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Aims: Given o, a > 0 and the two independent self-stabilizing diffusion processes:

t
Xt = x1 + 0B: —/ {VV(XS) + a(Xs — E[Xs])} ds, t>0,
0

Ye=xo+ 0B — /0: {VV(YS) +a(Ys — E[Ys])} ds, t>0,
establish the o | 0-asymptotic of
e the first collision-time between X and Y, "given” by C(c) = inf{t >0 : Xt = Y:},
e the first collision-location X¢(,)(= Y¢(o))-

Same questions for the related particle systems:

N

. i t . 1 .
Xt"N:xl—l-ché—/ {VV(XS”N)+a(X5—NZXg’N>}ds, t>0, 1<i<N,
0 -
j=1

. . t . . 1M
Yt”N:xz—l—ch{—/ {VV(YS”N)—l—a(YS”N—NZYSJ’N)}ds, t>0, 1<i<N.
0 ’
j=1
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Prototypical case

Double wells landscape (Kramers '40, Dawson '83): d =1, V(x) = % - %

At the limit 0 = 0,

t

Xe — (tixa) = x1 — /0 V/(é(s,x1)) ds,
t

Y: — o(t, %) =x —/0 V' (¢(s, x2)) ds.

If x1 < —1and 1 < xp, at 0 = 0 then collision(s) between X and Y can happen due to the action
of the Brownian motions.

Heuristic: As o | 0, it is expected that C(o) grows to co at a certain rate, and X¢(,) should
" persist” in a certain point between the wells A\; = —1 and Ay = 1.

Metastability, mean-field particles and non-linear proc. May 13-17, 2022 3/28



General assumptions
(A) — (0) B and B are two independent R?-Brownian motions;

(A)— (i) V :RY = Ris of class C?, locally Lipschitz, convex at infinity (namely infly>rr V2V(x)
is positive definite for some R’ > 0) and is such that VV grows at a 2n-polynomial rate on RY:

sup {(1+ [x]>")"HVV(x)|} < oo
x€R

(A) — (ii) V admits two distinct (strict) local minima located in A1 and X».
(A) — (iii) Synchronization condition: « is large enough so that aly + V2V positive definite.
(A) — (iv) The starting points x; and x; lie in a respective basin of attraction of V:
t
¢(t,x,—):x,-_/ VV(6(s,x)) ds — A, i=1,2.
0 t—co
Notes:

o (A) — (iii) = x = V(x) + §Ix — m|? is strictly convex, for any m € RY.

o (A) — (iv) = No collision at o = 0.
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General motivation
Stochastic Cucker-Smale model:

dx N = UM gt
. N . . . N
dUiN = Z (&, XHN, o XN "’)( LN U{‘N> dt + (XN, Uy dw.

e 0 = 0: Cucker-Smale model for flocking ([CK07]): Under certain conditions on the
interaction/communication rate 5,’\3 emergence of a common behaviour at large-time:

lim max|U'N U{’N|:0, lim max|X'N X{’N|<oo.
t—oo i, t—oo i,

e o # 0: [CDP18]: Different types of noise (additive, multiplicative, idiosyncratic, common, ...)
leads to differents probabilistic interpretation of the flocking (LP(S2), a.s., in proba., weak, ...)

Cucker-Smale models with ”emerging” leaders and noise-induced collision: Two groups of
populations each flocking as t — oo around a prescribed attractor. Initially, no
communication/interaction between the two populations, but a random perturbation forces the
two population to interact with each others. As the effect of this perturbation vanishes, what
happens of the collision point ?

Self-dtabilizing diffusions : Toy models where self-interacting diffusions represents
overdamped /Kramers-Smoluchowski limit to the Langevin type models above, where possible
leaders are static and possible post-collision effects are neglected.
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One-dimensional case versus multidimensional case
e For d = 1, true collision happen and

Clo)=inf{t >0 : Xt = Y:¢}
is finite a.s.

o Whenever d > 1, B and B do not necessarily hit each others, and without further conditions on
V, C(o) is not well-defined = Require an enlargement of the collision.

Enlarged first collision-time/enlarged first collision-location:
Ce(o) =inf{t >0 : [Xe — Y| < 2¢}, (Xeo(o)r Yeo(0))-
Threshold:
e<eg:=271 tlgf; |o(t, x1) — ¢(t,xg)|
In particular, € < inf{|x; — x2|, | A1 — A2[}
Collision-time as an exit-time

C(o) =inf{t >0 : (Xt, Yr) ¢ (RY x RY)\ A},

where

Ae={(x,y) eRI xRY : |x — y| = 2¢}.

Metastability, mean-field particles and non-linear proc. May 13-17, 2022 6 /28



Freidlin-Wentzell's theory of gaussian perturbed exit time problem [FW98], [DZ10]

Gradient flow: .
We(z0) = 70 — / VU (Ws(20)) ds, £ > 0,
0

Perturbed version: .
z7 :zo+aBt—/ VU(zJ)ds,t > 0.
0

Large Deviation Principle: For any finite time horizon T, and for any § > 0,

lim — log P |28 — We(z0)| > 6 —_'f/ |—+VU(<1>(t))| dt
I og sup |z, Z0 n )
o—0 2 tE[O;T] t t [0} 0 dt

where the supremum is taken over all possible C!-path ® starting from zg and such that
maxo<e<T [P(t) = Vi(x0)| > 6.

Metastability, mean-field particles and non-linear proc. May 13-17, 2022 7/28



Freidlin-Wentzell's first exit-time estimate, [FW98], [DZ10]
Definition

We say that the domain G C RY is stable/positively invariant by —V U if for all zg € G the orbit
{Vi(z0); t € Ry} remains in G.

Theorem

Let U be a convex C? function and G be an open bounded set of R, stable by VU. Assume also
that for all xo € 8G, W¢(xo) converges to a unique point ag at large time. Then, for any zy in G,
and for

1g(o) :==inf{t >0 : z7 ¢ G},
we have:

im e {exe |2 (- 9)] < ro0) <o [ 5 (1 +)| } =1,

where H is the exit-cost of G:

H= zlenafg _ll_nf |nf{l7— ()} = |nf (U(x) - U(ao))

Additionally, if inf,cpg (U(x) = U(ao))is achieved in a unique point z, in 0G, then, for all § > 0,
7 €G,

lim P {127, ) =zl <8} = 1.

v
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Kramers' type law for self-stabilizing diffusion processes

e Hermann, Imkeller and Peithmann [HIP08]: Kramers' type law for the self-stabilizing diffusion:

t
Zi=y+ 0B — / {vu(zs) +/v¢(zs - y),us(dy)} ds, pe = Law(Z;), t> 0.
0

Assuming U and ¢ are relatively smooth and strictly convex functions, and G is a stable set,
. 2 2
lim Peexp | = (H—90)| <7g(o)<exp| S (H+8)| =1,
o—0 0-2 0-2

for

H= inf H,
z€dG

H(z) = (U(2) + ¢(z — z.) — U(z), z« = argminU.

e Tugaut et al. 2007-2021: Kramers' type law in the case of a double wells landscape and other
globally non-convex situations (e.g. [T21] for the case of the granular media equation).
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Heuristic Kramers’ type law for the first collision time between X and Y: If (RY x R?)\ A,
was stable,

2
log(Ce(0)) = ;ﬂe, (Xeo(o)s Yeu (o)) = Me,

for

Ho= inf  H(xy), M.= i H
He= Ao, (x,¥), Me =argminga_H,

«

Hxy) = V() = VO + She = A+ V() = VO2) + Sy = ol
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Heuristic Kramers’ type law for the first collision time between X and Y: If (RY x R?)\ A,
was stable, )
IOg(CE(U)) ~ ;ﬂev (XCe(U)v YCe(a)) ~ Me,

for
H = inf  H(x, M = argmi H,
A (x,y)ma R (X .y)7 € arg m@AE

a a
Hx,y) = V) = VO) + Sl = NP+ V() = Vo) + 51y = ol
Fore <1, 0l0,

log(Ce(0)) =~ % ir;f H(x,x), (Xc (o) Yc (o)) = argmin, H(x, x).
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Problem: No stability property of (]Rd

x R\ Ae.
Alternative:
Ce(o) = inf B; (o),
AERA
Bre(o) = inf{t>0:

: (Xe, Ye) € B(A, €) x B(\,€)}.
Startegy: (Coupling techniques a /a J. Tugaut) 1/ Establish preliminaries Kramers' type laws on

x{ =x1+ 0B — / {VV(XG)—‘,-OAX Al)}ds t>0,
. t
v =t obi— [ {TVOD)+als — )} o,
0

t>0.
2/ Transfer the Kramers' type laws to the self-stabilizing diffusions
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Preliminaries: First collision time of two stochastic gradient flows

Dynamics:
t
x{ :xl—i—aBt—/ VWV (x7)ds,t >0,
0

_ t
y,_f’:xg—i—aBt—/ VWV, (yJ)ds ,t > 0.
0
Assumptions:

e Wy and W, are of class C2, strictly convex and admits A; and A2 as their respective minimizers.
o infi>o |F(x1) — ¢F(x2)| =: 2e0 > 0 for ¢i(z) = z — [y VWi(gl(2)) ds, t >0, i =1,2.

Approximated first collision time:

ce(o) =inf{t >0 : |x7 —y7| <2}, e<e.

Reformulation: c.(0) = infy 85 (o),
Brplo) = inf{t>0: (x7,%7) & (RY x RI)\ (B(A,€) x B(\,€))}

Additional enlargement: BA,p(U) =inf{t>0: (x7,y7) €D} _xD3 },

D) :={¢""(t,x) : t >0, z€ B(\,p)}, ot (t,x) =z +/ VWi(¢"*(s,x))ds, t > 0.
’ 0
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Advantages:

® Whenever the " prescribed” collision X is far from the wells (i.e. minj—1 >(|X — Aj|) > ¢€), the
domain (R4\ D} ) x (R?\D3 ) is stable by (—VW, ~v¥2).

e Whenever ) is too close to one of the wells, say |\ — A1| < € then B(A, p) is an attractive set
for g1+ and D} | = RY, meanwhile R? \ D3 _ is stable by —VW?).

e The case {|\ — A\1| = €} U {|\ — A2| = €} is singular and requires a slight rescaling.

Last approximation: For 0 < p < 1,
B (o) :=inf{t>0: (x7,y7) € Oxep} (1)
where the domain O, . , is given by
DY, pe) x D2(A,€) if[A— Ai| =,

Ox,e.p = 4 DY\ €) x D2(A, pe) if A — Xa| = ¢,
DY), €) x D?(), €) otherwise.
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e Applying Freidlin-Wentzell's exit-time estimates:

Lemma

For any X in RY and for any § > 0,

JTOIP’{exp [% COE 5)] < BY (o) < exp [% (R + 5)] } —1,

for
inf | —Wi(A inf A — Ws( A\ ifIN— | =
Xeagb;pe)( 1(x) = W ( 1))+y€a'g(k;s)( 2(y) — Wa(A2)) if| 1l =g¢
B = { xeamhyo (V1) =Vaa) 4 inf(Va(y) = V2(R2)) X = Al = ¢,

inf  (V1(x) —Wi(A1))+ inf  (Va(y) — W2(A2)) otherwise,
x€D3, ¢ yeD3

Moreover, we have: for any § > 0,

athoP {mm (dISt(XEQ’,E(a)’ B(A, e)), d'St(yB’;,ﬁ(o)’ B(A, e))) < 6} =1,

for dist(x, B(\, €)) = inf,cp(x,e) Ix — 2].
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e From the domains D}

1. and D2 _to B()€):

Lemma
The same Kramers' type law holds for
inf{t >0 : (x7,y7) € B(\ pe) X B(\,€)} ifIx— 1| =¢,
Bﬁ (o) = inf{t >0 : (x7,y7) € B(\€) X B(\, pe)} ifI]x—Xo| =¢,
inf{t >0 : (x7,y7) € B(\ €) x B(\,€)} otherwise.

e Asymptotic p = 1: AL(A) := lim,_1 A?(N).

Lemma

For any A € RY, and for any § > 0:

JiLnOP{exp {% (Fﬁ(,\) = 6)] < Bre(o) <exp [% (Fg(,\) 4 5)} } =1.

Moreover,

lim_P { min (dist(xgx’é(a), B()\,e)),dist(ygkye(g), B(), e))) < 5} =

o—0
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o Kramers' type laws for c.(0) =infy By (o) =inf{t >0 : [x7 — y7| = €}:

Preliminary remark:

inf (\Ul(x) - \|11(>\1)) + inf (‘Ug(y) - \Ug()\z)) if l_rglinz A=A > ¢

XEBB(/\ €) yEOB(Xe)
Ei()\) _ GBB (\VQ y) W2(/\2)) if ‘)\ — )\1| <e€,
f \ —Wi(A if A=A\ .
L O <
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o Kramers' type laws for c.(0) =infy By (o) =inf{t >0 : [x7 — y7| = €}:

Preliminary remark:

inf | -V inf v -V if mi -\ >
edBng (V10) VIO F gl ) (V) = WaQ)) i iy 2= il 2
’Hi()\) _ EaIgf (\Vz y)— \|J2(/\2)) if |A—XA1]| <e,
f | —Wi(A1))if (A=A .
xealg(k,e) ( 1(X) 1( 1)) ! | 2| <e

Choosing € < e for

€c :=inf {E € (0,¢0) : /\elIBr(]i,-,e)zealg(f/\,e) (Vj(z) —v;(N)) = |r)1\f he(X), i #j€ {1,2}} ,

then N
inf HONE inf he(N),

he()\) = mf (\Ul X) \Ul()\l)) + yeaiE{)\,e) (Wz(y) — \Uz()\z)).

x€OB(A
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Theorem

For any € < €c and 6 > 0:

ol'ii>nO]P {exp {% (h, — 6)] < ce(o) < exp [% (h. + 5)} } =1,

where
h, = ir)\\f he(N).

In addition, for H. the set of all minimizers \¢ of h¢:

Jig\o]P) {)\ﬁigg_te max (dist‘(xé’e(a)7 B()\g,e)),dist(yge(a), B(Ae,e))) < 6} =1.

Note: The exit-cost he can be achieved in more than one point, but, as € | 0,

he(A) = (W1(A) = Wi(M\)) + (W2(X) — Wa(X2)),

and H. concentrates onto a single point, the minimizer of hg.
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Corollary

For
ho () = (V1(X) = W1(\)) + (V2(X) — W2(X2)),

Ao = argminhg = (VW1 + VW3)(0)7 L,
and hy := ho(Xo), we have: for any § > 0:

lim lim P {exp {% (hy — 6)] < ce(o) < exp {% (ho + 6)] } =1

e—=00—0

and

lim Iimo]P’{max (|xge(a) — Xol, |y;'s(o) = /\0|) < 6} =1i.

e—>00—
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Kramers' type law for the first collision time between two self-stabilizing diffusions

Under the assumptions (A) — (i) to (A) — (iv), [HIP08]: the dynamics (X:);>0 and (Yt):>0 are
wellposed (in the pathwise sense) and

sup E[|Xe[? + | Y4|?] < oo, Vp € Z.
>0
Moreover, [T21]: For any k > 0, there exists a finite time T, and a critical diffusion o, such that

max _ E[|X: — A1]2] + B[] Y: — X2?] < &2

oS0k, t2

Corollary (Coupling estimate)

For any k > 0, there exists T, > 0 such that

lim ]P’{ma_’_x [Xe =7 7.1 +1Ye —viT,| 2/@} =0.

o—0 t>
for
t
x(r. = Xr,+o(Bi—Br,)— /T {(TV(E) +alx — )} ds,
t
vir. = Yr, +o(Bi—Br)- /T (VV() +aly? = M)} ds,

Metastability, mean-field particles and non-linear proc. May 13-17, 2022 19 /28



From the Kramers’ type law for (x?, y“) to the Kramers’ law for (X, Y):

Theorem

Given € > 0 small enough,
He(XA f Wy ( Wi (A inf v —Wsi(A2)),
= - ( 1(x) = Wy( 1))+yE]II¥rEA;e)( 2(y) — Va(X2))
o 2 @ 2
Vi0x) = VO + Slix = Al Waly) := V) + Zlly = el
and H_ = inf Hc, for any § > 0,

JiL)nOIP’{exp [ 2 (H, —5)} < Ele) < P {% (H. +5)} } -

In addition, for M. the set of all minimizers Ae of A — He()), and for € small enough:

lim P {)\lenfw max (dist(Xce(a), B(Ac,€)), dist(Ye (o), B(Ae, e))) < 5} =

Threshold: ¢ < e. with

. . . [ . . .
€c = inf {6 <ep: )\G]}IB?;-;E)ZGBIE{)\;E) (V(z) - V() + §||z - )\j||2> = |r>1\f He(N), i#j€ {1,2}}.
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Theorem
For any § > 0, we have

lim lim ]P’{exp [% (Ho — 5)} < Ce(o) < exp [ (Ho + 5)}}

e—>00—

where
Ho = min Ho(}),

9 (0% (0%
Ho(A) = lim He(A) = 2V(X) = V(M) = V(A2) + P A+ Sl Aol

Moreover, for
o = argminy Hp(X\),

it holds

N, I, (X =l < 8} =3 = iy I {1 Ve = ol <5}

Collision location: .
o = (vv + ald) (a(M1 + X2)/2).

x2

Example: For V(x) = XT —%and a>1,

Ao =0, infHy=a—1,

1
M, = {a71,4€47262+a(2ei1)2+ 5}.
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Collision time for the particle systems
Particle model:

) ) t ) ) L
XN = x, + 0B 7/0 {VV(XS'J") +a(xiN - % ng”")} ds, t>0,
j=1

YiN =+ 0B — / {VV(YS”N) +a(yiN - % 3 Yg”")} ds, t>0,
0 =

for (Btl),fzo7 e ,(BtN)tZO, and (étl)tzo, ceey (ét’v)tzo, two families of independent Brownian
motions.
Approximated first collision-time:

CiN(o) = inf{t >0 XN - viN < 5}, 1<i<N.
Anticipated exit cost: As the potential related to each family of particles is given by
N a N
Ta(x") =" Vi) + N D> ki — X% kN = a, ) € RV
i=1 ij=1
the exit-cost related to the successive asymptotic "o | 0 next € | 0" of Cei’N(a):

inf inf  Th(x") = Tn(Ar,-- A1)+ inf inf  Taly") = Tw(ra, -+, M),
AERIN xNcgBi,N( X €) N( ) N( ! 1) AERIN yNepBi-N(),€) N(y ) N( 2 2)

for

BN e) = {x" = (x1,-,xn) € R x € B\ )} -
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Preliminary note

e As long as (A) hold the particle systems and their "linear” analog:
x;";- = X;—’ +o(B{ — By) — / VV(x;?)ds — / a(x0? —A)ds, T <t,
’ T 0
VT = YiN 4 (Bl - By) - /T VV(ys”")dsf/O Ay — Aa)ds, T < t.

are well-posed in the pathwise sense. Moreover, forall 1 <i < N, T finiteand 1 < p < ©

max E[[X["[P + VNP < oo.

te[0,T]
o Propagation of chaos: For X1, ... ,X’Y and Y}‘, .-, YN N independents copies of X; and Y
driven respectively by B,... BN and B!,... BV,

C(o, T)

E XN _ xip YiN _vi?) <
[ngg)(T' t ¢ +0r§nti<XT‘ t 7] < N

Non-uniform propagation of chaos = We cannot rely on the Kramers' law established in the
mean-field limit situation to deal with the particle case.

= Start over and apply a strategy analog to the mean-field case.
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Coupling for the particle systems

Lemma

For any k > 0, there exists a (non-random) time 0 < T, uniform with respect to o, and a
(non-random) finite number of particles Ny, both finite and independent of o, such that, for all
N > N, it holds

N N

. 1 PN 1 PN

lim P max (’—ZX{’ — Xy +‘—ng’ —o|) <20 p =1.

o0 | [Tmexp[fz(ﬁsﬁ)]] N j=1 N j=1

.
Proposition
For any £ > 0, there exists 0 < T¢ < 0o and 0 < N¢ < oo such that
lim P sup (XY =g 1+ 1N =y b > € ) =o.

T St<exp| 25 (H +2)]
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Kramers' law for the first collision time
(Analogs to the mean-field limit - in particular same threshold € < €c).

Theorem

Let M be the set of minimizers of He. Then, for any § > 0 and e small enough, provided that N
is large enough:

;iLnO]P’{exp [% (He — 6)} CiN(o) < exp { (He +5)]} =1,
and

R N : i,N —
JTOP{)\JEnﬁ/l max (dlst(X' n, o B(Ae,6), dlst(Yéé.,N(J), B()\E,e))) <ép=1.

€

—

Corollary

For any § > 0, provided N is large enough:

e—=00—0

lim lim ]P’{exp[; (Ho—é)} <ch N(U)<exp{2 (H0+5)” 1.

Moreover, for any 1 < i < N,

iN —
Jien, i, P{max ('Xcé, )~ 20b 1Y o) AO') 55}—1'
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Note on the one-dimensional case
In this situation, one can deal more directly with the true collision times:

Clo)=inf{t>0: X, =Y}, C"No)= inf{t >0 XN = Y{‘N}.
Theorem
For any 6 >0 :
lim P < exp 2 (Ho—8)| < C(0) < exp (Ho +6)| p=1.
o—0 0-2 —
Moreover, for A9 the minimizer of Hp,

Jim P{[Xc(o) = 20| < 6} = 1.

Theorem
For any 6§ > 0, and N sufficiently large:

Uli_n?OIP{exp [02 (Ho — 6)} < C'N(5) < exp [ (Ho + 5)] } >

and, forall1<i <N
I|m P |X

e —do| <8} =1.
V.
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Generalizations

Our main results holds true for:
e more general self-stabilizing forces:

t
Xe=xi + 0Bt — / {VV(XS) +VF(Xs — E[Xs])} ds, t>0,
0

t
Yt:X2+aét7/ {VV(YS)JrVF(YS]E[Ys])}ds, t>0,
0

provided that F is a smooth function such that F(x) = G(|x|) where G : R — R is a even
polynomial function G, with a degree larger than 2, satisfying G(0) = 0 (i.e. framework of
[T20]). Same for the related particle systems.

e Multi-wells confining potential: For instance if V admits m wells located at A1, -- , Ay then,
again, the Kramers'law for Cc(0), Cc n(o), C(o) and Cy(o) hold and the collision A is located at

(gv\b’/)_l(am_li)\,/), \U,(X): V(X)+%‘X_>\I|2~

I'=1

® Random initial conditions: As long as (x§,y§) or (Xo, Yo) are a.s. bounded (sufficient for
control of moments), and the law of Xp and Y have full support on different basin of attraction
of V/, our main results for the self-stabilizing systems still hold true. Not so much for the particle

systems.
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