An introduction to self-interacting diffusions

Aline Kurtzmann

Workshop May 2022

05/18/2022
Outline

1 Generalities
Outline

1. Generalities

2. Self-attracting diffusion on \mathbb{R} (with Victor Kleptsyn)
Outline

1. Generalities

2. Self-attracting diffusion on \mathbb{R} (with Victor Kleptsyn)

3. Discretisation and dynamical system
Outline

1. Generalities
2. Self-attracting diffusion on \mathbb{R} (with Victor Kleptsyn)
3. Discretisation and dynamical system
4. Centering
Outline

1. Generalities
2. Self-attracting diffusion on \mathbb{R} (with Victor Kleptsyn)
3. Discretisation and dynamical system
4. Centering
5. Final result
Outline

1. Generalities
2. Self-attracting diffusion on \mathbb{R} (with Victor Kleptsyn)
3. Discretisation and dynamical system
4. Centering
5. Final result
Brownian polymer

Durrett and Rogers (1992) on \mathbb{R}^d:

$$dX_t = dB_t + \int_0^t f(X_t - X_s) \, ds \, dt,$$

where $f : \mathbb{R}^d \to \mathbb{R}^d$ is measurable and bounded.
Brownian polymer

Durrett and Rogers (1992) on \mathbb{R}^d:

$$dX_t = dB_t + \int_0^t f(X_t - X_s) \, ds \, dt,$$

where $f : \mathbb{R}^d \to \mathbb{R}^d$ is measurable and bounded.

Question: what is the normalisation of X?
Applications: physics, biology.
Generalities

Self-attracting case

Studied by:

- Cranston & Le Jan (1995): linear and $1 - d$ constant interaction ($f(x) = -a \, \text{sign}(x)$),

- Raimond (1997): constant interaction ($d \geq 2$, $f(x) = -a x / |x|$ with $a > 0$),

1) Let $f : \mathbb{R} \to \mathbb{R}$ be an odd function, decreasing and bounded. Suppose that there exists C, $\rho > 0$ and $k \in \mathbb{N}^*$ such that $|f(x)| \geq C e^{-\rho/|x|^k}$ around 0. Then X_t converges a.s.

2) When the interaction is not local, $f(x) = -\text{sign}(x) 1_{\{|x| \geq a\}}$, then the trajectories remain bounded a.s. (but do not converge).

Aline Kurtzmann (Workshop May 2022) An introduction to self-interacting diffusions
Self-attracting case

Studied by:

- Cranston & Le Jan (1995): linear and $1 - d$ constant interaction ($f(x) = -a \ sign(x)$),
- Raimond (1997): constant interaction ($d \geq 2$, $f(x) = -ax/|x|$ with $a > 0$),
Self-attracting case

Studied by:

- Cranston & Le Jan (1995): linear and $1 - d$ constant interaction $(f(x) = -a \text{sign}(x))$
- Raimond (1997): constant interaction $(d \geq 2, f(x) = -ax/|x|$ with $a > 0)$
- Herrmann & Roynette (2003):

Theorem (Herrmann & Roynette, 2003)

1) Let $f : \mathbb{R} \to \mathbb{R}$ be an odd function, decreasing and bounded. Suppose that there exists $C, \rho > 0$ and $k \in \mathbb{N}^*$ such that $|f(x)| \geq Ce^{-\rho/|x|^k}$ around 0. Then X_t converges a.s.

2) When the interaction is not local, $f(x) = -\text{sign}(x)1_{\{|x| \geq a\}}$, then the trajectories remain bounded a.s. (but do not converge).
Generalities

Self-repulsive case

Theorem (Mountford & Tarrès, 2007)
Let \(f(x) = \frac{x}{1 + |x|^{1+\beta}} \) with \(0 < \beta < 1 \). Then, there exists \(c > 0 \) such that with probability \(1/2 \), \(\frac{X_t}{t^{\alpha}} \to c \), where \(\alpha = \frac{2}{1+\beta} \).
Generalities

Conjecture (Durrett and Rogers)

Theorem (Tarrès & Tóth & Valkó, 2012)
Suppose that $f : \mathbb{R} \rightarrow \mathbb{R}$ has a compact support, $xf(x) \geq 0$ and $f(-x) = -f(x)$. Then $\frac{X_t}{t}$ converges a.s. toward 0.
What is a self-interacting diffusion?

- Solution of

\[dX_t = dB_t - F(t, X_t, \mu_t)dt \]

- \[\mu_t = \frac{1}{t} \int_0^t \delta X_s ds \]
Reinforced diffusion on a compact set

Benaïm, Ledoux and Raimond (2002), Benaïm and Raimond (2003, 2005) on a compact manifold:

\[
dX_t = dB_t - \frac{1}{t} \int_0^t \nabla_x W(X_t, X_s) ds \, dt
\]
Reinforced diffusion on a compact set

Benaïm, Ledoux and Raimond (2002), Benaïm and Raimond (2003, 2005) on a compact manifold:

$$dX_t = dB_t - \frac{1}{t} \int_0^t \nabla_x W(X_t, X_s) ds dt$$

Heuristic: show that $\mu_t := \frac{1}{t} \int_0^t \delta_{X_s} ds$ is close to a deterministic flow.
Generalities Study of self-interacting diffusions

Difficulty of the study on \mathbb{R}^d

Let

$$dX_t = dB_t - (\log t)^3 \nabla W(X_t - \bar{\mu}_t)dt, \; X_0 = x$$

where $\bar{\mu}_t = \frac{1}{t} \int_0^t X_s ds$.

Theorem (Chambeu & K)

1. The process $Y_t = X_t - \bar{\mu}_t$ converges a.s. to Y_∞, where Y_∞ belongs to the set of local minima of W. Moreover, for each local minimum m, we have $\mathbb{P}(Y_\infty = m) > 0$.
Generalities

Study of self-interacting diffusions

Difficulty of the study on \mathbb{R}^d

Let

$$dX_t = dB_t - (\log t)^3 \nabla W(X_t - \mu_t)dt, \ X_0 = x$$

where $\mu_t = \frac{1}{t} \int_0^t X_s ds$.

Theorem (Chambeu & K)

1. The process $Y_t = X_t - \mu_t$ converges a.s. to Y_∞, where Y_∞ belongs to the set of local minima of W. Moreover, for each local minimum m, we have $\mathbb{P}(Y_\infty = m) > 0$.

2. On the set $\{Y_\infty = 0\}$, both X_t and μ_t converge a.s. to $\mu_\infty := \int_0^\infty Y_s \frac{ds}{s}$. Moreover, on the set $\{Y_\infty \neq 0\}$, we have $\lim_{t \to \infty} X_t / \log t = Y_\infty$.
Outline

1. Generalities

2. Self-attracting diffusion on \mathbb{R} (with Victor Kleptsyn)

3. Discretisation and dynamical system

4. Centering

5. Final result
Study

\[
dX_t = dB_t - \left(V'(X_t) + \frac{1}{t} \int_0^t W'(X_t - X_s) \, ds \right) \, dt
\]

\[
= dB_t - \left(V'(X_t) + W' \ast \mu_t(X_t) \right) dt
\]

\[
\mu_t = \frac{1}{t} \int_0^t \delta_X s \, ds
\]
Study

\[dX_t = dB_t - \left(V'(X_t) + \frac{1}{t} \int_0^t W'(X_t - X_s) \, ds \right) \, dt \]

\[= dB_t - (V'(X_t) + W' * \mu_t(X_t)) \, dt \]

\[\mu_t = \frac{1}{t} \int_0^t \delta_{X_s} \, ds \]

\[V = 0. \]
Example: quadratic W

Lemma

Let $W(x) = ax^2$ with $a > 0$. Then a.s. the empirical measure μ_t converges (weakly) to μ_∞ where $\mu_\infty(\cdot - \bar{\mu}_\infty) \sim \mathcal{N}(0, 1/a)$ and $\bar{\mu}_\infty$ is also a Gaussian variable.
Example: quadratic W

Lemma

Let $W(x) = ax^2$ with $a > 0$. Then a.s. the empirical measure μ_t converges (weakly) to μ_∞ where $\mu_\infty(\cdot - \bar{\mu}_\infty) \sim \mathcal{N}(0, 1/a)$ and $\bar{\mu}_\infty$ is also a Gaussian variable.

Let $W(x) = \frac{1}{2} (x - 1)^2$. Then $\bar{\mu}_t = \frac{1}{t} \int_0^t X_s \, ds$ and X_t diverge a.s.
Set of hypotheses on the interaction potential (H)

- W is C^2, strictly uniformly convex and symmetric,
Set of hypotheses on the interaction potential (H)

- W is C^2, strictly uniformly convex and symmetric,
- there exist $C, k > 0$ such that

$$|W(x)| + |W'(x)| + |W''(x)| \leq C(1 + |x|^k).$$
Results

Theorem

Suppose that \(W \) satisfies the assumption (H). Then there exists a unique probability density function \(\rho_\infty \) such that a.s.

\[
\mu_t \rightarrow \rho_\infty (\cdot - c_\infty)dx.
\]
Outline

1. Generalities

2. Self-attracting diffusion on \mathbb{R} (with Victor Kleptsyn)

3. Discretisation and dynamical system

4. Centering

5. Final result
Discretisation and dynamical system

Relation with a Markovian system

\[\dot{\mu} = \Pi(\mu) - \mu, \]

where \[\Pi(\mu) := \frac{1}{Z(\mu)} e^{-\frac{1}{2} W^* \mu}. \]
Relation with a Markovian system

\(\mu_t \) is asymptotically close to the deterministic dynamical system:

\[
\dot{\mu} = \Pi(\mu) - \mu,
\]

where \(\Pi(\mu) := \frac{1}{Z(\mu)} e^{-2W*\mu} \).
Strategy of the proof

Compare on $[T_n, T_{n+1}]$ the trajectories of

$$\begin{align*}
 dX_t &= dB_t - W' * \mu_t(X_t) dt \\
 dY_t &= dB_t - W' * \mu_{T_n}(Y_t) dt
\end{align*}$$

with those of the corresponding process where μ_t is replaced by μ_{T_n}:
Strategy of the proof

- Compare on $[T_n, T_{n+1}]$ the trajectories of

$$dX_t = dB_t - W' * \mu_t(X_t) dt$$

with those of the corresponding process where μ_t is replaced by μ_{T_n}:

$$dY_t = dB_t - W' * \mu_{T_n}(Y_t) dt$$

- Estimate the speed of convergence of the empirical measure of Y toward the invariant probability measure $\Pi(\mu_{T_n})$
Discretisation and dynamical system

Strategy for the approximation by a dynamical system

- Compare the flow obtained by the “Euler method”

\[\mu[T_n, T_{n+1}] = \mu T_n + \frac{\Delta T_n}{T_{n+1}} \left(\mu[T_n, T_{n+1}] - \mu T_n + \text{error} \right) \]

with the flow

\[\dot{\mu} = \frac{1}{T_n} (\Pi(\mu) - \mu) \]
Outline

1. Generalities
2. Self-attracting diffusion on \mathbb{R} (with Victor Kleptsyn)
3. Discretisation and dynamical system
4. Centering
5. Final result
Definition

The center of the probability measure is the point c_μ such that

$$W' \ast \mu(c_\mu) = 0.$$

We define the centered measure μ^c as

$$\mu^c(A) = \mu(A + c_\mu).$$
The deterministic system

- Comparison with the Ornstein-Uhlenbeck process
The deterministic system

- Comparison with the Ornstein-Uhlenbeck process
- Lyapunov function: free energy
The deterministic system

- Comparison with the Ornstein-Uhlenbeck process
- Lyapunov function: free energy
- Estimation of the speed of convergence (decrease of the entropy)
The deterministic system

- Comparison with the Ornstein-Uhlenbeck process
- Lyapunov function: free energy
- Estimation of the speed of convergence (decrease of the entropy)
- Convergence of the center
Outline

1. Generalities

2. Self-attracting diffusion on \mathbb{R} (with Victor Kleptsyn)

3. Discretisation and dynamical system

4. Centering

5. Final result
Theorem

Suppose that W satisfies the hypothesis (H). Then:

1. there exists a unique probability density function ρ_∞ centered such that a.s.

$$\mu_t^c \to \rho_\infty(x)dx,$$

2. a.s. the center $c_t = c(\mu_t)$ converges to a (random) limit c_∞.

Theorem

Suppose that W satisfies the hypothesis (H). Then:

1. there exists a unique probability density function ρ_∞ centered such that a.s.
 \[\mu_t^c \to \rho_\infty(x)dx, \]

2. a.s. the center $c_t = c(\mu_t)$ converges to a (random) limit c_∞.