Vanishing noise limit of the first collision and the first collision-location between two self-stabilizing diffusions

a.k.a. A Kramers' type law for the collision time of two self-interacting diffusion processes and of their related particle approximation

Jean-François Jabir - HSE Moscow & LSA

Joint work with Julian Tugaut, Univ. Jean-Monnet.

Workshop Metastability, Mean-Field Particles and Non-Linear Processes,

St Etienne, May 17-20, 2022

Aims: Given $\sigma, \alpha > 0$ and the two independent self-stabilizing diffusion processes:

$$\begin{split} X_t &= x_1 + \sigma B_t - \int_0^t \left\{ \nabla V(X_s) + \alpha \big(X_s - \mathbb{E}[X_s] \big) \right\} ds, \quad t \geq 0, \\ Y_t &= x_2 + \sigma \tilde{B}_t - \int_0^t \left\{ \nabla V(Y_s) + \alpha \big(Y_s - \mathbb{E}[Y_s] \big) \right\} ds, \quad t \geq 0, \end{split}$$

establish the $\sigma \downarrow$ 0-asymptotic of

- the first collision-time between X and Y, "given" by $C(\sigma) = \inf\{t \geq 0 : X_t = Y_t\}$,
- the first collision-location $X_{C(\sigma)} (= Y_{C(\sigma)})$.

Same questions for the related particle systems:

$$\begin{split} X_t^{i,N} &= x_1 + \sigma B_t^i - \int_0^t \left\{ \nabla V(X_s^{i,N}) + \alpha \left(X_s - \frac{1}{N} \sum_{j=1}^N X_s^{j,N} \right) \right\} ds, \quad t \geq 0, \ 1 \leq i \leq N, \\ Y_t^{i,N} &= x_2 + \sigma \tilde{B}_t^i - \int_0^t \left\{ \nabla V(Y_s^{i,N}) + \alpha \left(Y_s^{i,N} - \frac{1}{N} \sum_{i=1}^N Y_s^{j,N} \right) \right\} ds, \quad t \geq 0, \ 1 \leq i \leq N. \end{split}$$

Prototypical case

Double wells landscape (Kramers '40, Dawson '83): d=1, $V(x)=\frac{x^4}{4}-\frac{x^2}{2}$.

At the limit $\sigma = 0$,

$$X_t \longrightarrow \phi(t, x_1) = x_1 - \int_0^t V'(\phi(s, x_1)) ds,$$

$$Y_t \longrightarrow \phi(t,x_2) = x_2 - \int_0^t V'(\phi(s,x_2)) ds.$$

If $x_1 < -1$ and $1 < x_2$, at $\sigma = 0$ then collision(s) between X and Y can happen due to the action of the Brownian motions.

Heuristic: As $\sigma\downarrow 0$, it is expected that $C(\sigma)$ grows to ∞ at a certain rate, and $X_{C(\sigma)}$ should "persist" in a certain point between the wells $\lambda_1=-1$ and $\lambda_2=1$.

General assumptions

- $(\mathbf{A})-(0)$ B and \tilde{B} are two independent \mathbb{R}^d -Brownian motions;
- (A) (i) $V: \mathbb{R}^d \to \mathbb{R}$ is of class \mathcal{C}^2 , locally Lipschitz, convex at infinity (namely $\inf_{|x| \geq R'} \nabla^2 V(x)$ is positive definite for some R' > 0) and is such that ∇V grows at a 2n-polynomial rate on \mathbb{R}^d :

$$\sup_{x\in\mathbb{R}^d}\left\{(1+|x|^{2n})^{-1}|\nabla V(x)|\right\}<\infty\,.$$

- (A) (ii) V admits two distinct (strict) local minima located in λ_1 and λ_2 .
- (A) (iii) Synchronization condition: α is large enough so that $\alpha I_d + \nabla^2 V$ positive definite.
- (A) (iv) The starting points x_1 and x_2 lie in a respective basin of attraction of V:

$$\phi(t,x_i) = x_i - \int_0^t \nabla V(\phi(s,x_i)) ds \xrightarrow[t \to \infty]{} \lambda_i, \ i = 1,2.$$

Notes:

- \circ (A) (iii) $\Rightarrow x \mapsto V(x) + \frac{\alpha}{2}|x m|^2$ is strictly convex, for any $m \in \mathbb{R}^d$.
- \circ (**A**) (*iv*) \Rightarrow No collision at $\sigma = 0$.

General motivation

Stochastic Cucker-Smale model:

$$\begin{cases} dX_t^{i,N} = U_t^{i,N} dt, \\ dU_t^{i,N} = \sum_{j=1}^{N} \xi_{i,j}^{N}(t, X_t^{1,N}, \dots, X_s^{N,N}) \left(U_t^{i,N} - U_t^{j,N} \right) dt + \sigma(X_t^{i,N}, U_t^{i,N}) dW_t^{i}. \end{cases}$$

• $\sigma=0$: Cucker-Smale model for flocking ([CK07]): Under certain conditions on the interaction/communication rate $\xi^N_{i,j}$, emergence of a common behaviour at large-time:

$$\lim_{t\to\infty}\max_{i,j}|U_t^{i,N}-U_t^{j,N}|=0,\quad \lim_{t\to\infty}\max_{i,j}|X_t^{i,N}-X_t^{j,N}|<\infty.$$

• $\sigma \neq 0$: [CDP18]: Different types of noise (additive, multiplicative, idiosyncratic, common, ...) leads to differents probabilistic interpretation of the flocking $(L^p(\Omega), a.s., in proba., weak, ...)$

Cucker-Smale models with "emerging" leaders and noise-induced collision: Two groups of populations each flocking as $t \to \infty$ around a prescribed attractor. Initially, no communication/interaction between the two populations, but a random perturbation forces the two population to interact with each others. As the effect of this perturbation vanishes, what happens of the collision point?

Self-dtabilizing diffusions: Toy models where self-interacting diffusions represents overdamped/Kramers-Smoluchowski limit to the Langevin type models above, where possible leaders are static and possible post-collision effects are neglected.

One-dimensional case versus multidimensional case

 \bullet For d=1, true collision happen and

$$C(\sigma) = \inf\{t \ge 0 : X_t = Y_t\}$$

is finite a.s.

• Whenever d>1, B and \tilde{B} do not necessarily hit each others, and without further conditions on V, $C(\sigma)$ is not well-defined \Rightarrow Require an enlargement of the collision.

Enlarged first collision-time/enlarged first collision-location:

$$C_{\varepsilon}(\sigma) = \inf\{t \geq 0 : |X_t - Y_t| \leq 2\varepsilon\},$$
 $(X_{C_{\varepsilon}(\sigma)}, Y_{C_{\varepsilon}(\sigma)}).$

Threshold:

$$\epsilon < \varepsilon_0 := 2^{-1} \inf_{t \ge 0} \left| \phi(t, x_1) - \phi(t, x_2) \right|$$

In particular, $\epsilon < \inf\{|x_1 - x_2|, |\lambda_1 - \lambda_2|\}$

Collision-time as an exit-time

$$C_{\epsilon}(\sigma) = \inf\{t \geq 0 : (X_t, Y_t) \notin (\mathbb{R}^d \times \mathbb{R}^d) \setminus \triangle_{\epsilon}\},$$

where

$$\Delta_{\varepsilon} := \{ (x, y) \in \mathbb{R}^d \times \mathbb{R}^d : |x - y| = 2\varepsilon \}.$$

Freidlin-Wentzell's theory of gaussian perturbed exit time problem [FW98], [DZ10]

Gradient flow:

$$\Psi_t(z_0)=z_0-\int_0^t\nabla U\left(\Psi_s(z_0)\right)ds\,,t\geq 0,$$

Perturbed version:

$$z_{t}^{\sigma}=z_{0}+\sigma\mathcal{B}_{t}-\int_{0}^{t}\nabla U\left(z_{s}^{\sigma}\right)ds\,,t\geq0.$$

Large Deviation Principle: For any finite time horizon T, and for any $\delta > 0$,

$$\lim_{\sigma \to 0} \frac{\sigma^2}{2} \log \mathbb{P} \left\{ \sup_{t \in [0;T]} |z_t^{\sigma} - \Psi_t(z_0)| > \delta \right\} = -\inf_{\Phi} \int_0^T \left| \frac{d\Phi}{dt} + \nabla U(\Phi(t)) \right|^2 dt,$$

where the supremum is taken over all possible \mathcal{C}^1 -path Φ starting from z_0 and such that $\max_{0 \leq t \leq T} |\Phi(t) - \Psi_t(x_0)| > \delta$.

Freidlin-Wentzell's first exit-time estimate, [FW98], [DZ10]

Definition

We say that the domain $\mathcal{G} \subset \mathbb{R}^d$ is stable/positively invariant by $-\nabla U$ if for all $z_0 \in \mathcal{G}$ the orbit $\{\Psi_t(z_0); t \in \mathbb{R}_+\}$ remains in \mathcal{G} .

Theorem

Let U be a convex \mathcal{C}^2 function and \mathcal{G} be an open bounded set of \mathbb{R}^d , stable by ∇U . Assume also that for all $x_0 \in \partial \mathcal{G}$, $\Psi_t(x_0)$ converges to a unique point a_0 at large time. Then, for any z_0 in \mathcal{G} , and for

$$\tau_{\mathcal{G}}(\sigma) := \inf\{t \geq 0 : z_t^{\sigma} \notin \mathcal{G}\},\,$$

we have:

$$\lim_{\sigma \to 0} \mathbb{P} \left\{ \exp \left[\frac{2}{\sigma^2} \left(\underline{H} - \delta \right) \right] < \tau_{\mathcal{G}}(\sigma) < \exp \left[\frac{2}{\sigma^2} \left(\underline{H} + \delta \right) \right] \right\} = 1 \,,$$

where \underline{H} is the exit-cost of \mathcal{G} :

$$\underline{H} = \inf_{z \in \partial \mathcal{G}} \inf_{T > 0} \inf_{\Phi} \left\{ I_{T,z}(\Phi) \right\} = \inf_{x \in \partial \mathcal{G}} \left(U(x) - U(a_0) \right)$$

Additionally, if $\inf_{x \in \partial \mathcal{G}} \left(U(x) - U(a_0) \right)$ is achieved in a unique point z_* in $\partial \mathcal{G}$, then, for all $\delta > 0$, $z_0 \in \mathcal{G}$.

$$\lim_{\sigma \to 0} \mathbb{P}\left\{|z^{\sigma}_{\tau_{\mathcal{G}}(\sigma)} - z_{\star}| < \delta\right\} = 1.$$

Kramers' type law for self-stabilizing diffusion processes

• Hermann, Imkeller and Peithmann [HIP08]: Kramers' type law for the self-stabilizing diffusion:

$$Z_t = y + \sigma B_t - \int_0^t \left\{ \nabla U(Z_s) + \int \nabla \phi(Z_s - y) \mu_s(dy) \right\} ds, \ \mu_t = \mathsf{Law}(Z_t), \qquad t \ge 0$$

Assuming U and ϕ are relatively smooth and strictly convex functions, and $\mathcal G$ is a stable set,

$$\lim_{\sigma \to 0} \mathbb{P} \left\{ \exp \left[\frac{2}{\sigma^2} \left(\underline{H} - \delta \right) \right] < \tau_{\mathcal{G}}(\sigma) < \exp \left[\frac{2}{\sigma^2} \left(\underline{H} + \delta \right) \right] \right\} = 1 \,,$$

for

$$\begin{split} &\underline{H} = \inf_{z \in \partial G} H, \\ &H(z) = \left(U(z) + \phi(z - z_\star) - U(z_\star), \quad z_\star = \operatorname{argmin} U. \end{split}$$

• Tugaut *et al.* 2007-2021: Kramers' type law in the case of a double wells landscape and other globally non-convex situations (e.g. [T21] for the case of the granular media equation).

Heuristic Kramers' type law for the first collision time between X and Y: If $(\mathbb{R}^d \times \mathbb{R}^d) \setminus \triangle_{\varepsilon}$ was stable,

$$\log(C_{\epsilon}(\sigma)) \approx \frac{2}{\sigma^2} \underline{\mathcal{H}}_{\epsilon}, \ (X_{C_{\epsilon}(\sigma)}, Y_{C_{\epsilon}(\sigma)}) \approx \mathcal{M}_{\epsilon},$$

for

$$\underline{\mathcal{H}}_\varepsilon = \inf_{(x,y) \in \partial \triangle_\varepsilon} H(x,y), \quad \mathcal{M}_\varepsilon = \operatorname{argmin}_{\partial \triangle_\varepsilon} H,$$

$$H(x,y) = V(x) - V(\lambda_1) + \frac{\alpha}{2}|x - \lambda_1|^2 + V(y) - V(\lambda_2) + \frac{\alpha}{2}|y - \lambda_2|^2.$$

For $\varepsilon \ll 1$, $\sigma \downarrow 0$

$$\log(C_{\epsilon}(\sigma)) \approx \frac{2}{\sigma^2} \inf_{x} H(x, x), \quad (X_{C_{\epsilon}(\sigma)}, Y_{C_{\epsilon}(\sigma)}) \approx \operatorname{argmin}_{x} H(x, x)$$

Heuristic Kramers' type law for the first collision time between X and Y: If $(\mathbb{R}^d \times \mathbb{R}^d) \setminus \triangle_{\varepsilon}$ was stable,

$$\log(C_{\epsilon}(\sigma)) \approx \frac{2}{\sigma^2} \underline{\mathcal{H}}_{\epsilon}, \ (X_{C_{\epsilon}(\sigma)}, Y_{C_{\epsilon}(\sigma)}) \approx \mathcal{M}_{\epsilon},$$

for

$$\underline{\mathcal{H}}_{\varepsilon} = \inf_{(x,y) \in \partial \triangle_{\varepsilon}} H(x,y), \quad \mathcal{M}_{\varepsilon} = \operatorname{argmin}_{\partial \triangle_{\varepsilon}} H,$$

$$H(x,y) = V(x) - V(\lambda_1) + \frac{\alpha}{2}|x - \lambda_1|^2 + V(y) - V(\lambda_2) + \frac{\alpha}{2}|y - \lambda_2|^2.$$

For $\varepsilon \ll 1$, $\sigma \downarrow 0$,

$$\log(C_{\epsilon}(\sigma)) \approx \frac{2}{\sigma^2} \inf_{x} H(x, x), \quad (X_{C_{\epsilon}(\sigma)}, Y_{C_{\epsilon}(\sigma)}) \approx \operatorname{argmin}_{x} H(x, x).$$

Problem: No *stability* property of $(\mathbb{R}^d \times \mathbb{R}^d) \setminus \triangle_{\varepsilon}$.

Alternative:

$$\begin{array}{lcl} C_{\epsilon}(\sigma) & = & \inf_{\lambda \in \mathbb{R}^d} \beta_{\lambda,\epsilon}(\sigma), \\ \\ \beta_{\lambda,\epsilon}(\sigma) & := & \inf \left\{ t \geq 0 \, : \, (X_t,Y_t) \in B(\lambda,\epsilon) \times B(\lambda,\epsilon) \right\}. \end{array}$$

Startegy: (Coupling techniques a la J. Tugaut) 1/ Establish preliminaries Kramers' type laws on

$$x_t^{\sigma} = x_1 + \sigma B_t - \int_0^t \left\{ \nabla V(x_s^{\sigma}) + \alpha (x_s^{\sigma} - \lambda_1) \right\} ds, \quad t \geq 0,$$

$$y_t^{\sigma} = x_2 + \sigma \tilde{B}_t - \int_0^t \left\{ \nabla V(y_s^{\sigma}) + \alpha (y_s^{\sigma} - \lambda_2) \right\} ds, \quad t \geq 0.$$

2/ Transfer the Kramers' type laws to the self-stabilizing diffusions.

Preliminaries: First collision time of two stochastic gradient flows

Dynamics:

$$\begin{aligned} x_{t}^{\sigma} &= x_{1} + \sigma B_{t} - \int_{0}^{t} \nabla \Psi_{1}\left(x_{s}^{\sigma}\right) ds, t \geq 0, \\ y_{t}^{\sigma} &= x_{2} + \sigma \widetilde{B}_{t} - \int_{0}^{t} \nabla \Psi_{2}\left(y_{s}^{\sigma}\right) ds, t \geq 0. \end{aligned}$$

Assumptions:

- Ψ_1 and Ψ_2 are of class \mathcal{C}^2 , strictly convex and admits λ_1 and λ_2 as their respective minimizers.
- $\inf_{t\geq 0} |\phi_t^1(x_1) \phi_t^2(x_2)| =: 2\epsilon_0 > 0$ for $\phi_t^i(z) = z \int_0^t \nabla \Psi_i(\phi_s^i(z)) ds$, $t\geq 0$, i=1,2.

Approximated first collision time:

$$c_{\epsilon}(\sigma) := \inf \{ t \ge 0 : |x_t^{\sigma} - y_t^{\sigma}| \le 2\epsilon \}, \, \epsilon < \epsilon_0.$$

Reformulation: $c_{\epsilon}(\sigma) = \inf_{\lambda} \beta_{\lambda, \epsilon}(\sigma)$,

$$\beta_{\lambda,\rho}(\sigma) = \inf\{t \geq 0 : (x_t^{\sigma}, y_t^{\sigma}) \notin (\mathbb{R}^d \times \mathbb{R}^d) \setminus (B(\lambda, \epsilon) \times B(\lambda, \epsilon))\}$$

 $\text{Additional enlargement: } \widehat{\beta}_{\lambda,\rho}(\sigma) = \inf\{t \geq 0 \,:\, (x^{\sigma}_t,y^{\sigma}_t) \in \mathcal{D}^1_{\lambda,\epsilon} \times \mathcal{D}^2_{\lambda,\epsilon} \} \text{ , }$

$$\mathcal{D}^{i}_{\lambda,\epsilon} := \{\phi^{i,+}(t,x_i) \,:\, t \geq 0,\, z \in B(\lambda,\rho)\}, \qquad \phi^{i,+}(t,x_i) = z + \int_0^t \nabla \Psi_i(\phi^{i,+}(s,x_i)) \, ds,\, t \geq 0\,.$$

Advantages:

- $\bullet \text{ Whenever the "prescribed" collision λ is far from the wells (i.e. $\min_{i=1,2}(|\lambda-\lambda_i|)>\epsilon$), the domain $\left(\mathbb{R}^d\setminus\mathcal{D}^1_{\lambda,\epsilon}\right)\times\left(\mathbb{R}^d\setminus\mathcal{D}^2_{\lambda,\epsilon}\right)$ is stable by $(-\nabla\Psi^1,-\nabla\Psi^2)$.}$
- Whenever λ is too close to one of the wells, say $|\lambda \lambda_1| < \epsilon$ then $B(\lambda, \rho)$ is an attractive set for $\phi^{1,+}$ and $\mathcal{D}^1_{\lambda,\rho} = \mathbb{R}^d$, meanwhile $\mathbb{R}^d \setminus \mathcal{D}^2_{\lambda,\epsilon}$ is stable by $-\nabla \Psi^2$).
- ullet The case $\{|\lambda-\lambda_1|=\epsilon\}\cup\{|\lambda-\lambda_2|=\epsilon\}$ is singular and requires a slight rescaling.

Last approximation: For $0 < \rho < 1$,

$$\widehat{\beta}_{\lambda,\epsilon}^{\rho}(\sigma) := \inf \left\{ t \geq 0 \, : \, (x_t^{\sigma}, y_t^{\sigma}) \in \mathcal{O}_{\lambda,\epsilon,\rho} \right\} \tag{1}$$

where the domain $\mathcal{O}_{\lambda,\epsilon,
ho}$ is given by

$$\mathcal{O}_{\lambda,\epsilon,\rho} := \begin{cases} \mathcal{D}^1(\lambda,\rho\epsilon) \times \mathcal{D}^2(\lambda,\epsilon) \text{ if } |\lambda-\lambda_1| = \epsilon, \\ \mathcal{D}^1(\lambda,\epsilon) \times \mathcal{D}^2(\lambda,\rho\epsilon) \text{ if } |\lambda-\lambda_2| = \epsilon, \\ \mathcal{D}^1(\lambda,\epsilon) \times \mathcal{D}^2(\lambda,\epsilon) \text{ otherwise.} \end{cases}$$

• Applying Freidlin-Wentzell's exit-time estimates:

Lemma

For any λ in \mathbb{R}^d and for any $\delta > 0$,

$$\lim_{\sigma \to 0} \mathbb{P} \left\{ \exp \left[\frac{2}{\sigma^2} \left(\widehat{h}^\rho_\epsilon(\lambda) - \delta \right) \right] < \widehat{\beta}^\rho_{\lambda,\epsilon}(\sigma) < \exp \left[\frac{2}{\sigma^2} \left(\widehat{h}^\rho_\epsilon(\lambda) + \delta \right) \right] \right\} = 1 \,,$$

for

$$\widehat{h}_{\epsilon}^{\rho}(\lambda) = \begin{cases} \inf_{x \in \partial B(\lambda; \rho \epsilon)} \left(\Psi_1(x) - \Psi_1(\lambda_1) \right) + \inf_{y \in \partial B(\lambda; \epsilon)} \left(\Psi_2(y) - \Psi_2(\lambda_2) \right) \ \text{if} |\lambda - \lambda_1| = \epsilon, \\ \inf_{x \in \partial B(\lambda; \epsilon)} \left(\Psi_1(x) - \Psi_1(\lambda_1) \right) + \inf_{y \in \partial B(\lambda; \rho \epsilon)} \left(\Psi_2(y) - \Psi_2(\lambda_2) \right) \ \text{if} |\lambda - \lambda_2| = \epsilon, \\ \inf_{x \in \mathcal{D}_{\lambda, \epsilon}^1} \left(\Psi_1(x) - \Psi_1(\lambda_1) \right) + \inf_{y \in \mathcal{D}_{\lambda, \epsilon}^2} \left(\Psi_2(y) - \Psi_2(\lambda_2) \right) \ \text{otherwise}, \end{cases}$$

Moreover, we have: for any $\delta > 0$,

$$\lim_{\sigma \to 0} \mathbb{P} \left\{ \min \left(\mathit{dist} \Big(x^{\sigma}_{\widehat{\beta}^{\rho}_{\lambda, \epsilon}(\sigma)}, \mathit{B}(\lambda, \epsilon) \Big), \mathit{dist} \Big(y^{\sigma}_{\widehat{\beta}^{\rho}_{\lambda, \epsilon}(\sigma)}, \mathit{B}(\lambda, \epsilon) \Big) \right) \leq \delta \right\} = 1 \,,$$

for $dist(x, B(\lambda, \epsilon)) := \inf_{z \in B(\lambda, \epsilon)} |x - z|$.

ullet From the domains $\mathcal{D}^1_{\lambda,\epsilon}$ and $\mathcal{D}^2_{\lambda,\epsilon}$ to $B(\lambda,\epsilon)$:

Lemma

The same Kramers' type law holds for

$$\beta_{\lambda,\epsilon}^{\rho}(\sigma) = \begin{cases} \inf\left\{t \geq 0 \,:\, (x_t^{\sigma}, y_t^{\sigma}) \in B(\lambda, \rho\epsilon) \times B(\lambda, \epsilon)\right\} & \text{if } |\lambda - \lambda_1| = \epsilon, \\ \inf\left\{t \geq 0 \,:\, (x_t^{\sigma}, y_t^{\sigma}) \in B(\lambda, \epsilon) \times B(\lambda, \rho\epsilon)\right\} & \text{if } |\lambda - \lambda_2| = \epsilon, \\ \inf\left\{t \geq 0 \,:\, (x_t^{\sigma}, y_t^{\sigma}) \in B(\lambda, \epsilon) \times B(\lambda, \epsilon)\right\} & \text{otherwise}. \end{cases}$$

• Asymptotic $\rho=1$: $\widehat{h}^1_{\epsilon}(\lambda):=\lim_{\rho\to 1}\widehat{h}^{\rho}_{\epsilon}(\lambda)$.

Lemma

For any $\lambda \in \mathbb{R}^d$, and for any $\delta > 0$:

$$\lim_{\sigma \to 0} \mathbb{P} \left\{ \exp \left[\frac{2}{\sigma^2} \left(\widehat{h}^1_{\epsilon}(\lambda) - \delta \right) \right] < \beta_{\lambda, \epsilon}(\sigma) < \exp \left[\frac{2}{\sigma^2} \left(\widehat{h}^1_{\epsilon}(\lambda) + \delta \right) \right] \right\} = 1 \,.$$

Moreover,

$$\lim_{\sigma \to 0} \mathbb{P} \left\{ \min \left(\mathit{dist} \Big(x^{\sigma}_{\beta_{\lambda,\epsilon}(\sigma)}, B(\lambda,\epsilon) \Big), \mathit{dist} \Big(y^{\sigma}_{\beta_{\lambda,\epsilon}(\sigma)}, B(\lambda,\epsilon) \Big) \right) \leq \delta \right\} = 1 \,.$$

• Kramers' type laws for $c_{\epsilon}(\sigma) = \inf_{\lambda} \beta_{\lambda,\epsilon}(\sigma) = \inf\{t \geq 0 : |x_t^{\sigma} - y_t^{\sigma}| = \epsilon\}$:

Preliminary remark:

$$\widehat{h}_{\epsilon}^{1}(\lambda) = \begin{cases} \inf_{x \in \partial \mathcal{B}(\lambda, \epsilon)} \left(\Psi_{1}(x) - \Psi_{1}(\lambda_{1}) \right) + \inf_{y \in \partial \mathcal{B}(\lambda, \epsilon)} \left(\Psi_{2}(y) - \Psi_{2}(\lambda_{2}) \right) \text{ if } \min_{i=1,2} |\lambda - \lambda_{i}| \geq \epsilon, \\ \inf_{y \in \partial \mathcal{B}(\lambda, \epsilon)} \left(\Psi_{2}(y) - \Psi_{2}(\lambda_{2}) \right) \text{ if } |\lambda - \lambda_{1}| < \epsilon, \\ \inf_{x \in \partial \mathcal{B}(\lambda, \epsilon)} \left(\Psi_{1}(x) - \Psi_{1}(\lambda_{1}) \right) \text{ if } |\lambda - \lambda_{2}| < \epsilon. \end{cases}$$

Choosing $\epsilon < \epsilon_c$ for

$$\epsilon_c := \inf \left\{ \epsilon \in (0, \epsilon_0) : \inf_{\lambda \in \mathcal{B}(\lambda_i, \epsilon)} \inf_{z \in \partial \mathcal{B}(\lambda, \epsilon)} \left(\Psi_j(z) - \Psi_j(\lambda_j) \right) = \inf_{\lambda} h_{\epsilon}(\lambda), \ i \neq j \in \{1, 2\} \right\}$$

then

$$\inf_{\lambda} h_{\epsilon}^{1}(\lambda) \approx \inf_{\lambda} h_{\epsilon}(\lambda),$$

$$h_{\epsilon}(\lambda) := \inf_{x \in \partial B(\lambda, \epsilon)} (\Psi_{1}(x) - \Psi_{1}(\lambda_{1})) + \inf_{y \in \partial B(\lambda, \epsilon)} (\Psi_{2}(y) - \Psi_{2}(\lambda_{2}))$$

• Kramers' type laws for $c_{\epsilon}(\sigma) = \inf_{\lambda} \beta_{\lambda,\epsilon}(\sigma) = \inf\{t \geq 0 : |x_t^{\sigma} - y_t^{\sigma}| = \epsilon\}$:

Preliminary remark:

$$\widehat{h}_{\epsilon}^{1}(\lambda) = \begin{cases} \inf_{x \in \partial B(\lambda, \epsilon)} \left(\Psi_{1}(x) - \Psi_{1}(\lambda_{1}) \right) + \inf_{y \in \partial B(\lambda, \epsilon)} \left(\Psi_{2}(y) - \Psi_{2}(\lambda_{2}) \right) \text{if } \min_{i=1,2} |\lambda - \lambda_{i}| \geq \epsilon, \\ \inf_{y \in \partial B(\lambda, \epsilon)} \left(\Psi_{2}(y) - \Psi_{2}(\lambda_{2}) \right) \text{if } |\lambda - \lambda_{1}| < \epsilon, \\ \inf_{x \in \partial B(\lambda, \epsilon)} \left(\Psi_{1}(x) - \Psi_{1}(\lambda_{1}) \right) \text{if } |\lambda - \lambda_{2}| < \epsilon. \end{cases}$$

Choosing $\epsilon < \epsilon_c$ for

$$\epsilon_c := \inf \left\{ \epsilon \, \in \, (0,\epsilon_0) \, : \, \inf_{\lambda \in \mathcal{B}(\lambda_i,\epsilon)} \inf_{z \in \partial \mathcal{B}(\lambda,\epsilon)} \left(\Psi_j(z) - \Psi_j(\lambda_j) \right) = \inf_{\lambda} h_{\epsilon}(\lambda), \ i \neq j \in \{1,2\} \right\},$$

then

$$\inf_{\lambda} \widehat{h}_{\epsilon}^{1}(\lambda) \approx \inf_{\lambda} h_{\epsilon}(\lambda),$$

$$h_{\epsilon}(\lambda) := \inf_{x \in \partial B(\lambda, \epsilon)} (\Psi_{1}(x) - \Psi_{1}(\lambda_{1})) + \inf_{y \in \partial B(\lambda, \epsilon)} (\Psi_{2}(y) - \Psi_{2}(\lambda_{2})).$$

Theorem

For any $\epsilon < \epsilon_c$ and $\delta > 0$:

$$\lim_{\sigma \to 0} \mathbb{P} \left\{ \exp \left[\frac{2}{\sigma^2} \left(\underline{h}_\epsilon - \delta \right) \right] < c_\epsilon(\sigma) < \exp \left[\frac{2}{\sigma^2} \left(\underline{h}_\epsilon + \delta \right) \right] \right\} = 1 \,,$$

where

$$\underline{h}_{\epsilon} = \inf_{\lambda} h_{\epsilon}(\lambda).$$

In addition, for \mathcal{H}_{ϵ} the set of all minimizers λ_{ϵ} of h_{ϵ} :

$$\lim_{\sigma \to 0} \mathbb{P} \left\{ \inf_{\lambda_{\epsilon} \in \mathcal{H}_{\epsilon}} \max \left(\mathit{dist} \big(x^{\sigma}_{c_{\epsilon}(\sigma)}, B(\lambda_{\epsilon}, \epsilon) \big), \mathit{dist} \big(y^{\sigma}_{c_{\epsilon}(\sigma)}, B(\lambda_{\epsilon}, \epsilon) \big) \right) \leq \delta \right\} = 1 \,.$$

Note: The exit-cost h_{ϵ} can be achieved in more than one point, but, as $\epsilon \downarrow 0$,

$$h_{\epsilon}(\lambda) \rightarrow \left(\Psi_1(\lambda) - \Psi_1(\lambda_1)\right) + \left(\Psi_2(\lambda) - \Psi_2(\lambda_2)\right),$$

and \mathcal{H}_{ϵ} concentrates onto a single point, the minimizer of h_0 .

Corollary

For

$$\begin{split} \textit{h}_0(\lambda) &= \big(\Psi_1(\lambda) - \Psi_1(\lambda_1)\big) + \big(\Psi_2(\lambda) - \Psi_2(\lambda_2)\big), \\ \lambda_0 &= \textit{argminh}_0 = (\nabla \Psi_1 + \nabla \Psi_2)(0)^{-1}, \end{split}$$

and $h_0 := h_0(\lambda_0)$, we have: for any $\delta > 0$:

$$\lim_{\epsilon \to 0} \lim_{\sigma \to 0} \mathbb{P} \left\{ \exp \left[\frac{2}{\sigma^2} \left(\underline{h}_0 - \delta \right) \right] < c_\epsilon(\sigma) < \exp \left[\frac{2}{\sigma^2} \left(\underline{h}_0 + \delta \right) \right] \right\} = 1$$

and

$$\lim_{\epsilon \to 0} \lim_{\sigma \to 0} \mathbb{P} \left\{ \max \left(|x^{\sigma}_{c_{\epsilon}(\sigma)} - \lambda_0|, |y^{\sigma}_{c_{\epsilon}(\sigma)} - \lambda_0| \right) \leq \delta \right\} = 1 \,.$$

Kramers' type law for the first collision time between two self-stabilizing diffusions

Under the assumptions (A)-(i) to (A)-(iv), [HIP08]: the dynamics $(X_t)_{t\geq 0}$ and $(Y_t)_{t\geq 0}$ are wellposed (in the pathwise sense) and

$$\sup_{t\geq 0} \mathbb{E}[|X_t|^p + |Y_t|^p] < \infty, \, \forall p \in \mathbb{Z}.$$

Moreover, [T21]: For any $\kappa > 0$, there exists a finite time T_{κ} and a critical diffusion σ_{κ} such that

$$\max_{\sigma \leq \sigma_{\kappa}, t \geq T_{\kappa}} \mathbb{E}[|X_t - \lambda_1|^2] + \mathbb{E}[|Y_t - \lambda_2|^2] \leq \kappa^2.$$

Corollary (Coupling estimate)

For any $\kappa > 0$, there exists $T_{\kappa} > 0$ such that

$$\lim_{\sigma \to 0} \mathbb{P}\left\{ \max_{t \geq T_{\kappa}} |X_t - x_{t,T_{\kappa}}^{\sigma}| + |Y_t - y_{t,T_{\kappa}}^{\sigma}| \geq \kappa \right\} = 0.$$

for

$$\begin{split} x_{t,T_{\kappa}}^{\sigma} &= X_{T_{\kappa}} + \sigma(B_{t} - B_{T_{\kappa}}) - \int_{T_{\kappa}}^{t} \left\{ \nabla V(x_{s}^{\sigma}) + \alpha(x_{s}^{\sigma} - \lambda_{1}) \right\} \, ds, \\ y_{t,T_{\kappa}}^{\sigma} &= Y_{T_{\kappa}} + \sigma(\tilde{B}_{t} - \tilde{B}_{T_{\kappa}}) - \int_{T_{\kappa}}^{t} \left\{ \nabla V(y_{s}^{\sigma}) + \alpha(y_{s}^{\sigma} - \lambda_{2}) \right\} \, ds, \end{split}$$

From the Kramers' type law for (x^{σ}, y^{σ}) to the Kramers' law for (X, Y):

Theorem

Given $\epsilon > 0$ small enough,

$$H_{\epsilon}(\lambda) = \inf_{x \in \partial B(\lambda; \epsilon)} (\Psi_1(x) - \Psi_1(\lambda_1)) + \inf_{y \in \mathbb{B}(\lambda; \epsilon)} (\Psi_2(y) - \Psi_2(\lambda_2)),$$

$$\Psi_1(x) := V(x) + \frac{\alpha}{2}||x - \lambda_1||^2, \quad \Psi_2(y) := V(y) + \frac{\alpha}{2}||y - \lambda_2||^2,$$

and $\underline{H}_{\epsilon} = \inf H_{\epsilon}$, for any $\delta > 0$,

$$\lim_{\sigma \to 0} \mathbb{P} \left\{ \exp \left[\frac{2}{\sigma^2} \left(\underline{H}_{\epsilon} - \delta \right) \right] < C_{\epsilon}(\sigma) < \exp \left[\frac{2}{\sigma^2} \left(\underline{H}_{\epsilon} + \delta \right) \right] \right\} = 1.$$

In addition, for \mathcal{M}_{ϵ} the set of all minimizers λ_{ϵ} of $\lambda \mapsto H_{\epsilon}(\lambda)$, and for ϵ small enough:

$$\lim_{\sigma \to 0} \mathbb{P} \left\{ \inf_{\lambda_{\epsilon} \in \mathcal{M}_{\epsilon}} \max \left(\textit{dist} \big(\textit{X}_{c_{\epsilon}(\sigma)}, \textit{B}(\lambda_{\epsilon}, \epsilon) \big), \textit{dist} \big(\textit{Y}_{c_{\epsilon}(\sigma)}, \textit{B}(\lambda_{\epsilon}, \epsilon) \big) \right) \leq \delta \right\} = 1 \,.$$

Threshold: $\epsilon < \epsilon_c$ with

$$\epsilon_c = \inf \left\{ \epsilon \leq \varepsilon_0 \ : \ \inf_{\lambda \in \mathbb{B}(\lambda_i; \epsilon)} \inf_{z \in \partial \mathbb{B}(\lambda; \epsilon)} \left(V(z) - V(\lambda_j) + \frac{\alpha}{2} ||z - \lambda_j||^2 \right) = \inf_{\lambda} H_{\epsilon}(\lambda), \ i \neq j \in \{1, 2\} \right\}.$$

Theorem

For any $\delta > 0$, we have

$$\lim_{\epsilon \to 0} \lim_{\sigma \to 0} \mathbb{P} \left\{ \exp \left[\frac{2}{\sigma^2} \left(\underline{H_0} - \delta \right) \right] < C_\epsilon(\sigma) < \exp \left[\frac{2}{\sigma^2} \left(\underline{H_0} + \delta \right) \right] \right\} = 1 \,.$$

where

$$\underline{H_0} = \min H_0(\lambda),$$

$$H_0(\lambda) = \lim_{\epsilon \to 0} H_{\epsilon}(\lambda) = 2V(\lambda) - V(\lambda_1) - V(\lambda_2) + \frac{\alpha}{2}|\lambda - \lambda_1|^2 + \frac{\alpha}{2}|\lambda - \lambda_2|^2.$$

Moreover, for

$$\lambda_0 := \operatorname{argmin}_{\lambda} H_0(\lambda)$$
,

it holds

$$\lim_{\epsilon \to 0} \lim_{\sigma \to 0} \mathbb{P}\left\{|X_{C_{\epsilon}(\sigma)} - \lambda_0| \le \delta\right\} = 1 = \lim_{\epsilon \to 0} \lim_{\sigma \to 0} \mathbb{P}\left\{|Y_{C_{\epsilon}(\sigma)} - \lambda_0| \le \delta\right\} \,.$$

Collision location:

$$\lambda_0 = (\nabla V + \alpha I_d)^{-1} (\alpha(\lambda_1 + \lambda_2)/2).$$

Example: For $V(x) = \frac{x^4}{4} - \frac{x^2}{2}$ and $\alpha > 1$,

$$\lambda_0 = 0$$
, inf $H_0 = \alpha - 1$,

$$\mathcal{M}_{\epsilon} = \left\{ \alpha - 1, 4\epsilon^4 - 2\epsilon^2 + \alpha(2\epsilon \pm 1)^2 + \frac{1}{2} \right\}.$$

Collision time for the particle systems

Particle model:

$$X_t^{i,N} = x_1 + \sigma B_t^i - \int_0^t \left\{ \nabla V(X_s^{i,N}) + \alpha \left(X_s^{i,N} - \frac{1}{N} \sum_{j=1}^N X_s^{j,N} \right) \right\} ds, \quad t \geq 0,$$

$$Y_t^{i,N} = x_2 + \sigma \tilde{B}_t^i - \int_0^t \left\{ \nabla V(Y_s^{i,N}) + \alpha (Y_s^{i,N} - \frac{1}{N} \sum_{i=1}^N Y_s^{i,N}) \right\} ds, \quad t \ge 0,$$

for $(B^1_t)_{t\geq 0}, \cdots, (B^N_t)_{t\geq 0}$, and $(\tilde{B}^1_t)_{t\geq 0}, \cdots, (\tilde{B}^N_t)_{t\geq 0}$, two families of independent Brownian motions.

Approximated first collision-time:

$$C_{\epsilon}^{i,N}(\sigma) = \inf\left\{t \geq 0 \,:\, |X_t^{i,N} - Y_t^{i,N}| \leq \epsilon\right\},\, 1 \leq i \leq N.$$

Anticipated exit cost: As the potential related to each family of particles is given by

$$\Upsilon_N(\mathbf{x}^N) = \sum_{i=1}^N V(x_i) + \frac{\alpha}{2N} \sum_{i,j=1}^N |x_i - x_j|^2, \, \mathbf{x}^N = (x_1, \dots, x_N) \in \mathbb{R}^{Nd},$$

the exit-cost related to the successive asymptotic " $\sigma \downarrow 0$ next $\epsilon \downarrow 0$ " of $C_{\epsilon}^{i,N}(\sigma)$:

$$\inf_{\boldsymbol{\lambda} \in \mathbb{R}^{dN}} \inf_{\mathbf{x}^N \in \partial B^{i,N}(\boldsymbol{\lambda}, \epsilon)} \Upsilon_N(\mathbf{x}^N) - \Upsilon_N(\boldsymbol{\lambda}_1, \cdots, \boldsymbol{\lambda}_1) + \inf_{\boldsymbol{\lambda} \in \mathbb{R}^{dN}} \inf_{\mathbf{y}^N \in \partial B^{i,N}(\boldsymbol{\lambda}, \epsilon)} \Upsilon_N(\mathbf{y}^N) - \Upsilon_N(\boldsymbol{\lambda}_2, \cdots, \boldsymbol{\lambda}_2),$$

for

$$B^{i,N}(\lambda,\epsilon) = \left\{ \mathbf{x}^N = (x_1,\cdot,x_N) \in \mathbb{R}^{dN} \, ; \, x_i \in B(\lambda,\epsilon) \right\} \, .$$

Preliminary note

• As long as (A) hold the particle systems and their "linear" analog:

$$\begin{aligned} x_{t,T}^{i,\sigma} &= X_T^{i,N} + \sigma(B_t^i - B_T^i) - \int_T^t \nabla V(x_s^{i,\sigma}) ds - \int_0^t \alpha(x_s^{i,\sigma} - \lambda_1) ds \,, \, T \leq t, \\ y_{t,T}^{i,\sigma} &= Y_T^{i,N} + \sigma(\widetilde{B}_t^i - \widetilde{B}_T^i) - \int_T^t \nabla V(y_s^{i,\sigma}) ds - \int_0^t \alpha(y_s^{i,\sigma} - \lambda_2) ds \,, \, T \leq t. \end{aligned}$$

are well-posed in the pathwise sense. Moreover, for all $1 \le i \le N$, T finite and $1 \le p < \infty$

$$\max_{t \in [0,T]} \mathbb{E}[|X_t^{i,N}|^p + |Y_t^{i,N}|^p] < \infty.$$

• Propagation of chaos: For X^1, \dots, X^N and Y^1, \dots, Y^N , N independents copies of X_t and Y driven respectively by B^1, \dots, B^N and $\tilde{B}^1, \dots, \tilde{B}^N$,

$$\mathbb{E}[\max_{0 \leq t \leq T} |X_t^{i,N} - X_t^i|^p + \max_{0 \leq t \leq T} |Y_t^{i,N} - Y_t^i|^2] \leq \frac{C(\sigma, T)}{N}.$$

Non-uniform propagation of chaos \Rightarrow We cannot rely on the Kramers' law established in the mean-field limit situation to deal with the particle case.

⇒ Start over and apply a strategy analog to the mean-field case.

Coupling for the particle systems

Lemma

For any $\kappa>0$, there exists a (non-random) time $0\leq T_\kappa$, uniform with respect to σ , and a (non-random) finite number of particles N_κ , both finite and independent of σ , such that, for all $N\geq N_\kappa$, it holds

$$\lim_{\sigma \to 0} \mathbb{P} \left\{ \max_{t \in \left[T_{\kappa}, \exp\left[\frac{2}{\sigma^2} (\underline{H}_{\epsilon} + 2) \right] \right]} \left(\left| \frac{1}{N} \sum_{j=1}^N X_t^{j,N} - \lambda_1 \right| + \left| \frac{1}{N} \sum_{j=1}^N Y_t^{j,N} - \lambda_2 \right| \right) \leq 2\kappa \right\} = 1 \,.$$

Proposition

For any $\xi>0,$ there exists $0< T_{\xi}<\infty$ and $0< N_{\xi}<\infty$ such that

$$\lim_{\sigma \to 0} \mathbb{P} \left(\sup_{T_{\kappa} \leq t \leq \exp\left[\frac{2}{\sigma^2}(\underline{H}_{\epsilon} + 2)\right]} \left\{ |X_t^{i,N} - x_{t,T_{\kappa}}^{i,\sigma}| + |Y_t^{i,N} - y_{t,T_{\kappa}}^{i,\sigma}| \right\} \geq \xi \right) = 0 \,.$$

Kramers' law for the first collision time

(Analogs to the mean-field limit - in particular same threshold $\epsilon < \epsilon_c$).

Theorem

Let \mathcal{M}_{ϵ} be the set of minimizers of H_{ϵ} . Then, for any $\delta > 0$ and ϵ small enough, provided that N is large enough:

$$\lim_{\sigma \to 0} \mathbb{P} \left\{ \exp \left[\frac{2}{\sigma^2} \left(\underline{H_\epsilon} - \delta \right) \right] < C_\epsilon^{i,N}(\sigma) < \exp \left[\frac{2}{\sigma^2} \left(\underline{H_\epsilon} + \delta \right) \right] \right\} = 1 \,,$$

and

$$\lim_{\sigma \to 0} \mathbb{P} \left\{ \inf_{\lambda_{\epsilon} \in \mathcal{M}_{\epsilon}} \max \left(\mathit{dist} \big(X^{i,N}_{C^{i,N}_{\epsilon}(\sigma)}, B(\lambda_{\epsilon}, \epsilon) \big), \mathit{dist} \big(Y^{i,N}_{C^{i,N}_{\epsilon}(\sigma)}, B(\lambda_{\epsilon}, \epsilon) \big) \right) \leq \delta \right\} = 1 \,.$$

Corollary

For any $\delta > 0$, provided N is large enough:

$$\lim_{\epsilon \to 0} \lim_{\sigma \to 0} \mathbb{P} \left\{ \exp \left[\frac{2}{\sigma^2} \left(\underline{H_0} - \delta \right) \right] < C_\epsilon^{i,N}(\sigma) < \exp \left[\frac{2}{\sigma^2} \left(\underline{H_0} + \delta \right) \right] \right\} = 1 \,.$$

Moreover, for any $1 \le i \le N$,

$$\lim_{\epsilon \to 0} \lim_{\sigma \to 0} \mathbb{P} \left\{ \max \left(|X^{i,N}_{\mathcal{C}_{\epsilon,N}(\sigma)} - \lambda_0|, |Y^{i,N}_{\mathcal{C}_{\epsilon,N}(\sigma)} - \lambda_0| \right) \le \delta \right\} = 1 \,.$$

Note on the one-dimensional case

In this situation, one can deal more directly with the true collision times:

$$C(\sigma) = \inf\left\{t \geq 0 \,:\, X_t = Y_t\right\}, \quad C^{i,N}(\sigma) = \inf\left\{t \geq 0 \,:\, X_t^{i,N} = Y_t^{i,N}\right\}.$$

Theorem

For any $\delta > 0$:

$$\lim_{\sigma \to 0} \mathbb{P} \left\{ \exp \left[\frac{2}{\sigma^2} \left(\underline{H_0} - \delta \right) \right] < \mathit{C}(\sigma) < \exp \left[\frac{2}{\sigma^2} \left(\underline{H_0} + \delta \right) \right] \right\} = 1 \,.$$

Moreover, for λ_0 the minimizer of H_0 ,

$$\lim_{\sigma \to 0} \mathbb{P}\left\{ \left| X_{C(\sigma)} - \lambda_0 \right| \le \delta \right\} = 1.$$

Theorem

For any $\delta > 0$, and N sufficiently large:

$$\lim_{\sigma \to 0} \mathbb{P} \left\{ \exp \left[\frac{2}{\sigma^2} \left(\underline{H_0} - \delta \right) \right] < C^{i,N}(\sigma) < \exp \left[\frac{2}{\sigma^2} \left(\underline{H_0} + \delta \right) \right] \right\} = 1 \,,$$

and, for all 1 < i < N

$$\lim_{\sigma \to 0} \mathbb{P}\left\{ |X_{C^{i,N}(\sigma)}^{i,N} - \lambda_0| \le \delta \right\} = 1.$$

Generalizations

Our main results holds true for:

more general self-stabilizing forces:

$$\begin{split} X_t &= x_1 + \sigma B_t - \int_0^t \left\{ \nabla V(X_s) + \nabla F\big(X_s - \mathbb{E}[X_s]\big) \right\} ds, \quad t \geq 0, \\ Y_t &= x_2 + \sigma \tilde{B}_t - \int_0^t \left\{ \nabla V(Y_s) + \nabla F\big(Y_s - \mathbb{E}[Y_s]\big) \right\} ds, \quad t \geq 0, \end{split}$$

provided that F is a smooth function such that F(x) = G(|x|) where $G : \mathbb{R} \to \mathbb{R}$ is a even polynomial function G, with a degree larger than 2, satisfying G(0) = 0 (i.e. framework of [T20]). Same for the related particle systems.

• Multi-wells confining potential: For instance if V admits m wells located at $\lambda_1, \dots, \lambda_m$ then, again, the Kramers'law for $C_{\epsilon}(\sigma)$, $C_{\epsilon,N}(\sigma)$, $C(\sigma)$ and $C_N(\sigma)$ hold and the collision λ_0 is located at

$$\left(\sum_{l=1}^{m} \nabla \Psi_{l}\right)^{-1} \left(\alpha m^{-1} \sum_{l'=1}^{m} \lambda_{l'}\right), \qquad \Psi_{l}(x) = V(x) + \frac{\alpha}{2} |x - \lambda_{l}|^{2}.$$

• Random initial conditions: As long as (x_0^σ, y_0^σ) or (X_0, Y_0) are a.s. bounded (sufficient for control of moments), and the law of X_0 and Y_0 have full support on different basin of attraction of V, our main results for the self-stabilizing systems still hold true. Not so much for the particle systems.

References

P. Cattiaux, F. Delebecque, L. Pédéches.

Stochastic Cucker-Smale models: Old and new, *Annals of Applied Probability*, 28 (2018), no 5, 3239-3286.

F. Cucker, S. Smale.

On the mathematics of emergence, *Japan. J. Math.*, 2 (2007), 197-227.

A. Dembo, O. Zeitouni.

Large deviations techniques and applications, 1998.

M. I. Freidlin and A. D. Wentzell.

Random perturbations of dynamical systems, 1998.

S. Herrmann, P. Imkeller, and D. Peithmann.

Large deviations and a Kramers' type law for self-stabilizing diffusions.

Ann. Appl. Probab., 18 (2008), no 4, 1379-1423.

J. Tugaut.

Exit-time of mean-field particles system.

ESAIM: Probability and Statistics, 24 (2020), 399-407.

J. Tugaut.

Captivity of the solution to the granular media equation. Kinetic and Related Models, 14 (2021), no. 2, 199-209.