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I. ONE-DIMENSIONAL EXAMPLE
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Figure: 1. Physical setting.



Problem P1d . Find a displacement field u : [0, L]→ R and a
stress field σ : [0, L]→ R such that

σ(x) = F u′(x) for x ∈ (0, L),

σ′(x) + f (x) = 0 for x ∈ (0, L),

u(0) = 0,

u(L) ≤ g ,

σ(L) = 0 if u(L) < 0

−σ(L) ∈ [0,P] if u(L) = 0

−σ(L) = P + p(u(L)) if 0 < u(L) < g

−σ(L) ≥ P + p(u(L)) if u(L) = g


.
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Figure: 2. The contact conditions.



We have four posibilities:

a) u(L) < 0 =⇒ σ(L) = 0 : separation, no reaction on x = L.

b) u(L) = 0 =⇒ −σ(L) ∈ [0,P] : contact, reaction towards the
rod, no penetration.

c) 0 < u(L) < g =⇒ −σ(L) = P + p(u(L)) : partial penetration.

d) u(L) = g =⇒ −σ(L) ≥ P + p(u(L)) : the rigid-elastic layer is
completely penetrated; the reaction of the rigid body is active.



Denote:

V = { v ∈ H1(0, L) | v(0) = 0 },

(u, v)V =
∫ L

0 u′ v ′ dx ∀ u, v ∈ V ,

‖ · ‖V - the associated norm,

V ∗ - the dual of V ,

〈·, ·〉 - the duality pairing between V ∗ and V .

q : R→ R, q(r) =

∫ r

0
p(s) ds for all r ∈ R,



Kg = { u ∈ V | u(L) ≤ g },

A : V → V ∗, 〈Au, v〉 =

∫ L

0
F(u′) v ′ dx for all u, v ∈ V ,

π : V → L2(0, L), πv = v for all v ∈ V ,

ϕ : V → R, ϕ(v) = Pv(L)+ for all v ∈ V ,

j : V → R, j(v) = q(v(L)) for all v ∈ V .

Problem P1d
V . Find a displacement field u ∈ Kg such that

〈Au, v−u〉+ϕ(v)−ϕ(u)+j0(u; v−u) ≥ (f , πv−πu)L2(0,L) ∀ v ∈ Kg .



II. EXISTENCE AND UNIQUENESS

Problem P. Given f ∈ Y and g > 0, find u ∈ Kg such that

〈Au, v−u〉+ϕ(u, v)−ϕ(u, u)+j0(u; v−u) ≥ (f , πv−πu)Y ∀ v ∈ Kg .

Here:

X - reflexive Banach space of dual X ∗,

K ⊂ X , Kg = gK ,

A : X → X ∗, ϕ : X × X → R, j : X → R,

Y - Hilbert space with the inner product (·, ·)Y ,

π : X → Y .



Assumptions

(1) K is a nonempty, closed and convex subset of X .

(2)


A : X → X ∗ is strongly monotone and Lipschitz
continuous, i.e.,

〈Au − Av , u − v〉 ≥ mA‖u − v‖2
X ∀ u, v ∈ X with mA > 0,

‖Au − Av‖X∗ ≤ LA ‖u − v‖X ∀ u, v ∈ X with LA > 0

(3)

{
π : X → Y is a linear continuous operator, i.e.,

‖πv‖Y ≤ d0 ‖v‖X ∀ v ∈ X with d0 > 0.



(4)



(a) ϕ(η, ·) : X → R is convex and l.s.c.,
for all η ∈ X .

(b) there exists αϕ > 0 such that

ϕ(η1, v2)− ϕ(η1, v1) + ϕ(η2, v1)− ϕ(η2, v2)
≤ αϕ‖η1 − η2‖X ‖v1 − v2‖X
for all η1, η2 ∈ X , v1, v2 ∈ X .

(5)



(a) j : X → R is locally Lipschitz.

(b) ‖∂j(v)‖X∗ ≤ c0 + c1 ‖v‖X for all v ∈ X with c0, c1 ≥ 0.

(c) there exists αj > 0 such that

j0(v1; v2 − v1) + j0(v2; v1 − v2) ≤ αj ‖v1 − v2‖2
X

for all v1, v2 ∈ X .



Theorem 1. Assume that (1)–(5) and, in addition, assume that

(6) αϕ + αj < mA.

Then, for each f ∈ Y and g > 0, Problem P has a unique solution
u = u(f , g).

Proof. We use an existence and uniqueness result proved in

S. Migórski, A. Ochal & M. Sofonea, A Class of
Variational-Hemivariational Inequalities in Reflexive Banach
Spaces, Journal of Elasticity 127 (2017), 151–178.



III. A CONVERGENCE RESULT

Assume that

(7) 0X ∈ K .

(8)



ϕ : X × X → R is such that

(a) ϕ(u, λv) = λϕ(u, v) ∀ u, v ∈ X , λ > 0.

(b) ϕ(v , v) ≥ 0 ∀ u, v ∈ X .

(c) ηn ⇀ η in X , un ⇀ u in X =⇒
lim sup [ϕ(ηn, v)− ϕ(ηn, un)] ≤ ϕ(η, v)− ϕ(η, u)
∀ v ∈ X .

(9)

{
j : X → R is such that un ⇀ u in X =⇒

lim sup j0(un; v − un) ≤ j0(u; v − u) ∀ v ∈ X .



(10)

{
π : X → Y is such that

vn ⇀ v in X =⇒ πvn → πv in Y .

Theorem 2. Assume that (1)–(10) hold and let {fn} ⊂ Y ,
{gn} ⊂ (0,+∞), f ∈ Y , g > 0. Then,

fn ⇀ f in Y , gn → g =⇒ u(fn, gn)→ u(f , g) in X .



Proof. i) The solution u = u(f , g) of Problem (P) satisfies the
bound

‖u‖X ≤
1

mA − αj

(
‖A0X‖X∗ + d0‖f ‖Y + c0

)
.

ii) Let {fn} ⊂ Y , and let g > 0. Then,

fn ⇀ f in Y =⇒ u(fn, g)→ u(f , g) in X .

iii) Let {fn} ⊂ Y be a bounded sequence and let {gn} ⊂ (0,+∞),
g > 0. Then,

gn → g =⇒ u(fn, gn)− u(fn, g)→ 0X in X .

iv) We apply steps ii) and iii) to conclude the proof. 2



IV. TWO OPTIMAL CONTROL PROBLEMS

First Optimal Control Problem

Let g > 0 be given and consider the set of admissible pairs

V1
ad = { (u, f ) ∈ Kg × Y such that (P) holds }.

Remark : (u, f ) ∈ V1
ad ⇐⇒ f ∈ Y and u = u(f , g).

Problem Q1. Find (u∗, f ∗) ∈ V1
ad such that

L1(u∗, f ∗) = min
(u,f )∈V1

ad

L1(u, f ).



Assume that

(11) L1(u, f ) = U(u) + F (f ) ∀ u ∈ X , f ∈ Y ,

(12)



U : X → R is continuous, bounded and positive, i.e.,

(a) vn → v in X =⇒ U(vn)→ U(v).

(b) U maps bounded sets in X into bounded sets in R.

(c) U(v) ≥ 0 ∀ v ∈ X .

(13)



F : Y → R is l.s.c., positive and coercive, i.e.,

(a) fn ⇀ f in Y =⇒ lim inf F (fn) ≥ F (f ).

(b) F (f ) ≥ 0 ∀ f ∈ Y .

(c) ‖fn‖Y → +∞ =⇒ F (fn)→ +∞.



Theorem 3. Assume that (1)–(13) hold and let g > 0 be given.
Then, there exists at least one solution (u∗, f ∗) ∈ V1

ad to Problem
Q1.

Proof. Let

(14) θ = inf
(u,f )∈V1

ad

L1(u, f ) ∈ R

and let {(un, fn)} ⊂ V1
ad be a minimizing sequence for the

functional L1, i.e.

(15) lim L1(un, fn) = θ.

We argue by contradiction and prove that the sequence {fn} is
bounded in Y . Therefore there exists f ∗ ∈ Y such that, passing to
a subsequence still denoted {fn}, we have

(16) fn ⇀ f ∗ in Y as n→ +∞.



Let u∗ = u(f ∗, g). Then, by the definition of the set V1
ad we have

(17) (u∗, f ∗) ∈ V1
ad .

Moreover, using (16) and Theorem 2 it follows that

(18) un → u∗ in X as n→ +∞.

We now use the weakly l.s.c. of L1 to deduce that

(19) lim inf L1(un, fn) ≥ L1(u∗, f ∗).

It follows now from (15) and (19) that θ ≥ L1(u∗, f ∗). In addition,
(14) and (17) yield θ ≤ L1(u∗, f ∗). We now combine these
inequalities to conclude the proof. 2



Second Optimal Control Problem

Let f ∈ Y and W = [g0,∞) where g0 > 0 is given. Define the set
of admissible pairs by

V2
ad = { (u, g) ∈ Kg ×W such that (P) holds }.

Remark : (u, g) ∈ V2
ad ⇐⇒ g ∈W and u = u(f , g).

Problem Q2. Find (u∗, g∗) ∈ V2
ad such that

L2(u∗, g∗) = min
(u,g)∈V2

ad

L2(u, g).



Assume that

(20) L2(u, f ) = U(u) + G (g) ∀ u ∈ X , g ∈W .

(21)



G : W → R is l.s.c., positive and coercive, i.e.,

(a) gn ⇀ g =⇒ lim inf G (gn) ≥ G (g).

(b) G (g) ≥ 0 ∀ g ∈W .

(c) gn → +∞ =⇒ G (gn)→ +∞.

Theorem 4. Assume that (1)–(10), (12), (20), (21) hold and let
f ∈ Y . Then, there exists at least one solution (u∗, g∗) ∈ V2

ad to
Problem Q2.

The proof of Theorem 4 is based on arguments similar to those
used on the proof of Theorem 3.



Convergence results for the optimal pairs

We focus on the dependence of the optimal pairs of problems Q1

and Q2 with respect the data g and f , respectively.

We start with the study of Problem Q1 and, to this end, we work
on the hypothesis of Theorem 3. Let gn be a perturbation of g ,
denote Kn = gnK and consider the following perturbation of
Problem P.

Problem Pn. Given f ∈ Y and gn > 0, find un ∈ Kgn such that

〈Aun, v − un〉+ ϕ(un, v)− ϕ(un, un) + j0(un; v − un)

≥ (f , πv − πun)Y ∀ v ∈ Kgn .



It follows from Theorem 1 that for each f ∈ Y and gn > 0 there
exists a unique solution un = u(f , gn) to Problem Pn. We define
set of admissible pairs by

V1n
ad = { (un, f ) ∈ Kgn × Y such that (Pn) holds }.

Then, optimal control problem associated to Problem Pn the
following.

Problem Q1
n. Find (u∗n, f

∗
n ) ∈ V1n

ad such that

L1(u∗n, f
∗
n ) = min

(un,fn)∈V1n
ad

L1(un, fn). (0.1)



Using Theorem 3 it follows that for each n ∈ N there exists at least
one solution (u∗n, f

∗
n ) ∈ V1n

ad to Problem Q1
n.

Theorem 5. Let {(u∗n, f ∗n )} be a sequence of solutions to
Problems Q1

n and assume that gn → g . Then, there exists a
subsequence of the sequence {(u∗n, f ∗n )}, again denoted {(u∗n, f ∗n )},
and a solution (u∗, f ∗) to Problem Q1 such that

un → u∗ in X and f ∗n ⇀ f ∗ in Y .

Proof. We use arguments of coercivity, compactness, and lower
semicontinuity.

Remark. A similar convergence result can be obtained in the
study of the optimal control Problem Q2.



V. BACK TO THE ONE-DIMENSIONAL
EXAMPLE

We consider Problem P1d in the particular case L = 1, Fε = Eε
with E > 0, p ≡ 0, f ∈ R. Also, below we use notation P = F .

Note that, since p ≡ 0, the weak formulation of this problem is in
a form of a variational inequality.



Problem P1d . Find a displacement field u : [0, 1]→ R and a stress
field σ : [0, 1]→ R such that

σ(x) = E u′(x) for x ∈ (0, 1),

σ′(x) + f = 0 for x ∈ (0, 1),

u(0) = 0,

u(1) ≤ g ,

σ(1) = 0 if u(1) < 0

−F < σ(1) < 0 if u(1) = 0

σ(1) = −F if 0 < u(1) < g

σ(1) ≤ −F if u(1) = g


.



For the variational analysis of Problem P1d we use the space

V = { v ∈ H1(0, 1) : v(0) = 0 }

and the set of admissible displacement field defined by

Kg = { u ∈ V | u(1) ≤ g }.

The variational formulation of Problem P1d is the following.

Problem P1d
V . Find a displacement field u ∈ Kg such that∫ 1

0
Eu′(v ′−u′) dx+Fv(1)+−Fu(1)+ ≥

∫ 1

0
f (v−u) dx ∀ v ∈ Kg .



A simple calculation allows to solve Problems P1d and P1d
V . Four

cases are possible, described below, together with the
corresponding mechanical interpretations.

a) The case f < 0. In this case the body force acts into the
oposite direction of the foundation and the solution of Problem
P1d is given by{

σ(x) = −fx + f ,

u(x) = − f
2E x2 + f

E x
∀ x ∈ [0, 1].

We have u(1) < 0 and σ(1) = 0 which shows that there is
separation between the rod and the foundation and, therefore,
there is no reaction on the point x = 1. This case corresponds to
Figure 3 a).
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Figure: 3. The rod in contact with a foundation:

a) The case f < 0; b) The case 0 ≤ f < 2F ;

c) The case 2F ≤ f < 2Eg + 2F ; d) The case 2Eg + 2F ≤ f .



b) The case 0 ≤ f < 2F . In this case the body force pushses the
rod towards the foundation and the solution of Problem P1d is
given by {

σ(x) = −fx + f
2 ,

u(x) = − f
2E x2 + f

2 x
∀ x ∈ [0, 1].

We have u(1) = 0 and −F < σ(1) ≤ 0 which shows that the rod is
in contact with the foundation and the reaction of the foundation
is towards the rod. Nevertheless, there is no penetration, since the
magnitude of the stress in x = 1 is under the yield limit F and,
therefore, the rigid-plastic layer behaves like a rigid. This case
corresponds to Figure 3 b).



c) The case 2F ≤ f < 2Eg + 2F . In this case the solution of
Problem P1d is given by{

σ(x) = −fx + f − F ,

u(x) = − f
2E x2 + f−F

E x
∀ x ∈ [0, 1].

We have 0 ≤ u(1) < g and −σ(1) = F . This shows that the
magnitude of the stress in x = 1 reached the yield limit and,
therefore, there is penetration into the rigid-plastic layer which now
behaves plastically. Nevertheless, the penetration is partially, since
u(1) < g . This case corresponds to Figure 3 c).



d) The case 2Eg + 2F ≤ f . In this case the solution of Problem
P1d is given by{

σ(x) = −fx + 2Eg+f
2 ,

u(x) = − f
2E x2 + 2Eg+f

2E x
∀ x ∈ [0, 1].

We have 0 ≤ u(1) = g and σ(1) ≤ −F which shows that the
rigid-plastic layer is completely penetrated and the point x = 1
reaches the rigid body. The magnitude of the reaction in this point
is larger then the yield limit F , i.e. |σ(1)| ≥ F since, besides the
reaction of the rigid-plastic layer, we add the reaction of the rigid
body which now becomes active. This case corresponds to Figure
3 d).



We now formulate the optimal control problem Q2 in the
one-dimensional case of Problem P1d , with the cost functional

L2(u, g) = α |u(1)− φ|+ β |g |,

where φ ∈ R, α > 0, β > 0, U = [g0,∞) with g0 > 0.

Problem Q1d
2 . Find (u∗, g∗) ∈ V2

ad such that

L2(u∗, g∗) = min
(u,g)∈V2

ad

L2(u, g).

Mechanical interpretation : given f , we are looking for a
thickness g ∈ U such that the displacement of the rod in x = 1 is
as close as possible to the “desired displacement” φ. Furthermore,
this choice has to fulfill a minimum expenditure condition.



We now take E = 1, f = 10, F = 2, φ = 4 and g0 = 1 which
implies that U = [1,+∞). It is easy to see that

(22) u(x) =

{
−5x2 + (g + 5) x if 1 ≤ g ≤ 3,

−5x2 + 8x if g > 3

for all x ∈ [0, 1] and, therefore,

L2(u, g) =

{
(β − α) g + 4α if 1 ≤ g ≤ 3,

β g + α if g > 3.



Conclusions

a) If β > α > 0 then the optimal control problem Q1d
2 has a

unique solution (u∗, g∗) where g∗ = 1 and u∗ is given by (22) with
g = g∗.

b) If β = α then the optimal control problem Q1d
2 has an infinity

of solutions of the form (u∗, g∗) where g∗ is any value in the
interval [1, 3] and u∗ is given by (22) with g = g∗.

c) If 0 < β < α then the optimal control problem Q1d
2 has a

unique solution (u∗, g∗) where g∗ = 3 and u∗ is given by (22) with
g = g∗.



VI. d-DIMENSIONAL EXAMPLE (d = 2, 3)

Figure: 4. Tire of the plane at landing.



Figure: 5. Some examples of contact problems.



Problem P. Find the displacement field u : Ω→ Rd and the
stress field σ : Ω→ Sd such that

σ = Fε(u) in Ω,

Divσ + f 0 = 0 in Ω,

u = 0 on Γ1,

σν = f 2 on Γ2,

uν ≤ g , σν + kν(uν) ≤ 0,
(σν + kν(uν))(uν − g) = 0.

}
on Γ3,

στ = 0 on Γ3.
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Figure: 6. Physical setting.



Notation

Ω - bounded domain of Rd (d = 2, 3);

Γ - boundary of Ω ;

Γ1, Γ2, Γ3 - partition of Γ such that meas Γ1 > 0 ;

ν - unit outward normal on Γ ;

Sd - space of second order symmetric tensors on Rd ;

ε - the deformation operator;

vν , v τ - normal and tangential components of v on Γ;

σν , στ - normal and tangential components of σ on Γ;



V = { v = (vi ) ∈ H1(Ω)d : vi = 0 on Γ1 },

Inner product:

(u, v)V =

∫
Ω
ε(u) · ε(v) dx ,

V ∗- dual of the space V ,

〈·, ·〉V ∗×V - duality pairing.



Here

kν(r) = qν(r) + pν(r) for all r ∈ R,

where qν : R→ R is a monotone function and pν : R→ R is a
nonmonotone locally Lipschitz function. Define ϕν : R→ R,
jν : R→ R and U ⊂ V by equalities

ϕν(r) =

∫ r

0
qν(s) ds, jν(r) =

∫ r

0
pν(s) ds ∀ r ∈ R,

U = {v ∈ V | vν ≤ g on Γ3} .



Variational formulation: Find u ∈ U such that

〈Au, v − u〉+ ϕ(v)− ϕ(u) + j0(u; v − u) ≥ 〈f , v − u〉 ∀ v ∈ U

where

A : V → V ∗, 〈Au, v〉 =

∫
Ω
Fε(u) · ε(v) dx for u, v ∈ V ,

ϕ : V → R, ϕ(v) =

∫
Γ3

ϕν(vν) dΓ for v ∈ V ,

j : V → R, j(v) =

∫
Γ3

jν(vν) dΓ for v ∈ V ,

〈f , v〉 =

∫
Ω

f 0 · v dx +

∫
Γ3

f 2 · v dx for v ∈ V .



Remark. Our abstract results (existence, uniqueness, convergence,
control) can be applied in the study of this problem, under
appropriate assumption on the data.



Numerical simulations

qν(r) = αβr+, r ∈ R,

pν(r) = α p(r) where p(r) =


0 if r < 0,

r if r ∈ [0, 1],

2− r if r ∈ (1, 2],

r − 2 if r > 2.

If 0 ≤ β < 1 then kν = qν + pν is not a monotone function =⇒
purely hemivariational inequality.

If β ≥ 1 then kν = qν + pν is a monotone function =⇒ purely
variational inequality.
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Figure: 7. Reference configuration of the two-dimensional body.



Figure: 8. Deformed mesh and interface forces for α = 80 and β = 2
(normal compliance, monotone case).



Figure: 9. Deformed mesh and interface forces for α = 20 and β = 2
(unilateral contact, monotone case).



Figure: 10. Deformed mesh and interface forces for α = 70 and β = 0.5
(normal compliance, nonmonotone case).



Figure: 10. Deformed mesh and interface forces for α = 50 and β = 0.5
(unilateral contact, nonmonotone case).



VII. REFERENCES

M. Sofonea, Optimal Control of a Class of
Variational-Hemivariational Inequalities in Reflexive Banach
Spaces, submitted.

W. Han, M. Sofonea, & M Barboteu, Numerical Analysis of
Elliptic Hemivariational Inequalities, SIAM Journal of
Numerical Analysis 55 (2017), 640–663.
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Thank you for your attention!


