖ζDh
ku‖2H1(Ω) ≤ ε‖ζD

h
ku‖2H1(Ω) + C1

ε

(
‖f‖2L2(Ω) + ‖π‖2L2(Ω)

)
+ C2‖Dh

ku‖2L2(Ω)

Choosing ε small and using the estimates for (u, π) in H1(Ω)×L2(Ω),
we obtain,

‖Dh
ku‖2H1(V ) ≤ ‖ζD

h
ku‖2H1(Ω) ≤ C(Ω)‖f‖2L2(Ω)

which means that ∂2u/∂xi∂xj belongs to L2(V ) for all i, j = 1, 2, 3
except for i = j = 3, with the corresponding estimate.
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tangential regularity of π : From the Stokes equation, for
i = 1, 2, we get,

∂

∂xi
(∇π) = ∂

∂xi
(f + ∆u) = ∂f

∂xi
+ div(∇ ∂u

∂xi
).

Since there is no term of the form ∂2u/∂x2
3, by preceding

arguments, we obtain

∇ ∂π

∂xi
= ∂

∂xi
(∇π) ∈ H−1(V ).

Furthermore, as we already know that ∂π
∂xi
∈ H−1(V ), hence

from the Nečas inequality, ∂π
∂xi
∈ L2(V ) and satisfies the usual

estimate.
normal regularity : For the complete regularity of the
solution, it remains to study the derivatives of u and π in the
direction e3. Differentiating the divergence equation with respect
to x3 gives,

∂2u3

∂x2
3

= −
2∑
i=1

∂2ui
∂xi∂x3

∈ L2(V ).
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Next, from the 3rd component of the Stokes equation, we can write,

∂π

∂x3
= f3 + ∆u3 ∈ L2(V )

which proves that π ∈ H1(V ). Finally, for i = 1, 2, we can write the
ith equation of the system in the form,

∂2ui
∂x2

3
= −

2∑
j=1

∂2ui
∂x2

j

− fi + ∂π

∂xi
∈ L2(V ).

Thus, ui ∈ H2(V ). So, apart from the regularity of u and π, we have
proved the existence of C = C(Ω) > 0 independent of α such that

‖u‖H2(V ) + ‖π‖H1(V ) ≤ C‖f‖L2(Ω).

Case 2 : Now we drop the assumption that Ω is a half ball and
consider the general case. Since Γ is C2,1, for any x0 ∈ Γ, we can
assume, upon relabelling the coordinate axes,

Ω ∩ (B(x0, r)) = {x ∈ (B(x0, r)) : x3 > H(x′)}

for some r > 0 and H : R2 → R of class C2,1.
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Let us now introduce the change of variable,

y = (x1, x2, x3 −H(x′)) := φ(x)

i.e.
x = (y1, y2, y3 +H(y′)) := φ−1(y).

Choose s > 0 small so that the half ball Ω′ := B(0, s) ∩ R3
+ lies in

φ(Ω ∩ (B(x0, r))). Set also V ′ := B(0, s/2) ∩ R3
+ and

u′(y) = u(φ−1(y)) for y ∈ Ω′. It is easy to see that

u′ ∈ H1(Ω′)

and
u′ · n = 0 on ∂Ω′ ∩ ∂R3

+

but

div u = div u′ −
2∑
j=1

∂H

∂yj

∂u′j
∂y3

.

Now transforming our problem to the new coordinates, under this
change of variable, (0.6) becomes,
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2
∫

Ω′
D(u′) : D(ϕ′) dy +

∫
Γ′
αu′τ · ϕ′τ ds−

∫
Ω′
π′ divϕ′ dy

=
∫

Ω′
f ′ · ϕ′ dy −

∫
Ω′
π′
∂H

∂yj

∂u′j
∂y3

dy +
∫

Ω′
∂H ∇u′∇ϕ′ dy.

(0.8)

We choose the test function ϕ′ = −D−hk (ζ2Dh
ku′) as before and

estimate the extra terms. For the second term in the right hand side,
it is easy to see,

|
∫

Ω′
π′
∂H

∂yj

∂u′j
∂y3

dy| ≤ C
(
‖π′‖2L2(Ω′) + ‖∇u′‖2L2(Ω′)

)
.

And for the last term in the right hand side, we get

|
∫

Ω′
∂H ∇u′∇(D−hk (ζ2Dh

ku′)) dy|

≤C
(∫

Ω′
|∇u′|2 dy + ε

∫
Ω′
ζ2|∇Dh

ku′|2 dy + 1
ε

∫
Ω′
|Dh

ku′|2 dy

+
∫

Ω′
ζ2|Dh

k∇u′|2|∂H| dy
)
.
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Hence, accumulating all these inequalities, we obtain from (0.8),

‖ζDh
ku′‖2H1(Ω′) ≤ C

(
‖∇u′‖2L2(Ω′) + ‖π′‖2L2(Ω′) + ‖f ′‖2L2(Ω′)

+ε‖ζDh
ku′‖2H1(Ω′) +

∫
Ω′
ζ2|∂H||∇Dh

ku′|2 dy
)
.

But |∂H| is small for sufficiently small s > 0, since
∂H

∂y1
(0, 0) = 0 = ∂H

∂y2
(0, 0)

which gives,

‖Dh
ku′‖2H1(V ′) ≤ ‖ζD

h
ku′‖2H1(Ω′) ≤ C‖f‖2L2(Ω). (0.9)

Then, proceeding as in the case of the half ball, we can deduce,

u′ ∈ H2(V ′) and ‖u′‖H2(V ′) ≤ C(Ω)‖f‖L2(Ω).

Consequently,
‖u‖H2(V ) ≤ C(Ω)‖f‖L2(Ω).

Since, Γ is compact, we can cover Γ with finitely many sets {Vi} as
above. Summing the resulting estimates, along with the interior
estimate, we get u ∈ H2(Ω) with the desired inequality.
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Lp-Theory
We begin with recalling some important results.

Theorem (Inf-Sup condition in Banach spaces)

Let X and M be two reflexive Banach spaces and X ′ and M ′ be their
dual spaces. Let a be the continuous bilinear form defined on X ×M ,
A ∈ L(X;M ′) and A′ ∈ L(M ;X ′) be the operators defined by

∀v ∈ X, ∀w ∈M, a(v, w) = 〈Av,w〉 = 〈v,A′w〉

and V = Ker A. Then the following statements are equivalent :
(i) There exists C = C(Ω) > 0 such that

inf
w∈M
w 6=0

sup
v∈X
v 6=0

a(v, w)
‖v‖X ‖w‖M

≥ C . (0.10)

(ii) The operator A : X/V 7→M ′ is an isomorphism and 1
C is the

continuity constant of A−1.
(iii) The operator A′ : M 7→ X ′ ⊥ V is an isomorphism and 1

C is the
continuity constant of (A′)−1.
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Also, recall the following Inf-Sup condition (Amrouche-Seloula
[Lemma 4.4]):

Lemma
There exists a constant β > 0 such that

inf
ϕ∈Vp′ (Ω)

ϕ6=0

sup
ξ∈Vp

σ,τ (Ω)
ξ 6=0

∫
Ω curl ξ · curl ϕ dx
‖ξ‖Vp

σ,τ (Ω)‖ϕ‖Vp′ (Ω)
≥ C (0.11)

where

Vp′(Ω) :=
{

v ∈ Vp′

σ,τ (Ω); 〈v · n, 1〉Σj = 0 ∀ 1 ≤ j ≤ J
}
.

Next we consider the bilinear form: for u ∈ Vp
σ,τ (Ω) and ϕ ∈ Vp′

σ,τ (Ω),

a(u, ϕ) = 2
∫

Ω
D(u) : D(ϕ) dx+

∫
Γ
αuτ · ϕτ ds

and prove a more general result.
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Theorem

Let Ω be C2,1, 1 < p <∞ and

` ∈ [Vp′

σ,τ (Ω)]′, α ∈ Lt(p)(Γ) satisfying (0.2)-(0.3)

where in addition, we suppose the following compatibility condition
when α = 0 and Ω is axisymmetric,

〈`, β〉 = 0.

Then the problem:

Find u ∈ Vp
σ,τ (Ω) s.t. for any ϕ ∈ Vp′

σ,τ (Ω), a(u, ϕ) = 〈`, ϕ〉 (0.12)

has a unique solution.

Proof. Observe first that if Ω is axisymmetric and α = 0, from the
formulation of problem (0.12), we can see immediately the necessity
of the compatibility condition.
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p ≥ 2.

Since [Vp′

σ,τ (Ω)]′ ↪→ [V2
σ,τ (Ω)]′, we deduce by Lax-Milgram lemma

that there exists a unique u ∈ V2
σ,τ (Ω) satisfying :

∀ ϕ ∈ V2
σ,τ (Ω), a(u, ϕ) = 〈`, ϕ〉[V2

σ,τ (Ω)]′×V2
σ,τ (Ω) . (0.13)

Now we will prove that u ∈W1,p(Ω). Since the Inf-Sup condition
(0.10) is known for the bilinear form

b(u, ϕ) =
∫

Ω
curl u · curl ϕ dx

with adapted spaces X and M and we have the relation

[2D(u)n]τ = curl u × n − 2Λu on Γ,

where Λ is an operator of order 0 defined by

Λu =
2∑
k=1

(
uτ ·

∂n
∂sk

)
τ k,

we will use another formulation of problem (0.13).
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Using the density result,{
v ∈ H2(Ω), div v = 0 in Ω,v · n = 0 on Γ

}
is dense in V2

σ,τ (Ω)

we get from (0.13), for all ϕ ∈ V2
σ,τ (Ω),∫

Ω
curl u·curl ϕ dx = 〈`, ϕ〉[V2

σ,τ (Ω)]′×V2
σ,τ (Ω)−

∫
Γ
αuτ ·ϕτ ds+2

∫
Γ

Λu·ϕ ds.

(0.14)
Now we are in position to improve the regularity of u and for that we
use bootstrap argument.
Case (I) : 2 < p ≤ 3.
Step 1. Since uτ ∈ L4(Γ) and α ∈ L2+ε(Γ), we have αuτ ∈ Lq1(Γ)
where 1

q1
= 1

4 + 1
2+ε . But, Lq1(Γ) ↪→W− 1

p1
,p1(Γ) with p1 = 3

2q1 > 2

i.e. 1
p1

= 2
3

(
1
4 + 1

2+ε

)
. Therefore, as W

1
p1
,p′1(Γ) ↪→ Lq′1(Γ) with

4
3 < q′1 < 4 and Λu ∈ L4(Γ), the mapping

〈L, ϕ〉 = 〈`, ϕ〉 −
∫

Γ
αuτ · ϕτ ds+ 2

∫
Γ

Λu · ϕ ds for ϕ ∈ Vs′1(Ω)

defines an element of the dual space of Vs′1(Ω) with s1 = min {p1, p}.
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Now from the Inf-Sup condition (0.11), ∃ a unique v ∈ Vs1
σ,τ (Ω) s.t.

∀ϕ ∈ Vs′1(Ω),
∫

Ω
curl v ·curl ϕ dx = 〈L, ϕ〉

[Vs′1 (Ω)]′×Vs′1 (Ω)
. (0.15)

We will show that curl v = curl u. For that first we extend (0.15) to
any test function ϕ ∈ Vs′1

σ,τ (Ω) and since V2
σ,τ (Ω) ↪→ Vs′1

σ,τ (Ω), we
deduce from (0.14) that

∀ϕ ∈ V2
σ,τ (Ω),

∫
Ω

curl v · curl ϕ dx =
∫

Ω
curl u · curl ϕ dx

which gives,
curl u = curl v in Ω .

Therefore, as u ∈ L6(Ω) ↪→ Ls1(Ω), curl u ∈ Ls1(Ω),div u = 0 in Ω
and u · n = 0 on Γ; we get u ∈W1,s1(Ω). If s1 ≥ p, the proof is
complete. Otherwise, s1 = p1 and we proceed to the next step.

Step 2. Now, u ∈W1,p1(Ω) implies the mapping

〈L, ϕ〉 = 〈`, ϕ〉 −
∫

Γ
αuτ · ϕτ ds+ 2

∫
Γ

Λu · ϕ ds for ϕ ∈ Vs′2(Ω)
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defines an element of the dual space of Vs′2(Ω) with s2 = min {p2, p}
where 1

p2
= 2

3

(
2

2+ε −
1
2 + 1

4

)
. Therefore, as in the previous step, ∃ a

unique v ∈ Vs2
σ,τ (Ω) s.t.

∀ ϕ ∈ Vs′2
σ,τ (Ω),

∫
Ω

curl v · curl ϕ dx = 〈L, ϕ〉

which implies again

curl u = curl v in Ω.

Therefore, we get, u ∈ Lp∗1 (Ω) ↪→ Ls2(Ω), curl u ∈ Ls2(Ω), div u = 0
in Ω and u · n = 0 on Γ; which implies u ∈W1,s2(Ω). If s2 ≥ p, we
are done. Otherwise, s2 = p2 and we proceed next.

Step (k+1). Proceeding similarly, we get u ∈ Vpk+1
σ,τ (Ω) with

1
pk+1

= 2
3

(
k+1
2+ε −

k
2 + 1

4

)
(where in each step, we assumed pk < 3)

which also satisfies, for all ϕ ∈ Vp′k+1
σ,τ (Ω),∫

Ω
curl u · curl ϕ dx = 〈`, ϕ〉 −

∫
Γ
αuτ · ϕτ ds+ 2

∫
Γ

Λu · ϕ ds.
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Now choose k = [ 1
ε −

1
2 ] + 1 such that pk+1 ≥ 3 ≥ p (where [a] stands

for the greatest integer less than or equal to a). Hence u ∈W1,p(Ω).

Case (II) : p > 3.

From the previous case, we get that u ∈W1,3(Ω) which implies
uτ ∈ Ls(Γ) for all 1 < s <∞. Then by similar argument (and in one
iteration) we can deduce u ∈ Vp

σ,τ (Ω) which solves the problem (0.12).

p<2.

Consider the operator A ∈ L(Vp
σ,τ (Ω), (Vp′

σ,τ (Ω))′), associated to the
bilinear form a, defined as, 〈Aξ, ϕ〉 = a(ξ, ϕ) . As described above, for
p ≥ 2, the operator A is an isomorphism from Vp

σ,τ (Ω) to (Vp′

σ,τ (Ω))′.
Then the adjoint operator, which is equal to A is an isomorphism
from Vp′

σ,τ (Ω) to (Vp
σ,τ (Ω))′ for p′ ≤ 2. This means that the operator

A is an isomorphism for p ≤ 2 also, which ends the proof.
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In particular, choosing 〈`, ϕ〉 =
∫

Ω f · ϕ dx+ 〈h, ϕ〉Γ in the above
theorem, we get the following existence result.

Theorem

Let Ω be C2,1, 1 < p <∞ and f ∈ Lr(p)(Ω), h ∈W− 1
p ,p(Γ),

α ∈ Lt(p)(Γ) satisfying (0.2)-(0.3). Then the Stokes problem (S) has a
unique solution (u, π) ∈W1,p(Ω)× Lp0(Ω).

Also, the general theorem yields the following interesting Inf-Sup
condition.
Inf-Sup condition : for 1 < p <∞ , ∃γ = γ(Ω, p, α) > 0 such that

inf
ϕ∈Vp′

σ,τ (Ω)
ϕ6=0

sup
ξ∈Vp

σ,τ (Ω)
ξ 6=0

2
∫

Ω D(ξ) : D(ϕ) dx+
∫

Γ αξτ · ϕτ ds
‖ξ‖Vp

σ,τ (Ω) ‖ϕ‖Vp′
σ,τ (Ω)

≥ γ (0.16)

when Ω is not axisymmetric or α 6= 0.

Question: Is it possible to obtain γ in the above inf-sup condition
independent of α ?

We will address it later !
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Next we discuss the Lp estimates of the solution.
Estimate

Let p > 2. The solution (u, π) ∈W1,p(Ω)× Lp(Ω) of problem (S)
satisfies the estimates:
(I) if Ω is not axisymmetric, then

‖u‖W1,p(Ω)+‖π‖Lp(Ω) ≤ C(Ω)
(

1 + ‖α‖2Lt(p)(Γ)

)(
‖f‖Lr(p)(Ω) + ‖h‖

W− 1
p
,p(Γ)

)
(II) if Ω is axisymmetric and

α ≥ α∗ > 0 on Γ0 ⊆ Γ, then

‖u‖W1,p(Ω)+‖π‖Lp(Ω) ≤ C(Ω)
(

1 + ‖α‖2Lt(p)(Γ)

)(
‖f‖Lr(p)(Ω) + ‖h‖

W− 1
p
,p(Γ)

)

α ≥ 0 and f ,h satisfy the condition:∫
Ω

f · β dx+ 〈h, β〉Γ = 0

then,
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‖u‖W1,p(Ω)+‖π‖Lp(Ω) ≤ C(Ω)
(

1 + ‖α‖2Lt(p)(Γ)

)(
‖f‖Lr(p)(Ω) + ‖h‖

W− 1
p
,p(Γ)

)
.

Idea of the proof : To derive the estimates, we choose some suitable
compactness argument. As it is similar to the other cases and follows
from different H1-estimate, we sketch the proof of the first estimate.

Consider that Ω is not axisymmetric. Without loss of generality, we
also assume h = 0.

Case 2<p<3 : We know u ∈W1,p(Ω). That means uτ ∈ Ls(Γ)
where 1

s = 3
2p −

1
2 . Also α ∈ L

2+ε(Γ). Hence, αuτ ∈ Lq(Γ) with
1
q = 1

s + 1
2+ε <

3
2p . But as Lq(Γ) ↪→W− 1

p ,p(Γ), we get
αuτ ∈W− 1

p ,p(Γ).
Now from the relation,

Lq(Γ) ↪→
compact

W− 1
p ,p(Γ) ↪→

continuous
H− 1

2 (Γ)
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we can write, for any δ > 0, ∃ a constant C = C(p, ε,Ω) (independent
of δ) such that

‖v‖
W− 1

p
,p(Γ)

≤ δ ‖v‖Lq(Γ) + C

δ
‖v‖

H−
1
2 (Γ)

∀ v ∈ Lq(Γ) .

Choosing v = αuτ we get, using Hölder inequality and trace theorem,

‖αuτ‖W− 1
p
,p(Γ)

≤ δ ‖αuτ‖Lq(Ω) + C

δ
‖αuτ‖H−

1
2 (Γ)

≤ C1δ ‖α‖L2+ε(Γ)‖u‖W1,p(Ω) + C2
C

δ
‖α‖L2(Γ)‖u‖H1(Ω).

Now, using the regularity result from Amrouche-Rejaiba, we can get
that

‖u‖W1,p(Ω) + ‖π‖Lp(Ω)

≤ C
(
‖f‖Lr(p)(Ω) + ‖αuτ‖W− 1

p
,p(Γ)

)
≤ C ‖f‖Lr(p)(Ω) + C1δ‖α‖L2+ε(Γ)‖u‖W1,p(Ω) + C2

δ
‖α‖L2(Γ)‖u‖H1(Ω).
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Choose δ > 0 small enough such that 1− δC1‖α‖L2+ε(Γ) = 1
2 i.e.

δ = 1
2C1‖α‖L2+ε(Γ)

. Thus we get,

‖u‖W1,p(Ω) + ‖π‖Lp(Ω)

≤ 2C1 ‖f‖Lr(p)(Ω) + C2 ‖α‖L2(Γ)‖α‖L2+ε(Γ)‖u‖H1(Ω)

≤ C(1 + ‖α‖2L(2+ε)(Γ))‖f‖Lr(p)(Ω).

Case p ≥ 3 : The analysis is exactly similar to the previous case, just
based on different embedding results.

Theorem ( Strong solution)

Ω is C2,1 and 1 < p <∞. f ∈ Lp(Ω), h ∈W1− 1
p ,p(Γ) with h · n = 0

on Γ and

α ∈

{
W

1− 1
3
2 +ε

, 32 +ε
(Γ) if 1 < p ≤ 3

2
W 1− 1

p ,p(Γ) if p > 3
2

satisfying (0.2)-(0.3). Then the Stokes problem (S) has a unique
solution (u, π) ∈W2,p(Ω)×W 1,p(Ω)/R.
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Limiting cases

Now we discuss some limiting cases of the system{
−∆uα +∇πα = f , div uα = 0 in Ω
uα · n = 0, 2 [D(uα)n]τ + α uατ = h on Γ (0.17)

Theorem (α tends to 0)

Let p ≥ 2 and f ∈ Lr(p)(Ω), h ∈W− 1
p ,p(Γ) s.t. h · n = 0 on Γ,

α ∈ Lt(p)(Γ) satisfying (0.2)-(0.3) and when Ω is axisymmetric, the
following compatibility condition is assumed,

〈f , β〉Ω + 〈h, β〉Γ = 0 . (0.18)

Then as α→ 0 in Lt(p)(Γ),

(uα, πα)→ (u0, π0) in W1,p(Ω)× Lp(Ω)

where (u0, π0) is a solution of the following system
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{
−∆u +∇π = f , div u = χ in Ω
u · n = g, 2 [D(u)n]τ = h on Γ .

(0.19)

Idea of the proof : Note that when Ω is axisymmetric, to expect
the limiting system to be (0.19), we must assume the compatibility
condition (0.18) since this is the necessary condition for the existence
of solution of the system (0.19).

Let α→ 0 in Lt(p)(Γ) i.e. except the case when α ≥ α∗ > 0 in (0.3b).
Now from the Lp-estimates, we get that (uα, πα) is bounded in
W1,p(Ω)× Lp(Ω). Then ∃ (u0, π0) ∈W1,p(Ω)× Lp(Ω) such that

(uα, πα) ⇀ (u0, π0) weakly in W1,p(Ω)× Lp(Ω).

It can be easily shown that (u0, π0) is the unique solution of the
Stokes problem (0.19) with Navier boundary condition, corresponding
to α = 0.
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Indeed, since (uα, πα) is the solution of (0.17), it satisfies the weak
formulation (0.4). Now as explained before, uα ⇀ u0 in W1,p(Ω)
implies

uατ ⇀ u0τ in Ls(Γ)

and because α→ 0 in Lt(p)(Γ),

αuατ ⇀ 0 in Lm
′
(Γ).

Hence in the weak formulation (0.4), the boundary term in the left
hand side goes to 0. So passing to the limit, u0 satisfies,

∀ ϕ ∈ Vp′

σ,τ (Ω), 2
∫

Ω
D(u0) : D(ϕ) dx =

∫
Ω

f · ϕ dx+ 〈h, ϕ〉Γ .

Now by taking difference between the system (0.17) and the limiting
system (0.19), we get,{
−∆(uα − u0) +∇(πα − π0) = 0, div (uα − u0) = 0 in Ω ,

(uα − u0) · n = 0, 2 [D(uα − u0)n]τ + α(uα − u0)τ = −αu0τ on Γ .
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Once again using the usual Lp-estimates for the above system and
also using Hölder inequality and trace theorem, we obtain

‖uα − u0‖W1,p(Ω) + ‖πα − π0‖Lp(Ω)

≤ C(Ω) ‖αu0τ‖W− 1
p
,p(Γ)

≤ C(Ω) ‖α‖Lt(p)(Γ)‖u0‖W1,p(Ω) .

Hence, uα − u0 and πα − π0 both tend to zero in the same rate as α.

Theorem (α tends to ∞)

Let f ∈ L2(Ω), h ∈ H 1
2 (Γ) and α is a constant satisfying (0.2)-(0.3).

As α→∞, we have the convergence,

(uα, πα)→ (u∞, π∞) in H1(Ω)× L2(Ω)

where (u∞, π∞) is the unique solution of the Stokes problem with
Dirichlet boundary condition,

−∆u +∇π = f in Ω ,

div u = 0 in Ω ,

u = 0 on Γ .
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Idea of the proof :

The proof is very much similar to the previous theorem. The key
point is to write the system in the following way

−∆uα +∇πα = f in Ω
div uα = 0 in Ω
uα = 1

α (h− 2[D(uα)n]τ ) on Γ .

Then using the good H2-estimate as we deduced before, we can show
the existence of a weak limit which solves the Stokes system with
Dirichlet boundary condition and finally taking the differences
between the two systems, we can deduce the strong convergence.

Theorem (α less regular)

Let f ∈ L 6
5 (Ω),h ∈ H− 1

2 (Γ) with h · n = 0 on Γ and α ∈ L 4
3 (Γ)

satisfying (0.2)-(0.3). Then the Stokes problem (S) has a solution
(u, π) in H1(Ω)× L2(Ω).
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The above result can be proved using the density of D(Γ) in L 4
3 (Γ)

and from the good estimates (independent of α) in H1(Ω).

Now we want to discuss the question, we posed before, about the
dependence of the constant in the Inf-Sup condition (0.16).

Claim : Let Ω be C2,1. For 1 < p <∞ and for any α > 0 constant,
there exists γ > 0, independent of α such that

inf
ϕ∈Vp′

σ,τ (Ω)
ϕ6=0

sup
u∈Vp

σ,τ (Ω)
u 6=0

2
∫

Ω D(u) : D(ϕ) dx+
∫

Γ αuτ · ϕτ ds
‖u‖Vp

σ,τ (Ω) ‖ϕ‖Vp′
σ,τ (Ω)

≥ γ.

Idea of the proof. First we claim that the constant γ(α) in (0.16) is
decreasing with respect to α

i.e. α1 ≤ α2 implies γ(α1) ≥ γ(α2)

which implies directly our main claim ! The Inf-Sup condition (0.16)
implies that ∃ a unique u ∈ Vp

σ,τ (Ω) s.t. for any ` ∈
[
Vp′

σ,τ (Ω)
]′
,

Au = `
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and
‖u‖W1,p(Ω) ≤

1
γ(α) ‖`‖

[
Vp′
σ,τ (Ω)

]′ (0.20)

where

〈Au, ϕ〉 = 2
∫

Ω
D(u) : D(ϕ) dx+

∫
Γ
αuτ · ϕτ ds ∀ϕ ∈ Vp′

σ,τ (Ω).

Now for p = 2, choosing ϕ = u, we get,

2
∫

Ω
|D(u)|2 dx+ α

∫
Γ
|uτ |2 ds = 〈`,u〉 ≤ ‖`‖[V2

σ,τ (Ω)]′‖u‖H1(Ω).

So for Ω not axisymmetric, we obtain,

2
∫

Ω
|D(u)|2 dx+ α

∫
Γ
|uτ |2 ds ≤ C(α) ‖`‖[V2

σ,τ (Ω)]′‖D(u)‖L2(Ω).

Thus comparing with the estimate (0.20), we can conclude that as α
increases, 1

γ(α) also has to increase and hence γ(α) decreases.
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Non-linear problem
{
−∆u + u · ∇u +∇π = f , div u = 0 in Ω,
u · n = 0, 2 [D(u)n]τ + α uτ = h on Γ.

(NS)

Let 1 < p <∞ and f ∈ Lr(p)(Ω),h ∈W− 1
p ,p(Γ) with h · n = 0 on Γ

and α ∈ Lt(p)(Γ) satisfying (0.2)-(0.3). Then
(u, π) ∈W1,p(Ω)× Lp(Ω) satisfies (NS) in the sense of distribution is
equivalent to:
u ∈ Vp

σ,τ (Ω) such that for all ϕ ∈ Vp′

σ,τ (Ω),

2
∫

Ω
D(u) : D(ϕ) dx+b(u,u, ϕ)+

∫
Γ
αuτ ·ϕτ ds =

∫
Ω

f ·ϕ dx+ 〈h, ϕ〉Γ.

(0.21)
where b(u,v,w) =

∫
Ω (u · ∇) v ·w dx.

We first give some interesting properties of the operator b.
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Lemma
The trilinear form b is defined and continuous on
V2
σ,τ (Ω)×V2

σ,τ (Ω)×V2
σ,τ (Ω). Also, we have

b(u,v,v) = 0 (0.22)

and
b(u,v,w) = −b(u,w,v) ∀ u,v,w ∈ V2

σ,τ (Ω) .

Also note that

b(u,u, β) = 0 and b(β, β,u) = 0.

Now we give the existence and estimate of generalized solution of the
Navier-Stokes problem (NS).

Theorem

Let p ≥ 2 and f ∈ Lr(p)(Ω), h ∈W− 1
p ,p(Γ) with h · n = 0 on Γ,

α ∈ Lt(p)(Γ) satisfying (0.2)-(0.3). Then the problem (NS) has a
solution (u, π) belonging to W1,p(Ω)× Lp(Ω).
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Estimate.
In the Hilbert case, we have the following estimates as in the linear
problem.
(I) if Ω is not axisymmetric, then

‖u‖H1(Ω) + ‖π‖L2(Ω) ≤ C(Ω)
(
‖f‖

L
6
5 (Ω)

+ ‖h‖
H−

1
2 (Γ)

)
(II) if Ω is axisymmetric and

α ≥ α∗ > 0 on Γ0 ⊆ Γ, then

‖u‖H1(Ω) + ‖π‖L2(Ω) ≤
C(Ω)

min{2, α∗}

(
‖f‖

L
6
5 (Ω)

+ ‖h‖
H−

1
2 (Γ)

)
f ,h satisfy the condition:∫

Ω
f · β dx+ 〈h, β〉Γ = 0

then, the solution u satisfies
∫

Γ αu · β ds = 0 and

‖D(u)‖2L2(Ω) +
∫

Γ
α|uτ |2 ds ≤ C(Ω)

(
‖f‖

L
6
5 (Ω)

+ ‖h‖
H−

1
2 (Γ)

)2
.
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Moreover, if α is a constant, then

‖u‖H1(Ω) + ‖π‖L2(Ω) ≤ C(Ω)
(
‖f‖

L
6
5 (Ω)

+ ‖h‖
H−

1
2 (Γ)

)
.

Idea of the proof.

p = 2. The existence of solution can be shown using standard
arguments applying the Galerkin method and Brower’s fixed
point theorem.

p > 2. We can get the existence of solution by using repetitively
the regularity results of the Stokes system.

And the estimates follows from the weak formulation exactly by
the same argument as in the linear problem due to the property
(0.22) of the trilinear form b.

Finally we give some results of the limiting problems corresponding to
the non-linear system.
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Theorem (α tends to 0)
Let (uα, πα) be the solution of (NS) where

f ∈ L6/5(Ω),h ∈ H− 1
2 (Γ) s.t. h · n = 0 on Γ, α ∈ L2(Γ).

Also, in addition, assume that when Ω is axisymmetric, α is a
constant and the following compatibility condition is satisfied,

〈f , β〉Ω + 〈h, β〉Γ = 0 .

Then we have the convergence,

(uα, πα)→ (u0, π0) in H1(Ω)× L2(Ω) as α→ 0 in L2(Γ)

where (u0, π0) is a solution of the following Navier-Stokes problem{
−∆u + u · ∇u +∇π = f , div u = 0 in Ω ,

u · n = 0, 2 [D(u)n]τ = h on Γ .
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Theorem (α tends to ∞)
Let (uα, πα) be the solution of (NS) where

f ∈ L 6
5 (Ω),h ∈ H− 1

2 (Γ) s.t. h · n = 0 on Γ and α is a constant .

Then as α→∞, we have the convergence,

(uα, πα) ⇀ (u∞, π∞) weakly in H1(Ω)× L2(Ω)

where (u∞, π∞) is a solution of the Navier-Stokes problem with
Dirichlet boundary condition,

−∆u + u · ∇u +∇π = f in Ω
div u = 0 in Ω
u = 0 on Γ .

(0.23)

If f ∈ Lq(Ω) with q > 6
5 , then

(uα, πα)→ (u∞, π∞) in H1(Ω)× L2(Ω).
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Thank You

C. AMROUCHE Stokes equation with Navier Boundary Condition and some limiting cases


