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Introduction

Introduction
Simulation of random variables depending on the paths of a
one-dimensional diffusion process: a challenging task.

dXt = O'(Xt)dBt + b(Xt)dt, XO =x<L.
Generation of different variates can be considered:

m the value X; at a fixed time t > 0.
m the first passage time (FPT) through a given threshold

7=inf{t>0: X, =L}, x<L
m the exit time (ET) of an interval
mo=inf{t >0: X ¢ 1}, x€la,bl.

Applications in different fields: breaking times (reliability), times of
ruin (insurance), neuroscience, barrier options (finance),...

Different tools: explicit expression of the pdf, approximation of the
density, approximation of the stochastic process, rejection sampling...
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Introduction

Explicit expressions for the FPT T, or for the ET ;.

Standard Brownian case (By = 0):

1. The optional stopping thm applied to M; = exp{\B; — %)@t} leads to

E[e ] = ef\/ﬁl‘, A>0.
Hence 7, ~ L?/G?

Inversion of the Laplace transform:
where G ~ N(0,1).

12
P(r. € dt) = e 2tdt, t>0. Easyand exact simulation !
2t3
2. Concerning 7; with [ = [—1,1], we know that:
<2 2n n
pr(t) = Y (-1)"Ra2n+ 1.t) with Rin,t) == 55 ¢<W)'
n=0
The following expansion also holds:
=2 ™n nm?
p-(t) = Z(—l)"R2(2n +1,t) with Ry(n, t) :== — exp ( — t).
= 2 8
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Introduction

e When the transition probability of (X;) has an explicit expression...

Voltera-type integral equation (see Buonocore, Nobile, Ricciardi)

The pdf fi(t) of the FPT 7, satisfies a Voltera-type equation depending
on the probability current of the diffusion process.

Closed form results for the Brownian motion and for the O-U process.
In general: numerical approximation of the integral...

e General method: time discretization (Euler scheme).
Xnina = Xnn + Ab(Xpa) + VA 0(Xna)Gn, 1> 0.
TLA the FPT of the discrete-time process: we often observe an

overestimation of the FPT.

a shift of the boundary (Broadie-Glasserman-Kou, Gobet-Menozzi)

computation of the probability for a Brownian bridge to hit the
boundary during a small time interval (Giraudo-Saccerdote-Zucca)
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Acceptance-rejection

Acceptance-rejection sampling: an exact simulation of the FPT

Principal idea: Let £ and g two probability distribution functions, such
that h(x) := f(x)/g(x) is upper-bounded by a constant ¢ > 0.
Aim: simulation of X with pdf f.

Generate a rv Y with pdf g.
Set X = Y with conditional probab. h(Y)/c otherwise go back to 1.

For any positive measure function :

E[$(X)] = /R B(x)F(x) dx = /R B )h(x)&(x) dx = E[b(Y)h(Y)]

Important: h should be bounded and explicit!
Not quite so simple: h is related to a series in particular situations.

The aim is to use this general procedure for specific variables:
m the diffusion value X; at time t (Beskos & Roberts, 2005)
m the stopping times 7, (FPT) and the exit time 7
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Acceptance-rejection

Remark: Lamperti’s transform = simpler diffusion process
dXy = dB: + b(X:¢) dt, Xo = x.

b2+b’

Regular drift b. Set = [y bly)dy and ~:

1st Case: simulation of X; for a given time t (Beskos & Roberts).

Using Girsanov's transformation and Ité's lemma:

Ex[p(X0)] = E[p(x + B)e 0 EI=Jo10c+B)&=] — B[y (y)(Y)]

It permits to use a rejection sampling for Y whose distribution satisfies

B( )_(yfx)z .
e’V if g(R) < oo,

gy) = \/27 t-g(R)

associated with the weigth of acceptance given by
h(y) := g(R) -E[e_ Jor(etBs)ds|y 4 B, — y} = g(R) - E[e_ b V(bg_w)ds]

Here (b: ", 0 < s < t) stands for a Brownian bridge starting with the
value x and ending in y at time t.

S.Herrmann (University of Burgundy) Dijon May 19, 2022 6 /24




Acceptance-rejection

2
Proposal random variable: Y with p.d.f. g(y) := m B -7
X—>y

accepted with the weight proportional to E[e‘ Jo 1(B577) ds |

Intuitive algorithm: Poisson Process N with intensity
Generate Y with density g —> y A the Lebesgue measure on R2.

Generate a path of a Brownian
bridge
-> bV,

Accept y with probability weight
proportional to e~ Jo /(B577) ds
—> area under the curve

N

From now on, |hyp: 0 < 7(:) < H.‘ P[N(D) = 0] = e D),
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o Generate N a P.P.
on [0,t] x Ry,
independent of the
Brownian bridge.

o If N(Dpx—y ) =0
then accept y.

()




Acceptance-rejection

Exact simulation of X; — Algorithm (BR);

(Yn)HZ]_ i.id. with density g, (Gn)n21 i.id. N(O, 1), (En)n21 iid. g(ﬁ),

(Un)n>1 iid. U([0,1]). All sequences are independent.

Initialization: k=0, n=0.
Step 1. Set k< k+1thenZ=x, W =Y, and 7T =0.
Step 2. While 7 < t do:

msetn<n+1

mZ—Z+ tE"TW—i— E”(t%f;E”)* Gp and T < min(T + Ep, t)
m If (7T < tand kU, <~(Z)) then go to Step 1.

Outcome: the random variable W.

Theorem (Beskos-Roberts) Under suitable hyp., the outcome W of
Algorithm (BR);: and the diffusion value X; are identically distributed.
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Acceptance-rejection

2nd Case: simulation of 7; with L fixed (H. & Zucca, 2019).

Let us recall that Xy = x,
dXe = dB: + b(X;) dt, B(x) = [ b(y)dy and ~ := Z4E,

Combining the Girsanov transform and It6's lemma permits to obtain:
-6 1 F
B[ ()L o] = E[0(7E) exp ( / b(Bs)dBs — 5 / b(B;)ds | |
0 0
7_B
= E[y(rf)e" D)= Jo" 2B ek~ (7 )h(F)]
with

h(t) E[ — Jo (B2) ds

t
By = x, TLB:t] _E[exp—/ y(L — R.)ds]|.
0

Here (R:, t > 0) stands for a Bessel bridge of dimension 3 starting in 0
and ending with the value L — x at time t.
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Acceptance-rejection

|Why is a Bessel process appearing in the computations ?|

e

WL

After a rotation of 180°...
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Acceptance-rejection

Heuristic algorithm for the generation of 7, under the condition 0 < v(x) < k.
Step 1: Generate T = (L — x)?/G? with G ~ N(0,1).
Step 2: Generate a Bessel bridge of dim 3.
DrT = {(t, V) e, T] xRy : v <y(L— Rt)}.

V(L) WO

Step 3: Generate a

P.P. N on [0, T] x
" Ry, indep. of the

Bessel process.

Step 4: If N(Dg,7) = 0 then accept T otherwise go to Step 1.
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Acceptance-rejection

Exact simulation of 7, — Algorithm (HZ)

(Gn)n>1 i.id. N3(0,1d), (en)n>0 i.i.d E(K), (Va)n>1 i.i.d U([0,1]),
(gn)n>1 i.i.d. N(0,1). All sequences are independent.

Initialization: k=0, n=0.
Step 1. k< k+1,6=(0,0,0), W=0, T + (L—x)?/g?, Eo=0
and &1 = e,.
Step 2. While & < Ty do:
msetn+—n+1

R EaRYAL) (Lo el
m If KV, < y(L— || E1(L — x)(1,0,0)/Tk + & ||) then W < 1 else
W<+ 0

l50<—51 and£1<—€1+e,,

Step 3. If W =0 then ) + T otherwise go to Step 1.
Outcome: the random variable ).
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Acceptance-rejection

Theorem

Under suitable conditions, the outcome ) of Algorithm (HZ) and 7, are
identically distributed.

Efficiency of the algorithm.
Rem.: Be carefull with the generation of the PP: if you sample all points,
their averaged number is E[x T| = oo: efficiency to be improved!

Number of iterations (step 1): E[Z] < exp((L — x)v/2k).

m Concerning (L — x), linearization using space splitting.

m Concerning k: if 0 < 9 < y(x) < & for all x € R,
then replace v(:) < v(-) — 70, Kk < kK — 70 & introduce the
generation of IG( Lox (| - x)2) (Michael-Schucany-Haas).

V270’
Hyp. on ~, the average number of points used during the first iteration:
E[N1] € My 1+ &My o(x® + (L — x)+)/2) 1 for x < L.
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Acceptance-rejection

Examples of generalization and numerics

Example. dX; = (2 +sin(X:)) dt + dB¢, Xo = 0. We have 0 < <5.

Figure: Histogram of the hitting time distribution for 10000 simulations
corresponding to the level L = 2 and starting position Xy = 0 (left), histogram
of the number of iterations in Algorithm (A1) in the log;,-scale (right).
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Acceptance-rejection

Figure: Number of random variables used in Algorithm (HZ-1) for 10000
simulations with L = 2, Xy = 0 in the log;g-scale (left) and averaged number of
random variables used in Algorithm (HZ-1) versus the number of slices k with
Xo =0 and L =5. The averaging uses 10000 simulations.
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Acceptance-rejection

Stopped diffusion processes:

m The algorithm (HZ) presented so far permits to observe 7, and
consequently the event 7, < T for T any fixed time.

m Another algorithm (A) permits to generate the conditional
distribution of
Xr given 71 >T.

Algo (A) based on:

Exact generation of the Brownian motion By given 7, > T. Pdf:

1 ¢(x/VT) — ¢((x — 2L)/VT)
VT = &(L/VT) - &(-L/VT)

Rejection sampling: Girsanov's transform in a similar way as (HZ).

fr(x) =

, x<L.
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Acceptance-rejection

Combining Algo (HZ) (generation of 7;) and (A) (conditional distribution
of Xt given 7, > T) permits to generate the first time a jump diffusion
overcomes a given threshold L.

dX, = b(Xe_) dt + o(Xe_) dBy + / J(t Xe_, V)paldy x dt), ¢ > 0.
&

m py(dv x dt) is a Poisson measure on £ x [0, T| whose intensity
measure is given by A\(dv)dt, A being non negative finite.

m the jump rate correspondsto j: Ry x R x & — R

We build a new algorithm which generates (7, A T, X;, A1)

S.Herrmann (University of Burgundy) Dijon May 19, 2022 18 / 24



Acceptance-rejection

§(T,35) given T > 7 Yy ’J\'\ ‘/\/\-\/

: ! : ! ! : : ! :
To L Ei+E E+bB+B T To B E+E Ei+E+ By T

(Bt B YruE)

Ta E B+ B T

Figure: Three typical paths representing different scenarios
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Acceptance-rejection

3rd Case: simulation of 7; for a given | = [a, b] (H. & Zucca, 2020).

We recall that Xy = x,
dX; = dB + b(X:) dt, B(x) = [ b(y)dy and ~ := ZFE.

Using Girsanov's transformation and Ité's lemma:
E[(r, X,x)] = E[l/)(TlBaXT,B)GB(BTF)_B(X).Q—IJF (0]
= E[i(rF. B.e)h(rF. B.s)]
with
h(t,y) e’B(y)IE[ —Jor(Bs) ds
— SR [e‘ Jo (&) dS]

By = x, T,B =t, B,T_IB = y}

where (&5, 0 < s < t) is a constrained Brownian motion.
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Acceptance-rejection

>

initialization T =0, Z=x «——— No

4
Generate (73, Brx) T« T+E ’
Generate E ~ &(k) Z=B¢
¥ 4

Yes
‘ test 75 < E ’ |

N . ‘ test Us > 4(Be)/x F
v e

No % test impl. B(Brx) ’ [Generate Be |E < Tg}

{
Yes
A 4

T T+TB
Z =By Outcome: T and Z ’
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Acceptance-rejection

dX: = b(X¢)dt + dB:,  Xo = x € (a, b),
Theorem

m If 7(-) is a non negative function on [a, b] and upper bounded by &,
then the outcome of the algorithm (Z, T) has the same distribution
as (X, 1)

m Moreover the global cost is given by N¥, satisfying::

E[NZ,] < C(te, t.) cosh (\/g(b _ a)), Vx €]a, b,

‘ Generalization: ‘
to any drift term b € C1([a, b]). The modified algorithm is based on
an iterative procédure.
to any diffusion dX; = b(X;)dt + o(X;)dB; using the Lamperti
transform.
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Acceptance-rejection
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Figure: Empirical cumulative Figure: FET from [a, b] = [1,2] for

distribution function on [0,15] for the  {1¢ diffusion
OU exit time of [—1,1] (10000
simulations)

dX; = —pioXedt + dB; (sample size: 100 000).

dXt = (2 —+ Sin(Xt)) dt + dBt
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Acceptance-rejection

To sum up...

Exact simulation of the first passage time for a continuous diffusion.
Exact simulation of the first time a jump diffusion overcomes L

Exact simulation of the first exit time for continuous diffusion

Related questions:
m Exit time from a domain in RY with d > 2.

m Exit time for nonlinear diffusions 777
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