

# Exact simulation of the first time a diffusion process overcomes a given threshold

#### S. Herrmann

University of Burgundy, Dijon, France

joint work with Cristina ZUCCA (University of Turin) and Nicolas MASSIN (University of Valenciennes)

May 19, 2022

#### Introduction

Simulation of random variables depending on the paths of a one-dimensional diffusion process: a challenging task.

$$dX_t = \sigma(X_t)dB_t + b(X_t)dt, \quad X_0 = x < L.$$

Aim: Generation of different variates can be considered:

- the value  $X_t$  at a fixed time t > 0.
- the first passage time (FPT) through a given threshold

$$\tau_L := \inf\{t \ge 0 : X_t = L\}, \quad x < L.$$

the exit time (ET) of an interval

$$\tau_I := \inf\{t \ge 0 : X_t \notin I\}, \quad x \in ]a, b[.$$

**Applications in different fields:** breaking times (reliability), times of ruin (insurance), neuroscience, barrier options (finance),...

**Different tools:** explicit expression of the pdf, approximation of the density, approximation of the stochastic process, rejection sampling...

Explicit expressions for the FPT  $\tau_L$  or for the ET  $\tau_I$ .

## Standard Brownian case ( $B_0 = 0$ ):

1. The optional stopping thm applied to  $M_t = \exp\{\lambda B_t - \frac{1}{2}\lambda^2 t\}$  leads to

$$\mathbb{E}[e^{-\lambda \tau_L}] = e^{-\sqrt{2\lambda}L}, \quad \lambda \ge 0.$$

Inversion of the Laplace transform:

where  $G \sim \mathcal{N}(0,1).$  Easy and exact simulation !

Hence  $\tau_I \sim L^2/G^2$ 

$$\mathbb{P}(\tau_L \in dt) = \frac{1}{\sqrt{2\pi t^3}} e^{-\frac{L^2}{2t}} dt, \quad t > 0.$$

2. Concerning  $\tau_I$  with I = [-1, 1], we know that:

$$ho_{ au}(t) = \sum_{n=0}^{+\infty} (-1)^n R_1(2n+1,t) \quad ext{with } R_1(n,t) := rac{2n}{t^{3/2}} \;\; \phi\Big(rac{n}{\sqrt{t}}\Big).$$

The following expansion also holds:

$$p_{\tau}(t) = \sum_{n=0}^{+\infty} (-1)^n R_2(2n+1,t)$$
 with  $R_2(n,t) := \frac{\pi n}{2} \exp\Big(-\frac{n^2 \pi^2}{8} t\Big)$ .

• When the transition probability of  $(X_t)$  has an explicit expression...

Voltera-type integral equation (see Buonocore, Nobile, Ricciardi)

The pdf  $f_L(t)$  of the FPT  $\tau_L$  satisfies a Voltera-type equation depending on the probability current of the diffusion process.

Closed form results for the Brownian motion and for the O-U process. **In general:** numerical approximation of the integral...

• General method: time discretization (Euler scheme).

$$X_{(n+1)\Delta} = X_{n\Delta} + \Delta b(X_{n\Delta}) + \sqrt{\Delta} \, \sigma(X_{n\Delta}) G_n, \quad n \geq 0.$$

 $\tau_L^{\Delta}$  the FPT of the **discrete-time process**: we often observe an overestimation of the FPT.

- 1 a shift of the boundary (Broadie-Glasserman-Kou, Gobet-Menozzi)
- 2 computation of the probability for a Brownian bridge to hit the boundary during a small time interval (Giraudo-Saccerdote-Zucca)

## Acceptance-rejection sampling: an exact simulation of the FPT

Principal idea: Let f and g two probability distribution functions, such that h(x) := f(x)/g(x) is upper-bounded by a constant c > 0.

Aim: simulation of X with pdf f.

- $\blacksquare$  Generate a rv Y with pdf g.
- 2 Set X = Y with conditional probab. h(Y)/c otherwise go back to 1.

For any positive measure function  $\psi$ :

$$\mathbb{E}[\psi(X)] = \int_{\mathbb{R}} \psi(x) f(x) \, dx = \int_{\mathbb{R}} \psi(x) h(x) g(x) \, dx = \mathbb{E}[\psi(Y) h(Y)]$$

**Important**: *h* should be bounded and explicit!

Not quite so simple: h is related to a series in particular situations.

The aim is to use this general procedure for specific variables:

- the diffusion value  $X_t$  at time t (Beskos & Roberts, 2005)
- the stopping times  $\tau_L$  (FPT) and the exit time  $\tau_I$

Remark: Lamperti's transform  $\Rightarrow$  simpler diffusion process

$$dX_t = dB_t + b(X_t) dt, \quad X_0 = x.$$

Regular drift b. Set 
$$\beta(x) = \int_0^x b(y) dy$$
 and  $\gamma := \frac{b^2 + b'}{2}$ .

1st Case: simulation of  $X_t$  for a given time t (Beskos & Roberts).

Using Girsanov's transformation and Itô's lemma:

$$\mathbb{E}_{\mathsf{x}}[\psi(\mathsf{X}_t)] = \mathbb{E}\Big[\psi(\mathsf{x} + \mathsf{B}_t)e^{\beta(\mathsf{x} + \mathsf{B}_t) - \int_0^t \gamma(\mathsf{x} + \mathsf{B}_s) \, ds}\Big] = \mathbb{E}[\psi(\mathsf{Y})h(\mathsf{Y})]$$

It permits to use a rejection sampling for Y whose distribution satisfies

$$g(y) := \frac{1}{\sqrt{2\pi t} \cdot g(\mathbb{R})} e^{\beta(y) - \frac{(y-x)^2}{2t}}, \quad \text{if } g(\mathbb{R}) < \infty,$$

associated with the weigth of acceptance given by

$$h(y) := g(\mathbb{R}) \cdot \mathbb{E}\Big[e^{-\int_0^t \gamma(x+B_s) \, ds} \Big| x + B_t = y\Big] = g(\mathbb{R}) \cdot \mathbb{E}\Big[e^{-\int_0^t \gamma(b_s^{x \to y}) \, ds}\Big].$$

Here  $(b_s^{x \to y}, 0 \le s \le t)$  stands for a Brownian bridge starting with the value x and ending in y at time t.

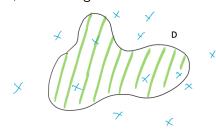
Proposal random variable: Y with p.d.f.  $g(y) := \frac{1}{\sqrt{2\pi t} \cdot g(\mathbb{R})} e^{\beta(y) - \frac{(y-x)^2}{2t}}$  accepted with the weight proportional to  $\mathbb{E}\Big[e^{-\int_0^t \gamma(b_s^{x \to y}) \, ds}\Big]$ .

### Intuitive algorithm:

- **1** Generate Y with density  $g \rightarrow y$
- Generate a path of a Brownian bridge
   -> b<sup>x→y</sup>.
- 3 Accept y with probability weight proportional to  $e^{-\int_0^t \gamma(b_s^{x \to y}) ds}$ .

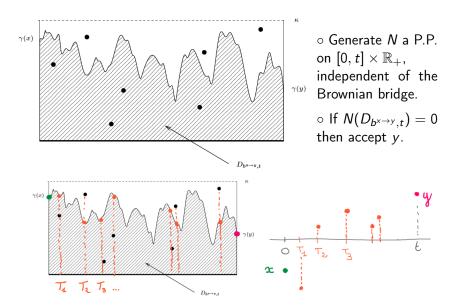
From now on, hyp:  $0 \le \gamma(\cdot) \le \kappa$ .

Poisson Process *N* with intensity  $\lambda$ , the Lebesgue measure on  $\mathbb{R}^2$ .



$$\mathbb{P}[N(D) = 0] = e^{-\lambda(D)}.$$

## How to accept y with probability $\propto e^{-\int_0^t \gamma(b_s^{x \to y}) \, ds}$ ? (BR)



## Exact simulation of $X_t$ – Algorithm $(BR)_t$

 $(Y_n)_{n\geq 1}$  i.i.d. with density g,  $(G_n)_{n\geq 1}$  i.i.d.  $\mathcal{N}(0,1)$ ,  $(E_n)_{n\geq 1}$  i.i.d.  $\mathcal{E}(\kappa)$ ,  $(U_n)_{n\geq 1}$  i.i.d.  $\mathcal{U}([0,1])$ . All sequences are independent.

Initialization: k = 0, n = 0.

**Step 1.** Set  $k \leftarrow k+1$  then Z=x,  $W=Y_k$  and  $\mathcal{T}=0$ .

**Step 2.** While T < t do:

- set  $n \leftarrow n + 1$
- $Z \leftarrow Z + \frac{E_n}{t-\mathcal{T}} W + \sqrt{\frac{E_n(t-\mathcal{T}-E_n)_+}{t-\mathcal{T}}} G_n \text{ and } \mathcal{T} \leftarrow \min(\mathcal{T}+E_n,t)$
- If  $(\mathcal{T} < t \text{ and } \kappa U_n < \gamma(Z))$  then go to Step 1.

**Outcome:** the random variable W.

**Theorem (Beskos-Roberts)** Under suitable hyp., the outcome W of Algorithm  $(BR)_t$  and the diffusion value  $X_t$  are identically distributed.

## 2nd Case: simulation of $\tau_L$ with L fixed (H. & Zucca, 2019).

Let us recall that  $X_0 = x$ ,

$$dX_t = dB_t + b(X_t) dt$$
,  $\beta(x) = \int_0^x b(y) dy$  and  $\gamma := \frac{b^2 + b'}{2}$ .

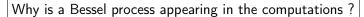
Combining the Girsanov transform and Itô's lemma permits to obtain:

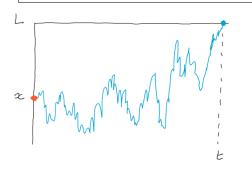
$$\mathbb{E}[\psi(\tau_L^X)\mathbf{1}_{\{\tau_L^X<\infty\}}] = \mathbb{E}\Big[\psi(\tau_L^B)\exp\left(\int_0^{\tau_L^B}b(B_s)dB_s - \frac{1}{2}\int_0^{\tau_L^B}b^2(B_s)ds\right)\Big]$$
$$= \mathbb{E}\Big[\psi(\tau_L^B)e^{\beta(L)-\beta(x)}e^{-\int_0^{\tau_L^B}\gamma(B_s)ds}\Big] = \mathbb{E}[\psi(\tau_L^B)h(\tau_L^B)]$$

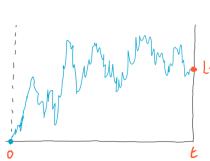
with

$$h(t) \propto \mathbb{E}\Big[e^{-\int_0^t \gamma(B_s)\,ds}\Big|B_0 = x,\, \tau_L^B = t\Big] = \mathbb{E}\Big[\exp{-\int_0^t \gamma(L-R_s)ds}\Big].$$

Here  $(R_t, t \ge 0)$  stands for a Bessel bridge of dimension 3 starting in 0 and ending with the value L - x at time t.







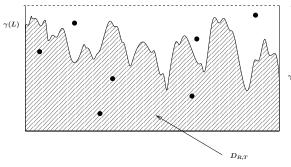
After a rotation of 180°...

## Heuristic algorithm for the generation of $\tau_L$ under the condition $0 \le \gamma(x) \le \kappa$ .

Step 1: Generate  $T = (L - x)^2/G^2$  with  $G \sim \mathcal{N}(0, 1)$ .

Step 2: Generate a Bessel bridge of dim 3.

$$D_{R,T} := \Big\{ (t,v) \in [0,T] \times \mathbb{R}_+ : v \le \gamma(L-R_t) \Big\}.$$



Step 3: Generate a P.P. N on  $[0,T] \times \mathbb{R}_+$ , indep. of the Bessel process.

Step 4: If  $N(D_{R,T}) = 0$  then accept T otherwise go to Step 1.

Exact simulation of  $\tau_L$  – Algorithm (*HZ*)

 $(G_n)_{n\geq 1}$  i.i.d.  $\mathcal{N}_3(0,\operatorname{Id})$ ,  $(e_n)_{n\geq 0}$  i.i.d  $\mathcal{E}(\kappa)$ ,  $(V_n)_{n\geq 1}$  i.i.d  $\mathcal{U}([0,1])$ ,  $(g_n)_{n\geq 1}$  i.i.d.  $\mathcal{N}(0,1)$ . All sequences are independent.

Initialization: k = 0, n = 0.

Step 1. 
$$k \leftarrow k+1$$
,  $\delta = (0,0,0)$ ,  $\mathcal{W} = 0$ ,  $\mathcal{T}_k \leftarrow (L-x)^2/g_k^2$ ,  $\mathcal{E}_0 = 0$  and  $\mathcal{E}_1 = e_n$ .

**Step 2.** While  $\mathcal{E}_1 \leq \mathcal{T}_k$  do:

- set  $n \leftarrow n + 1$
- $\bullet \delta \leftarrow \frac{T_k \mathcal{E}_1}{T_k \mathcal{E}_0} \delta + \sqrt{\frac{(T_k \mathcal{E}_1)(T_k \mathcal{E}_0)}{T_k \mathcal{E}_0}} G_n$
- If  $\kappa V_n \leq \gamma (L \parallel \mathcal{E}_1(L x)(1, 0, 0) / \mathcal{T}_k + \delta \parallel)$  then  $\mathcal{W} \leftarrow 1$  else  $\mathcal{W} \leftarrow 0$
- $\mathcal{E}_0 \leftarrow \mathcal{E}_1$  and  $\mathcal{E}_1 \leftarrow \mathcal{E}_1 + e_n$

**Step 3.** If W = 0 then  $\mathcal{Y} \leftarrow \mathcal{T}_k$  otherwise go to *Step 1*.

**Outcome:** the random variable  $\mathcal{V}$ .

#### Theorem

Under suitable conditions, the outcome  $\mathcal Y$  of Algorithm (HZ) and  $\tau_L$  are identically distributed.

## Efficiency of the algorithm.

**Rem.:** Be carefull with the generation of the PP: if you sample all points, their averaged number is  $\mathbb{E}[\kappa T] = \infty$ : efficiency to be improved!

Number of iterations (step 1):  $\mathbb{E}[\mathcal{I}] \leq \exp((L-x)\sqrt{2\kappa})$ .

- Concerning (L-x), linearization using space splitting.
- Concerning  $\kappa$ : if  $0 < \gamma_0 \le \gamma(x) \le \kappa$  for all  $x \in \mathbb{R}$ , then replace  $\gamma(\cdot) \leftarrow \gamma(\cdot) \gamma_0$ ,  $\kappa \leftarrow \kappa \gamma_0$  & introduce the generation of  $IG\left(\frac{L-x}{\sqrt{2\gamma_0}}, (L-x)^2\right)$  (Michael-Schucany-Haas).

Hyp. on  $\gamma$ , the average number of points used during the first iteration:

$$\mathbb{E}[\mathcal{N}_1] \le M_{\gamma,1} + \kappa M_{\gamma,2}(x^2 + (L-x)^{(1+r)/2}), \quad \text{for } x < L.$$

## Examples of generalization and numerics

**Example.**  $dX_t = (2 + \sin(X_t)) dt + dB_t$ ,  $X_0 = 0$ . We have  $0 \le \gamma \le 5$ .



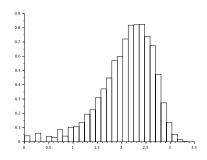
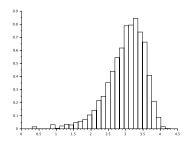


Figure: Histogram of the hitting time distribution for 10 000 simulations corresponding to the level L=2 and starting position  $X_0=0$  (left), histogram of the number of iterations in Algorithm (A1) in the  $\log_{10}$ -scale (right).



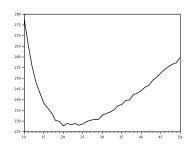


Figure: Number of random variables used in Algorithm (HZ-1) for 10 000 simulations with L=2,  $X_0=0$  in the  $\log_{10}$ -scale (left) and averaged number of random variables used in Algorithm (HZ-1) versus the number of slices k with  $X_0=0$  and L=5. The averaging uses  $10\,000$  simulations.

## Stopped diffusion processes:

- The algorithm (HZ) presented so far permits to observe  $\tau_L$  and consequently the event  $\tau_L < \mathbb{T}$  for  $\mathbb{T}$  any fixed time.
- Another algorithm (A) permits to generate the conditional distribution of

$$X_{\mathbb{T}}$$
 given  $au_L > \mathbb{T}$ .

## Algo (A) based on:

**I** Exact generation of the Brownian motion  $B_{\mathbb{T}}$  given  $\tau_L > \mathbb{T}$ . Pdf:

$$f_{\mathbb{T}}(x) = \frac{1}{\sqrt{\mathbb{T}}} \frac{\phi(x/\sqrt{\mathbb{T}}) - \phi((x-2L)/\sqrt{\mathbb{T}})}{\Phi(L/\sqrt{\mathbb{T}}) - \Phi(-L/\sqrt{\mathbb{T}})}, \quad x < L.$$

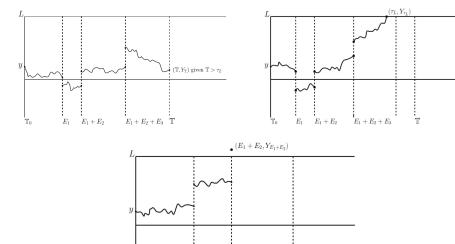
2 Rejection sampling: Girsanov's transform in a similar way as (HZ).

Combining Algo (HZ) (generation of  $\tau_L$ ) and (A) (conditional distribution of  $X_{\mathbb{T}}$  given  $\tau_L > \mathbb{T}$ ) permits to generate the first time a jump diffusion overcomes a given threshold L.

$$dX_t = b(X_{t-}) dt + \sigma(X_{t-}) dB_t + \int_{\mathcal{E}} j(t, X_{t-}, v) p_{\lambda}(dv \times dt), \quad t \geq 0.$$

- $p_{\lambda}(dv \times dt)$  is a Poisson measure on  $\mathcal{E} \times [0, T]$  whose intensity measure is given by  $\lambda(dv)dt$ ,  $\lambda$  being non negative finite.
- the jump rate corresponds to  $j: \mathbb{R}_+ \times \mathbb{R} \times \mathcal{E} \to \mathbb{R}$

We build a new algorithm which generates  $(\tau_L \wedge \mathbb{T}, X_{\tau_I \wedge \mathbb{T}})$ 



 $\mathbb{T}_0$   $E_1$   $E_1+E_2$   $\mathbb{T}$  Figure: Three typical paths representing different scenarios

3rd Case: simulation of  $\tau_I$  for a given I = [a, b] (H. & Zucca, 2020).

We recall that  $X_0 = x$ ,

$$dX_t = dB_t + b(X_t) dt$$
,  $\beta(x) = \int_0^x b(y) dy$  and  $\gamma := \frac{b^2 + b'}{2}$ .

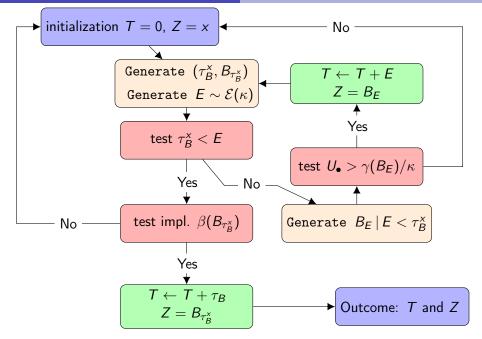
Using Girsanov's transformation and Itô's lemma:

$$\mathbb{E}[\psi(\tau_I^X, X_{\tau_I^X})] = \mathbb{E}\Big[\psi(\tau_I^B, X_{\tau_I^B})e^{\beta(B_{\tau_I^B}) - \beta(x)}e^{-\int_0^{\tau_I^B} \gamma(B_s) ds}\Big]$$
$$= \mathbb{E}[\psi(\tau_I^B, B_{\tau_I^B})h(\tau_I^B, B_{\tau_I^B})]$$

with

$$\begin{split} h(t,y) &\propto e^{\beta(y)} \mathbb{E} \Big[ e^{-\int_0^t \gamma(B_s) \, ds} \Big| B_0 = x, \, \tau_I^B = t, B_{\tau_I^B} = y \Big] \\ &= e^{\beta(y)} \mathbb{E} \Big[ e^{-\int_0^t \gamma(\xi_s) \, ds} \Big] \end{split}$$

where  $(\xi_s, 0 \le s \le t)$  is a constrained Brownian motion.



$$dX_t = b(X_t)dt + dB_t, \quad X_0 = x \in (a, b),$$

#### **Theorem**

- If  $\gamma(\cdot)$  is a non negative function on [a, b] and upper bounded by  $\kappa$ , then the outcome of the algorithm (Z, T) has the same distribution as  $(X_{\tau_I}, \tau_I)$ .
- lacksquare Moreover the global cost is given by  $\mathcal{N}_{\mathrm{tot}}^{\chi}$  satisfying::

$$\mathbb{E}[\mathcal{N}_{\mathrm{tot}}^{\mathsf{x}}] \leq C(t_c, t_e) \cosh\Big(\sqrt{\frac{\kappa}{2}}(b-a)\Big), \quad \forall x \in ]a, b[.$$

#### Generalization:

- 1 to any drift term  $b \in C^1([a, b])$ . The modified algorithm is based on an iterative procédure.
- 2 to any diffusion  $dX_t = b(X_t)dt + \sigma(X_t)dB_t$  using the Lamperti transform.

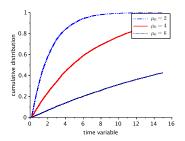


Figure: Empirical cumulative distribution function on [0,15] for the OU exit time of [-1,1] (10 000 simulations)

$$dX_t = -\mu_0 X_t dt + dB_t$$

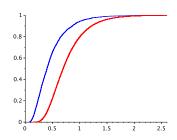


Figure: FET from [a, b] = [-1, 2] for the diffusion

$$dX_t = (2 + \sin(X_t)) dt + dB_t$$
 (sample size: 100 000).

#### To sum up...

- **1** Exact simulation of the first passage time for a continuous diffusion.
- $\mathbf 2$  Exact simulation of the first time a jump diffusion overcomes L
- 3 Exact simulation of the first exit time for continuous diffusion

## Related questions:

- **E**xit time from a domain in  $\mathbb{R}^d$  with  $d \geq 2$ .
- Exit time for nonlinear diffusions ???
- S. H. and C. Zucca, Exact simulation of the first-passage time of diffusions
- J. Sci. Comput. 79 (2019), no. 3, 1477-1504.
- S. H. and C. Zucca, Exact simulation of first exit times for one-dimensional diffusion processes, ESAIM M2NA 54 (2020), no.3, 811–844
- S. H. and C. Zucca, Exact simulation of diffusion first exit times: algorithm acceleration. J. Mach. Learn. Res. 23 (2022)
- S. H. and N. Massin, Exact simulation of the first passage time through a given level for jump diffusions (2021) arXiv:2106.05560