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. ONE-DIMENSIONAL EXAMPLE

0 0
L |t N
g rigid-elastic layer
foundation
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Figure: 1. Physical setting.



Problem P19, Find a displacement field u: [0,L] — R and a
stress field o: [0, L] — R such that

o(x)=Fud'(x) for x € (0,L),

o' (x)+ f(x) =0 for x € (0, L),

u(0) =0,
o(L) =0 if u(L) <0
oAl < g —o(L) € [0, P] if u(L)=0
- —o(L)=P+p(u(l)) if O<u(l)<g
—o(L) > P+p(u(l)) if u(ll)=g



-o(L)

N

u(L)

Figure: 2. The contact conditions.



We have four posibilities:

a) u(L) <0 = o(L) =0 : separation, no reaction on x = L.

b) u(L) =0 = —o(L) € [0, P] : contact, reaction towards the
rod, no penetration.

c)0<u(l) < g = —o(L) =P+ p(u(L)) : partial penetration.

d) u(l) =g = —o(L) > P+ p(u(L)) : the rigid-elastic layer is
completely penetrated; the reaction of the rigid body is active.



Denote:

V ={veH(0,L)|v(0)=0},

(u, V)V:fOLU/V/dX Yu vev,
|- |v - the associated norm,

V* - the dual of V,

(-,-) - the duality pairing between V* and V.

qg:R =R, q(r):/ p(s) ds for all r € R,
0



Ke={ueV]ull)<g}
L

AV — V¥ (Au,v)z/ F()vdx  forall uyv eV,
0

7T:V—>L2(0,L), TvV=v forall v ¢ V,
e: V=R, o(v)=Py(L)"  forall v eV,

Jj: V=R, j(v)=q(v(L)) forall v € V.

Problem Pl?. Find a displacement field u € Kg such that

(Au, v—u)+p(v)—o(u)+°(u; v—u) > (fymv—mu)201) Vv EKg.



Il. EXISTENCE AND UNIQUENESS

Problem P. Given f € Y and g > 0, find u € Kg such that

(Au, v—u)+p(u, v)—p(u, u)+°(u; v—u) > (f,rv—ru)y Vv € K.

Here:

X - reflexive Banach space of dual X*,

KCX, Kg=gK,

A X=X p: XXX =R, j: X—=R,

Y- Hilbert space with the inner product (-, )y,
m: X =Y.



Assumptions

(1) K is a nonempty, closed and convex subset of X.

A X — X* is strongly monotone and Lipschitz
continuous, i.e.,

(2)

(Au—Av,u—v) > mallu—v|}% Yu,veX withma>0,
|Au— Av||x+ < Lallu—v|x Yu, veX withly>0

{ m: X — Y is a linear continuous operator, i.e.,

vy < dollvl]x VveX withdy>0.



(a) ¢(n,-): X = R is convex and l.s.c.,
for all n € X.

(b) there exists o, > 0 such that

p(m, v2) = ¢(m, vi) + (2, v1) = ¢(112, v2)
< apllm = mllx i — vallx
for all n1, m2 € X, vy, vo € X.
(a) j: X — R is locally Lipschitz.
(b) |9j(v)||x* < co+ c1||v]x for all v e X with cg, c; > 0.
(c) there exists o > 0 such that

Pviive —vi) + 2(vaivi — v2) < aj||vi — vol %
for all vi, v € X.



Theorem 1. Assume that (1)—(5) and, in addition, assume that
(6) ap +aj < ma.

Then, for each f € Y and g > 0, Problem P has a unique solution
u=u(f,g).

Proof. We use an existence and uniqueness result proved in

[§ S. Migérski, A. Ochal & M. Sofonea, A Class of
Variational-Hemivariational Inequalities in Reflexive Banach
Spaces, Journal of Elasticity 127 (2017), 151-178.



I1l. A CONVERGENCE RESULT

Assume that
(7) O0x € K.
p: X x X = R is such that
(a) @(u, Av) = Ap(u, v) Vu, veX, A>0.
(8) (b) o(v,v) >0 Vu,veX.
(

c) Mn in X, u,—=vu in X =

I|m sup [o(Nn, v) = ©(Mns un)] < (0, v) — @(n, u)
Vv e X.

9) j: X = Rissuch that uy, v in X —
limsup jO(un v — up) <%u;v—u) YveX.



m: X = Y is such that
(10)
Vo —=v In X — a@v,—>av in Y.

Theorem 2. Assume that (1)—(10) hold and let {f,} C Y,
{gn} C (0,400), f €Y, g>0. Then,

fo—=f in Y, go—g = u(fhg)—u(f,g) in X.



Proof. i) The solution u = u(f, g) of Problem (P) satisfies the
bound

lullx <

(IlA0x||Ix+ + dollflly + co).
ma — Q;

i) Let {f,} C Y, and let g > 0. Then,

fp—=f in Y = u(fhg)—u(f,g) in X

iii) Let {f,} C Y be a bounded sequence and let {g,} C (0, +00),
g > 0. Then,

gn— 8 = u(fn,gn)—u(fn,g) >0x in X.

iv) We apply steps ii) and iii) to conclude the proof. O



IV. TWO OPTIMAL CONTROL PROBLEMS

First Optimal Control Problem

Let g > 0 be given and consider the set of admissible pairs

VY, = {(u,f) € Ky x Y such that (P) holds }.
Remark : (u,f) € VI, <= f € Y and u = u(f,g).
Problem Q;. Find (u*,f*) € V1, such that

Lo(u*, F) = min La(u,f).
(u,f)evald



Assume that

(11) Li(u,f) = U(u) + F(f) Yue X, fey,
([ U: X — R is continuous, bounded and positive, i.e.,
a) vo >v in X = U(v,) — U(v).
(12) (a) (va) = U(v)

(b) U maps bounded sets in X into bounded sets in R.
[ () U(v)>0 VveX.

F:Y — Ris ls.c., positive and coercive, i.e.,

(a) fpb—=f in Y = liminf F(f,) > F(f).

b) F(f)>0 VfeY.

c) flly =+ = F(fy) = +o0.

(
(



Theorem 3. Assume that (1)—<13) hold and let g > 0 be given.
Then, there exists at least one solution (u*, f*) € V1, to Problem

Q1.

Proof. Let

14 0= inf Li(uf)eR
( ) (u,fl’;]GV;d 1(” )

and let {(un, f,)} C V1, be a minimizing sequence for the
functional L1, i.e.

(15) lim Li(up, fr) = 6.

We argue by contradiction and prove that the sequence {f,} is
bounded in Y. Therefore there exists f* € Y such that, passing to
a subsequence still denoted {f,}, we have

(16) fp—=f" in Y as n— +oo.



Let u* = u(f*, g). Then, by the definition of the set V1, we have
(17) (u*, F*) € Vi,

Moreover, using (16) and Theorem 2 it follows that

(18) u, —u* in X as n— 4oo.

We now use the weakly I.s.c. of £; to deduce that

(19) liminf Li(up, fa) > L1(uv*, 7).

It follows now from (15) and (19) that # > £i(u*, f*). In addition,
(14) and (17) yield 6 < L1(u*, f*). We now combine these
inequalities to conclude the proof. O



Second Optimal Control Problem

Let f € Y and W = [gp, 00) where gy > 0 is given. Define the set
of admissible pairs by

V2, = {(u,g) € Kz x W such that (P) holds }.

Remark : (u,g) € V2, < g € W and u = u(f,g).

Problem Q,. Find (u*,g*) € V2, such that

Lo(u*,g%) = min  Lo(u,g).
(u,g)EV‘fd



Assume that

(20) Lo(u,f)=U(u)+G(g) VYueX, geW.
G : W — Ris l.s.c., positive and coercive, i.e.,
(a) gn—g = liminf G(gn) > G(g).
(b) G(g)>0 VgeWw.
(c) gn— 400 = G(gn) = +o0.

(21)

Theorem 4. Assume that (1)—(10), (12), (20), (21) hold and let
f € Y. Then, there exists at least one solution (u*,g*) € V2, to
Problem Q>.

The proof of Theorem 4 is based on arguments similar to those
used on the proof of Theorem 3.



Convergence results for the optimal pairs

We focus on the dependence of the optimal pairs of problems Q;
and Q5 with respect the data g and f, respectively.

We start with the study of Problem ©Q; and, to this end, we work
on the hypothesis of Theorem 3. Let g, be a perturbation of g,
denote K, = g,K and consider the following perturbation of
Problem P.

Problem P,. Given f € Y and g, > 0, find u, € Kg, such that

<Auna vV — Un) + So(una V) - @(Una Un) +j0(un; v — Un)

> (fymv —7mup)y Vv e K.



It follows from Theorem 1 that for each f € Y and g, > 0 there
exists a unique solution u, = u(f, g,) to Problem P,. We define
set of admissible pairs by

VI8 = {(un, f) € Kg, x Y such that (P,) holds }.

a

Then, optimal control problem associated to Problem P, the
following.

Problem Q. Find (u},f}) € VI such that

Li(us, )= min Li(up, fy). (0.1)

(un,fa)EVLR



Using Theorem 3 it follows that for each n € N there exists at least
one solution (uj, f¥) € V17 to Problem O}

Theorem 5. Let {(u;, 1)} be a sequence of solutions to
Problems Q}, and assume that g, — g. Then, there exists a
subsequence of the sequence {(u}, f¥)}, again denoted {(u, )},
and a solution (u*,*) to Problem Q; such that

up —»u* in X and f7—f" in Y.
Proof. We use arguments of coercivity, compactness, and lower

semicontinuity.

Remark. A similar convergence result can be obtained in the
study of the optimal control Problem Q5.



V. BACK TO THE ONE-DIMENSIONAL
EXAMPLE

We consider Problem P9 in the particular case L =1, Fe = E¢
with E >0, p=0, f € R. Also, below we use notation P = F.

Note that, since p = 0, the weak formulation of this problem is in
a form of a variational inequality.



Problem P1?. Find a displacement field u: [0,1] — R and a stress
field o: [0,1] — R such that

o(x) = Ed'(x) for x € (0,1),

o' (x)+f=0 forxe(0,1),

o(1)=0 if u(l)<0
—F<o(l)<0 if w(l)=0
o(l)=—F if O0<u(l)<g
o(l) < —F if u(l)=g



For the variational analysis of Problem P19 we use the space
V={veH(0,1) : v(0)=0}
and the set of admissible displacement field defined by
Ke={ueV|ul)<g}).
The variational formulation of Problem P9 is the following.

Problem 73\1/"". Find a displacement field u € Ky such that

1 1
/ Eu' (V' —u') dx+Fv(1)t = Fu(1)* > / flv—u)dx VveKs.
0 0



A simple calculation allows to solve Problems P9 and P\l/d. Four
cases are possible, described below, together with the
corresponding mechanical interpretations.

a) The case f < 0. In this case the body force acts into the
oposite direction of the foundation and the solution of Problem
P19 is given by

{ o(x) = —fx+f,

Vx e [0,1].
u(x) = —5=x®+ L x 0.1

We have u(1) < 0 and o(1) = 0 which shows that there is
separation between the rod and the foundation and, therefore,
there is no reaction on the point x = 1. This case corresponds to
Figure 3 a).



A
1=1 f 11 ot
gl rigid-plastic layer g rigid-plastic layer
foundation foundation ;
tigid body tigid body
a) b)
(0] o
1=1 f I=1 f
g rigid-plastic layer gl rigid-plastic layer
foundation foundation
rigid body tigid body
<) d)

Figure: 3. The rod in contact with a foundation:

a) The case f < 0; b) The case 0 < f < 2F;
c) The case 2F < f < 2Eg + 2F; d) The case 2Eg +2F < f.



b) The case 0 < f < 2F. In this case the body force pushses the
rod towards the foundation and the solution of Problem P19 is
given by

U(X) = —fX—|— ga
{ ] Vx € [0,1].

u(x) = =4 x> + 5 x

We have u(1) =0 and —F < o(1) < 0 which shows that the rod is
in contact with the foundation and the reaction of the foundation
is towards the rod. Nevertheless, there is no penetration, since the
magnitude of the stress in x = 1 is under the yield limit F and,
therefore, the rigid-plastic layer behaves like a rigid. This case
corresponds to Figure 3 b).



c) The case 2F < f < 2Eg + 2F. In this case the solution of
Problem P19 is given by

{ o(x)=—fx+f—F, xe 0]

u(x) = —o= x2 + T x

We have 0 < u(1) < g and —o(1) = F. This shows that the
magnitude of the stress in x = 1 reached the yield limit and,
therefore, there is penetration into the rigid-plastic layer which now
behaves plastically. Nevertheless, the penetration is partially, since
u(1) < g. This case corresponds to Figure 3 c).



d) The case 2Eg + 2F < f. In this case the solution of Problem
P19 is given by

{ O'( ) —fx + 2Eg+f

2Eg+fX Vx € [0,1].

u(x) = —5= x> +

We have 0 < u(1) = g and o(1) < —F which shows that the
rigid-plastic layer is completely penetrated and the point x =1
reaches the rigid body. The magnitude of the reaction in this point
is larger then the yield limit F, i.e. |0(1)| > F since, besides the
reaction of the rigid-plastic layer, we add the reaction of the rigid

body which now becomes active. This case corresponds to Figure
3d).



We now formulate the optimal control problem Q5 in the
one-dimensional case of Problem P19, with the cost functional

Lo(u,g) = alu(l) — ¢| + Bgl,
where p € R, a >0, 8> 0, U = [gp, o0) with gp > 0.

Problem Q9. Find (u*,g*) € V2, such that

a

Lo(u*,g*)= min_ Lo(u,g).
(u,g)EVfd

Mechanical interpretation : given f, we are looking for a
thickness g € U such that the displacement of the rod in x =1 is
as close as possible to the “desired displacement” ¢. Furthermore,
this choice has to fulfill a minimum expenditure condition.



We now take E =1, f =10, F =2, ¢ =4 and gy = 1 which
implies that U = [1,+400). It is easy to see that

_X2 X ;
(22) u(x):{ PCtlgts)x i 1<g<s,

—5x2 + 8x if g>3
for all x € [0,1] and, therefore,

(B—a)g+4a if 1<g<3,
pg+a if g>3.

£2(u7g) = {



Conclusions

a) If 8> a > 0 then the optimal control problem Q%d has a
unique solution (u*, g*) where g* =1 and u* is given by (22) with
g§=¢g"

b) If 8 = « then the optimal control problem Q%d has an infinity
of solutions of the form (u*, g*) where g* is any value in the
interval [1,3] and u* is given by (22) with g = g*.

c) If 0 < 8 < « then the optimal control problem Q%d has a
unique solution (u*, g*) where g* = 3 and u* is given by (22) with
g=g"



VI. d-DIMENSIONAL EXAMPLE (d = 2,3)
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Figure: 4. Tire of the plane at landing.
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Figure: 5. Some examples of contact problems.



Problem P. Find the displacement field u : Q — R and the
stress field o : Q — S9 such that

o = Fe(u) in Q,
Dive +fo=0 in Q,
u=0 on Iy,
ov="f, on [,

u, <g, o,+k(u,)<0, }

(o0 + ky(uy))(u, — g) = 0. on I3,

o, =0 on [3.



Figure: 6. Physical setting.



Notation

Q - bounded domain of RY (d = 2, 3);

I - boundary of 2 ;

1, [, I'3 - partition of I such that meas '; > 0 ;

v - unit outward normal on [ ;

S - space of second order symmetric tensors on RY;
€ - the deformation operator;

Vy, vV - normal and tangential components of v on [;

oy, o - normal and tangential components of o on I;



V={v=(v)eH Q) :vi=00nTy},

Inner product:
(u,v)y = / e(u) - e(v) dx,
Q

V*- dual of the space V/,

(-, )v=xv - duality pairing.



Here
k,(r) = qu(r) + p(r) for all reR,

where g, : R — R is a monotone function and p, : R — R is a
nonmonotone locally Lipschitz function. Define ¢, : R — R,
Juv:R—= R and U C V by equalities

u(r) = /O “au(s)ds, ju(r) = /O "pu(s)ds VrER,

U={veV]|v <gonls}.



Variational formulation: Find u € U such that
(Au,v — u) 4+ o(v) — o(u) + %(u;v —u) > (Fv —u) Vv e U
where
AV =V (Au,v) = / Fe(u)-e(v)dx foru,veV,
Q
e: V=R, o(v) _/ ou(v)dl forveV,
3

J: V=R, j(v) :/ Ju(vy)dlh forveV,
s

<f,V>:/f0'VdX+ fo-vdx forveV.
Q rs



Remark. Our abstract results (existence, uniqueness, convergence,
control) can be applied in the study of this problem, under
appropriate assumption on the data.



Numerical simulations

qu(r) =apry, reR,

0 if r <O,
r if r €10,1],
L(r) = ap(r here r) =
pu(r)=ap(r) w p(r) 2 v ifre(Lal
r—2 ifr>2.

If 0 < B <1 then k, = q, + p, is not a monotone function —-
purely hemivariational inequality.

If 3> 1 then k, = g, + p, is a monotone function = purely
variational inequality.
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Thank you for your attention!



